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ABSTRACT

Computing the Nash equilibrium (NE) in the imperfect-information two-player
zero-sum sequential game is an important problem. Finding some refinements of
the Nash equilibrium is important because the Nash equilibrium may take sub-
optimal actions in states that can not be reached in equilibrium. In this work,
we improve the framework of the counterfactual regret minimization (CFR) algo-
rithm, proving that our algorithm can converge to the refinements of the Nash equi-
librium under some assumptions. The extensive-form perfect equilibrium (EFPE)
and the sequential equilibrium (SE) are two refinements of the Nash equilibrium,
they improve on this shortcoming of the Nash equilibrium by assuming that play-
ers make mistakes. Most current sequential equilibrium and extensive-form per-
fect equilibrium computing algorithms are not iterative algorithms and need to
solve linear programs, which are ineffective on large-scale games. Our method
gives a local perturbation in all the states in the game and gives a suitable per-
turbation descent method. We compare our Sequential Perturbed Counterfactual
Regret Minimization (SPCFR) algorithm with CFR variants and the approximate
EFPE computing algorithm, perturbed CFR. Experimental results show that our
method outperforms existing CFR-based methods on popular games, including
Kuhn Poker, Leduc Hold’em, and GoofSpiel.

1 INTRODUCTION

Computing the Nash equilibrium (NE) Nash (1951) in the imperfect-information two-player zero-
sum sequential game is a great challenge for artificial intelligence. Counterfactual regret minimiza-
tion (CFR) Zinkevich et al. (2007) and policy space response oracles (PSRO) Lanctot et al. (2017)
are two successful frameworks in equilibrium computing. PSRO is based on Empirical Game The-
oretic Analysis(EGTA) Wellman (2006) that samples strategies from large extensive-form games to
the metagame. Meanwhile, CFR minimizes the regret value in all the nodes in the game tree to
compute the NE. Recent research has also produced many superhuman intelligences that can defeat
humans in games such as Go Silver et al. (2016) and Texas Hold’em Brown & Sandholm (2018).

The NE is an equilibrium in which no player can increase their payoff simply by changing their
strategy, which assumes that other players always rationally follow the NE strategy. This assumption
is not reasonable, especially when our agent faces human opponents who often cannot take optimal
actions. When facing such irrational opponents, if the game reaches states (information sets) that
are unreachable in the NE, the equilibrium strategy typically cannot take optimal actions in these
situations.

Researchers have proposed several refinements to address the limitations of NE in imperfect infor-
mation extensive-form games, particularly its inability to take optimal actions at unreachable infor-
mation sets. Notably, the extensive-form perfect equilibrium (EFPE) Selten (1975) and sequential
equilibrium (SE) Kreps & Wilson (1982) are two such refinements that enhance the predictive power
of game-theoretic models in scenarios involving irrational or suboptimal opponents. The EFPE de-
fines a perturbed game, which ensures all actions have a minimum positive probability. It tolerates
players making unexpected moves, known as ”trembles”. The limit of the perturbed game’s equilib-
rium as this perturbation tends to zero is the EFPE. The SE refines the NE by considering players’
beliefs about which node in an information set they are at, especially when that information set is
unreachable under equilibrium strategies. The SE gives two conditions for equilibrium: sequen-
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tial rationality and consistency. This ensures that players’ strategies remain optimal even off the
equilibrium path.

Recent research has introduced several approaches to computing the refinement of the NE in two-
player zero-sum sequential games. Farina et al. integrates perturbations into the CFR framework.
However, this method fixes the perturbation size, which cannot compute the accurate EFPE. The
fixed perturbation will also limit the exploitability of the strategy. Bernasconi et al. utilizes the
Online Optimistic Mirror Descent (OOMD) Rakhlin & Sridharan (2013) algorithm to compute the
EFPE. While this approach provides theoretical convergence guarantees, the OOMD algorithm does
not perform well in large-scale games. Specifically, this algorithm performs worse than CFR in the
Goofspiel environment in the thesis’s experiments.

This paper proposes the Sequential Restricted Counterfactual Regret Minimization algorithm. We
extend the concept of the perturbed game, transforming the perturbation from a global setting to a
local one at each information set. To overcome the problems caused by fixed perturbations, we give
a reasonable way to decrease the perturbation during the computation. This condition is necessary
for the algorithm to converge to the SE. We also prove it is a sufficient condition for the algorithm to
converge to the SE under certain assumptions. We improve the part of regret matching in the CFR
algorithm by reducing the perturbation of the game, which we call the sequential perturbed regret
matching (SPRM). We also give the upper bound on the average regret of the improved algorithm.
We compare our algorithm with CFR variants and the approximate EFPE computing algorithm,
perturbed CFR, in three environments, Kuhn Poker, GoofSpiel, and Leduc Hold’em. The evaluation
metrics we used are exploitability and maximum information set regrets.

2 RELATED WORK

The variants of Counterfactual Regret Minimization (CFR) are the most successful family of al-
gorithms for solving imperfect-information games. MCCFR Lanctot et al. (2009) utilizes Monte
Carlo sampling so that the algorithm does not need to traverse the entire tree, increasing the speed
of the CFR algorithm in large imperfect-information games. CFR+ Bowling et al. (2015) sets the
cumulative regret to 0 directly when it is negative, greatly increasing the convergence speed of the
CFR. Deep-CFR Brown et al. (2019) uses neural networks to approximate the behavior of CFR
in the full game, which has strong performance in large games. DiscountCFR (DCFR) Brown &
Sandholm (2019) adds a discount factor to past regret values when computing the historical average,
effectively increasing the convergence efficiency of the CFR.

CFR is not the only iterative algorithm capable of solving the Nash equilibrium of large imperfect-
information games. Neural Fictitious Self Play (NFSP) Heinrich & Silver (2016) combined deep
reinforcement learning with Fictitious Play Brown (1951) to solve the Nash equilibrium of large
imperfect-information games. However, Fictitious Play(FP) has weaker theoretical convergence
guarantees than CFR, and converges more slowly in practice.

Due to the problems that the NE may take suboptimal actions in unreachable information sets,
several studies are aimed at computing the refinement of the NE. Two of the most commonly used
refinements are the Extensive-Form Perfect Equilibrium (EFPE) Selten (1975) and the Sequential
Equilibrium (SE) Kreps & Wilson (1982). Below, we first discuss the work on computing the SE.

Miltersen & Sørensen firstly uses the minimax strategies to compute the SE for two-player games
and proves that the SE of two-player zero-sum games can be solved in polynomial time. Gilpin &
Sandholm gives the method to compute the SE in games where chance nodes are the only source
of uncertainty. Turocy provides a numerical algorithm to compute the SE for finite imperfect-
information games. However, the implementation suffers from numerical instability, making it
unreliable Miltersen & Sørensen (2006b). Panozzo proposed some approaches for the algorith-
mic verification of the SE. Finally, Graf et al. gives a symbolic solution to the SE of the general
form game. However, there is no method for solving SE using an iterative algorithm.

For finding the EFPE, another refinement of the NE, the first works in two-player zero-sum sequen-
tial games are presented by Hansen et al.; Farina & Gatti; Farina et al.. However, all these works are
based on solving linear programs (LP) Dantzig (1963) to compute the EFPE. Because solving LP is
not an iterative algorithm, they fail to address complex real-world problems. Farina et al. gives the
first iterative algorithm to compute the EFPE, which is based on the CFR framework. This algorithm
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computes the equilibrium in a perturbed game with a fixed perturbation size, which means it cannot
compute an exact EFPE. More critically, since the perturbation enforces a minimum probability for
each action, the strategy will continuously take the suboptimal actions, leading to a lower bound on
exploitability. This limitation prevents the strategy from achieving true optimality. Bernasconi et al.
gives the first iterative algorithm that can converge to the EFPE. The OOMD algorithm needs to be
optimized on the overall game matrix, not perform well in large-scale games.

3 PRELIMINARIES

3.1 EXTENSIVE-FORM GAMES

The extensive-form game (EFG) is a widely used game model for multi-player sequential games.
In EFGs, there are two important concepts: imperfect information and imperfect recall. Imperfect
information means the players may lack some information about the game’s state. An example is the
Leduc Hold’em, where players cannot see each other’s cards. Imperfect recall means players may
forget some of the information they have observed. An example is that players forget the opponents’
previous play in any card game. In this work, we do not consider the game with imperfect recall.
The definition of the imperfect information EFG with perfect recall is as follows.

Tree Structure. A finite imperfect-information extensive-form game with perfect recall can be
described as a tuple G :=< N,H,A, V, I, P, u >. The components of G are defined as follows,

• N = {0, 1, ..., n} is the set of players. Especially, player 0 presents nature(chance node),
a nonstrategic agent responsible for all the random events in the game. While all other
players are strategic agents.

• H is the finite game tree. Every node h ∈ H is present by a set h = {hp, a}. hp is the
parent node of h. a is the edge from the parent node hp to node h, which present the action
taken in the node hp. Especially, we define the root node as the empty set h0 = ∅.

• A : H → 2A gives the legal actions of every node in the game tree H , where A is the set
of all possible actions in the game tree. If A(h) = ∅, we call h a terminal node. T is the
set of all terminal nodes T = {h|A(h) = ∅}. Other nodes are decision nodes, represented
by D = {h|A(h) ̸= ∅}.

• V : D → N represents which player should take action in the decision node.
• I = (I1, I2, ..., In) is the information sets for all player. Ij is a partition of V −1(j), which

satisfied that ∀I1, I2 ∈ Ij , I1 ̸= I2, s.t. I1 ∩ I2 = ∅ and
⋃

I∈Ij
I = V −1(j). For all node

h ∈ H that V (h) ̸= 0, it belongs and only belongs to an information set I ∈ IV(⟨).

• A node h where V (h) = 0 is a chance node. C = {h|V (h) = 0} is the set of chance
nodes. P (·|h) : C → (A → R+) is the action probability distribution in the chance node.

• u : T → Rn is the utility function that gives the utility of all normal players in the terminal
node.

Strategies. In the above definitions, none of the nodes specify the probability distribution of their
actions, except for the chance nodes for which we have defined the probability distribution of their
legal actions. We call the behavior of the normal player j ∈ N\{0} in the game a strategy.

The pure strategy of player j is πj(I) : Ij → A, which specifies that the player j performs a defined
action at each information set. The mixed strategy of player j is βj(·|I) : Ij → (A → R+), which
gives the probability distribution of legal actions in every information set of player j.

Beliefs. For each information set, the player needs a probability distribution that determines which
node in the information set they are in. We call this probability distribution the belief.

The belief is a conditional probability distribution in the information set under the strategy β,

µβ(h|I) =
Pβ(h)

Pβ(I)
, (1)

where Pβ(h) and Pβ(I) is the reach probability of node h and information set I . β =
{β1, β2, ..., βn} is the strategies of all normal players. If all the players follow strategy β, the
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product of each edge from the root node to node h is the reach probability of node h. The reach
probability of information set I is the summation of each node h in the information set I .

Pβ(h) = Pβ(hp)βV (h)(a|Ih), (2)

Pβ(I) =
∑
h∈I

Pβ(h), (3)

where {hp, a} = h.

Utilities. The utility of terminal node h ∈ T , u(β|h) = u(h) has already been defined in the game
G. The utility of other nodes is the expected utility the player will get in these nodes, if all the
players follow the strategy β. The utility of the information set is also the expected utility the player
will get according to the belief defined in Equation 1. The definition of utility is

u(β|h) =
∑

a∈A(h)

βV (h)(a|Ih)u(β|{h, a}), (4)

u(β|I) =
∑
h∈I

µβ(h|I)u(β|h), (5)

where Ih is the information set where h is located. β0 denotes the strategy of nature P for conve-
nience.

3.2 EQUILIBRIA OF THE GAME

Equilibrium is the computational goal of the game. For a given game, our objective is typically to
find an equilibrium. The Nash equilibrium (NE) is the most commonly used solution concept.

The NE refers to a situation where neither player can increase their utilities by changing their strat-
egy, so no one is willing to change it. To define the NE, we specify β−i as the strategies of all other
players except player i. ui(β) is the utility of player i when all players use strategies β. Then the
Nash equilibrium can be defined as follows.
Definition 1. (Nash Equilibrium) A strategy profile β is a NE if ui(β

′
i, β−i) ≤ ui(βi, β−i) for all

players i and all strategies β′
i of player i.

Although the subsequent sections of this paper do not focus on the extensive-form perfect equi-
librium (EFPE), some of the algorithmic ideas we employ are related to the EFPE. Therefore, we
provide a brief introduction to the EFPE.

A ε-perturbed game means that for all the normal players, the probability of each of their actions
must be greater than ε. We call the NE on the ε-perturbed game an ε-EFPE.
Definition 2. (Extensive-Form Perfect Equilibrium) A strategy profile β ∈ Πε is an ε-EFPE if
ui(β

′
i, β−i) ≤ ui(βi, β−i) for all players i and all strategies β′

i ∈ Πε
i of player i. Πε

i and Πε can be
defined as follows, Πε

j = {βj |∀I ∈ I|, ∀a ∈ A(I), βj(a|I) ≥ ε}, Πε = {Πε
j |j ∈ N\{0}}.

The EFPE is the limitation of the ε-EFPE when ε → 0+.

The sequential equilibrium (SE) is a refinement of the NE tailored for extensive-form games. In
SE, a central concept is called the ”assessment”, the pair of strategy and the belief (β, µβ). The
definition of belief is given in Equation 1. It is easy to see that this definition of belief has a problem
with unreachable information sets. In order to solve this problem, an assessment (β, µβ) must satisfy
two conditions: sequential rationality and consistency. The full definition is as follows,
Definition 3. (Sequential Equilibrium) A strategy profile β is a SE if the assessment (β, µβ) sat-
isfied,

• sequential rational. uV (I)(β
′
V (I), β−V (I), µβ |I) ≤ uV (I)(βV (I), β−V (I), µβ |I) for all

information sets I ∈ I and all strategies β′
V (I) of player V (I).

• consistent. There exists a series of assessments (βn, µn
β), such that limn→∞(βn, µn

β) =

(β, µβ), and for all h ∈ H, I ∈ I,
Pβn(h) > 0

µn
βn(h|I) =

Pβn(h)

Pβn(I)

(6)
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From the definitions, we can observe that the EFPE is included in the SE. This is because if we
choose any sequence of the ε-EFPE where ε → 0, these sequences satisfy the definition of consis-
tency of the SE.

3.3 COUNTERFACTUAL REGRET MINIMIZATION(CFR)

CFR is a self-play algorithm using regret minimization. There are two core concepts in the CFR.
One is the counterfactual regret, and the other is the regret matching. There is a well-known theory
of the relationship between regret values and Nash equilibrium. If both players’ average regrets are
less than ε, the average of their historical strategies is an ε-Nash equilibrium Waugh (2009). The ε-
Nash equilibrium means players have an ε tolerance for strategy, which means if any player deviates
from the equilibrium, he will not increase the utility more than ε.

counterfactual regret is based on counterfactual probability. If player j uses a strategy consistent
with the historical actions, and other players follow the strategy β−j , the reaching probability from
the root node to this node is the counterfactual probability P β

−j(h).

P β
−j(h) =


1, h = ∅

P β
−j(hp), V (hp) = j

P β
−j(hp)βV (hp)(a), V (hp) ̸= j

. (7)

P β
−j(I) is the counterfactual probability of the information set, which is the summation of all the

nodes h in the information set I ,
P β
−j(I) =

∑
h∈I

P β
−j(h). (8)

We call the multiple of counterfactual probability and the utility of the node the counterfactual value
v(β|h) = P β

−V (h)(h)u(β|h). The concept of counterfactual regret can be explained as follows. If
the player takes action a instead of following policy β, the extra counterfactual value the player can
get in this information set is the counterfactual regret.

rj(a|I) = P β
−j(I)(uj(βI→a|I)− uj(β|I)), (9)

where βI→a means in information set I , player take action a but follow strategy β in all other
information set.

Regret matching is the method of using historical regrets to generate strategies. We use RT
j (a|I) =∑T

t=1 r
t
j(a|I) present the summation of historical regrets of player j in information set I . A new

strategy in time step T + 1 generated by the regret matching is,

βT+1
j (a|I) =


[RT

j (a|I)]+∑
a∈A(I)[R

T
j (a|I)]+

, ∃[RT
j (a|I)]+ > 0

1

|A(I)|
, otherwise

, (10)

where [x]+ means max{x, 0}.

4 METHOD

Perturbed CFR uses the CFR algorithm directly on the perturbed game to compute the approximate
EFPE, and we will follow this idea here. Building upon this, we reduce the perturbation at a reason-
able rate to refine the NE. Since the perturbed game in our algorithm uses local perturbations (which
we will later explain are necessary), proving the algorithm converges to the EFPE is challenging.
Therefore, we will prove that the algorithm can converge to the SE under certain assumptions and
conditions we have given are necessary for the convergence. Next, we will introduce the method’s
two parts, the Perturbed Regret Matching and the Sequential Perturb Decreasing.

5
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4.1 PERTURBED REGRET MATCHING

This section follows the approach presented in perturbed CFR, but we describe it in our style and
include a proof of convergence under variable perturbations. Since the perturbation changes with
the information set and the iterations, we use δT (I) to present the perturbation in information set I
at iteration T .

σT
j (I, a) = (1− δT (I))β

T
j (I, a) +

δT (I)

|A(I)|
, (11)

where σT
i (I, a) is the strategy follow the regret matching. It is a mixed strategy of regret matching

strategy and uniform random strategy, and every action will be chosen with probability at least
δT

|A(I)| .

We proved that if limT→∞ δT (I) = 0 for all information sets I , the historical average of strategy σ
still converges to the Nash equilibrium. The upper limit of average regret follows Theorem 1.
Theorem 1. If any information set I satisfied δT (I) ∼ O(Tα), α < 0, the upper limit of the regret
in this information set is Rσ,T (I) ∼ O(Tmax{0.5,α+1}).

A full proof of Theorem 1 is provided in Appendix A. From this theory, we know that the asymptotic
convergence rate of the CFR algorithm will not be limited if the descent rate of δT (I) is not slower
than T−0.5.

Algorithm 1 Traversal with perturbed regret matching
Input: EFG game G, node h, policy σ, cumulative policy σ, reach probabilities Ti, cumulative reach
probability Q, cumulative regret R
Output: utility u

function Traversal(Trav as a short form)
u = 0
if V (h) = 0 then

for legal action a in A(h) do
T ′ = T ; T ′

0 = T0 ∗ P (a|h)
u+ = P (a|h) ∗ Trav(G, {h, a}, σ, σ, T ′, Q,R)

end for
return u

end if
get the information set I of node h
δ = 1/(a+ b ∗Q(I))
for legal action a in A(h) do

action probability p = δ/|A(h)|+ (1− δ)σ(a|I)
T ′
i = Ti; T ′

V (h) = TV (h) ∗ p
action utility ua = Trav(G, {h, a}, σ, σ, T ′, Q,R)
u = u+ p ∗ ua

end for
pc =

(∏
n∈N Tn

)
/TV (h)

Q(I) = Q(I) + pc ∗ TV (h)

for legal action a in A(h) do
R(a|I) = R(a|I) + pc ∗ (ua − u)
Update R(a|I) if use CFR+ or DCFR

end for
σ(I) = regret match(R(I))
update average strategy σ(I)
return u

end function

4.2 SEQUENTIAL PERTURB DECREASING

The CFR algorithm does not use the belief µ, so we need to convert the formulation of sequential
equilibrium. We notice that the belief µ is only used to compute the utility of the information set. If

6
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Figure 1: Comparison of CFR variants and SPCFR algorithm in three environments: Kuhn Poker,
GoofSpiel, and Leduc Hold’em. The upper figures show the variation of exploitability with the
number of nodes in the game tree visited by algorithms, and the lower figures show the maximum
regrets of information sets.

Algorithm 2 Sequential Restricted Counterfactual Regret Minimization
set policy σ uniform random policy,
for every information set I , Q(I) = 0, R(I) = 0, σ = 0
for many episodes do

for every player i, Ti = 1
Traversal(G,∅, σ, σ, T,Q,R)

end for

we use the pair (β, u(β|·)), and there exists a series (βn, un(β|·)) that tends to (β, u(β|·)), we can
also show that this is a sequential equilibrium. Therefore, we only need to show that the algorithm
can estimate u(β|·) accurately.

For those reachable information sets, if both players use the historical averaging strategy,

u
(
β|I
)
= µβ(h|I)u

(
β|h
)
=

Pβ(h)u
(
β|h
)

Pβ(I)
=

1
T

∑T
t=1 v(β

t|h)
Pβ(I)

= C

T∑
t=1

v(βt|h).

The counterfactual value is a constant multiple of the information set utility. For unreachable infor-
mation sets, Pβ(I) = 0, the proof of the above would not be valid. We need some extra conditions
to ensure the algorithm can converge to the sequential equilibrium.
Theorem 2. The limit of average strategy σ is a sequential equilibrium, only if δI satisfied:

for all node h, the cumulative reach probability tends to infinity, limT→∞
∑T

t=1 Pβt
−V (h)

(h) = +∞.

And if limt→∞ βt exists, the condition above is sufficient and necessary.

A full proof of Theorem 2 is provided in Appendix B. From this theorem, we can tell that any
global method of perturbation reduction is unreasonable. Assume we use a global perturbation δT ,
the reaching probability of each node at depth h should not be less than δhT . However, according
to Theorem 2, the cumulative reach probability should tend to infinity, which means δT must be
o(T−1/H). This implies that the convergence rate slows down rapidly as the depth of the game tree
increases.

7
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Figure 2: The performance of SPCFR and Discount CFR with various perturbs on Leduc Hold’em
and GoofSpiel.

We give a local form definition of δT (I) to satisfy the follow conditions,

δT (I) =
1

a+ bQT (I)
, (12)

where QT (I) =
∑T

t=1 Pσt(I) is the cumulative reach probability. In particular, the cumulative
reach probability of the root node is equal to the number of iterations. If δT (I) use this definition,
we prove the upper limit of average regret of strategy σ is Rσ,T ∼ O(T−0.5).

Further, we will show that average strategy βT and average strategy σT have the same limit when
iteration tends to infinity. We can use substitute average strategy βT for average strategy σT . The
average strategy βT will converge faster because its action probability has not been restricted.

lim
T→∞

1

T

T∑
t=1

σt
i(I, a) = lim

T→∞

1

T

(
T∑

t=1

βt
i (I, a)−

T∑
t=1

δtβ
t
i (I, a)

)
. (13)

It can be easily seen that the limit of the second half is 0. Thus, we proved that the limit of average
strategy βT and average strategy σT is the same when the iteration tends to infinity.

lim
T→∞

1

T

T∑
t=1

σt
i(I, a) = lim

T→∞

1

T

T∑
t=1

βt
i (I, a). (14)

We split the algorithm into two parts for convenience. Algorithm 1 shows the game tree traversal
part of the algorithm, and Algorithm 2 is the main loop.

5 EXPERIMENT

5.1 EXPERIMENT SETTING

We compared the effects of CFR Zinkevich et al. (2007), CFR+ Bowling et al. (2015), and
DCFR Brown & Sandholm (2019) with our algorithm SPCFR in four environments: Kuhn Poker,
Leduc Hold’em, and GoofSpiel. Here is a brief description of the four experiment environments.

Kuhn Poker is a simple imperfect information card game with only three cards: King, Queen, and
Jack. In Kuhn poker, two players hold one private card and successively choose to bet or pass. If
one player chooses to bet, the other player can only choose to bet or fold. If both players bet or pass,
the player with the bigger card wins.

Leduc Hold’em is also a card game. It is a simplified version of Texas Hold’em, having only two
betting rounds and six cards: two suits of King, Queen, and Jack. In the first round, each player
holds a private card; in the second round, one public card is revealed.

GoofSpiel is a simple rules card game, but has a large number of information sets. In the full game,
the player has 13 cards of the same suit, while another suit is used as the prize cards. Each round, a
prize card is revealed, and two players simultaneously bid for it by selecting a card from their hand.
The bidder with the highest number wins the prize card, if the numbers are the same, no one will
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get the prize. All cards can only be used once. The game continues until all prize cards have been
claimed, and the player who gets the highest prize wins.

We use Kuhn Poker, Leduc Hold’em, Liar’s Dice, and Goofspiel(3 cards) environments in Open-
SpielLanctot et al. (2019) with default parameters. All experiments were run on a Linux server with
four Intel Xeon Platinum 8268 processors. Each experiment in the three environments took about
30 min, 3 h, and 13 h, respectively.

5.2 EXPERIMENT RESULT

To compare the performance of algorithms, we employ two evaluation metrics: exploitability and
maximum information set regret. Exploitability is a widely used evaluation metric that describes
the distance between the current strategy and the NE. Maximum information set regret reflects the
worst-case deviation from the optimal action at any information set in the game tree, describing how
closely the strategy approximates the EFPE. We have not found a metric that describes how close a
strategy is to SE. Since EFPE is included in SE, we use this metric to evaluate the effectiveness of
our algorithm.

Figure 1 compares the performance of SPCFR and CFR variants in Kuhn Poker, GoofSpiel, and
Leduc Hold’em. Except for the Kuhn Poker game, we can see that all other CFR variants have
stabilized at a fixed value for the maximum information set regret in the other two environments. It
is to be expected that the CFR algorithm and its variants do not converge to EFPE. Kuhn Poker is
a simple game with only 12 information sets. There are no unreachable information sets in the NE,
so other algorithms are also able to reduce the maximum information set regret value. Neverthe-
less, our algorithm, SPCFR, still has the fastest decrease among them. For the exploitability metric,
compared with the best variant of the CFR algorithm, SPCFR works approximately or slightly bet-
ter. This suggests that a reasonable descent rate of perturbation does not limit the reduction of the
exploitability.

In Figure 2 we compare our algorithm with perturbed CFR. The algorithm partially differs from
the paper in that we add the perturbation to the DCFR rather than CFR+. Due to the perturbations,
there is a lower bound on the exploitability in perturbed CFR, which is not present in our SPCFR
algorithm. In the GoofSpiel environment, SPCFR outperforms both perturbations of 1e − 4 and
1e−5 in the maximum information set regret metric, and is close to the perturbation of 1e−3 in the
end. The performance in Leduc hold ’em is slightly worse for SPCFR than for perturbed CFR in the
maximum information set regret, but perturbed CFR also suffers from large fluctuations in PCFR
when the perturbation is small(1e− 6).

6 CONCLUSION

This paper proposes the sequential perturbed counterfactual regret minimization(SPCFR) algo-
rithm for computing Nash equilibrium refinement, sequential equilibrium, of imperfect-information
games. We compare it with other NE computing algorithms, CFR variants, and the approximate
EFPE computing algorithm, perturbed CFR. SPCFR follows the methods of perturbed CFR in the
regret matching part, restricting the minimum value of the probability of each action for the strategy.
Further, we extend the global perturbation to a local perturbation and give a suitable perturbation
descent method. We give the necessary conditions for localized perturbation descent to converge to
SE, and its proof is sufficient under certain assumptions. The experiment has shown that SPCFR
converges close to the best CFR variant in terms of exploitability, and can also approach SE well
compared to PCFR. In future work, we hope to improve other algorithms for solving imperfect-
information games, such as PSRO, so that they can solve the sequential equilibrium.
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A PROVE OF THEOREM 1

We will prove Theorem 1 using the same method as the upper bound estimate of Gordon (2006)
for cumulative regret, where we define f(x) = ([xi]+), F (x) =

∑
i[xi]

2
+/2. f(x) should be the

gradient of F (x).

Rt+1 −Rt = vσt

p (I)−
((

δt/N · 1+ (1− δt)σ
t
p(I)

)
· vσt

p (I)
)
· 1

(Rt+1 −Rt) · f(Rt) = δt

((
σt
p(I)− 1/N

)
· vσ

t

p (I)
)
(f(Rt) · 1)

≤ 2|u|maxδt (f(Rt) · 1)

where |u|max is the upper bound of utility, |v|max is the upper bound of Counterfactual utility,
Pσt(I) is the reach probability of the information set I when all players follow the strategy σt. The
F (x) satisfied,

F (x+∆) ≤ F (x) + ∆ · f(x) + ∥∆∥2 ,
F (Rt+1) = F (Rt + xt)

≤ F (Rt) + xt · f(Rt) + ∥xt∥2

≤ F (Rt) + 2|u|maxδt(f(Rt) · 1) + |u|2max|A|

≤ 2|u|max

t∑
k=1

δk(f(Rk) · 1) + |u|2max|A|t

.

We know that F (Rt+1) ≥ 2(Rt · p)2 for any legal probability p We can get the upper bound,

2(max
a

Rt)
2 ≤ 2|u|max

t∑
k=1

δk(f(Rk) · 1) + |u|2max|A|t

max
a

Rt ≤

√√√√|u|max

t∑
k=1

δk(f(Rk) · 1) + |u|2max|A|t/2

O(Rt(I, a)) = O


√√√√ t∑

k=1

O(δt)O(Rk(I, a)) + t

 .

Assume O(δt) = O(tα), O(Rt(I, a)) = O(tβ),

O(tβ) = O


√√√√ t∑

k=1

O(tα+β) + t


= O(

√
tα+β+1 + t).

It can be solved that β = max{0.5, α + 1}. The upper bound of information set regret is π is
Rt(I, a) ∼ O(tmax{0.5,α+1}).

If δT (I) =
1

a+ b
√
Qt(I)

∼ Θ
(
Qt(I)

−0.5
)
, and we assume the reach probability Pσt(I) ∼ Θ(tγ).

Of course, we need γ ≤ 0. Qt(I) ∼ Θ(tγ+1) which means α = −γ+1
2 < −0.5. So we proved ∀I ,

Rt(I, a) ∼ O(t0.5), which means the upper bound of the total average regret is Rt ∼ O(t−0.5).

B PROVE OF THEOREM 2

The proof of CFR has already shown that if the average regret RT
σ tends to 0, in the reachable

information sets, the average strategy σT tends to the sequential equilibrium. For those unreachable
information sets, we need to satisfy the definition of sequential rationality and consistency of the
sequential equilibrium.
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According to the definition of consistent, we have equation,

u(σ|I) =
∑
h∈I

µ(h|I)u(σ|h) =
∑
h∈I

lim
σn→σ

Pσn(h)

Pσn(I)
u(σ|h).

In the CFR method, we use counterfactual values v(σ|I) =
∑

h∈I limT→∞
1
T

∑T
t=1 v(σ

t|h) to
estimate utility. Since the regret and utility values differ by a constant factor, we need to ensure
that for any two nodes in the same information set, the ratio of their utilities is equal to the ratio
of counterfactual values. And once the consistency is satisfied, the regret matching will satisfy the
sequential rationality. The equation we need to prove is,

lim
σn→σ

Pσn(h1)u(σ|h1)

Pσn(h2)u(σ|h2)
= lim

T→∞

∑T
t=1 Pσt

−V (h1)
(h1)u(σ

t|h1)∑T
t=1 Pσt

−V (h2)
(h2)u(σt|h2)

.

In fact, in the information set of player i, the history action of player i in all nodes on the same
information set must be the same. Otherwise, it can distinguish between these nodes. We can leave
the player’s actions out of the equation. Expand the average utility u,

lim
σn→σ

Pσn(h1)u(σ|h1)

Pσn(h2)u(σ|h2)
= lim

σn→σ
lim

T→∞

∑T
t=1 Pσn

−V (h1)
(h1)u(σ

t|h1)∑T
t=1 Pσn

−V (h2)
(h2)u(σt|h2)

.

Here we need to assume that,

lim
t→∞

u(σt|h1) < ∞,

lim
t→∞

u(σt|h2) < ∞,

Less than infinity indicates that the limit exists. We believe this assumption is universal. Then we
can use the O’Stolz theorem,

lim
σn→σ

Pσn(h1)u(σ|h1)

Pσn(h2)u(σ|h2)
= lim

σn→σ
lim
t→∞

Pσn
−V (h1)

(h1)u(σ
t|h1)

Pσn
−V (h2)

(h2)u(σt|h2)
,

lim
T→∞

∑T
t=1 Pσt

−V (h1)
(h1)u(σ

t|h1)∑T
t=1 Pσt

−V (h2)
(h2)u(σt|h2)

= lim
t→∞

Pσt
−V (h1)

(h1)u(σ
t|h1)

Pσt
−V (h2)

(h2)u(σt|h2)
.

Let limt→∞
Pσt

−V (h1)
(h1)u(σ

t|h1)

Pσt
−V (h2)

(h2)u(σt|h2)
= A, limt→∞

Pσn
−V (h1)

(h1)u(σ
t|h1)

Pσn
−V (h2)

(h2)u(σt|h2)
= B(σn).

∀δ1 > 0,∃M1 > 0, s.t.∀t > M1,

∣∣∣∣∣Pσt
−V (h1)

(h1)u(σ
t|h1)

Pσt
−V (h2)

(h2)u(σt|h2)
−A

∣∣∣∣∣ < δ1.

∀δ2 > 0,∃M2 > 0, s.t.∀t > M2,

∣∣∣∣∣Pσn
−V (h1)

(h1)u(σ
t|h1)

Pσn
−V (h2)

(h2)u(σt|h2)
−B(σn)

∣∣∣∣∣ < δ2.

Let n > max{M1,M2}, we have |A−B(σn)| < δ1 + δ2. It means that limn→∞ B(σn) = A.
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