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ABSTRACT

We introduce the notion of file structure, the set of characters within a file’s con-
tent that do not belong to data values. Data preparation can be considered as a
pipeline of heterogeneous steps with the common theme of wrangling the struc-
ture of a file to access its payload in a downstream task. We claim that solving
typical data preparation tasks benefits from an explicit representation of file struc-
ture. We propose a novel approach for learning such a representation, which we
call a “structural embedding”, using the raw file content as input. Our approach is
based on a novel neural network architecture, composed of a transformer module
and a convolutional module, trained in a self-supervised fashion on almost 1M
public data files to learn structural embeddings. We demonstrate the usefulness of
structural embeddings in several steps of a data preparation pipeline: data loading,
row classification, and column type annotation. For these tasks, we show that our
approach obtains performances comparable with state-of-the-art baselines on six
real-world datasets, and, more importantly, we improve upon such baselines by
combining them with the structural embeddings provided by our approach.

1 DATA FILES = PAYLOAD + STRUCTURE

Plain text, CSV-like, tabular files are often used to create, store, distribute, and consume data. We
refer to tabular content within these files as the payload, which is parsed from the raw file input.
However, files often contain more than just characters representing table values: we define all char-
acters within a data file that do not constitute its payload as the structure of a file. Even though a
standard for the structure of CSV files exists (Shafranovich, 2005), real-world files often diverge
from it and require significant effort to load correctly (Mitlöhner et al., 2016; Vitagliano et al., 2023;
Hulsebos et al., 2023).

Consider the sample raw file of Figure 1: its payload is a table with three columns and three rows,
but the structure of this file does not follow any official standard. Trying to automatically parse its
table using existing algorithms would most likely lead to incorrect results. Given the complexity
of data pipelines, rather than manually configuring each different system to load each different file
optimally (if and as much as possible), users typically have to transform files into a standard version
that is compatible with all the tools and processes required. We refer to this process, which is
cumbersome, often manual, and time-consuming, as file preparation. With automated preparation
far from being a reality (Kumar, 2021), each of these potential problems requires user effort to
address, which notably makes up most of the practitioners’ development time.

Motivation: Our motivation is to automate file preparation as much as possible, to reduce its burden
on data scientists. We argue that all file preparation steps share the over-arching goal of understand-
ing and transforming the structure of a file so that its payload can be parsed correctly. Often, data
scientists are required to address these and other challenges individually, applying several tools and
solutions. Leveraging general-purpose machine learning solutions to solve these tasks is challeng-
ing, due to the nature of data preparation problems: they are often tiny but with unique characteristics
(“death by a thousand cuts”); high-quality labeled datasets to train on are expensive and rare to ob-
tain; and typical general-purpose pre-trained models are designed for natural language text rather
than tabular or numeric data (Rogers et al., 2020; OpenAI, 2023; Roziere et al., 2023).

Problem statement: Given a relational table T as a sequence of tuples that contain cell values for
a given set of attributes, and given a file structure S as the set of characters within a tabular file that
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Figure 1: Parsing a raw tabular file correctly requires structural understanding.

do not map to either one of the table attributes (its “header”) or values (its “cells”), the structural
preparation problem can be expressed as:

Given a tabular data file F serializing a table T with structure S, automatically and correctly detect
its structure S to parse the attributes and tuples of its relational table T.

We can further refine this problem into three specific subproblems:

1. Dialect detection: Given a file F, detect the structural characters of S to parse its rows.

2. Row classification: Given the rows of F, identify the tuples of its table T.

3. Column type detection: Given the tuples of T, identify meaningful attribute names.

Intuition: To overcome these challenges, our goal is to design a unique, task-independent model to
represent file structure, specifically pre-trained on a large and structurally diverse set of files. With
such a general model, file structure can be represented in vectorial embeddings that can be either
fine-tuned for data preparation with smaller high-quality datasets or used as external features to en-
rich other specialized models. Inspired by the success of representation learning and pre-trained
models in fields like natural language processing and computer vision, we propose RENEMB, a
framework to encode cell-level, row-level, and file-level structure of tabular files as vectorial em-
beddings. The motivation for a specialized architecture stems from the fact that existing approaches
for representation learning, including general-purpose LLMs (OpenAI, 2023; Roziere et al., 2023)
and specialized tabular data models (Yang et al., 2022; Sun et al., 2023), focus on semantic tasks
operating on the payload of files, and therefore assume correct parsing of file structure. In this pa-
per, we experiment with such models (also see Appendix A) but found them inadequate to address
structural preparation tasks.

Paper contributions: The main contribution of our work is the design of RENEMB, a novel frame-
work to encode the structure of tabular text data files, leveraging transfomer- and convolution-based
layers to address the file preparation problem. Our contribution includes a novel pattern tokeniza-
tion strategy and two novel pre-training tasks, structural masking and same file prediction. Our
experimental results demonstrate the effectiveness of these strategies for file preparation, com-
pared to general-purpose LLMs that use natural-language or code oriented tokenization and training
tasks (OpenAI, 2023; Roziere et al., 2023). We train this large model in a self-supervised fashion,
leveraging the almost 1M real-world tabular files from the GitTables corpus (Hulsebos et al., 2023).

Furthermore, we contribute several strategies to apply the main RENEMB model and experiment
with them on three preparation tasks: dialect detection, table understanding, and column type anno-
tation. Our experiments demonstrate that thanks to the structural pre-training stage, RENEMB can
be fine-tuned on these preparation tasks using relatively small labeled datasets and outperform other
pretrained large models. We share all datasets with their annotations, the trained models with their
weights, and the source code to reproduce the experiments1.

1https://anonymous.4open.science/r/renemb-6E46/
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Figure 2: Three-tiered architecture of RENEMB.

2 THE RENEMB ARCHITECTURE

The architecture of RENEMB leverages three components, aimed at representing three levels of a
tabular data file: cells with their sequence of characters, rows with their sequence of cells, and files
with their sequences of rows. This architecture does not require any previous knowledge about a
file’s dialect to identify tabular cells and rows but rather uses self-supervised learning to understand
its structure. To make this possible, the first step is what we call “pattern tokenization”: this step
produces a fixed-length sequence of tokens for every row. In Figure 2, individual tokens are named
t00 to tNM , where N stands for the number of file rows, and M for the length of the token sequences.

The next component is a transformer architecture based on BERT (Devlin et al., 2019) to encode
tokens and file rows in vectors of dimension D (set to 768 in our experiments). We pre-train this
architecture on structural patterns rather than on natural language sentences. For the model to ef-
fectively capture structural rather than semantic features, we designed two novel pre-training tasks
to encode the structure of every token and row. The final component of RENEMB aims at providing
a single embedding, of dimension K (set to 128), to capture file-wise structural features. The intu-
ition behind the use of convolutional layers is their capability to capture spatial features and local
structures. The remainder of this section explains in further detail each of these components.

2.1 PATTERN TOKENIZATION

Pattern tokenization aims at abstracting away the semantic information about the payload of a file,
forcing the model to focus on structural properties. This is done by tokenizing the raw charac-
ter stream of a file into what we call “structural patterns”, that explicitly assign tokens to special
characters and abstract cell values into regex-like strings. Figure 3 presents an example of such
tokenization. The procedure to tokenize is, first, to split the character stream of a file into rows
according to newline characters. For every row, we tokenize it according to all the special charac-
ters that it contains, while we encode everything in between two special characters with a “pattern”.
We define a “pattern” to encode one or subsequent alphanumeric characters. To encode patterns, we
refer to Unicode character classes, that support multiple languages, including pictogram-based ones.

• A single lowercase letter or ideogram is represented as “l”, contiguous sequences as “l*”.
• A single uppercase letter is represented as “L”, contiguous sequences as “L*”.
• A single digit is represented as “d”, contiguous digits as “d*”.
• A pictogram or non-syntactic symbol is represented as “S”, contiguous symbols as “S*”.
• Contiguous strings of lowercase, uppercase, and symbols are represented as “T” (for text).
• Contiguous strings of numbers and text are encoded as “A” (for alphanumeric).

We expect the tokenization of rows to be highly consistent within the same file. Related data prepa-
ration research demonstrated the solidity of this assumption, by leveraging row consistency to detect
or repair erroneous rows (Qahtan et al., 2018; Hameed et al., 2022). For example, tabular columns
containing a number with periods separated with a dot as a decimal delimiter would all be repre-
sented with a “d*.d*” pattern, irrespective of their value. Due to the different lengths of cell values,
however, the resulting tokenization of rows may not always align across different records. As de-
scribed in the next section, RENEMB compensates for this effect with the attention mechanism of
the row embedding transformer. Overall, the dataset we use for pretraining (Hulsebos et al., 2023)
contains 409 unique pattern tokens in its vocabulary.
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Figure 3: Pattern tokenization for the raw file of Figure 1.

2.2 STRUCTURAL TRANSFORMER

While pattern tokens are a representation of fine-grained cell structure, the sequence of values within
rows embodies a further structural level of a tabular file. Learning to represent the structure of file
rows can be thought of as a special “language modeling” task, since the composition of rows in
data files also follows grammatical, syntactic, and semantic rules. Therefore, the intuition of the
second component of RENEMB is to use a transformer neural network architecture, composed of 6
transformer encoder layers with 12 attention heads each. Adapting the tasks used in (Devlin et al.,
2019), these structural transformers are pre-trained on pairs of file rows. The two input rows are
tokenized using our pattern tokenization and concatenated with a [CLS] token at the beginning
of the sequence, and a [SEP] token between the tokens of the two rows. Once pretrained, the
[CLS] token vectors will embed a row-level representation. As pairs of file rows may have a
different number of input tokens, we reserve (M/2)−1 tokens for each row: rows with more tokens
are truncated, while shorter ones are padded with the padding token [PAD]. Padding tokens are
excluded from the attention calculations. After exploratory analysis of the pre-training dataset, we
set M to 128, a dimension that covers over 90% of all tokenized rows from the dataset files. The
transformer pre-training is carried out on 10 million row pairs, extracted from the over 850 000 raw
files from the GitTables corpus (Hulsebos et al., 2023). The transformer layers of RENEMB are pre-
trained with two novel training tasks: “Structural Masking Modeling” and “Same File Prediction”.

Structural Masking Modeling: The first objective is an adaptation of the general-purpose masked
language modeling task from Devlin et al. (2019), which is defined for natural language sentences.
Rather than masking all tokens in the patterns with equal probability, in structural masking modeling,
we only mask special character tokens, regardless of their role within the file. To correctly solve the
structural masking task, RENEMB has to learn which special characters belong within a cell, e.g., the
comma in "2,331", and which mark its surroundings, e.g., double quotes and comma in the row
15,Response,"2,331",404. For this, the attention mechanism of transformer encoder layers
plays a vital role: the context of a token within a row helps differentiate, for example, a comma that
occurs within two quotation characters. Moreover, as the pre-training set includes a wide variety of
files with different dialects, the model is discouraged from overfitting on a given dialect.

Same File Prediction: For the second pre-training objective, the model is trained to classify whether
the two rows belong to the same file or not. To do so, the model uses a logistic regression classifier.
The input to the classifier is the encoding of the [CLS] token for each row pair. We compute a loss
function using binary cross entropy, and train the transformer layers with the sum of the same file
prediction loss and the structure masking modeling loss. Rows from different files have different
structural properties like the number of cells, dialect characters, or different data types. However,
rows from different files with the same dialect or a similar schema would have a similar structure,
while rows from the same file may also have a different structure (e.g., header vs. data rows).
Therefore, by pre-training on the same file prediction task, RENEMB is forced to produce row-level
encodings that represent meaningful structural aspects, e.g., the number of commas in a row that are
actual column delimiters.

2.3 CONVOLUTIONAL FEATURE EXTRACTOR

Beyond the row level, there are structural features that pertain to the file level and not to individual
rows: for example, the presence of several header rows or multiple tables (Christodoulakis et al.,
2020). The third component of RENEMB, the convolutional feature extractor, aims at encoding
file structure in a condensed embedding vector. To capture this, bi-dimensional locality plays an
important role: portions of the file that are close together, either in the same column or row, are
more likely to share structural properties.
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To account for locality, RENEMB’s file embedding component is a CNN autoencoder architecture
inspired by DCGANs (Radford et al., 2016), composed of a ResNet-18 encoder (He et al., 2016) and
decoder. The input to the encoder layers is the feature map obtained by stacking the row embeddings
of the previous stage for all file rows. The final output of the encoder layers is an encoding of
size 128 that represents the structural file embedding. We tuned the size of this embedding as a
hyperparameter for our model, experimenting with dimensions in [32, 64, 128, 256, 512]. For pre-
training the convolutional feature extractor, we freeze the structural transformer layers of RENEMB
and generate row and token embeddings for the first 128 rows per file, using padding or truncation
for files with fewer or more rows. As the training loss for the convolutional feature extractor, we
use the Mean Squared Error (MSE) between the input feature map and the output feature map,
excluding padding values. The convolutional feature extractor is pre-trained for 3 epochs on the full
set of GitTables CSV files, reserving 10% of the files (87 139) for validation purposes.

3 DIALECT DETECTION

Dialect detection is required to parse tabular files that do not follow the CSV standard, which is not
a rare occurrence (Vitagliano et al., 2023). Typically, heuristic or frequency-based algorithms are
applied (Hübscher et al., 2023). The task is still challenging for several reasons: (1) algorithms are
not designed for uncommon dialects; (2) file rows may have inconsistent dialects; (3) files may have
“broken” dialects. To use RENEMB for the dialect detection task, we fine-tune it with a logistic
classification head that takes as input the concatenation of each token-level embedding with the
corresponding row and file embeddings, and outputs the probability for each token to be a cell
value, delimiter, quotation, or escape character. As training loss, we use the cross-entropy losses
calculated on the whole sequence of file tokens. The final dialect is chosen as the one corresponding
to the tokens most frequently tagged as delimiter, quotation, and escape character. If, within a file,
no token is classified as delimiter (or quote, or escape) we consider the file as having an “empty”
delimiter (or quote, or escape).

Experimental setup: To perform fine-tuning, we use a training dataset of 18 300 CSV files, obtained
with augmentation from an original set of 5 689 manually labeled files from van den Burg et al.
(2019), unseen by RENEMB during pre-training. The augmentation was performed to ensure a
balanced distribution of classes in the overall data. We describe in detail the augmentation process
in Appendix B. We report the results on a validation set of 3 660 files (amounting to 20% of the
training files), used for development purposes, and on an equally sized held-out test set, obtained
using the same augmentation strategy but on a set of 1 543 held-out files never seen by RENEMB
during both the pre-training and the fine-tuning phases. We trained RENEMB for 10 epochs using
a batch size of 6. We evaluate the results of dialect detection using precision, recall and F1 score
for each of the three dialect classes, as well as dialect accuracy, which is computed for each file
by assigning a score of 1 only if all three classes (delimiter, quotation, and escape character) are
correctly detected. The F1 scores are averaged across the different classes, weighting the average
based on the number of samples for each class.

Results: To analyze the performances of RENEMB, we compared it with two baselines and three
SOTA LLMs: CLEVERCSV, the state-of-the-art system for CSV parsing (van den Burg et al., 2019);
a baseline obtained by fine-tuning XLM-RoBERTa, a pre-trained multilingual model (Conneau et al.,
2019), with three classification heads, taking as input the [CLS] token embeddings for each file row,
CHATGPT-3.5 in its version “turbo-1106”; CHATGPT-4 in its version “1106-preview”; and CODE-
LLAMA in its “7B-Instructions” variant tuned for human coding instructions. We detail the chosen
prompts in Appendix A.

Table 1 reports the results of our experimental evaluation, rescaling the scores to the range [0, 100]
for ease of comparison. As can be noted, RENEMB outperforms all baselines across all scores.
We attribute the poor accuracy of the XLM-RoBERTa model to several factors. First, with a larger
input size of 512 tokens, the model is significantly larger than RENEMB, whose input sequences are
limited to 128. For this reason, it is very challenging to train the high amount of model parameters
(561M) using a relatively small training dataset. This problem is further exacerbated by the nature of
the model’s pretraining – which included natural language text and not tabular file rows. Therefore,
the attention layers of a pretrained language model are most likely focusing on semantic rather than
on structural aspects of the file rows.
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Delimiter Quote Escape Dialect
P R F1 P R F1 P R F1 Acc.

CLEVERCSV 79.01 52.43 60.58 70.68 51.23 56.89 23.50 20.52 21.91 33.68
XLM-RoBERTa 0.86 9.29 1.58 5.78 24.04 9.32 8.71 29.51 13.45 0.55
CODE-LLAMA 71.19 41.09 39.82 75.23 48.99 46.80 61.91 39.84 38.41 10.52
CHATGPT-3.5 84.97 60.11 65.60 91.03 74.64 72.70 78.59 58.01 63.03 39.10
CHATGPT-4 93.73 66.91 72.85 85.98 70.11 70.23 71.66 49.78 54.18 37.08
RENEMB 94.12 93.65 93.84 99.52 98.53 98.93 90.54 85.01 87.38 81.49

Table 1: Average precision, recall, F1 results for dialect detection on the test set (scaled to 0-100%).
Regarding the performance of CLEVERCSV, which leverages the notion of row consistency to iden-
tify the dialect resulting in a table with high column homogeneity, we noticed that it tends to over-
estimate the probability of a file having a standard dialect. This effect is probably caused by the
weights for the dialect scoring in this approach being tuned using an imbalanced set of files with
significantly more standard dialects, e.g., where over 80% of the files used comma as a delimiter.

Among the three LLMs considered, the CODE-LLAMA performances show the lowest overall dialect
accuracy. In our experimental analysis, this model tended to overly classify files as having the most
common dialect characters, e.g., comma or semicolon as delimiters and double quote as quotation
characters, having a poor recall for files uncommon dialects, that were essentialy always detected as
comma-delimited, double quote-quoted, and escaped with backslash. Interestingly, the two models
from the GPT family have good precision for delimiter and quotation characters, but similarly show
poor recall and a low overall accuracy. Manually analyzing the errors yielded by these two mod-
els, we identified several common mistakes: for many erroneous classifications, the model simply
resorted to outputting the most common special character of the file, often also providing the same
character as the delimiter, quotation, and escape character. These results show that, albeit these mod-
els show some promise in addressing the dialect detection task, they lack fine-grained understanding
of file structure to solve it reliably and consistently, especially in difficult cases.

While analyzing the errors of RENEMB, we noticed how in its classification, it tended to perform
worse on files with empty dialect characters, i.e., had no delimiter, quote, or escape. For example,
the F1 score for the delimiter class restricted to files with no delimiter (i.e., single column files) is
74.57% compared to all other classes where the minimum F1 is 92.99%, for files delimited by space.
Therefore, we can characterize RENEMB as favoring precision over recall, that is, it overestimates
the probability that a file has an unusual dialect character over that no such character is present.

4 ROW CLASSIFICATION

Given a raw tabular file F, row classification aims at identifying the header and the data tuples of the
table contained in F, and at the same time recognizing and extracting other useful metadata. This
problem has been formulated in slightly different variations, we consider the same conceptual model
and problem formulation used in the SOTA approach STRUDEL (Jiang et al., 2021), a random forest
classifier. In this formulation, row classification is considered a multi-class classification problem
where a row of a file can belong to one of the following mutually exclusive classes: header, data,
group, derived, metadata, and note. The header rows contain the column names of a table; data
rows represent the records of a table; group rows organize the table into sub-tables (“groups”) and
represent the header for a given group; derived rows contain data that is the result of some opera-
tion on data rows, e.g., a total, average, or aggregation; metadata and note rows contain metadata
information respectively before and after a table. To utilize RENEMB for the row classification task,
we fine-tune it with a shallow classification head consisting of two logistic layers. The first layer
takes, for every row, all token-level embeddings and condenses them into a single dimension. The
second layer combines the output of the first layer with the file-wise embedding computed by the
convolutional encoder and outputs the class probabilities for each row.

Experimental setup: To perform row classification experiments, we leverage six publicly avail-
able datasets, introduced by Jiang et al. (2021) (See Appendix B), that are composed of generally
unprepared real-world tabular files, i.e., files do not adhere to the CSV standard because they may
contain non-data rows, multiline headers, or multiple tables. We train our model on the four datasets
GOVUK, SAUS, CIUS, and DEEX, which contain a total of 1 162 files and 221 218 rows. Following
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Figure 4: Results of row classification on the experimental datasets (scaled to 0-100%).

the experimental setup of Jiang et al. (2021), we train using 10 cross-validation folds on these four
datasets. We also include two separate datasets, MENDELEY and TROY, for out-of-domain testing,
containing 262 files and 199 946 rows. When testing on these two datasets, we used all files in the
previous four datasets for training. We note that all files from the training or test sets have not been
seen by RENEMB during pre-training. We train RENEMB for 40 epochs with a batch size of 8.

Results: We compare RENEMB with STRUDEL, the SOTA for row classification (Jiang et al., 2021).
We also experimented with XLM-RoBERTa, using individual rows as input sequences and fine-
tuning the model using the [CLS] embeddings to classify row classes. We tried different weighting
and sampling strategies for the training set, however, in our experiments we were unable to train the
model effectively towards classifying any row class apart from data, therefore we refrained from
reporting its results. We attribute these challenges to the large dimension of the model compared to
the relatively small and highly unbalanced training dataset (94.54% of the rows belong to the data
class, see Appendix B), which speaks for the unique challenges of data preparation tasks. We also
experimented with the three SOTA LLMs introduced in Section 3: CHATGPT-3.5, CHATGPT-4,
and CODE-LLAMA using prompt engineering (see Appendix A).

Figure 4 reports the results of our experimental evaluation. The results highlight the competitive per-
formances of RENEMB especially when classifying note, metadata, and group rows. These classes
are often recognizable from their structure alone: group and note typically only have content in the
first cells, and therefore are characterized by long sequences of delimiter characters. Furthermore,
together with metadata rows, they are more likely to contain letter characters and fewer digits or
numeric symbols. These structural features can be picked up by RENEMB thanks to its pattern tok-
enization strategy. In contrast, typically data and derived rows have a very regular structure. From
our analysis of the results, the low scores of RENEMB for data and derived rows are due to the
model frequently misclassifying one class as the other. This behavior is to be expected, considering
that often the difference between data and derived rows lies within the content of their cells, a se-
mantic detail that is abstracted away from RENEMB in favor of a structural perspective. To leverage
the strengths of both models, we propose a HYBRID approach: we first run RENEMB to detect the
class probabilities for the rows of a file, and then use these probabilities, one for each class, as extra
features in STRUDEL. Since the features learned from RENEMB are biased towards structure, and
those of STRUDEL are biased towards semantics, the HYBRID approach is an ensemble method to
compensate for the bias of each individual model. This approach outperforms both STRUDEL and
RENEMB with good success for every class in all cross-validation datasets.

However, as can be noted from the performances on the out-of-domain datasets, MENDELEY and
TROY, the HYBRID approach does not lead to an improvement when any of the two base models
has poor performances, or when the datasets have a very skewed distribution of data vs. non-data
rows (Cf. Appendix B). This behavior is particularly evident, for example, for the group and note
classes for MENDELEY.
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Dataset Weighted-mean F1 Macro-mean F1

Unprepared 77.96% 66.55%
Auto-prepared with RENEMB 80.50 % 67.51 %

Manually prepared 82.29 % 71.06%

Table 2: CTA performances with unprepared, automatically prepared, and manually prepared files.

None of the LLMs showed clearly superior performances over either RENEMB or STRUDEL, with all
three models mostly struggling to detect group headers, note, and derived classes. Our experiments
showed that in most cases, the models were classifying the first few lines of a file as either metadata
or header, and all of the following lines as data, often demonstrating no true understanding of
file structure. Moreover, the models often hallucinated in generating the answers for classification
where many subsequent lines were identified for the same class, e.g., data. In these cases, if the row
indices were used to indicate the classes (e.g., ‘data: 1,2,3,...’), the model answer turned
to a naive enumeration of indices often even beyond the length of the file; if class labels were used
as a response, e.g., ‘classes: header, data, data,...’, after few repetitions for the
same class the models kept repeating it over and over until answer was truncated. Although the most
recent CHATGPT-4 shows improvements over CHATGPT-3.5, our experiments demonstrate that in
their current stages, LLMs are unfit to reliably address the row classification task.

5 COLUMN TYPE ANNOTATION

Column type annotation (CTA) is defined in (Deng et al., 2020) as the task of annotating a column c
of a relational table T with a semantic type l ∈ L such that all values in c belong to l. Successfully
addressing the task for clean, standard relational tables is already challenging and the subject of
wide research interest, given its importance for tasks such as data integration and discovery. We
propose an end-to-end framework to perform CTA on raw tabular files, combining the structural
embeddings of RENEMB with RECA, the SOTA model (Sun et al., 2023). First, for all files in the
dataset, we obtain structural embeddings with the specialized RENEMB model for row classification
described in the previous section. Then, we combine these embeddings with the features computed
by STRUDEL and run our HYBRID row classification model. Using the row classes, we define a
simple set of heuristics that can be easily automated to extract relational tables out of a dataset of
raw files: 1. We delete empty rows and those classified as metadata, note, and derived; 2. In the
case of multiple detected header rows in the file, we merge them into a single row, each value being
separated by a whitespace character; 3. If there are multiple tables (defined as multiple stretches of
header followed by data rows), we extract the first table; 4. If there is no data row, we exclude the file
from our dataset; finally, we run the column type annotation model on the prepared versions of the
dataset files. Considering the lower performances of XLM-RoBERTa, CHATGPT-3.5, CHATGPT-
4, and CODE-LLAMA on row classification, we do not report on experiments with the row classes
detected from these models.

Experimental setup: To assess the impact of RENEMB on column type annotation, we leverage
the six datasets of real-world files introduced for the row classification task. We experiment with
three versions of these datasets: an unprepared version, corresponding to the raw file input; an
auto-prepared version, corresponding to automatic preparing of the files based on the row classes
obtained with RENEMB; and a manually prepared version, corresponding to a CSV-standard version
of the files, prepared with the same procedure but with the ground truth row classes. To perform
column type annotation, we used the SOTA system RECA (Sun et al., 2023). Following the original
implementation and experimental setup publicly available in the code repository of RECA, we split
our datasets into a train/validation fold and a test fold, respectively composed of 90% and 10% of
the original files. We trained the RECA model on the train/validation folds using 10-fold cross-
validation for 20 epochs and tested on the test fold, repeating the test three times. Finally, we train
and validate RECA on unprepared, automatically cleaned, and manually cleaned versions of the
dataset and compare the results. Since this system is reported to outperform all previously proposed
models (Hulsebos et al., 2019; Zhang et al., 2020; Suhara et al., 2022), which are also based on
column-level embeddings, we expect our findings to hold true for the whole family of models.

Results: Table 2 reports the weighted and macro mean F1 score for all column type classes averaged
across the three runs (standard deviations were zero). As can be noted, using unprepared versions
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of the input files leads to the lowest performance. This is not surprising, considering that RECA
encodes all the values that belong to a table column. If columns are parsed out of the unprepared
file, they may contain (1) unrelated values; (2) values with heterogeneous types, e.g., if multiple
tables or derived rows are contained in the file; or (3) be spuriously filled with empty values. On the
contrary, automatically preprocessing the files with the row types detected thanks to RENEMB in the
HYBRID scenario, improves the weighted F1 to 80.50%. To put in perspective the contribution of
preparing the files with RENEMB, performing CTA on the standard files, prepared using manually
annotated ground truth, leads to a further improved F1 of 82.29%.

6 RELATED WORK

Our work lies at the intersection of data management and representation learning. We briefly discuss
how our work relates to the previous contributions in these areas.

Table representation learning: Recently, several works leveraged representation learning using
transformer architectures or pre-trained language models on tabular data. Some tasks successfully
addressed include column type annotation (Sun et al., 2023), error detection and data cleaning (Tang
et al., 2021), and data discovery (Fan et al., 2023). An extensive review of the unique features of
these models is beyond the scope of this work, and we refer readers to a recent survey (Badaro et al.,
2023). One common aspect of all the aforementioned approaches that differentiates them from REN-
EMB, is that they are pre-trained on relational tables rather than on tabular files. For this reason, the
representations learned are semantic rather than structural, as they encode column and row contents.
While a unifying framework was proposed in Xie et al. (2022) to include semantic knowledge from
structured data files within pre-existing language models to address table understanding tasks, it
cannot be directly applied to messy files that require preparation and parsing of the payload table(s).
Another line of related work has proposed representation learning frameworks to parse tabular data
from visually rich documents (e.g., in PDF format) (Nassar et al., 2022; Li et al., 2021; Yu et al.,
2023). These models employ a visual feature extraction stage (using either OCR or CNN methods)
to identify tabular structures in images, and employ pretrained language models to understand their
semantic content. In contrast, our work applies to text data and uses a transformer model trained to
represent the structure of data files, while leveraging a convolutional stage to model locality within
feature maps. The representations learned by RENEMB are orthogonal to the ones learned by the
aforementioned tabular models, and can be compared with those learned by LLM instructed on code
understanding (Roziere et al., 2023). We include these models in our experiments, and demonstrate
that for data preparation tasks with few annotated labels, their performances are not competitive with
a specialized model such as RENEMB.

Algorithmic data preparation: Often, algorithmic approaches proposed in the literature to solve
file preparation tasks rely on structural features of the file such as row length, percentage of digit
characters, etc., to train specialized machine learning models (Christodoulakis et al., 2020; Zhang
et al., 2020; Döhmen et al., 2017). The main limitation of the feature engineering approach is the
lack of generality, as it requires manually defining and possibly tuning the set of features during
development with a given corpus of labeled data at hand. The approach we propose in this paper,
instead, aims at learning a general representation of the structure of a file, which is task-independent
and trained in a self-supervised fashion.

7 CONCLUSIONS

In this paper, we focus on the structure of tabular files, as opposed to their payload. We designed
RENEMB, a novel neural network architecture to represent the structure of tabular files with cell-
level, row-level, and file-level embeddings. We demonstrated how the embeddings generated by
RENEMB can be leveraged to solve a variety of preparation tasks. Our experiments with pre-trained
language models demonstrate that their focus on semantic features makes them unfit for use in data
preparation tasks, where manually labeled datasets for fine-tuning may be expensive or challenging
to obtain. Our vision is that specialized foundational models such as RENEMB, thanks to their
specific exposure to large amounts of data files, can and will be used to assist users at all stages of the
preparation pipeline, either to automate cumbersome operations or to empower software engineering
and decision-making.
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A DATA PREPARATION WITH LLMS?

With the advent of Large Language Models (LLMs) like those in the GPT family (OpenAI, 2023),
recent research has experimented with the use of these models for traditional data wrangling/clean-
ing tasks, for example in Narayan et al. (2022). The intuition of this approach is to use a pre-existing
LLM and perform zero-shot or few-shot inference to solve data management tasks. We experimented
using three SOTA models, CHATGPT-3.5, CHATGPT-4, and CODE-LLAMA to sample their capa-
bilities to solve structural tasks like dialect detection and row classification in CSV files.

To find the best prompt for the models, we queried the models to test dialect detection on a subsample
of 100 files from the ones we use in Section 3 and to test row classification on a subsample of 120
files from the ones we use in Sections 4 and 5. The prompt used were the following:

• Dialect detection (CODE-LLAMA): Identify the delimiter, quotation and escape characters
of the following CSV file. Provide the output of the classification as a JSON containing the
keys ”delimiter”, ”quotation” and ”escape”.

• Dialect detection (CHATGPT-3.5,CHATGPT-4): Identify the delimiter, quotation and es-
cape characters of the following file. Provide the output as a JSON.

• Row classification (CODE-LLAMA): Header lines represent the column names of tables;
data lines represent records; group lines organize tables into sub-tables and are the header
for a given group; derived lines contain the result of some operation on data lines; meta-
data and note lines contain metadata information respectively before and after tables. For
the following CSV file, please classify each line as one of the following classes: header,
data, group, derived, metadata or note. Provide the output of the classification as a JSON
containing the key ”predicted classes” with the list of predicted row classes.
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• Row classification (CHATGPT-3.5, CHATGPT-4) :Header lines represent the column
names of tables; data lines represent records; group lines organize tables into sub-tables
and are the header for a given group; derived lines contain the result of some operation on
data lines; metadata and note lines contain metadata information respectively before and
after tables. In the following CSV file, identify what lines are data, header, group header,
metadata, note, and derived. Provide the output as a JSON containing a list of predicted
classes, for example [header, data, data].

After each prompt, we provided the text of the input file, up to the maximum context length of each
model, reserving 32 and 256 tokens for dialect detection and row classification output, respectively.
A selection of the input files and responses can be seen in Figure 5 and Figure 6.

Figure 5: A sample of results asking LLMs to detect the dialect of challenging CSV files.

Figure 6: A sample result asking LLMs to detect the row classes for a challenging tabular file.

Beyond the poor experimental performances outlined in Sections 3 and 4, our experience dissuaded
us from pursuing this approach for several reasons:
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Input considerations: The models do not demonstrate real structural understanding of tabular files.
In the example shown in Figure 5, when asked to detect the dialect of the first file, CODE-LLAMA
returns as a delimiter the comma character, although the file does not contain a single comma.
Similarly, the models of the ChatGPT family return the newline and space characters as the file
delimiters, although they are not present within any of the rows.

Output considerations: The responses of the model, even if in JSON-like format, it is tuned to-
wards natural language, and therefore be ambiguous and require parsing rules themselves. For
example, in Figure 5, in one instance the CHATGPT-4 model replied with “none” as being a delim-
iter, while for the second file, null characters are indicated with an empty string. Moreover, we often
had to infer customized parsing rules and repairs for poorly formatted JSON files, especially due to
broken escape symbols and quotation characters.

Generalizability considerations: Given the highly stochastic nature of LLM, and the fact that they
have been trained on a massive set of data, two considerations hinder a serious experimental eval-
uation of their generalizability performances. First, the files used for experimenting have possibly
already been seen by these models, being publicly available at the time of the training of these mod-
els. Second, models may very well “hallucinate” outside the given prompt (Ji et al., 2023), and
provide outputs completely unrelated to the task or outright wrong. In some instances, for the row
classification task, the models picked up on one of the classes and kept repeating it until the given
maximum response length was reached.

Repeatability considerations: Out of the model we tested, the better results were obtained with
proprietary LLMs of the GPT family (OpenAI, 2023). These models are proprietary and closed-
source, accessed through API calls. This limits any repeatability for experiments since there is no
guarantee that, in the future, the internals of a model will not change (as they already did since
the first experiments in our research), or that the models themselves will still be available. On
the other hand, open source architectures like CODE-LLAMA (Touvron et al., 2023) still require
significant hardware resources to reproduce their performances, e.g., parallel GPU computation with
huge memory requirements.

All of these considerations make LLMs unreliable and difficult to integrate into a data management
pipeline. Therefore, we resolved to pursue the design of a specialized framework for structural
preparation: one that generalizes well with unseen files and is not sensitive to their content; not de-
signed for natural language input/output but rather to be integrated with automated data management
components; and that can be run on commonly available hardware.

B DATASET STATISTICS

Pretraining: To pretrain the overall RENEMB architecture towards structural embedding, we use
the raw files from the GitTables dataset (Hulsebos et al., 2023), which consists of 871 394 publicly
available tabular files from GitHub. We note that, although these files are marked with the CSV
extension, they do not necessarily conform to the RFC standard (Shafranovich, 2005), and may gen-
erally have metadata lines along with tables, non-standard dialects, or inconsistencies between rows.
We believe these features make the pretraining of RENEMB more robust towards different types of
tabular files. From each of the GitTables files, we sample 2 500 rows from each file (sampling with
repetition for files having fewer rows than that). Then, we create a balanced dataset of 10 million
row pairs, half of which are pairs extracted from the same file and the other half from two different
randomly chosen files. The same dataset of pairs is used for the Structural Masking Modeling task
and the Same File Prediction task since the transformer layers are trained on both tasks at the same
time. To simplify pretraining complexity, as suggested by Devlin et al. (2019), we first pre-train the
structural transformer for 15 epochs using a sequence length of 32 and complete the pretraining with
3 epochs using a sequence length of 128. In both cases, we used a batch size of 64, as it was the
highest dimension fitting in memory while performing the full model training. Regarding the maxi-
mum length of the input file rows, after exploratory analysis of our training data, we set the number
of input tokens for every row to 128, to balance complexity as coverage, as this length covers over
90% of the 10M input rows, with the rest having a significantly higher number of tokens.
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Most common dialects
Del. Quo. Esc. #Files

, ε ε 2895
, ” ε 2613
; ε ε 448 ...
; ” ε 437
, ” ” 346

Least common dialects
Del. Quo. Esc. #Files

= ” ε 1
= ε ε 1
— ’ ε 1
— ‘ ε 1
, — ε 1

Table 3: The 5 most and least common dialects in the original dialect detection dataset. The character
ε denotes an empty character.

Dialect detection: The original dialect detection set from van den Burg et al. (2019) contains 7 235
CSV files with a very imbalanced distribution of dialects towards the most common dialects. Table
3 shows the 5 most common and the 5 least common dialects found in the dataset files, together
with their frequency. The dataset has a long tail of different dialects, with 32 unique dialects, 11
unique delimiters, 5 unique quotation characters, and 4 unique escape characters. To compensate
for this bias, we augment the files to obtain a balanced dataset. Each file of the dataset is augmented
by taking its original cell values, and replacing the delimiter, quotation, and escape character with
all valid combinations (183 in total) of the distinct dialect characters found in the original dataset.
A valid dialect is one where the delimiter is different from the quotation character, and there is
no escape character if file cells are not enclosed in quotation marks. We only augment files that
do not contain any target dialect character in their content, to avoid generating invalid CSV files.
Augmenting a file to have the empty delimiter ε corresponds to generating single-column files. To
do so for otherwise multi-column files, we remove all columns except for the first. To augment files
towards dialects with quotation or escape characters, we include at least one delimiter or escaped
quotation character within random cells of the files (with a probability of 5%), and quote cell values
if needed, accordingly.

To perform the augmentation, first, we split the original dataset into a train/dev and a separate test
fold, containing respectively 5 690 and 1 545 files. Then, we augment separately the files within
these folds with all valid and applicable dialects. For the train/dev fold, we sample 100 files per di-
alect class, and then randomly sample 80% of the files for training and 20% of the files for validation
purposes. For the test fold, we sample 20 files per dialect class. Considering a total of 183 dialect
classes, the final set of files is therefore composed of 14 640 training files, 3 660 development files,
and 3 660 hold-out testing files. Overall, the benefit of this augmentation scheme is not only that it
counters class imbalance, but it also provides the model with files having the same cell contents but
with different dialects. We believe this helps the generalization power of the model and prevents the
model from overfitting on file content rather than on structure.

GOVUK SAUS CIUS DEEX MENDELEY TROY
#files 226 223 269 444 62 200
#rows 97 212 11 598 34 556 77 852 195 598 4 348
#cols 3482 3955 3656 6390 797 2282

header 519 576 435 1 222 86 280
data 93 584 9 469 31 845 74 245 194 786 2 898
group 850 283 119 302 27 42
derived 665 280 449 664 9 239
metadata 878 472 1 034 713 604 315
note 716 667 674 706 86 575

#files with annotated column types 110 153 264 260 12 66
#column types 32 26 21 66 11 19

Table 4: Row classification and column type detection dataset overview, with instances of row
classes and column types.

Row classification and column type annotation: For the row classification and column type de-
tection task, we use six datasets of real-world tabular files: GOVUK, SAUS, CIUS, DEEX, MENDE-
LEY, and TROY. The first is composed of CSV files publicly shared on the UK governmental data
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portal and introduced by Jiang et al. (2021). The second and third are datasets from the US Census
department, introduced first by Gol et al. (2019), and extracted from the Statistical Abstract of the
US and the Crime In the US report (hence the acronyms). The DEEX dataset was collected as part
of the DeExcelerator project and contains annotated spreadsheets from the ENRON, FUSE, and EU-
SES corpora (Eberius et al., 2013). The MENDELEY dataset, introduced by Jiang et al. (2021), and
used for out-of-domain testing, is composed of publicly available files containing scientific research
data from the online portal Mendeley Data. Finally, the TROY dataset, from George Nagy (2016),
contains tables available on international statistical websites.

We note how none of the original datasets contained column type annotations, which we include
in our public repository. To annotate column types from these six datasets we followed the same
strategy used by Zhang et al. (2020) and Sun et al. (2023): we annotate columns with a semantic
type from DBpedia Auer et al. (2007) if their headers (disambiguated with respect to spaces) match
with the name of a DBpedia ontology or property. We annotate one column for each file and discard
files for which no column can be matched with a DBpedia attribute.
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