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Abstract

Understanding public opinion, including hesi-001
tancy and scepticism towards Covid-19, is im-002
portant to create appropriate public health poli-003
cies. Such opinions are traditionally manu-004
ally collected through surveys, though auto-005
matically measuring them through social me-006
dia offers a larger reach. However, this then007
poses the important question of to what degree008
public opinion surveys and stances expressed009
on social media align. In this paper, we pro-010
pose a new setting and method for gauging011
public opinion through Twitter and analysing012
its alignment to surveys, which we evaluate013
in the context of stances towards topics sur-014
rounding Covid-19 voiced by people in eight015
countries. Stance detection is typically framed016
as a pairwise sequence classification task where017
stance targets are provided. As this is not the018
case for plain tweets, we propose an alternative019
framing of the task, namely first identifying the020
tweet topic and subsequently classifying the021
stance towards it. To provide effective minimal022
supervision for training a topic-guided stance023
detection model, we introduce a novel topic-024
guided annotation technique (TOGA) based on025
unsupervised deep topic modelling and apply it026
to an unlabelled dataset of tweets about Covid-027
19. In a proxy evaluation of our method on an028
existing labelled stance detection dataset from029
the same domain (Glandt et al., 2021), we find030
that our few-shot method outperforms other,031
fully supervised approaches by 18.1 F1 points.032
Lastly, we show that our approach can be used033
effectively in conjunction with public opinion034
surveys for measuring public opinion and that035
there is a weak correlation of predicted stances036
with those reported in surveys.037

1 Introduction038

Surveys serve as an essential tool to understand039

public opinion on a large number of topics and are040

useful for creating informed public policy (Hastak041

et al., 2001). For instance, during the Covid-19042

pandemic, the HOPE survey was conducted across043

countries to understand people’s stances towards 044

vaccination (Lindholt et al., 2021). However, the 045

reach of surveys is limited – only a limited number 046

of opinions can be taken into account. 047

To address these limitations, opinions expressed 048

on social media can be leveraged. Since social me- 049

dia posts are open-ended, they can also provide us 050

with relatively unadulterated insight into the topics 051

people talk about, in contrast to surveys, where 052

questions are explicitly drafted. Previous studies 053

have shown that opinions expressed by the same 054

set of people on social media and in surveys do 055

not necessarily align (Diaz et al., 2016). Joseph 056

et al. (2021). Compared to public surveys, opin- 057

ions expressed within social media platforms tend 058

to have stronger connotations while covering more 059

diverse themes of public discourse. This suggests 060

the possibility that social media captures already 061

established and assertive opinions as opposed to 062

public surveys, which tend to have more uncer- 063

tain and hesitant responses. Hence, while stances 064

expressed on social media cannot serve as a replace- 065

ment for surveys, they can be used supplementarily, 066

as they provide access to opinions from a much 067

larger sample, across a wider range of topics, and 068

at a relatively insignificant expense. 069

A core challenge in measuring public opinion 070

from social media is that posts typically lack anno- 071

tation of the topic of discussion, rendering existing 072

supervised approaches (Howard and Ruder, 2018; 073

Houlsby et al., 2019) obsolete. We thus propose a 074

novel topic-guided stance annotation pipeline that 075

produces weakly labeled examples, through the use 076

of unsupervised deep topic modeling with greedy 077

diversity sampling. Topic and stance classifiers 078

are then trained on those examples, which are sub- 079

sequently used to automatically label tweets with 080

stances expressed on social media that we compare 081

with the results of public opinion surveys. 082

For this comparison, we utilise survey response 083

data from a study conducted by Lindholt et al. 084
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(2021) to understand the levels and predictors of085

acceptance towards a government approved Covid-086

19 vaccine. For gauging stance towards different087

topics related to Covid-19, we use a large unla-088

belled set of 2 billion tweets (TBCOV, Imran et al.089

(2022)). The research questions we investigate are:090

RQ1 How well can we assess public opinion from091

stance towards Covid-19 related topics ex-092

pressed in social media?093

RQ2 How do social media stances towards Covid-094

19 related topics vary across countries?095

RQ3 Does expressed stance on social media align096

with public opinion surveys?097

RQ4 To what extent do we observe predictors of098

vaccine hesitancy in social media?099

In summary, our contributions are:100

• We propose a new setting for gauging public101

opinions about topics from social media text102

through combined topic and stance prediction;103

• Our proposed method for topic-guided annota-104

tion TOGA overcomes the label scarcity in un-105

labeled tweets and leads to an average 18.1 F1106

point increase in topic and stance prediction107

performance, on a proxy benchmark (Glandt108

et al., 2021) from a similar domain;109

• We provide fine-grained, semi-supervised110

annotations for 7 million Covid-19 related111

tweets across 8 countries;112

• We assess the alignment between opinions113

expressed on social media and ones in self114

reported surveys across 8 countries.115

2 Related Work116

A variety of different approaches and task settings117

have been explored to perform stance detection.118

Stance towards a pre-defined set of topics, one at119

a time, is the default one. This can be done in a120

supervised (Mohammad et al., 2016; Augenstein121

et al., 2016) or an unsupervised manner (Darwish122

et al., 2020; Dash et al., 2022). Stance towards mul-123

tiple related topics has also been explored in prior124

work (Sobhani et al., 2017; Allaway and McKeown,125

2020). Finally, stances towards claims has been ex-126

plored in Gorrell et al. (2019); Rao and Pomerleau127

(2022). Recently, there have been efforts to unify128

the different settings by combining several datasets129

with differing stance definitions (Schiller et al.,130

2021; Hardalov et al., 2021) as well as stances ex-131

pressed across different languages (Hardalov et al.,132

2022a). An overview of these different settings133

of stance can be found in several surveys on the 134

topic (Küçük and Can, 2020; ALDayel and Magdy, 135

2021; Hardalov et al., 2022b). Our setting differs 136

from existing ones since we aim to identify both 137

the topic as well as the stance from a given set of 138

unlabelled tweets. 139

Close to the combined topic and stance predic- 140

tion setting is work on identifying the aspects along 141

with the designated sentiments, commonly referred 142

to aspect-based sentiment analysis (Jang et al., 143

2021). The goal there is to find aspects pertain- 144

ing to a particular topic along with predicting the 145

polarities towards each aspect. Various methods 146

have been applied within this context, ranging from 147

deep Bi-LSTM’s (Baziotis et al., 2017), Attention 148

Networks (Yang et al., 2016; Pergola et al., 2021) 149

to Graph Neural Networks (Zhang et al., 2019). It 150

has also been proposed to re-frame the problem as 151

a textual span detection task (Zhang et al., 2015; Li 152

et al., 2018), with the aim of enriching the repre- 153

sentations of aspects by applying a joint sequence 154

labelling objective (Li et al., 2019) along with po- 155

larity prediction. However, in contrast to our work, 156

most of these approaches operate in a completely 157

supervised setting, where there is an abundance of 158

annotated data. 159

3 Methods 160

Our overall goal is to compare stances expressed on 161

social media about Covid-19 with those expressed 162

in public opinion surveys. As social media data is 163

unlabelled and no labelled stance dataset exists that 164

covers the exact same topics as in public opinion 165

surveys about Covid-19, going with a completely 166

supervised setting as in prior work is impossible. 167

Another obstacle is that prior stance detection set- 168

tings (Kochkina et al., 2017; Cignarella et al., 2020) 169

assume that topics towards which the attitude is ex- 170

pressed are explicitly provided. As our domain 171

of experimentation are raw tweets (Siddiqua et al., 172

2019), such topic annotations do not exist. 173

These limitations necessitate a novel experimen- 174

tal pipeline. Its first component is a deep unsu- 175

pervised topic model, that mitigates the lack of 176

granular annotated data, by generating weakly su- 177

pervised training sets for topic and stance classi- 178

fiers (subsection 3.1). We then segment the stance 179

detection task into a topic detection module for un- 180

derstanding the underlying subject within the text 181

and a stance prediction module to designate the at- 182

titude towards the expressed topic (subsection 3.2). 183
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3.1 Topic Classification184

We follow the setting of prior work on topic clas-185

sification (Lee et al., 2011; Minaee et al., 2021),186

framing the task as one of identifying the theme187

discussed within a text. This means that given a set188

of texts/documents D = (d1, . . . dn) we wish to189

find a set of labels L = (l1, . . . ln), within our topic190

classes T = (t1, . . . tm), li ∈ T , for each di. We191

wish to learn a mapping f : D → T to understand192

the topics prevalent on social media based on their193

designated texts.194

Recall that the overall problem setting that we195

are operating within does not allow for supervised196

training, as the raw dataset of social media texts197

lacks any kind of annotation. In our early exper-198

iments, we find that approaching the task in an199

unsupervised setting, using zero-shot prompting200

(Schick and Schütze, 2020a,b) or Natural Language201

Inference (NLI) (Wei et al., 2021) is complicated202

as constructing a prompt that yields adequate con-203

sistency and performance for either the topic clas-204

sification or stance detection tasks is challenging205

(Schick et al., 2020; Liu et al., 2021).206

Annotation via Topic Modeling We thus opt207

for using topic modeling to produce a weakly su-208

pervised set of annotations from the unlabeled209

set. Selecting annotated examples during task-210

specific finetuning is a challenging task (Shao et al.,211

2019), explored extensively within active learning212

research (Hino, 2020; Konyushkova et al., 2017).213

Random sampling can lead to poor generalization214

and knowledge transfer within the novel problem215

domain (Das et al., 2021; Perez et al., 2021). To216

mitigate the inconsistency that can be caused by217

choosing suboptimal examples, we propose to use218

deep unsupervised topic models, which allow us to219

sample relevant examples for each class of interest.220

We further enhance the model with a greedy se-221

lection process for diversity sampling (Shao et al.,222

2019; Yang et al., 2015) within the relevant exam-223

ples generated by the topic model. The diversity224

maximisation sampling is modeled similar to Yang225

et al. (2015). We call this few-shot topic-guided226

annotation method TOGA.227

The topic model we train is based on the tech-228

nique proposed by Angelov (2020) that tries to find229

topic vectors while jointly learning document and230

word semantic embeddings. It is shown that learn-231

ing unsupervised topics in this fashion maximizes232

the total information gained, about all texts D when233

described by all words W .234

I(D,W ) =
∑
d∈D

∑
w∈W

P (d,w) log

(
P (d,w)

P (d)P (w)

)
235

This feature is very useful for finding relevant 236

samples across varying classes, allowing us to con- 237

duct a heuristic search within the learned docu- 238

ments di, by assigning each topic class ti ∈ T a 239

relevant set of keywords (k1 . . . kli), with li desig- 240

nating the maximum amount of keywords per that 241

class. We choose to use the verbalizers found in our 242

early zero-shot experimentation as the keywords 243

during this heuristic search. The keyword search 244

yields relevancy scores (r1, . . . rn) for each of the 245

documents used for training. We further refine this 246

dataset, by searching for increasingly more diverse 247

samples after each annotation. The search within 248

the relevant examples is organized as follows: (1) 249

Iteratively add the most relevant 10% of the docu- 250

ments per class, w.r.t their relevancy scores ri into 251

a set A; (2) iteratively adjust the relevancy scores 252

ri after each annotation, by finding the sentence 253

that is least similar to the current set of annotated 254

examples; (3) annotate the most relevant example 255

w.r.t the adjusted ri adding to the annotated set A. 256

To find diverse samples, in each iteration i, we 257

find a vector vi by averaging the representations of 258

the annotated documents A produced by a GPT-2 259

model and compute a cosine similarity between vi 260

and the vectors representations uj of all unanno- 261

tated sequences. We adjust the relevancy score for 262

each document according to the similarity score. 263

vi =
1

|A|
∑
a∈A

PLM(a) (1) 264

rj = cos(vvvi,uuuj) =
vvvi · uuuj

||vvvi|| · ||uuuj ||
∀j /∈ A (2) 265

Next, we annotate the new most relevant sequence, 266

adding it to A and continue this iterative annotation 267

process to obtain at least 64 examples per class. 268

Few-shot setup Having generated a dataset for 269

topic classification, we leverage the robustness of 270

Transformer-based PLMs and finetune using the 271

early annotated examples, casting the task into a 272

few-shot setting. This effectively allows us to trans- 273

fer the knowledge embedded within the PLM onto 274

our problem domain. We use the fine-tuning ap- 275

proach by Mosbach et al. (2020); Liu et al. (2019) 276
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to avoid the instability that can be caused by catas-277

trophic forgetting, small-sized fine-tuning dataset278

or optimization difficulties.279

3.2 Topic-Guided Stance Detection280

Given the topic ti for each document di, ob-281

tained using TOGA, we classify the stance ex-282

pressed within that text towards the topic. We283

opt for a three-way stance classification setting,284

S = {FAVORS, REJECTS, NEUTRAL}, this be-285

ing the predominant stance formulation (Rajendran286

et al., 2018; Glandt et al., 2021; ALDayel and287

Magdy, 2021). Stance detection can be generalized288

as pairwise sequence classification, where we learn289

a mapping f : (di, ti) → S. To learn this mapping290

we combine the textual sequences with the stance291

labels. The combination is implemented using a292

simple prompt commonly used for NLI tasks (Lan293

et al., 2019; Raffel et al., 2020; Hambardzumyan294

et al., 2021), where the textual sequence becomes295

the premise and the topic the hypothesis.296

[CLS] premise [EOS] Stance towards topic [EOS]297

The results of this process is a supervised298

dataset for stance prediction Dstance =299

((Prompt(d1, t1), s1) . . . (Prompt(dn, tn), sn))300

where ∀si ∈ S. We use the topics obtained from301

the topic model and fine-tune a set of PLMs (see302

Appendix C) using Mosbach et al. (2020), to303

obtain the final stance detection model.304

4 Experimental Setup305

4.1 Data306

We use four datasets in our experiments. We anal-307

yse attitudes expressed in social media data using308

unlabelled Covid-19 tweets; to validate our guided309

annotation technique we use a proxy bechmark310

within the same problem domain; we create an311

dataset with expert annotation for the unlabelled312

Covid-19 tweets; and the data from the HOPE sur-313

vey creates the foundation for our comparison with314

a Covid-19 related survey.315

Unlabelled Covid-19 tweets Imran et al. (2022)316

provide a set of 2B tweet IDs and metadata. The317

study proposes a geotagging method for obtaining318

geolocation information from the tweets, enabling319

for per country analysis. We sampled 7M English320

tweet IDs authored by users from the 8 countries321

mentioned above and hydrated them to obtain their322

tweet texts. The tweets are distributed as follows:323

Denmark – 588,127, France – 537,121, Germany 324

– 609,968, Hungary – 9,802, Italy – 298,730, Swe- 325

den – 123,252, USA – 2,041,295, UK – 2,002,070. 326

This results in a dataset of social media attitudes, 327

which we further use in our prediction pipelines for 328

obtaining the stances expressed towards topics of 329

interest mentioned in the HOPE survey. 330

Proxy benchmark We use a dataset introduced 331

by Glandt et al. (2021) to benchmark our anno- 332

tation and prediction techniques. The dataset in- 333

cludes 7, 122 tweets annotated using Amazon Me- 334

chanical Turk to obtain topics and stances. The 335

topics chosen concern attitudes regarding Anthony 336

S. Fauci, M.D., Keeping Schools Closed, Stay at 337

Home Orders and Wearing a Face Mask. 338

Expert-labelled evaluation set As the topics in 339

the Glandt et al. (2021) dataset do not match those 340

from the HOPE survey, we additionally create an 341

expert-labeled evaluation set as follows: (1) sample 342

a representative set of 1 million tweets randomly 343

stratified by countries; (2) train a topic model on 344

the sampled set; (3) use the topic model to sort the 345

examples into high, medium and low confidence 346

percentile buckets w.r.t the keywords provided per 347

class, similar to the process used for TOGA; (4) 348

sample 3 examples from each bucket per class; 349

(5) randomly shuffle the instances; (6) ask expert 350

annotators to label the dataset. 351

We use two different pairs of expert annotators 352

per each half of the annotation process. Annotators 353

are asked to label a tweet with up to three topics 354

and the stance towards each topic. We analyze 355

inter-annotator agreement with two metrics: exact 356

match, i.e. it counts as an agreement between an- 357

notators only when the first choice of both authors 358

coincides, and soft match, if there is at least one 359

coinciding class between the annotators for a sin- 360

gle example, regardless of the order. For the exact 361

match, Krippendorff’s α for topics is 0.565 and for 362

stance is 0.822. For the soft match, Krippendorff’s 363

α for topics is 0.730 and 0.683 for stance. For 364

more fine-grained results see Table 5 in section 6. 365

Disagreements between the annotators are resolved 366

by discussing and merging each disagreement case 367

creating the final evaluation set of 160 examples. 368

HOPE Survey The HOPE survey1 collects 369

18, 231 individual survey responses from eight 370

countries towards self-reported vaccine acceptance 371

and other correlated factors to understanding the 372

1https://hope-project.dk/
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cause for vaccine hesitancy across the different373

countries. The data is collected through online sur-374

veys between September 2020 and February 2021.375

We disregard all questions related to demograph-376

ics for the purpose of our comparison. The study377

correlating the different factors analysed in the sur-378

vey predicts major difficulties convincing vaccine379

sceptics, as their views often align towards overall380

antisystemic attitudes (Lindholt et al., 2021).381

4.2 Models382

We explore several PLM Transformer architec-383

tures, fine-tuning roberta-base, roberta-large, xlm-384

roberta-base, xlm-roberta-large architectures (Liu385

et al., 2019; Conneau et al., 2019), with a grid386

search along the batch sizes of B = [8, 16, 32], the387

few-shot sizes of [8, 16, 32, 64]. To ensure stable388

models, we follow the fine-tuning procedure by389

(Mosbach et al., 2020), adding a linear warmup on390

the initial 10% of the iteration raising the learning391

rate to 2e − 5 and decreasing it to 0 afterwards.392

We use a weight decay of λ = 0.01 and train393

for 3 epochs with global gradient clipping on both394

topic classification and stance detection tasks. We395

find that learning for longer epochs does not yield396

improvement over the initial finetuning. The op-397

timizer used for experimentation is an AdamW398

(Loshchilov and Hutter, 2017) with a bias correc-399

tion component added for stability of the experi-400

mentation (Mosbach et al., 2020).401

Topic Guidance Recall that we introduce the402

few-shot topic-guided annotation method TOGA,403

which allows us to pick relevant samples per class404

for further fine-tuning. We evaluate its effective-405

ness by fine-tuning PLMs on the examples it gen-406

erates and compare it with training on a random407

stratified sample of the same size. To further sig-408

nify the importance of relevant sample selection409

we also perform linear probing, i.e. training a final410

classification head with a frozen PLM and compar-411

ing the results obtained with and without TOGA.412

Model Variants We evaluate several model fine-413

tuning variations with and without the application414

of TOGA. Within our experiments we refer to the415

following models: (1) PLM random_sample=k -416

a pretrained language model that was finetuned us-417

ing k random samples per class. These are used as418

baselines for comparisons with TOGA; (2) PLM419

TOGA=k - a pretrained language model finetuned420

on k TOGA examples per class.421

We also conduct experimentation on frozen 422

PLMs, while only training a classification head, 423

which we designate by adding the lin_prob suffix. 424

4.3 Evaluation Metrics 425

To evaluate our models and have a fair comparison 426

with the introduced benchmarks we use a standard 427

set of metrics for classification tasks such as F1, 428

precision, recall and accuracy. 429

5 Results and Analysis 430

We evaluate our proposed method in three settings: 431

a proxy evaluation on an existing stance bench- 432

mark dataset (subsection 5.1), an evaluation on the 433

expert-labeled evaluation set (subsection 5.3), and 434

a comparison of our results to those from the HOPE 435

survey (subsection 5.5). 436

5.1 Proxy benchmark assessment 437

Having obtained the best model and annotation con- 438

figuration in the experiments described above, we 439

compare our results with a proxy benchmark from 440

(Glandt et al., 2021), a stance detection dataset 441

annotated towards Covid-19 tweets, though cov- 442

ering different topics than those from the HOPE 443

Survey (subsection 4.1). We use TOGA to sample 444

a few-shot dataset of 64 examples per class in the 445

benchmark, while preserving their stance labels. 446

Note that this is 10x smaller than the number of 447

examples used for training in Glandt et al. (2021). 448

This allows us to validate the effectiveness of our 449

overall resulting method for the specific task of 450

automated topic and stance annotation for tweets. 451

As can be seen in Table 1 we are able to out- 452

perform other stance detection approaches used by 453

Glandt et al. (2021) with an order of magnitude 454

fewer training examples, by an average of 18.1 F1 455

points. For a granular overview of the experiments, 456

see Table 4 in Appendix A. 457

5.2 Topic Guided Annotation and 458

Classification 459

To evaluate the effect of TOGA, we fine-tune 460

the few-shot classification models following sec- 461

tion 3.1, with and without TOGA. This means that 462

any experiment that is marked as Random used ran- 463

domly sampled stratified examples. We show the 464

effect of using TOGA, with a frozen PLM (linear 465

probing) and a standard fine-tuning setup (see also 466

subsection 4.2). In both cases our method produces 467

competitive results, improving on the benchmark 468
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Ours BERT BERT-NS BERT-DAN

Avg F1 0.986 0.810 0.818 0.815
Acc 0.972 0.794 0.797 0.790

Table 1: Evaluating the methods on the stance detection
task from the proxy benchmark (Glandt et al., 2021)

proposed for the proxy dataset (Glandt et al., 2021)469

presented in Table 6 and Table 7 in Appendix A.470

Few-shot fine-tuning We evaluate the effective-471

ness of the method in a standard few-shot setup,472

where we fine-tune the parameters across the whole473

PLM with a variety of hyperparameter configura-474

tions mentioned in Appendix A. We observe an475

improvement of an average of 12 points across all476

metrics, example amounts and architectures across477

10 runs. We can therefore conclude that TOGA is478

highly effective for topic annotation and few-shot479

training. From these comprehensive results we480

choose the best training and annotation configura-481

tion for annotating the unlabelled tweets. The final482

topic and stance detection models are a complete483

fine-tune of roberta-base on 64 examples gener-484

ated by TOGA per class. This model is referred to485

as Our method in further experiments.486

5.3 Expert annotation benchmark487

We further test our method on the expert anno-488

tated evaluation set (see section 4.1), a sample of489

160 tweets from the unlabelled set. Although the490

amount of examples varies per class, we are still491

able to get a general grasp of the predictive perfor-492

mance on the targets of interest in Table 2. A pre-493

diction is considered correct if it exactly matches494

with one of the (topic, stance) pairs present within495

the annotation set for the respective tweet.496

For the subsequent analysis in subsection 5.4,497

we omit classes that do not have adequate represen-498

tation within this benchmark, by dropping anything499

below the median support amount from the orig-500

inal set. Also, only the classes where the model501

achieves above 60 F1 score are considered for fur-502

ther analysis to ensure an empirically sound analy-503

sis, leaving 9 topics.504

5.4 Social Media Stance Towards Covid-19505

Across Countries506

Next, we want to understand how stances towards507

the different Covid-19 related topics vary across508

countries (RQ2). To this end, we automatically509

label all tweets using our best method, split them510

Topic Prec. Recall F1 #

Trust in the NHA 0.13 1.0 0.22 8
Trust in scientists 0.75 1.0 0.86 18
Trust in government 0.65 1.0 0.79 35
Democratic rights 0.00 0.0 0.00 6
Support of protests 1.00 1.0 1.00 4
Conspiracy beliefs 0.67 1.0 0.80 10
Misinformation 1.00 1.0 1.00 11
Fatigue 0.40 1.0 0.57 6
Behaviour change 0.08 1.0 0.15 5
Knowledge 0.25 1.0 0.40 5
Concern, family 0.27 1.0 0.43 5
Concern, hospitals 1.00 1.0 1.00 10
Concern, society 0.11 1.0 0.20 12
Concern, crime 0.20 1.0 0.33 4
Concern, the economy 0.60 1.0 0.75 16
Support for restrictions 0.75 1.0 0.86 17
Vaccine Hesitancy 0.82 1.0 0.90 9

Table 2: Performance of the stance detection model, per
topic on the expert annotated data-set.

by country and compare them by topic in Figure 1. 511

While there are clear agreement across countries 512

across the tweets (e.g., for trust in scientists), there 513

are topic that show a higher divergence, such as 514

support of restrictions and vaccine hesitancy. 515

5.5 Comparing Public Opinion Surveys with 516

Social Media Data 517

Recall that we want to understand how opinions 518

are expressed on Twitter, with regards to vaccine 519

and other Covid-19 related topics. We base the 520

topics for our analysis on the HOPE survey (Lind- 521

holt et al., 2021). RQ3 poses the question of how 522

the stances expressed in the dataset of tweets re- 523

lates to this original study. We show that there is 524

no correlation between the social media stance of 525

English speakers and the original survey results 526

by country, see Table 3. As the number of data 527

points to correlate is very small (the survey com- 528

pared only eight countries) we performed the same 529

analysis on the state level.2 Specifically, we for 530

each tweet extracted the address that appears in 531

the user-description field of the tweet’s author, and 532

used a geo-location tagging tool 3 to estimate the 533

state of the user. The survey data contained an “ex- 534

act address”, from which we extracted the same 535

information. By breaking the data down to this 536

level, we were able to calculate correlation over 537

95 data-points, an increase of an order of magni- 538

tude. The result of this more granular analysis 539

again demonstrates the lack of correlation between 540

2For countries which are not divided into states (e.g., Den-
mark) we performed the analysis on the county or region level.

3https://nominatim.org/
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Figure 1: Comparison of the aggregated stance towards predictors for each country. “Favour” equals 1 and “Against”
equals 0.

Topic Correlation

Country State

Concern, the economy 0.047 0.089
Concern, hospitals 0.071 0.073
Conspiracy beliefs 0.261 0.645
Misinformation 0.642 0.319
Support in restrictions 0.023 -0.128
Trust in the government -0.190 -0.364
Trust in scientists 0.523 0.183
Vaccine hesitancy 0.047 -0.294

Table 3: Correlations of the Twitter stances with the
survey, across countries and states. Items in bold are
statistically significant (p-value < 0.05).

the two mediums and populations, with the excep-541

tion of the semantically similar topics “conspiracy542

beliefs" and “misinformation". We leave the analy-543

sis of this phenomenon for future work.544

The gap between survey results and expression545

of stance on social media has been previously546

demonstrated by Joseph et al. (2021). This dis-547

crepancy we also observe makes the addition of548

social media data to surveys as a data source even549

more important to understand overall public opin-550

ion towards a topic.551

5.6 Predictors of vaccine hesitancy552

The HOPE survey aims to understand which pre-553

dictors influence vaccine hesitancy across cultures554

for individuals who participate in their survey, and555

we want to extend these insights to the social media556

data collected (RQ4). The authors of the survey557

calculated the correlation of the vaccine hesitancy558

level of the participants with the other variables that559

the survey had probed for. Following this, we per- 560

form an analysis of predictors of vaccine hesitancy 561

using the collected Twitter data by correlating the 562

aggregated level of vaccine hesitancy expressed in 563

the tweet data with the remaining variables. We 564

perform this analysis using three levels of granular- 565

ity: the country (Figure 3a) and state (Figure 3b) 566

levels, as in the previous section, and the individual 567

user level (Figure 3c). To calculate the correlation 568

at the user level, we first for each user collect the 569

tweets that they authored, then split them by the 570

main topic that our model predicted for them. Then, 571

for each topic and for each user we calculate the 572

aggregated stance of the user towards the topic by 573

simple mean averaging.4 Not every user expressed 574

an opinion about each one of the topics. Therefore, 575

when we correlated two topics we considered only 576

users that tweeted about both. 577

As can be seen in Figure 3, each level of granular- 578

ity produces a slightly different correlation profile, 579

where the country level profile stands out as the 580

most distinct. We attribute this to the fact that the 581

small number of data points at the country level 582

can introduce a high level of noise. 583

When comparing Figure 3c to the survey re- 584

sults,56 the differences between stances expressed 585

in social media and survey results becomes appar- 586

ent again. Indeed, while some of the most predic- 587

tive variables according to the HOPE survey are 588

Trust in scientists and Conspiracy believes, their 589

4Here, “Favour” equals 1 and “Against” equals 0.
5This granularity level is the one that is most compatible

with how the survey has been conducted
6Figure 2 in Lindholt et al. (2021)
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Figure 2: Development in vaccine hesitancy over time across countries. The background colour corresponds to
the severity of lockdown restrictions. Green = no restrictions. Yellow = staying at home recommended. Red =
lockdown in place. See Appendix E for additional restriction types.
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Figure 3: Predictors of vaccine hesitancy. Red markers indicate p-value < 0.05.

correlation with Vaccine hesitancy is almost zero590

according to the tweets.591

Temporal analysis One of the advantages of ob-592

serving stance on social media compared to surveys593

is that our analysis is not time-constrained and can594

be extended at any time by collecting new data.595

Therefore, we present in Figure 2 the temporal de-596

velopment in vaccine hesitancy by country across597

the whole time span of the Twitter dataset. To gen-598

erate this figure, we average the stance expressed599

towards vaccine hesitancy for each country in each600

month using the tweet’s timestamp field. The back-601

ground colour corresponds to the severity of Covid602

restrictions related to face masks.7603

Clear differences can be seen across the different604

countries. While some countries such as France605

and Germany display a steady decline in vaccine606

hesitancy, the trends differ strongly compared to607

other countries. There are no clear connections608

between restrictions and vaccine hesitancy, which609

confirms the results in Figure 3 in which we can610

see only a weak correlation between the support of611

restrictions and vaccine hesitancy. Nevertheless,612

7Taken from https://ourworldindata.org/
policy-responses-covid

these results present a starting point to further un- 613

derstand public opinion on Covid-19 related topics 614

and the connection to vaccine hesitancy and global 615

events. 616

6 Conclusions 617

In this study, we propose a scalable method for 618

gauging public opinion from social media text 619

and assess its alignment to public opinion sur- 620

veys across 8 countries. We outline an automated 621

pipeline for semi-supervised topic and stance an- 622

notation of a large number of tweets regarding 623

Covid-19. We find that while we can reliably assess 624

stances towards different Covid-19 related topics 625

from Twitter, these do not align with opinions ex- 626

pressed by people in online surveys. While our 627

method does not replace surveys as a tool for mea- 628

surement of public opinion, it can complement it 629

and offer advantages like accessibility, diversifica- 630

tion and overcoming response bias. Further, our 631

pipeline allows for a granular analysis of the reason- 632

ing of people’s stances as well as flexibility around 633

the temporal analysis. 634
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Limitations635

At the current state, we observe the stance of En-636

glish speakers across different topics. As we in-637

clude countries where the main language is other638

than English, future work should focus on extend-639

ing this study to a multilingual setup including the640

use of multilingual models. We think our insights641

are nevertheless valuable, as we can show that our642

approach can analyse and compare communities of643

a country, such as the English speaking population,644

and as English is a widely spoken language across645

all the countries included.646

Further, a larger expert annotated benchmark647

would allow for better performance evaluation of648

the annotation models, consequently allowing for649

the discussion of a wider range of topics of inter-650

est. This improvement would propel the method651

for more fine-grained analysis, with consistent and652

robust annotation modules. Future work should653

address this limitation by crowd-sourcing the anno-654

tations.655
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Appendix927

A TOGA with few shot experimentation928

To evaluate our method we propose a varying929

set of experiments, that includes experimentation930

using a frozen and unfrozen PLM along with a931

k = [4, 8, 16, 32, 64] examples per target class, that932

were generated either using TOGA or randomly933

sampled in a stratified manner. We complete a934

grid search along these configurations presented935

in Table 7 and Table 4, evaluating on the dataset936

from (Glandt et al., 2021). This allows us to gauge937

both an in-depth overall assessment of the method938

performance, along with a granular understanding939

about model generalisation and robustness towards940

the designated classes. All of the experimenta-941

tion is tracked using Aim (Arakelyan et al., 2020),942

which we use to obtain the optimal configuration943

for training and annotation.944

Linear probing In this set of experiments, we945

freeze the parameters in the PLM and fine-tune946

only using the new classification head. This eval-947

uation method allows us to gauge the immediate948

effect that the training set created with TOGA has949

on the final results found in Table 7. It is apparent950

that regardless of the chosen architecture and the951

number of examples per class provided during the952

fine-tuning process, the results obtained by train-953

ing on the examples provided by TOGA are vastly954

superior compared to training on random stratified955

samples. We are able to obtain an increase of 5F1956

points, averaged across the architectures over 10957

runs, for k = [4, 8, 16, 32, 64] few-shot training958

examples.959

B Evaluation Metrics960

To evaluate our models and have a fair comparison961

with the introduced benchmarks we use a standard962

set of metrics for classification tasks such as F1,963

precision, recall and accuracy.964

Acc =
TP + TN

TP + TN + FP + FN
(3)965

Prec =
TP

TP + FP
(4)966

Recall =
TP

TP + FN
(5)967

F1 =
2 ∗ Prec ∗Recall

Prec+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(6)

968

It must be noted that the calculation of the met- 969

rics on the expert annotated benchmark is slightly 970

changed as the amount of possible valid annota- 971

tions can be bigger than 1, decided upon by expert 972

annotators. We use a soft matching approach that 973

allows us calculate the complete set of the evalu- 974

ation metrics, by counting the annotated example 975

as correct if and only if it matches exactly with at 976

least one (topic, stance) pair in the data-set for the 977

designated sample. 978

C Transformer variations 979

The PLMs are taken from the set of roberta-base, 980

roberta-large, xlm-roberta-base, xlm-roberta-large 981

with k = [4, 8, 16, 32, 64]. 982

D Exact and Soft Matching in expert 983

annotated data-set 984

Within our experiments, we use two techniques for 985

validating model performance. The exact match- 986

ing scheme regards only the first annotation of 987

a (topic, stance) pair as correct, within the final 988

expert benchmark, as throughout the annotation 989

process the first position is reserved only for the 990

most relevant and valid pair. However, due to the 991

similarity in the expressed targets of interest and 992

their intertwined representation within social me- 993

dia sentences, we also employ a soft matching 994

scheme, where a prediction is considered correct if 995

it matches with any (topic, stance) pair present for 996

the designated example within this data-set. Mathe- 997

matically this can be formalised like the following. 998

matchexact = 1(predi = argmax
ri

yi) (7) 999

matchsoft = 1(|predi ∩ yi| > 0) (8) 1000

Here argmaxri designates the most relevant 1001

(topic, stance) pair for the example i, with anno- 1002

tations yi ∈ Y and max |Y | = 3 per example. 1003

E Additional Results 1004
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Target: Anthony S. Fauci, M.D.
roberta-base TOGA examples = 64 BERT BERT-NS BERT-DAN

Accuracy 0.968 0.817 0.820 0.830
F1 0.984 0.818 0.821 0.832

Target: Keeping Schools Closed
roberta-base TOGA examples = 64 BERT BERT-NS BERT-DAN

Accuracy 0.972 0.772 0.780 0.758
F1 0.995 0.755 0.753 0.717

Target: Stay At Home Orders
roberta-base TOGA examples = 64 BERT BERT-NS BERT-DAN

Accuracy 0.969 0.843 0.832 0.833
F1 0.985 0.800 0.784 0.787

Target: Wearing a Face Mask
roberta-base TOGA examples = 64 BERT BERT-NS BERT-DAN

Accuracy 0.981 0.810 0.840 0.840
F1 0.983 0.803 0.833 0.825

Table 4: Analysis of the best stance model configuration per target topic compared to the proxy benchmark from
(Glandt et al., 2021)

Exact Soft
Match % Krippendorff’s alpha Cohen’s Kappa Match % Krippendorff’s alpha Cohen’s Kappa

Annotator 1&2
Topics 0.755 0.732 0.722 0.895 0.893 0.880
Stance 0.707 0.678 0.641 0.675 0.599 0.578

Annotator 3&4
Topics 0.447 0.398 0.387 0.600 0.568 0.552
Stance 0.973 0.966 0.958 0.843 0.767 0.749

Table 5: Inter Annotator Agreement metrics within each expert annotation group on the expert annotated data-set

Face Masks Fauci School Closures Stay at Home Orders
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

robert-base

examples = 4
Random 0.661 0.753 0.704 0.854 0.383 0.528 0.532 0.703 0.606 0.642 0.774 0.683
TOGA 0.700 0.851 0.768 0.937 0.496 0.649 0.550 0.757 0.637 0.635 0.857 0.729

examples = 8
Random 0.732 0.903 0.809 0.967 0.938 0.952 0.956 0.873 0.913 0.849 0.812 0.830
TOGA 0.787 0.958 0.864 0.988 0.941 0.964 0.948 0.936 0.942 0.906 0.798 0.849

examples = 16
Random 0.978 0.922 0.949 0.952 0.981 0.966 0.979 0.990 0.984 0.955 0.934 0.944
TOGA 0.989 0.926 0.957 0.945 0.995 0.969 0.988 0.991 0.990 0.950 0.969 0.960

examples = 32
Random 0.939 0.994 0.966 0.965 0.963 0.964 0.981 0.968 0.974 0.942 0.964 0.953
TOGA 0.943 0.994 0.968 0.967 0.977 0.972 0.997 0.965 0.981 0.954 0.971 0.963

examples = 64
Random 0.977 0.985 0.981 0.999 0.982 0.990 0.999 0.988 0.993 0.971 0.992 0.978
TOGA 0.984 0.982 0.983 0.999 0.983 0.991 0.999 0.990 0.995 0.974 0.996 0.985

xlm-robert-base

examples = 4
Random 0.438 0.592 0.503 0.677 0.598 0.635 0.003 1 0.007 0.632 0.224 0.331
TOGA 0.598 0.604 0.601 0.694 0.624 0.781 0.003 1 0.007 0.687 0.396 0.503

examples = 8
Random 0.392 0.773 0.520 0.762 0.642 0.697 0.782 0.691 0.734 0.668 0.497 0.570
TOGA 0.443 0.798 0.570 0.794 0.635 0.706 0.761 0.772 0.766 0.683 0.517 0.589

examples = 16
Random 0.802 0.912 0.853 0.885 0.791 0.835 0.912 0.899 0.905 0.753 0.901 0.820
TOGA 0.824 0.937 0.877 0.918 0.778 0.843 0.933 0.914 0.924 0.747 0.920 0.825

examples = 32
Random 0.974 0.868 0.918 0.905 0.962 0.933 0.978 0.959 0.968 0.913 0.985 0.948
TOGA 0.991 0.885 0.935 0.911 0.986 0.947 0.975 0.977 0.976 0.917 0.987 0.951

examples = 64
Random 0.942 0.957 0.949 0.967 0.962 0.964 0.998 0.912 0.953 0.951 0.943 0.947
TOGA 0.931 0.994 0.961 0.980 0.979 0.979 0.997 0.937 0.966 0.965 0.967 0.966

Table 6: Few-shot finetuning experimentation on the proxy data from (Glandt et al., 2021) done with examples =
[4, 64] per class with and without the use of TOGA for generating weakly supervised examples
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Averaged Accuracy Weight-Averaged F1

roberta-base lin-prob

examples = 4 Random 0.398 0.423
TOGA 0.471 0.491

examples = 8 Random 0.513 0.491
TOGA 0.584 0.576

examples = 16 Random 0.601 0.617
TOGA 0.639 0.651

examples = 32 Random 0.732 0.744
TOGA 0.779 0.786

examples = 64 Random 0.806 0.822
TOGA 0.858 0.857

roberta-large lin-prob

examples = 4 Random 0.289 0.358
TOGA 0.323 0.396

examples = 8 Random 0.404 0.458
TOGA 0.468 0.507

examples = 16 Random 0.553 0.512
TOGA 0.564 0.588

examples = 32 Random 0.581 0.574
TOGA 0.634 0.613

examples = 64 Random 0.776 0.801
TOGA 0.819 0.820

xlm-roberta-base lin-prob

examples = 4 Random 0.307 0.408
TOGA 0.346 0.459

examples = 8 Random 0.358 0.367
TOGA 0.274 0.372

examples = 16 Random 0.480 0.524
TOGA 0.546 0.581

examples = 32 Random 0.723 0.718
TOGA 0.760 0.763

examples = 64 Random 0.804 0.832
TOGA 0.864 0.865

xlm-roberta-large lin-prob

examples = 4 Random 0.331 0.325
TOGA 0.280 0.374

examples = 8 Random 0.389 0.478
TOGA 0.378 0.476

examples = 16 Random 0.485 0.477
TOGA 0.523 0.524

examples = 32 Random 0.691 0.688
TOGA 0.732 0.734

examples = 64 Random 0.787 0.801
TOGA 0.816 0.816

Table 7: Few-shot fine-tuning experimentation with frozen PLM (linear-probing) on the proxy data from (Glandt
et al., 2021) done with examples = [4, 64] per class with and without the use of TOGA for generating weakly
supervised examples

14



Target to-label unlabeled
Anthony S. Fauci, M.D. 2,085 2,443
Keeping Schools Closed 1,479 2,703
Stay at Home Orders 1,717 15,488
Wearing a Face Mask 1,921 9,006
All 7,122 29,640

Table 8: Distribution of examples per target topic in the
proxy dataset (Glandt et al., 2021)

Topic Corr (p-value)

Behaviour change 0.286 (0.49)
Concern, the economy -0.762 (0.03)
Concern, family -0.024 (0.96)
Concern, hospitals -0.167 (0.69)
Concern, society -0.095 (0.82)
Concern, crime -0.19 (0.65)
Conspiracy beliefs 0.024 (0.96)
Democratic rights 0.119 (0.78)
Fatigue -0.619 (0.10)
Knowledge 0.548 (0.16)
Misinformation 0.452 (0.26)
Support of public protests 0.0 (1.0)
Support in restrictions 0.286 (0.49)
Trust in government 0.833 (0.01)
Trust in NHA -0.143 (0.74)
Trust in scientists -0.071 (0.87)
Vaccine hesitancy -0.238 (0.57)

Table 9: Correlations of the Twitter stances with the
HOPE survey across all countries.

Topic Corr (p-value)

Behaviour change 0.189 (0.07)
Concern, the economy 0.015 (0.88)
Concern, family -0.073 (0.48)
Concern, hospitals -0.042 (0.68)
Concern, society 0.013 (0.90)
Concern, crime -0.071 (0.49)
Conspiracy beliefs 0.080 (0.43)
Democratic rights 0.167 (0.10)
Fatigue -0.084 (0.42)
Knowledge -0.036 (0.73)
Misinformation -0.059 (0.57)
Support of public protests 0.113 (0.28)
Support in restrictions -0.116 (0.26)
Trust in government 0.162 (0.12)
Trust in NHA -0.170 (0.10)
Trust in scientists -0.022 (0.83)
Vaccine hesitancy -0.177 (0.09)

Table 10: Correlations of the Twitter stances with the
HOPE survey, breaking into states and counties.

Topic
Correlation

Country State

Concern, the economy -0.762 0.015
Concern, hospitals -0.166 -0.042
Conspiracy beliefs 0.024 0.080
Misinformation 0.452 -0.059
Support in restrictions 0.286 -0.116
Trust in the government 0.833 0.162
Trust in scientists 0.071 -0.022
Vaccine hesitancy 0.238 -0.177

Table 11: Correlations of the Twitter stances with the
survey, across countries and states. Items in bold are
statistically significant (p-value < 0.05).
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Figure 4: Predictors of vaccine acceptance. Red markers
indicate p-value < 0.5.
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Figure 5: Development in vaccine hesitancy over time across countries. The background colour corresponds to the
severity of Covid restrictions related to face masks. Green = no restrictions. Yellow = recommended. Orange =
required in some specified shared/public spaces outside the home with other people present, or some situations when
social distancing not possible. Red = required in all shared/public spaces outside the home with other people present
or all situations when social distancing not possible. Purple = required outside the home at all times regardless of
location or presence of other people.
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Figure 6: Development in vaccine hesitancy over time across countries. The background colour corresponds to the
vaccination policy. Green = no vaccine available. Yellow = availability for ONE of following: key workers/ clinically
vulnerable groups / elderly groups. Orange = availability for TWO of following: key workers/ clinically vulnerable
groups / elderly groups. Red = availability for ALL of following: key workers/ clinically vulnerable groups / elderly
groups. Purple = availability for all three plus partial additional availability (select broad groups/ages).
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