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Abstract

Preference learning has become a common approach in various recent methods
for aligning large language models with human values. These methods optimize
the preference margin between chosen and rejected responses, subject to certain
constraints for avoiding over-optimization. In this paper, we report surprising em-
pirical findings that simple ReLU activation can learn meaningful alignments even
using none of the following: (i) sigmoid-based gradient constraints, (ii) explicit
regularization terms. Our experiments show that over-optimization does exist, but
a threshold parameter v plays an essential role in preventing it by dynamically
filtering training examples. We further provide theoretical analysis demonstrat-
ing that ReLU-based Preference Optimization (RePO) corresponds to the convex
envelope of the 0-1 loss, establishing its fundamental soundness. Our “RePO”
method achieves competitive or superior results compared to established preference
optimization approaches. We hope this simple baseline will motivate researchers to
rethink the fundamental mechanisms behind preference optimization for language
model alignment.

1 Introduction

Recent years have witnessed significant advances in aligning large language models (LLMs) with hu-
man preferences [1—4]. A primary approach, Reinforcement Learning from Human Feedback (RLHF)
[5], first trains a reward model on preference data and then optimizes the LLM via reinforcement
learning. While effective, RLHF’s computational costs and training instability [6, 7] have motivated
simpler offline alternatives like Direct Preference Optimization (DPO) [6], which bypasses explicit
reward modeling. Take DPO as a representative example: it optimizes the alignment margin between
a preferred and a less-preferred response to the same prompt, as Figure 1 shows. The alignment of
each response is quantified via an implicit reward, defined as the log-ratio of the predicted likelihoods
under the policy model (i.e., the LLM being optimized) and a reference model (e.g., a fixed supervised
fine-tuned (SFT) model).

A fundamental challenge in preference learning is over-optimization — where models excessively
amplify reward margins between preferred and non-preferred responses, potentially degrading gener-
ation quality [8—10]. Several approaches have been developed to mitigate this issue. DPO [6] and
SimPO [11] employ sigmoid weighting through log-sigmoid activation that diminishes gradients as
reward margins increase, naturally preventing over-optimization. The /3 parameter controls gradient
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Figure 1: Comparing preference learning mechanisms. RePO employs a simpler binary thresh-
olding mechanism than SimPO and DPO, as highlighted in the shaded box. Despite its simplicity,
this mechanism achieves competitive results by naturally preventing over-optimization.

distribution sharpness — larger values produce more binary-like gradients, as illustrated in Figure
2. SLiC-HF [7] addresses over-optimization differently by incorporating an SFT regularization
term that anchors the model to its initial policy [12], preventing excessive drift toward maximizing
preference signals. These mechanisms effectively balance preference optimization with generation
quality preservation, forming the foundation of current preference learning approaches.

Here, we present a surprising empirical finding: a simple ReLU activation can work well with none
of the above strategies for mitigating over-optimization. Our analysis reveals that as parameter (3
in SimPO approaches infinity, its sigmoid weighting naturally converges to a binary thresholding
mechanism — motivating our exploration of ReLU-based Preference Optimization (RePQ). This
mechanism uses a single ReL.U function with only one hyperparameter ~, creating a clear decision
boundary that selectively updates sample pairs with insufficient reward margins (My < ) while
filtering out well-separated pairs (My > 7). We illustrate this “RePO” method in Figure 1.

Thanks to its conceptual simplicity, RePO
can serve as a hub that relates several exist-
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such solutions. This implies that in
over-optimization regimes, selecting which
examples to learn from is more critical than
determining how much to learn from each.
The ~y threshold induces an emergent data
filtering behavior, focusing dynamically on
challenging samples relative to the model’s current capability. Our theoretical analysis reveals that
RePO’s ReLU loss corresponds precisely to the convex envelope of the 0-1 loss (Theorem 4.2),
explaining why such a simple mechanism is so effective.

Figure 2: Gradient weighting functions of SimPO (sg)
and RePO (I(My < 7v)). As 8 — 00, s¢ converges to
the binary indicator ( ), establishing RePO as the
limit case of SimPO.

Our simple baseline suggests that the ReLU activation with a proper threshold -y can be an essential
reason for the common success of related methods. We believe this work’s significance lies in
revealing how preference learning principles may be simpler than previously thought. By questioning
conventional wisdom about necessary components, we hope to motivate researchers to reconsider the
fundamental mechanisms behind preference optimization.



2 Preliminaries

Directed Preference Optimization (DPO). DPO [6] stands out as a leading method for offline
preference optimization by eliminating the need for an explicit reward model. Instead, it reformulates
the reward r(x, y) as a closed-form expression based on policy ratios:

r(o9) = Blog 2L

where Z(x) is a partition function that does not depend on y. This leads to the DPO loss for a given
triplet (z, Y., y1) as:
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where o (+) denotes the sigmoid function. This loss encourages the policy 7y to prefer y,, over y; in
alignment with the reference policy.

+ Blog Z(x), ey

Sequence Likelihood Calibration (SLiC-HF). SLiC-HF [7] advances preference optimization with
two key innovations: (1) it employs a sequence-level calibration loss that contrasts the log-probability
difference between preferred and dispreferred responses using a margin v, and (2) it integrates a
regularization term to prevent divergence from the SFT policy, avoiding the need for an explicit KL
penalty. The SLiC-HF loss function is defined as:

Lsric-ur(mo) =E (2,0 ,5)eD [ReLU( - <log mo(Yw | ) —logme(y; | ) — fy)) — Mog mg(yuw | :L'):|
3)

Simple Preference Optimization (SimPQO). SimPO [11] advances preference optimization with two
key innovations: (1) it normalizes the reward by the length of the response, calculating the average
log-probability per token for a response under the policy 7y, and (2) it incorporates a target reward
margin v to ensure that the reward difference between the preferred and less preferred responses
exceeds this margin. The SimPO loss function is defined as:

log mo(yw | log T
Lsimpo(T6) = —E(ay, yn)eD [k,gg(B( g T;y| |z) _log Ty(jﬂl )_v))], (4)

where |y| denotes the number of tokens in response y, ensuring length-aware scaling of rewards, and
~ is the predefined margin that enforces a minimum difference in rewards between y,, and y;. To
align with subsequent discussions, we modify the original SimPO formulation by setting ~ to v/f3.

3 Exploring Simple ReLU Activation in Preference Learning

In this section, we explore what makes a simple ReLU activation function effective for preference
learning. We first examine the surprising relationship between ReLLU activation and sigmoid weighting
through empirical experiments. Then, we investigate the key properties that emerge from this simple
mechanism, specifically through the lens of gradient behavior, data filtering patterns, and over-
optimization control.

3.1 Examining ReL.U-based Preference Optimization

Simplification exploration. Our exploration began by questioning whether log-sigmoid activation or
SFT regularization are truly necessary for mitigating over-optimization. We simplified the SimPO
loss function through two key modifications: (i) removing the hyperparameter (3, and (ii) replacing
the log-sigmoid function with a ReLU activation.

We adopt the length-normalized implicit reward margin My (as introduced in SimPO [11]):
log 7o (yw | )  logmy(yi | )
(Y| |y

which quantifies the policy’s preference between responses. Using My, we examine a loss function
with the following form:

Lrepo(m0) = E(zy,, y)ep [ReLU (=(Mg —7))] (6)

My =
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where 7 € [0, 1] is the sole hyperparameter representing the rarget reward margin.

Gradient behavior investigation. We examine the gradient dynamics of RePO and SimPO to reveal
how our simplified approach addresses over-optimization:

VoLsimpo(mo) = —BEp [s6 - (Vo — Vo,u)l, @)
VoLrero(mo) = —Ep [I(Mg <) - (Vo.y — Vo)l ()

where s9 = o(B(—Mpy + 7)) is SimPO’s sigmoid weighting function. The terms Vg, =
ﬁvg log mg(yw | ) and Vg ,,, = ﬁVg log mg (i | ) correspond to the gradients that increase
the probability of the “winning” response y,, and decrease the probability of the “losing” response y;,
respectively. The scaling factor 3 in Equation 7 linearly amplifies gradient magnitudes but does not
alter the relative update directions in adaptive optimizers like Adam [13], as the momentum terms
automatically normalize scale variations. We therefore omit /3 in Figure 2 for clearer visualization of

the weighting function shapes.

The key insight is that RePO’s ReLLU-based gradient (Equation 8) applies uniform updates only to
pairs with My < -, while SimPO’s gradient (Equation 7) uses continuous 3-scaled weights. Figure 2
visualizes this difference, showing RePO as the limiting case of SimPO as § — oo.

Lemma 3.1 (Gradient Equivalence in the SimPO-to-RePO Limit). Under the same Mg and
definitions, the SimPO gradient converges pointwise to the RePO gradient as f — oo:

lim Vg Lsimpo = VoLrero- &)
B—o0
Sketch. The convergence follows from the pointwise limit of the sigmoid weighting:
lim sg = lim o(B8(—My+7)) =L(My < 7).
B—00 B—00
Substituting this into Equation 7 yields Equation 8. O

Remark 3.2. Please check Appendix for all proofs. Lemma 3.1 establishes RePO as the asymptotic
limit of SimPO with large (3, explaining two key advantages we will demonstrate in Section 3.2: com-
parable performance without 8 tuning complexity, and an effective binary thresholding mechanism
that induces implicit data filtering for controlling over-optimization.

3.2 Empirical Study

The previous section analyzes the relationship between SimPO and RePO from the perspective of
gradient behavior. In this section, we compare their performance from an empirical standpoint.

Experimental setup. We evaluate this approach using SimPO’s experimental setup [11] with Llama3-
8B and Gemma2-9B models (Instruct setup). For consistency, we use the same training datasets
as SimPO: princeton-nlp/llama3-ultrafeedback-armorm for Llama3-8B and princeton-nlp/gemma?2-
ultrafeedback-armorm for Gemma?2-9B. For all SimPO experiments, we set 5 = 10.0 and vy = 0.4
for Gemma2-9B and 5 = 10.0 and v = 0.3 for Llama3-8B, unless otherwise specified. We track
optimization progress using two reward margin metrics:

Mbach = E(g,y,,,9)e8[Mo],  mD =E(3,4,, 4)en[Mo], (10)

measuring response separation within each batch (mmnaen) and across the entire training set (mm).
Evaluation benchmarks. We evalu_ SimPO (B=1.0) s SimPO (B=3.0) = SimPO (B=5.0) = SimPO (8=10.0) s RePO

ate on two established benchmarks for
open-ended generation: AlpacaEval 2
[14] (measuring instruction-following
quality against GPT-4) and Arena-
Hard [15] (testing complex reason- ,,.
ing). For AlpacaEval 2, we report
both length-controlled win rate (LC-
Win Rate) and raw win rate (WR); for ,,
Arena-Hard, we report the standard
win rate.
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Figure 3: Performance of SimPO with varying 5 and RePO
on AlpacaEval2 benchmark.
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Figure 4: Implicit reward margin My distribution across training steps (total: 467) for RePO at
v = 0.4. Dashed line: v = 0.4. Green: samples below v (gradient descent); : samples above ~y
(zero gradient). Numbers: fraction of samples above .

Observation 1: Large 5 enhances SimPQO’s performance when paired with appropriate v. We
systematically evaluate SimPO across varying values of 8 € {1.0, 3.0, 5.0, 10.0}, while maintaining
fixed v values that we empirically determined to be suitable for each model architecture (v = 0.4 for
Gemma2-9B and v = 0.3 for Llama3-8B). As shown in Figure 3, increasing (3 leads to consistent
performance improvements across all evaluation metrics, with diminishing returns observed beyond
B = 5.0. These findings align with observations in the SimPO paper>.

Observation 2: RePO matches Hama3-88-nstruct cemmaz-aB-nstruct

high-3 SimPO. RePO achieves .. RN " -

performance comparable to o ! h 65

SimPO with a large 5. As shown & so

in Figure 3, RePO achieves win = 60: 7

rates of 51.1% on Llama3-8B 2%

and 66.6% on Gemma2-9B,

Comparable to SimPO’S perfor- 0.0 0.2 0.4 0.6 0.8 1.0 20 0.0 0.2 0.4 0.6 0.8

mance. This aligns with Lemma T Ty ' ' Y ' '

3.1, Wh{Ch establishes tha't RePO Figure 5: of RePO performance (AlpacaEval 2 LC Win
can be 1qterpreted as a limiting  Rate) and of mean reward margins (mp) across varying
case of SimPO as 3 — oco. ~ values. See Appendix D.3 for details.

Observation 3: ~ threshold creates a natural alignment-optimization tradeoff. Our experiments
track the mean implicit reward margin mp (cf. Equation 10) across training pairs. As Figure 5
illustrates, increasing -y directly elevates mp while performance follows an inverted U-shaped pattern
— improving initially but declining beyond a critical threshold. In RePO, gradients vanish when the
implicit reward margin exceeds v, effectively filtering out well-separated pairs from updates. This
mechanism creates a fundamental tradeoff: small v values retain excessive zero-gradient samples
causing under-filtering, while large ~ values force updates on most samples, potentially leading to
over-optimization [8] and ultimately degrading performance.

Observation 4: RePO creates a natural learning curriculum via progressive filtering. Figure
4 reveals an unexpected pattern in how the distribution of implicit reward margins My evolves
throughout training. As learning progresses, the model’s ability to discriminate between winning and
losing samples naturally improves, resulting in a steady increase in both the implicit reward margin
and the ratio of filtered data. Notably, the filtered data ratio rises from 13% to 58% between steps
100 and 400. This creates an emergent curriculum where the model initially learns from a broader set
of examples and gradually focuses on the more challenging ones — despite using only half of the
samples for gradient updates in later stages, the model achieves optimal performance.

3.3 Over-Optimization Analysis

The study of over-optimization can be traced back to traditional RLHF literature, and has been
empirically investigated in both controlled experiments [9] and user studies [10]. In this work, we
follow their experimental setup to further explore this phenomenon.

*In their official repository, the authors note: “SimPO requires a much larger (3 than DPO... In many cases,
an even larger (e.g., 10) could yield better results.”
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Model Over-Optimization: Building on Rafailov et al. [16], we investigate over-optimization in
RePO, by evaluating six different values of ~y (0.0,0.2,0.4,0.6,0.8,1.0), each corresponding to
varying levels of data filtering. Across all cases, we observe a distinct hump-shaped performance
pattern: while moderate filtering improves alignment, excessive filtering causes performance to
degrade, highlighting the over-optimization effect.

Scaling Law Fits. Previous work

[9, 16] has established scaling laws for e| " o7 Wemezssr |0 AR N i oy
reward model scores as a function of o %"= B NIRRT

the KL divergence between the initial e ¥ /".\‘{ S £ * f' _____ \

and optimized policies. In contrast, 5| / »" * . "% 2N
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the associated computational cost of ~*| '/ i ENE
calculating KL divergence. Instead, *|/ °
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gin during training as a proxy metric. Fjgure 6: Over-optimization patterns for RePO on Llama3-
The reward function R(d) is given by:  §BIT and Gemma2-9B-IT, using AlpacaEval2 LC win rates
R(d) = d(a — Blogd), (11) and Arena-Hard raw win rates. Dotted curves represent
theoretical fits based on Gao et al. [9]’s scaling laws, using

where o and 3 are constants depen- GPT-4 win rates instead of standard reward model scores.
dent on the reward model’s dataset size and parameter count, and d = Mypyen. Without training a
proxy reward model, we substitute GPT-4 win rates over dataset completions for the gold reward.

Interestingly, we find that this scaling law provides an accurate relationship between d and win rates
for RePO.

3.4 RePO++: Exploring Extensions of ReLU-based Filtering

While exploring ReLLU’s thresholding behavior, we observed an interesting limitation: for cases
where the implicit reward margin is smaller than ~, their gradient weights become uniform, not
differentiating between samples of varying difficulty.

This observation naturally led us to wonder: could we preserve the effective filtering mechanism
while reintroducing some degree of weighting? To explore this question, we experimented with
combining ReL.U’s binary filtering with SimPO’s continuous weighting:

Lrepo++(mg) = —Ep [logo (—ReLU (= (Mg — 7)))], (12)

This exploration was a natural follow-up to our main discovery about ReLLU’s effectiveness, rather
than our primary contribution. We were curious to see whether combining the best aspects of both
approaches might yield additional insights about preference learning mechanisms.

What does this combined approach reveal? To understand the behavior of this extension, we
examined its gradient with respect to the parameters 6:

Vo Lrero++(m9) = —BEp [s6 - Lo - (Vo,y, — Vo)l (13)
where sp = o (8 (—Mpy + )) and I is an indicator function that is 1 if My < + and 0 otherwise.

We observed that this gradient combines properties we discovered in both approaches: it scales updates
by sg (similar to SimPO) and filters them using Iy (the key discovery in our ReLLU exploration),
focusing the model on less-separated pairs while giving higher weights to smaller separations.

Adaptation with RePO++. The core contribution of RePO++ lies in leveraging ReLLU to mitigate
over-optimization while preserving the standard workflow of preference optimization. This makes
RePO++ easily adaptable to existing DPO-like methods. For instance, as shown in Equation 12,

replacing My with log :Z((Zf\f)) 108 T;‘?:f((if\lj))

ReLU-enhanced version of DPO.

seamlessly integrates RePO++ into DPO, forming a

4 Theoretical Analysis: ReLU’s Optimality in Preference Learning

Next, we establish a surprising theoretical connection between preference optimization and binary
classification, revealing why our simple ReLLU-based approach achieves superior performance.



Following Tang et al. [17], preference learning can be reformulated as binary classification. Given
pairs (z,1) where z € R¥ and | € {—1,1}, we aim to learn a predictor £(z) whose sign matches I.
The classification accuracy is: 3E[sign({(z) - 1)] 4+ 4. This corresponds to minimizing the 0-1 loss:

Loa(0):=FE [1 ~sign(i(z) - 1) (14)

For preference data (y,,, ;) Where 1, > y;, we set | = 1 and parameterize ¢(yy,, y;) = To(Yw) —
r4(y1), yielding the objective:

Li(0) :=E[f(rs(yw) = ro(u)] (15)

Where f determines the surrogate loss: f(z) = I(z < 0) gives the 0-1 loss, f(z) = —logo(z)
yields SimPO’s logistic loss, and f(x) = ReLU(—x) gives our method’s loss.

Our key insight comes from analyzing the convex envelope of the 0-1 loss:

Definition 4.1. The convex envelope of L1 over a closed convex set D C R is:
convpLo.q(x) :=sup {h(z) | his convex, h < Loq Vo € D} (16)
Theorem 4.2 (ReLU as Convex Envelope). For D = [—a, b] with a,b > 0, the convex envelope of
50.1(51/') = ]I(.’E < 0) is:
1
convpLyq(z) = —ReLU(—x) (17)
a

This remarkable result reveals that ReLU provides the tightest possible convex approximation to the
ideal 0-1 loss, explaining its empirical effectiveness. Furthermore:

Corollary 4.3 (Optimality Preservation). Let D C R be convex. Then:

arg min Lo.1(¢) = arg min convp L1 (¢) (18)
[ [
And for D = [—a,b]:
. 1
arg min Lo1(z) = arg min aReLU(fx) (19)

This guarantees that gradient-based optimization of our ReLU surrogate converges to solutions
matching the theoretical optimum of the intractable 0-1 loss. Importantly:

Corollary 4.4 (Logistic Loss Suboptimality). The logistic loss fiog—sigmoid (z) = —log o(x) is not
the convex envelope of Lg.1.

This theoretical foundation explains why our simple ReLU-based approach consistently outperforms
more complex mechanisms like SimPO’s sigmoid weighting — ReL.U provides optimality guarantees
that logistic loss cannot match, while being computationally more efficient.

5 Experiments

In this section, we examine how our simplified ReLU-based approach behaves across different models
and settings. Rather than focusing solely on performance gains, we explore patterns that help explain
why such a simple mechanism works effectively in practice.

5.1 Experimental Setup

The core experimental configuration extends our investigation from Section 3.2 to include Mistral2-7B
[18] alongside previously examined models. For the Llama3-Instruct v0.2 experiments, we employed
the RLHFlow/ArmoRM-Llama3-8B-v0.1 [19] reward model for ranking generated data. We bench-
mark our approach against established preference optimization methods: DPO [6], SimPO [11], IPO
[20], CPO [21], KTO [22], ORPO [23], and R-DPO [24], with SFT models serving as baselines.
Implementation details are provided in Appendix D.1. We also evaluate on downstream tasks from
the Huggingface Open Leaderboard benchmarks [25], with additional details in in Appendix D.2.
The code is available at https://github. com/junkangwu/ReP0O.
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https://github.com/junkangwu/RePO

Table 1: AlpacaEval 2 (AE2), Arena-Hard (AH) results across four settings. “WR” denotes the
raw win rate,”“L.C” the length-controlled win rate. The best results are highlighted in bold, while the
second-best are underlined.

Llama3-Instruct (8B) Mistral-Instruct (7B) Llama3-Instruct v0.2 (8B) Gemma2-Instruct (9B)

Method AE 2 AH AE 2 AH AE 2 AH AE 2 AH

LC WR WR LC WR WR LC WR WR LC WR  WR
SFT 240 236 224 190 154 129 240 236 24 487 365 421
SLIC-HF 269 275 262 241 246 189 339 325 293 651 605 537
DPO 402 381 312 203 179 134 482 475 35.2 704 669 588
PO 359 344 302 223 186 162 406 396 34.9 62.6 584 535
CPO 206 344 294 262 317 238 365 408 342 S64 534 552
KTO 383 341 303 194 203 168 414 364 28.9 617 555 538
ORPO 316 298 263 240 230 186 365 33.1 304 S62 467 462
R-DPO 403 373 329 214 222 138 516 507 35.0 683 669 579
SimPO 438 380 326 302 321 201 556 496 336 724 650 578
RePO 467 411 333 304 336 203 577 5L1 352 736 666  59.1

5.2 Result Comparisons

Observation: Simple ReLU thresholding exhibits surprising effectiveness. Table | reveals an
unexpected pattern: despite removing components previously thought essential, the simple ReL.U-
based approach consistently performs well across all evaluated models and benchmarks. This finding
aligns with our theoretical analysis showing that binary thresholding directly approximates the convex
envelope of the 0-1 loss. On AlpacaEval 2, we observe improvements of 0.2-2.8 points in LC win
rates across different configurations compared to the strongest baselines.

5.3 Methodology Comparisons

Beyond alignment, we also compare the methodologies of these preference learning methods. Our
method plays a hub to connect these methods.

Relation to SimPO. SimPO employs sigmoid weighting via log-sigmoid activation to attenuate
gradients as reward margins increase, mitigating over-optimization. RePO can be viewed as “SimPO
without log-sigmoid,” replacing this continuous scaling with binary filtering. To validate this relation-
ship, we integrated a ReLLU-based filtering mechanism into SimPO (¢f. RePO++ Equation 12). Table
2 confirms that ReLU’s filtering mechanism enhances performance. As demonstrated in Section 3.4,
RePO++ directly addresses over-optimization while retaining the benefits of some weighting.

Relation to SLiC-HF. RePO can be characterized as “SLiC-HF without SFT regularization”. To
ensure a fair comparison (while disregarding differences in length normalization), we investigated
the impact of SFT regularization by varying its coefficient, \. The results, presented in Appendix
Table 6 and further details in Appendix D.5, indicate that this additional regularization term offers
no discernible improvement. This suggests that SFT regularization targets a different optimization
challenge, distinct from the direct over-optimization problem RePO addresses.

Relation to DPO. Mathematically, DPO is equivalent to SimPO when the margin + is defined as
log Trer (Yo | ) — log mer(y; | ) (ignoring length normalization). However, directly substituting the
log-sigmoid function with ReLU in DPO’s formulation leads to a significant performance degradation
(see Appendix Table 7 and Appendix D.6). This underscores the critical role of the threshold ~
in determining the effectiveness of over-optimization prevention. As identified by Wu et al. [26],
reference model based reward margins are often unreliable as target margins, which explains why
SimPO’s explicit y parameter is effective for preference learning.

5.4 Effect of ReLU Filtering Across Methods

Having observed the effectiveness of binary thresholding, we naturally questioned whether this
mechanism might enhance other preference learning approaches. Table 2 shows that integrating ReLU
filtering consistently improved performance across both DPO and SimPO frameworks, suggesting
that selective gradient application based on margin thresholds provides benefits beyond our specific
implementation. Our experiments with the combined approach (cf. RePO++ in Section 3.4) revealed
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Figure 7: Exploration of dynamic v scheduling on Llama3-Instruct v0.2 (8B). The dashed line
represents performance with a fixed v. We observed that decreasing v from an initially larger value
creates a natural curriculum that enhances performance.

particularly strong improvements when applied to DPO (5%—12% gains), with notable performance
on Arena-Hard (reaching 65.7). This design effectively mitigates over-optimization while preserving
the benefits of the original scheme.

5.5 Dynamic Margin Scheduling and Curriculum Learning

Our investigation into the role of tar- .
get reward margin v led us to an Table 2:  Performance improvements of RePO and

unexpected discovery about curricu- RePO++ over DPO and SimPO. Results are present on
lum learning. We experimented with AlpacaEval 2 (AE 2) and Arena-Hard (AH) with LC (%) and
dynamic scheduling of ~ throughout WR (%). Red numbers indicate relative improvements.

training, implementing two strategies: Llama3-Instruct v0.2 (8B) Gemma2-Instruct (9B)
(i) increasing ~ from small to large, e AE2 AH AE2 AH
and (ii) decreasing v from large to LC WR WR LC WR WR
: e _ DPO 482 475 352 704 66.9 58.8
small. Flgure 7.reveals astriking pat- P00 1 B i st e gy e
tern: starting with a moderately large .. rePo++ 50.8771% 71.8+20%  go.5+3.9%  g5.7+ILT%
value of v and gradually decreasing it simpo 5.6 2.4 65.0 57.8
_ w RePO 57.7+3:8% 73.6°17%  66.6125% 591 +22%
(1.0 — 0.2) naturally creates an effec- ™ Je2° 200, TLIFRH gpat2it g g

tive curriculum that improves model
performance. In contrast, both excessively large values (1.0 — 0.8) and small values (0.0 — 0.2) led
to suboptimal outcomes.

This observation reveals an intriguing self-regulating property: early in training when the model
is underfitting, a larger v permits more aggressive updates across more examples. As training pro-
gresses, the decreasing ~y naturally focuses learning on increasingly challenging examples, effectively
preventing over-optimization. This emergent curriculum behavior, arising from a simple parame-
ter schedule, suggests that binary thresholding captures fundamental learning dynamics that more
complex mechanisms might obscure.

6 Discussion

Conclusion Our exploration of simple ReLLU activation in preference learning has revealed several
key insights. We found that binary thresholding, implemented through a straightforward ReLU
function, provides an effective mechanism for preventing over-optimization in language model
alignment. Our theoretical analysis showed that this seemingly simple approach is, in fact, the convex
envelope of the ideal 0-1 loss function, explaining its surprising effectiveness. Rather than developing
yet another complex preference optimization method, our work uncovered how fundamental properties
like data selection and implicit curriculum learning emerge naturally from basic principles.

Limitations and future directions. Our current exploration is limited to offline preference learning
settings. Future work could investigate how these insights might extend to online learning scenarios,



where preferences are gathered interactively. Additionally, while we found that a fixed margin
threshold works well in practice, exploring adaptive or context-aware thresholds might further
improve performance in highly dynamic environments. The relationship between binary filtering
and self-play scenarios [27] — where the model generates its own feedback — is another promising
direction that could lead to more scalable alignment techniques.

Beyond alignment, our work connects to LLM reasoning research [28, 29]. Future work should
investigate how KL penalties and gradient clipping in GRPO [30] and PPO [5] balance preventing
over-optimization against preserving reasoning capabilities — a critical consideration for advancing
alignment methodologies.
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A Related Works

Reinforcement learning from human feedback. RLHF is a technique designed to align large
language models with human preferences and values [31-33, 20]. Traditional RLHF is typically
structured in three stages: supervised fine-tuning [34—39], reward modeling [9, 40—-44], and policy
optimization [5, 45]. In the third stage, Proximal Policy Optimization (PPO) is widely adopted. In
contrast, RLOO [46] reduces the GPU memory footprint of RLHF by eliminating the Critic model
and leverages a Leave-One-Out strategy to achieve superior performance. GRPO [47], another variant
of PPO, improves mathematical reasoning abilities while optimizing memory usage by replacing the
Leave-One-Out method with a direct subtraction of the mean of all samples for a given prompt.

Offline preference optimization. In addition to DPO, several alternative preference optimization
objectives have been proposed. IPO [20] addresses overfitting issues inherent in DPO. ORPO [23]
and SimPO [11] aim to remove reliance on a reference model. R-DPO [24] targets the reduction
of exploitation due to sequence length, while KTO [22] handles preference optimization in the
absence of pairwise data. CPO [21] and 3-DPO [48] focus on improving the quality of preference
data. Another research direction addresses noise in offline alignment, which arises from the need
to construct pairwise data. rDPO [49], a variant of DPO, mitigates preference noise and enhances
policy robustness, while DrDPO [50] applies distributed robust optimization to tackle this issue.
Other works have approached the problem through divergence regularization [51, 52], selection of
high-quality data [53, 54], or reweighting loss functions [55-57].

Iterative Preference Optimization. Offline preference optimization methods, such as DPO, face a
limitation due to the lack of an explicit reward model, which hinders their ability to sample preference
pairs from the optimal policy. To address this, iterative preference optimization techniques have
been proposed. These methods iteratively update the reference model using the most recent policy
model or generate new preference pairs in each iteration [58-62, 27, 63, 64]. For instance, SPIN [27]
employs a self-play framework to fine-tune the model in a supervised manner, while Yuan et al. [62]
annotate preferences throughout the iterative process. REBEL improves sample quality by regressing
the relative reward. Additionally, [65] generates data using a mixture policy, similar to the Nash-MD
algorithm [60].

B Broader Impacts
This paper presents work whose goal is to advance the field of Machine Learning. There are many

potential societal consequences of our work, none of which we feel must be specifically highlighted
here

C Proofs

C.1 Proof of Lemma 3.1

Lemma 3.1 (Gradient Equivalence in the SimPO-to-RePO Limit). Under the same Mg and v
definitions, the SimPO gradient converges pointwise to the RePO gradient as f — oo:

lim VoLsinpo = Vo Lrepro- 9
B—o0

Proof. We formally establish the gradient equivalence through pointwise convergence analysis. Let
D be the data distribution and 6 denote model parameters. Recall the gradient expressions:
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SimPO Gradient:
VoLsimpo = —BEp [0 (B(=My + 7)) - (Vo — Vo)) (20)

RePO Gradient:
VQERCPO = 7E,D [H(MQ < P)/) : (V97y1u - Vevyl)] (21)

where o (+) is the sigmoid function. The equivalence hinges on the limiting behavior of the sigmoid
weighting term sy = o(8(—Mpy + v)). We analyze three cases:

Case 1: My <~ Here, —My+ v > 0. As § — o0,

ﬁli_{ﬂ o(B(=Ms +7)) = lim o(2) =1 =1(Mg < 7).

Case 2: My >~y Here, —My + v < 0. As 5 — o0,

ﬁle o(B(—Mg +7)) = ZEIP o(z) =0=1(My < ).

o0
Case 3: My = ~ This occurs on a measure-zero set under continuous distributions. The limit
becomes:

lim o(0) = % £1(My < 7),

B—00
which is negligible in expectation.

Thus, limg_,« s¢ = I(Mpy < +y) almost everywhere. Substituting this into the SIimPO gradient:

lim V¢Lsimpo = — lim SEp [50 : (Vﬂ,yw - v9~,yz)} (22)
B—o0 B—o00

=—-FEp [5hm Bs6 - (Vo,y., — Vg,yl)] (Dominated Convergence Theorem)
— 00

(23)
To resolve the 3 scaling, observe that for My # ~:
. limg oo f-1 =00 if Mg <ry
1 = 24
g B {11m3%05-0=0 if My > 24)

The divergence when My < < is mitigated by adaptive optimizers like Adam, which normalize
gradient magnitudes through momentum terms. Formally, let g9 = Vg ., — Vg ,,. Under Adam’s
update rule:

1y
v ’lA}t + € ’
where m; and 0; are bias-corrected momentum estimates. The infinite gradient magnitude is absorbed
into 7, /+/ 0y, effectively reducing to a unit-scaled update. Hence, in normalized update space:

9t+1=9t—77'

lim Bsg - gg oc [(Mg <) - go-
B—o0

Combining these results:

511_)120 VoLsimpo = —Ep [[(Ms <) - (Va,y, — Vo,y)] = VoLrero, (25)
which completes the proof. O
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C.2 Proof of Theorem 4.2

Theorem 4.2 (ReLU as Convex Envelope). For D = [—a, b] with a,b > 0, the convex envelope of
Lo1(x) =1(x < 0) is:

convpLoi(x) = %ReLU(—x) a7

Proof. We demonstrate that h(z) = 1ReLU(—x) satisfies the convex envelope definition through
three sequential arguments.

1. Convexity and Underestimation: The ReLU function is convex as the pointwise maximum of

affine functions (Rule 3). The composition (z) = 1 max(—x,0) preserves convexity through affine

transformation (Rule 2). For all x € D:
* Whenz < 0: h(z) = =% < 1= Loi(z),sincexr > —a = -2 <1

* Whenz > 0: h(z) =0 = Lo.1(x)

Thus h(z) < Lo1(z) over D.

2. Maximality Among Convex Underestimators: Let g(x) be any convex function satisfying
g(x) < Lo (z). For z € [—a,0), convexity implies:

g@) < —g(-a)+ (14 7) 9(0) <

i
a
since g(—a) < 1and g(0) < 0. Forz > 0, g(x) < 0. Hence g(z) < h(x) forall z € D.

3. Epigraph Characterization: The epigraph epi(h) coincides with the convex hull of epi(Lg.1) N
(D x R). The affine segment h(x) = —% on [—a, 0) connects the points (—a, 1) and (0, 0), forming
the tightest convex fit to the 0-1 loss’s discontinuity. By Theorem 1 in [66], this construction achieves
the convex envelope. O

C.3 Proof of Corollary 4.3

Corollary 4.3 (Optimality Preservation). Let D C R be convex. Then:

arg min Lo.1(¢) = arg min convp Lo.1 () (18)
[ [

And for D = [—a, b]:
. 1
argmin Lo1(z) = arg min aReLU(fx) (19)

Proof. Part 1: By Theorem 1 in the lecture notes (Page 5), for any function f and convex set S:

gnelgf(x) = min convg f(z).

Let S = D and f = Ly.1. The equality of minima implies:
{z* € D | Lo1(z") =minLo1} C {z* € D | convpLy.1(z*) = minconvpLoq}.

To show reverse inclusion, suppose z* € arg min convp Lo 1. Since convpLoq(z*) < Lo (z*)
and convp Ly 1 attains its minimum at the same points as L1, z* must also minimize Lg 1.

Part 2: For D = [—a, b], both Lo 1 (z) and 2ReLU(—xz) attain their minimum value 0 on [0, b]. For
z € [~a,0), LReLU(—=) is strictly decreasing, achieving its minimum at z = 0. Thus:

. .1
arg min Lo1(z) = arg min gReLU(—x) =10,b].
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C.4 Proof of Corollary 4.4
Corollary 4.4 (Logistic Loss Suboptimality). The logistic l0SS fiog—sigmoid(2) = —log o(x) is not

the convex envelope of Lo 1.

Proof. We demonstrate violation of the convex envelope’s defining property. Consider D = [—1, 1]:

1. Underestimation Failure: For x > 0:

—logo(z) = —log (1 e

> =log(l+e %) >0=Lo1()

Thus fiog—sigmoid £ Lo-1 over D, violating the envelope requirement.

2. Non-Maximality: Even if scaled, the logistic loss’s curvature differs from the ReLLU envelope.
2

Forz € (—1,0), 455 (~logo(z)) = o(z)(1 — o(x)) > 0, making it strictly convex — incompatible

with the affine structure of convp Lo.;.

Hence fiog—sigmoia cannot be the convex envelope. O

D Experiments

D.1 Implementation Details

Empirical observations indicate significant performance sensitivity to model parameter initialization
and learning rate selection across compared methods. To establish rigorous comparison benchmarks,
we conducted systematic hyperparameter searches adhering to the specifications in each method’s
original publication. The complete search space configuration is documented in Table 3. Notably,
substantial architecture updates to both Llama3-8B and Instruct-7B necessitated re-implementation
of the SimPO method, as the original implementation became incompatible with the revised model
interfaces.

Training Protocol All experiments employed standardized training configurations to ensure compa-
rability:

* Batch size: 128 (consistent across methods)

* Learning rate: Searched in {3e-7, 5e-7, 8e-7, le-6}

* Training duration: Single epoch with cosine annealing schedule

e Warmup: 10% of total training steps

* Optimizer: Adam [13] (51 = 0.9, 52 = 0.999)

» Sequence length: 2048 tokens (fixed for all inputs)
The learning rate schedule follows a triangular policy with amplitude decay, selected through cross-

validation on held-out development sets. All implementations utilize full-precision floating-point
arithmetic to prevent gradient quantization artifacts.

Hyperparameters in RePO. Table 4 summarizes the hyperparameters utilized for RePO across
different experimental settings. Our methodology only involves one hyperparameter: . Based on
empirical evidence, we recommend setting 7 to a default value of 0.5, as this configuration has
consistently demonstrated reliability.

Decoding Hyperparameters. The decoding hyperparameters employed in this study align with
those used in SimPO*. We express our gratitude to the SimPO team for their generosity in sharing
their insights and configurations, which have been instrumental in our work.

Computation Environment. All training experiments described in this paper were conducted using
8xA100 GPUs. The experimental setup follows the guidelines provided in the alignment-handbook
repository’, ensuring reproducibility and consistency with established practices.
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Table 3: Various preference optimization objectives and hyperparameter search range.

Method Objective Hyperparameter

A €10.1,0.5,1.0,10.0]
5 €[0.1,0.5,1.0,2.0]

SLiC-HF [7] max (0,0 — log o (yw|z) + log mo(yi|x)) — Alog mo (yuw|x)

7o (yw ) o (y1]2)
DPO [6] —logo (ﬁ log Zeltule)l _ glog «,’Zfﬁif,\z)) 3 € [0.01,0.05,0.1]
moule) 1o melnln) _ 1)?

IPO [20] log = uln — 108 wituley ~ 27 7 €[0.01,0.1,0.5,1.0]
CPO [21] —logo (Blog mo(yw|z) — Blog mo(yi|x)) — Alog mo(yw|z) a =1.0, 8 €[0.01,0.05,0.1]

— 7o (Ywl®) _ _ o (Y |®) _ _
KTO [22] Aw0 <ﬂ log w,:}((yw\z) Zref) + N\io (Zref Blog ’T:f(yll|33)) A=Ay =10

where zer = E(q,y)~p [BKL (70 (y|2) || mret (y|))] B8 €(0.01,0.05,0.1]

_ _ po(Ywlz) po (yilz)
ORPO (23]~ 08Polunlz) — Aogo (log i —log (2 )\ (0 05 10,20

where po (yl2) = exp (4 log ma(yla))

o €0.05,0.1,0.5,1.0]

R-DPO [24] —logo <ﬁ log o (Vwle) _ Blog o (nlz) _ (alyw] — O‘|yl|)) B € [0.01,0.05,0.1]

Tref (Y |7) Tref (Y1)

. €[2.0,4.0,6.0,8.0
SimPO[11] —logo (ﬁ log o (yw|z) — % log me (yi1|2) — 7) 5 c [[0.370_5, 1.0, 1.2! 1.4,1.6]
RePO ReLU [~ (1 log mo (yu|x) — 7 log o (yi]x) — )] v €10.2,0.4,0.5,0.6,0.8]

Table 4: The hyperparameter values in RePO used for each training setting.

Setting v  Learning rate
Mistral-Instruct 0.4 6e-7
Llama3-Instruct 0.6 le-6
Llama3-Instruct-v0.2 0.6 le-6
Gemma2-Instruct 0.4 8e-7

D.2 Downstream Task Evaluation

To assess the impact of RePO on downstream task performance, we evaluate models trained with
different preference optimization methods on a diverse set of tasks from the Huggingface Open
Leaderboard [25]. The tasks include MMLU [67], ARC [68], HellaSwag [69], Truthful QA [70],
Winograd [71], and GSMS8K [72]. We adhere to standard evaluation protocols and present the results
for all models in Table 5.

Overall Performance. On average, RePO shows competitive performance across tasks, achieving
an overall score of 67.49 on the Llama3-Instruct model and 70.58 on the Llama3-Instruct v0.2 model.
The performance is generally close to that of other preference optimization methods, but it is worth
noting that in some cases, it slightly lags behind models like SimPO or DPO, particularly on tasks
such as ARC, HellaSwag, and TruthfulQA. However, the results suggest that RePO maintains a
balanced performance profile across the evaluated tasks.

General Knowledge and Reasoning. On MMLU, which tests general knowledge and reasoning,
RePO shows a slight reduction in performance (64.95 for Llama3-Instruct and 65.00 for Llama3-
Instruct v0.2) compared to models such as RRHF and SimPO. This minor decline is consistent with
the trend observed for other preference optimization methods and indicates that RePO may preserve
general knowledge to a similar extent while possibly focusing more on improving performance in
other areas such as reading comprehension and reasoning.

Reading Comprehension and Commonsense Reasoning. For ARC and HellaSwag, tasks related to
reading comprehension and commonsense reasoning, RePO outperforms the base SFT model and
exhibits competitive performance relative to other preference optimization methods. The Llama3-
Instruct v0.2 model with RePO achieves a score of 80.50 on HellaSwag, which is comparable to the
best-performing methods. This result suggests that RePO effectively improves the model’s ability to
handle contextual understanding and reasoning, likely due to its optimization strategy.

*https://github.com/princeton-nlp/SimP0/tree/main/eval
*https://github.com/huggingface/alignment-handbook
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Table 5: Downstream task evaluation results of tasks on the huggingface open leaderboard.

MMLU (5) ARC (25) HellaSwag (10) TruthfulQA (0) Winograd (5) GSMS8K (5) Average

Llama3-Instruct

SFT 67.06 61.01 78.57 51.66 74.35 68.69 66.89
RRHF 67.20 61.52 79.54 53.76 74.19 66.11 67.05
SLiC-HF 66.41 61.26 78.80 53.23 76.16 66.57 67.07
DPO 66.88 63.99 80.78 59.01 74.66 49.81 65.86
PO 66.52 61.95 77.90 54.64 73.09 58.23 65.39
CPO 67.05 62.29 78.73 54.01 73.72 67.40 67.20
KTO 66.38 63.57 79.51 58.15 73.40 57.01 66.34
ORPO 66.41 61.01 79.38 54.37 75.77 64.59 66.92
R-DPO 66.74 64.33 80.97 60.32 74.82 43.90 65.18
SimPO 65.63 62.80 78.33 60.70 73.32 50.72 65.25
RePO 64.95 62.03 77.58 60.96 72.93 66.49 67.49
Llama3-Instruct v0.2
SFT 67.06 61.01 78.57 51.66 74.35 68.69 66.89
RRHF 66.60 63.74 80.98 59.40 76.32 58.68 67.62
SLiC-HF 66.91 61.77 79.17 56.36 76.40 68.23 68.14
DPO 65.57 65.87 79.66 63.08 74.51 73.01 70.28
PO 66.06 64.85 81.02 57.29 76.72 76.12 70.34
CPO 65.67 62.12 79.63 56.34 77.98 75.28 69.50
KTO 65.99 62.88 79.02 54.66 74.66 76.42 68.94
ORPO 65.75 63.99 79.91 57.02 78.06 75.13 69.98
R-DPO 66.17 65.36 79.98 57.94 75.06 75.36 69.98
SimPO 65.18 67.15 78.04 64.92 73.88 71.34 70.08
RePO 65.00 68.09 80.50 64.38 76.16 69.37 70.58

Truthfulness. On the TruthfulQA task, RePO consistently shows improvements over the base
SFT model, with a score of 60.96 for Llama3-Instruct and 64.38 for Llama3-Instruct v0.2. This
indicates that RePO helps the model generate more truthful and reliable responses, aligning with
trends observed in other preference optimization methods. The improvement in this area is especially
notable given the inherent difficulty of this task, which tests the model’s ability to avoid generating
false information.

Math Performance. The GSM8K benchmark, which tests mathematical reasoning, shows a drop
in performance for RePO relative to the base SFT model. Specifically, the Llama3-Instruct model
with RePO achieves a score of 66.49, which is lower than other methods such as SimPO or R-DPO,
which focus more on improving mathematical reasoning. This drop is consistent with the trend
observed across various preference optimization methods and may suggest that RePO is less effective
in retaining mathematical reasoning abilities. Further investigation into this issue could provide
insights into potential strategies for addressing this gap.

Task-Specific Variability. Overall, RePO exhibits varied performance across tasks. While it
performs well in certain areas, such as commonsense reasoning and truthfulness, it lags behind in
others, particularly in general knowledge (MMLU) and mathematical reasoning (GSM8K). This
variability is in line with the performance trends observed for other preference optimization methods,
which often show task-dependent improvements and declines. This suggests that RePO has strengths
in some domains, but it may benefit from further refinement to improve performance across all tasks.

D.3 RePO with varying

Figure 8 illustrates the effect of the hyperparameter v on model performance across two evaluation
metrics: LC Win Rate and Raw Win Rate. The analysis is conducted on two models, Llama3-
8B-Instruct (left) and Gemma2-9B-Instruct (right). The LC Win Rate, shown in red (left y-axis),
represents the model’s alignment with learned preferences, whereas the Raw Win Rate, shown in
blue (right y-axis), evaluates overall ranking performance based on human preference comparisons.

Moderate ~ values lead to optimal performance. Moderate values of v (0.4-0.6) yield the best
balance between preference alignment and generalization. Both models achieve their highest LC
Win Rate in this range, indicating that preference optimization is most effective when applied at an
intermediate level. As vy increases beyond 0.6, LC Win Rate starts to decline, likely due to overfitting,
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Figure 8: Impact of the hyperparameter v on LC Win Rate and Raw Win Rate for Llama3-8B-Instruct
(left) and Gemma2-9B-Instruct (right).
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Figure 9: Gradient weighting functions of RePO++ (sq - I(My < 7)).

where the model overly aligns with preference data at the expense of generalization. Conversely, at
~ = 0.0, where no preference optimization is applied, the LC Win Rate remains low, emphasizing
the necessity of preference tuning.

Raw Win Rate trends reveal model robustness differences. The Raw Win Rate follows a similar
trend but highlights differences in robustness across models. For Llama3-8B-Instruct, the Raw Win
Rate peaks at v = 0.4 before declining, suggesting that excessive preference optimization (y > 0.6)
negatively impacts the model’s ability to generalize. In contrast, Gemma2-9B-Instruct exhibits a
more stable Raw Win Rate across a wider range of -, reaching its highest performance at v = 0.6
before experiencing a sharp decline at v = 0.8. This suggests that Gemma2-9B-Instruct maintains
better robustness to preference optimization compared to Llama3-8B-Instruct.

Gemma2-9B-Instruct outperforms Llama3-8B-Instruct. Gemma2-9B-Instruct consistently out-
performs Llama3-8B-Instruct in both LC Win Rate and Raw Win Rate. This observation indicates
that GemmaZ2-9B-Instruct not only aligns more effectively with learned preferences but also retains
superior generalization capability. The results highlight the importance of carefully selecting ~y
to avoid performance degradation at extreme values. Future work could explore adaptive strate-
gies for dynamically tuning v, ensuring that preference optimization enhances alignment without
compromising generalization.

D.4 Analsis on RePO++

Figure 9 illustrates the relationship between the gradient and the implicit reward margin. As shown
in the figure, when the implicit reward margin is greater than -y, the gradient becomes zero. In this
case, the model can stop updating for well-separated pairs, thus preventing overfitting. On the other
hand, when the implicit reward margin is less than v, the model continues to increase the weight
for less-separated pairs. Furthermore, the harder the pair is to distinguish, the larger the gradient
becomes, eventually converging to 1.0. This behavior is reminiscent of curriculum learning, where
more difficult samples are assigned higher weights.

D.5 Analysis of the Relationship Between SLiC-HF and RePO

To provide deeper insights into the relationship between SLiC-HF and RePO, we conducted additional
experiments examining the effect of SFT regularization—a core component of SLiC-HF that is absent
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in our method. As demonstrated in Table 6, we systematically evaluated performance across varying
values of the regularization coefficient \.

Mathematical Comparison. From a formulation perspective, SLiC-HF combines a hinge loss term
with an SFT regularization component that penalizes deviation from the reference model. Specifically,
the SFT regularization is controlled by parameter A\, which balances preference optimization against
model drift. By contrast, RePO eliminates this regularization entirely, relying solely on its binary
threshold mechanism to control optimization.

Impact of SFT Regularization. Our experimental results reveal a consistent trend: as \ increases
from 0.0 to 5.0, performance on AlpacaEval2 LC steadily declines from 34.1% to 27.8%. This
progressive degradation suggests that stronger regularization toward the initial SFT model actually
hinders effective preference learning in this context. The optimal performance occurs at A = 0.0,
which effectively transforms SLiC-HF into a variant of RePO.

Different Optimization Challenges. These findings suggest that SFT regularization and RePO’s
threshold-based filtering address fundamentally different optimization challenges. While SFT regular-
ization was originally introduced to mitigate catastrophic forgetting and preserve general capabilities,
our results indicate that for direct preference optimization, such regularization is unnecessary and
potentially counterproductive. Instead, RePO’s selective gradient application through its threshold
mechanism appears sufficient to prevent over-optimization while maintaining effective preference
learning.

This analysis complements our main findings and further supports our hypothesis that carefully
designed filtering mechanisms can effectively replace more complex regularization schemes in
preference optimization.

Table 6: The hyperparameter A in SIiC-HF used for each Llama3-Instruct v0.2.
SLiC-HF A=00 A=01 X=05 X=10 X=30 X=50
AlpacaEval2 LC 34.1 33.9 32.8 30.8 28.6 27.8

D.6 Detailed Analysis of the Relationship Between DPO and RePO

To further investigate the relationship between DPO and RePO, we conducted additional experiments
examining how different formulation components affect performance. As shown in Table 7, we
systematically evaluated five variants that decompose the key elements of each approach.

DPO as a Special Case of SimPO. From a mathematical perspective, DPO can be viewed as a specific
instance of SimPO where v = log et (Yo | ) — log mres(y; | ) (ignoring length normalization for
equivalence). This connection highlights how DPO implicitly defines its target margin based on
reference model probabilities rather than using an explicit hyperparameter.

Impact of ReLLU Without Explicit Margin. The second row of Table 7 shows that directly replacing
log-sigmoid with ReLU while maintaining DPO’s implicit margin definition leads to catastrophic
performance degradation (-44% on AlpacaEval LC, -47% on AlpacaEval WR, and -26% on Arena-
Hard). This dramatic decline reveals that the binary threshold mechanism of ReLU is only effective
when paired with an appropriate explicit margin parameter.

The Critical Role of . Rows 3-5 demonstrate that adding an explicit v parameter consistently im-
proves performance across all metrics regardless of whether log-sigmoid, ReLLU, or their combination
is used. The most substantial gains appear when ReLLU and ~ are combined (+4.4% LC, +9.1% WR
on AlpacaEval), supporting our hypothesis that explicit threshold-based filtering effectively controls
over-optimization.

Complementary Mechanisms. Interestingly, the combination of both mechanisms (row 5) yields
the highest overall performance, suggesting that while RePO’s binary filtering mechanism addresses
the core over-optimization challenge, the continuous weighting from log-sigmoid may provide
complementary benefits for fine-grained preference learning.
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Table 7: Impact Analysis of v Scaling and ReLU Mechanisms in DPO Training. Benchmark
results on AlpacaEval 2.0 (AE2) and Arena-Hard (AH) demonstrate percentage point changes in
Length-Controlled Win Rate (LC-WR) and Base Win Rate (WR) for Llama3-Instruct-v0.2 (8B).
Values represent relative performance deltas (%) compared to standard DPO baseline.

Llama3-Instruct v0.2 (8B)

Method v ReLU logo AE 2 AH
LC WR WR
~logo (Blog Zeelt) — log Zewls) X X Vo482 475 352
ReLU ( (log ;Zﬁu “Z —log 22 (’le“i)) ); X X 26.9- 1%  951-1T% oG9 26%
—logo (ﬁ log F2lalt) — Blog ZeUll — v X v 50.0FRTE 50.7H0TE 36,8+ 45%
ReLU ( (log ﬁ —log 7:50’((7;1!‘\1) —y v % 50.3+44% 5] 8+91% 38 9+8.5%
~logo (~ReLU (- (Blog Z2elt) — glog et —5))) v v Vo 50.8T5% 52 9+99%  37.9+57%
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: see abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: see Appendix C.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: see Appendix D.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: https://github.com/junkangwu/ReP0.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see Appendix D.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: The results are accompanied by error bars, confidence intervals, or statistical
significance tests, at least for the experiments that support the main claims of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We carried out all computational tasks on a suite of four 80GB A100 GPUs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research has been conducted with strict adherence to the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: see Appendix B.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The LLM is used only for writing, editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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