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ABSTRACT
In the Intensive Care Unit (ICU), Renal Replacement Therapy (RRT)

serves as an effective tool for improving fluid balance and promot-

ing renal function recovery in patients with severe Acute Kidney

Injury (AKI). The need for RRT, the timing of its initiation and
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discontinuation, and the selection of its modalities require careful

consideration due to its potential impact on renal function recov-

ery and the associated risks. However, the existing Kidney Dis-

ease Improving Global Outcomes (KDIGO) guidelines provide only

general recommendations, leaving room for physicians to provide

subjective judgment, and thus a personalized RRT decision-making

support tool is in urgent need. This study proposed to employ a

value-based reinforcement learning approach to model the rela-

tionships between patient states, RRT decisions, and renal function

recovery. This approach allows for action recommendations under

various patient states, and can balance both short- and long-term pa-

tient outcomes. In the modelling process, patients’ sequential state

data was utilized, three RRT-related strategies were considered, and

the reward function was defined based on the rate of estimated

glomerular filtration rate (eGFR) change. The proposed reinforce-

ment learning-based RRT decision-making model was tested using

https://doi.org/XXXXXXX.XXXXXXX
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the AKI dataset extracted from the publicly available ICU dataset

MIMIC-IV. The experimental results showed that the RRT strat-

egy recommendations provided by our developed reinforcement

learning-based decision support tool were consistent with clinical

guideline and some recommendations are more rational than actual

actions in specific patient cases.

CCS CONCEPTS
• Information systems→ Decision support systems; • Com-
puting methodologies→ Artificial intelligence;Markov deci-
sion processes;Reinforcement learning; •Applied computing
→ Health informatics.
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1 INTRODUCTION
Value-based reinforcement learning allows for the valuation of

actions during the exploration-feedback process, leading to strategy

recommendation or strategy optimization [6, 9]. Although it is

costly to conduct clinical experiments with real patients based on

online reinforcement learning, we employed offline datasets to

conduct reasonable extrapolations of reinforcement learning-based

decision-making for RRT in AKI.

This study aims to develop a decision-support model that utilizes

patient information available in data-rich ICU settings and recom-

mends personalized treatment plans. The proposed model, based

on the Markov Decision Process (MDP), transitions from merely

estimating the probability of action implementation using existing

data to calculating the action values and making informed recom-

mendations through reinforcement learning. By associating the

patient’s state, action selection, and incentives, the model identifies

the opportune time for RRT initiation, RRT plan change, or RRT

discontinuation.

To the best of our knowledge, this is the first study to employ a

value-based reinforcement learning approach to aid physicians in

selecting proper RRT strategies at opportune time points for AKI

patients in the ICU.

2 RELATEDWORK
The KDIGO guideline lists the main goal of implementing RRT as

maintaining homeostasis of the blood environment and allowing

the kidneys to regain function [5]. In clinical practice, IHD can be

used as a transition from CRRT to withdrawal. Since the KDIGO

guidelines do not provide detailed guidance, there is room for clini-

cal experts to use empirical judgment in the actual implementation

of RRT.

Existing RRT-related literature [1] focuses on predicting the tim-

ing for initiation or discontinuation of RRT, comparing modalities

of RRT usage, and forecasting its duration. Typically, statistical

analysis and supervised learning are used, utilizing diverse patient

indicator variables for prediction, and urine output is widely ac-

knowledged as a critical indicator in studies on the discontinuation

of RRT [7, 11]. Concurrently, physiological markers such as crea-

tinine levels, urine volume, and blood electrolyte concentrations

have been identified as predictive factors for the implementation

of RRT [2]. However, these articles do not integrate the decision-

making strategy of RRT and the prediction model into a unified

framework. The proposed reinforcement learning-based models

and state metrics selected for RRT initiation, discontinuation, or

modality changes, introduce complexity clinical to manipulation

but can take various RRT strategies into consideration from an

overall perspective.

Offline reinforcement learning combines the core features of re-

inforcement learning with the advantages of learning from existing

offline data, making it possible to construct unified RRT decision

models while safeguarding clinical ethics and controlling learning

costs [9]. In those applications with high trial-and-error costs, such

as human-machine dialog strategies, robot control, inventory man-

agement, and automated driving, learning outcomes close to the

trial-and-error effects of online interactions can be achieved by

utilizing features extracted from offline datasets for model train-

ing. In addition, offline reinforcement learning has developed a set

of relatively mature models and performance evaluation systems.

Classical algorithms, including Policy Constraint and Regulariza-

tion, not only deepen our understanding of the potential of offline

reinforcement learning but also advance its practical deployment

in a variety of real-world decision-making scenarios.

Reinforcement learning research based on large electronic health

records (EHRs) has been conducted in various clinical contexts,

such as mechanical ventilation usage, sepsis diagnosis, medication

dosage control, diabetes control, and test sequence control [12].

Fatami et al. utilized the Double Deep Q Learning model to learn

the effect of each discrete action on the patient’s outcome (survival

or death) based on the reward function’s value estimation [1]. Lee

et al. constructed an anesthesia ventilation control AI model for

general anesthesia during the awakening period using conservative

Q learning [4]. Wang et al. constructed a patient’s state transfer

model based on real data on diabetes control, achieved 40 levels of

diabetes control using a model-based reinforcement learning ap-

proach and implemented proof-of-concept feasibility tests on real

patients [10]. These studies verify the validity of their proposed

models by comparing the models’ recommendation results and real

clinical actions in the test dataset [8], and explore the recommenda-

tion ethic and potential application value of the model, reflecting

the potential of reinforcement learning in clinical areas.

Finally, the application of reinforcement learning methods to

RRT scenarios for AKI in ICU is relatively rare in existing studies.

One of the most relevant studies to date used a dual robust estima-

tor to predict the timing of RRT initiation and used reinforcement

learning to optimize the model parameters [2]. The above study

achieved valid results in external validation, which provides confi-

dence in the application of reinforcement learning methods in the

context of RRT related decision-making.
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Figure 1: Pipeline for Developing a Reinforcement Learning-Based RRT Decision-Making Tool

3 METHOD
In this study, we extracted relevant temporal data from EHRs to

identify the elements of actions, states, rewards, and transition

probabilities, and constructed them into MDP data structure with

varying sequence lengths. Utilizing state transition networks and

reinforcement learning algorithms, we trained on offline dataset to

balance long-term and short-term rewards through action-value es-

timation. The proposed model, shown in Figure 1, was subsequently

deployed and validated on a test dataset to assess its efficacy and

reliability in a clinical context.

3.1 Intensive Care Data
Weutilized theMedical InformationMart for Intensive Care (MIMIC-

IV) database, a large, freely available repository of de-identified

health-related data from patients admitted to the critical care units

of the Beth Israel Deaconess Medical Center, covering the period

from 2008 to 2019 [3]. This database includes comprehensive patient

demographics, time-stamped vital signs, laboratory measurements,

treatments, and fluid intake data. For this study, we specifically

extracted and utilized data pertaining to ICU-acquired AKI patients,

which are recorded in the ICU portion of the database. The identifi-

cation of AKI was based on creatinine and urine output according

to KDIGO guidelines.

The process for selecting the study patients is illustrated in Fig-

ure 2. From a cohort of 42,258 patients identified with AKI during

their ICU stay, we identified 2,176 patients who had accurate records

of RRT, including IHD and CRRT. To support the training and test-

ing of our model, we further refined our selection to include only

those patients whose RRT treatment period is beyond 24 hours

from the earliest start to the last recorded session and verified the

completeness of their data on various clinical parameters. Patients

Figure 2: Patient Population Selection Workflow

were temporally aligned to their admission times, which were ob-

fuscated to preserve privacy, and were then divided into training

(848 patients) and testing cohorts (213 patients) based on different

admission periods. For each patient included in the training and

testing datasets, we retained data from ICU admission through to

the outcome phase and extracted demographic data, physiological

parameters, and RRT usage details for each study patient.

3.2 MDP Design
The MDP is a fundamental framework in reinforcement learning,

composed of a finite state space S, an action space A, a reward func-

tion 𝑟 (𝑠𝑡 , 𝑎𝑡 ) ∈ 𝑅, and a transition function 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). At each
timestep, the agent selects an action that influences the subsequent

state based on the transition probabilities and receives feedback in

the form of rewards, which depend on the state and the outcomes

of subsequent actions. The objective of reinforcement learning is
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to learn a policy that maximizes expected cumulative rewards, en-

abling the agent to perform value estimation over the action space

in each given state and use these estimations to recommend actions.

Based on MDP principles, we constructed an offline dataset for

optimizing RRT decision-making as follows:

Firstly, we processed patient records by creating time windows.

Starting from the day before the initiation of RRT in the ICU and

ending at the cessation of treatment or the time point for the last

ICU record, we constructed different 6-hour time windows. Fifteen

variables were selected to represent the patient’s state in each time

window. For variables recorded multiple times within a window,

we used the mean value; for missing data, we applied linear, for-

ward, and backward interpolation to manage the gaps. In terms

of actions, we focused on CRRT and IHD strategies administered

in the ICU, categorizing them based on the presence and type of

treatment strategy into no RRT, CRRT (indicating a more intensive

patient state), and IHD (indicating a less intensive intervention).

RRT actions with intervals shorter than one day were completed

by backfilling, which fills the blank with previous data.

Our reward function was constructed based on the renal func-

tion recovery status, calculated by changes in the eGFR derived

from creatinine levels and demographic information. In the offline

dataset, we set the transition probabilities to 1, allowing for virtual

exploration of different actions for each state at a single timestep.

Secondly, we formulated the specific MDP for each patient as

follows:

(i) State variables: age, gender, 24 hours total urine output, blood

pH, partial pressure of oxygen, calcium, bicarbonate, creatinine,

sodium, potassium, sodium change rate, potassium change rate,

creatinine change rat, change rate of 24 hours total urine output,

and time step from start RRT.

(ii) Actions: CRRT, IHD, No-RRT

(iii) Reward function:

𝑟𝑡 = 𝐼𝐴 (𝑒𝐺𝐹𝑅𝑡+1 ≥ 90)+𝐼𝐴 (𝑒𝐺𝐹𝑅𝑡+1 < 90)·
[

2

1 + 𝑒−0.5·Δ𝑒𝐺𝐹𝑅𝑡+1

]
−1

where the calculation of eGFR is as follows:

eGFR = 141 ×min

(
Scr

1

, 1

)𝛼
×max

(
Scr

1

, 1

)−1.209
× 0.993Age × 𝛾

where 𝛼 and 𝛾 is defined:

• 𝛼 = −0.411 + 0.082 × 𝐼𝑎 (female)
• 𝛾 = 1 + 0.159 × 𝐼𝑎 (is black)

(iv) Transition function: 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) = 1.

In our data processing approach, we shifted the reward informa-

tion backward for each timewindow, and thus the reward associated

with the current time window was derived from the following time

period. This method aligns with the logical progression of renal

function changes following treatment. For each series of states, we

normalized the data to a standard normal distribution and capped

outliers at three standard deviations (3𝛿) to limit extreme values.

This normalization process ensures that our model is not unduly

influenced by extreme, non-representative data points, maintaining

statistical robustness and improving the reliability of our analysis.

3.3 Value-based Offline Reinforcement
Learning

We developed our reinforcement learning model using the Con-

servative Q-Learning (CQL) paradigm and updated it using the

Time-Difference (TD) algorithm. The model, structured around a

MDP, integrates real reward data with estimated values for training.

We designed a fully connected neural network to manage state

transitions, which processes state and action inputs to predict sub-

sequent states. This network was trained on actual subsequent state

data from our dataset, using supervised learning techniques.

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼
[
𝑟𝑡+1 + 𝛾 max

𝑎′
𝑄 (𝑠𝑡+1, 𝑎′) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

]
We employed a two-hidden-layer neural network with Adam

optimizer to construct our reinforcement learning agent model by

referring to a previous architecture [1]. This approach is intended

to enhance the model’s generalization capabilities and prevent the

typical overfitting issues of offline reinforcement learning extrapo-

lations. We incorporated L1 and L2 penalties along with a conser-

vative Q-learning penalty for loss function design. By selecting an

appropriate combination of these parameters, we aimed to balance

feature learning with the generalization capabilities of the model.

This methodological choice helps ensure robustness and reliability

in our model’s performance across varied clinical scenarios.

4 EXPERIMENTS
We deployed our code on a Python 3.9 and PyTorch 1.13 platform,

conducting 50 training epochs for the state transition model and

400 epochs for the reinforcement learning training. From the per-

spective of model learning efficacy in reinforcement learning, the

average loss in action valuation reflects the model’s adaptation to

the dataset and its capability to extract features. Figures 3(b) and

3(c) illustrate a downtrend in loss for both the state transition and

reinforcement learning networks on both training and testing sets,

respectively, indicating robust feature learning and generalization

capabilities. Figure 3(a) displays the trend of average policy returns

over iterations, depicting an overall increase in expected returns

with training progression, which stabilizes, demonstrating effective

learning and policy optimization by the agent, despite fluctuations

due to epsilon-greedy exploration.

Figure 3: Training Logs of Model
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Analyzing the model’s recommendation from medical perspec-

tive is a critical step. We demonstrated the medical rationality of

our decision model and showcased its application using real patient

cases. On the test dataset, we employed the most comprehensively

trained model to evaluate the distribution of recommended RRT

strategies across different patient states. Figure 4 illustrates the

frequency distribution of the model-recommended RRT actions

and the patient state categorization (three groups). Figure It is a

heatmap comparing actual strategies to recommended actions. Gen-

erally, the recommended actions show a higher frequency of CRRT,

indicating a more conservative treatment approach, with CRRT

recommendations making up more than two-thirds of the actions;

recommendations for ’No RRT’ are notably low, which may corre-

late with stable or declining rates of eGFR change in the dataset

without RRT support.

Figure 4: Heatmap of Clustering Results

Figure 5: Distribution of Model Decision Results

From the clustering results based on patients’ state variables in

Figure 5, we observe the following patient characteristics: Group

1 has more male patients with lower levels of blood bicarbonate;

Group 2 exhibits higher positive rates of creatinine change; Group

3 has higher blood inorganic salt content. The model tends to rec-

ommend less CRRT for patients with positive creatinine change

Figure 6: Specific Patient Case

rates and more CRRT for those with high inorganic salt content,

reflecting a treatment preference for the latter.

Finally, we conducted a case study on patient ID 32482959 who

underwent an extended duration of RRT to demonstrate ourmodel’s

utility. We tracked the patient’s sequence of RRT and the model’s

corresponding recommendations. And key renal function indica-

tors: 24-hour urine output, creatinine, and blood sodium levels were

monitored. During the initial 150-time periods, a general downward

trend in creatinine concentration was observed. In the real-world

setting, the patient underwent a sequence of renal replacement

therapies, starting with CRRT and later transitioning to IHD. The

model, consistent with the clinical course, recommended CRRT

during the initial period, as shown in the Figure 6. Beyond the

step 150, as the patient’s creatinine levels began to rise again, IHD

was administered clinically. During the time span from step 150

to 180, the model alternated its recommendations between CRRT

and IHD based on varying rates of creatinine, and consistently

recommended CRRT after step 180, which indicates that adherence

to model-recommended CRRT could assist in better renal function

recovery at later stages. This case study highlighted the model’s

consistency with real clinical behaviors and its ability to provide

agile decision-making at critical time points.

5 DISCUSSION AND CONCLUSION
Utilizing the reinforcement learning framework to construct a RRT

action recommendation model that aimed at renal function recov-

ery, is a novel and challenging approach. By utilizing sequential data

from patients undergoing RRT strategy, our model provides insights

that are more balanced in short-term and long-term outcomes com-

pared to cross-sectional data. Through action value estimation, we

can analyze the effect and transition of actions, thereby optimizing

the existing RRT strategies.

Additionally, we applied the SHapley Additive exPlanations

(SHAP) methodology to analyze the interpretability of the model’s

variables. As shown in Figure 7, the change rate in creatinine has

the strongest explanatory power within our reinforcement learning

model, suggesting a rational basis for RRT action recommendation

compared to traditional clinical action.

This study is uniquely positioned as one of the pioneers to apply

reinforcement learning for recommending RRT strategies. While

we have implemented this framework and achieved preliminary
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Figure 7: SHAP Result of Model & Reality Recommendation

results, numerous challenges and limitations await further refine-

ment. From a clinical scenario perspective, different etiologies of

AKI among patients and external medications during RRT treat-

ment affect the predictive accuracy of the model; particularly, the

use of diuretics and the physiological impact of RRT itself pose sig-

nificant challenges in decision modeling. From a model perspective,

the extrapolation of data features in offline reinforcement learning

brings challenges to robustness, and a balanced approach between

feature learning and generalization is needed. Moving forward, we

anticipate more research recognizing the potential of value-based

reinforcement learning in RRT domains, and hope subsequent stud-

ies will incorporate RRT dosages and other control factors in real

patient cohorts to develop more guided and accurate models.

In conclusion, our reinforcement learning framework in the

domain of RRT decision analysis and optimization represents an

important exploratory effort. By employing MDP modeling over

extended time sequences, we can evaluate actions and incorporate

RRT usage adjustments into a unified decision-making framework.

Results from the training and test on the MIMIC IV database indi-

cate that our model has performed well to some extent, offering

invaluable insights for RRT decision-making in the ICU.
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