
Replicability in Learning: Geometric Partitions and
Sperner-KKM Lemma

Jason Vander Woude
Sandia National Laboratories
jasonvwoude@gmail.com

Peter Dixon
University of Toronto, Mississauga

tooplark@gmail.com

A. Pavan
Iowa State University

pavan@cs.iastate.edu

Jamie Radcliffe
University of Nebraska-Lincoln
jamie.radcliffe@unl.edu

N. V. Vinodchandran
University of Nebraska-Lincoln

vinod@unl.edu

Abstract

This paper studies replicability in machine learning tasks from a geometric view-
point. Recent works have revealed the role of geometric partitions and Sperner’s
lemma (and its variations) in designing replicable learning algorithms and in estab-
lishing impossibility results.
A partition P of Rd is called a (k, ε)-secluded partition if for every p⃗ ∈ Rd, an
ε-radius ball (with respect to the ℓ∞ norm) centered at p⃗ intersects at most k
members of P . In relation to replicable learning, the parameter k is closely related
to the list complexity, and the parameter ε is related to the sample complexity of
the replicable learner. Construction of secluded partitions with better parameters
(small k and large ε) will lead to replicable learning algorithms with small list and
sample complexities.
Motivated by this connection, we undertake a comprehensive study of secluded
partitions and establish near-optimal relationships between k and ε.

1. We show that for any (k, ε)-secluded partition where each member has at
most unit measure, it must be that k ≥ (1 + 2ε)d, and consequently, for the
interesting regime k ∈ [2d] it must be that ε ≤ log4(k)

d .
2. To complement this upper bound on ε, we show that for each d ∈ N and for

each viable k ∈ [2d], a construction of a (k, ε)-secluded (unit cube) partition
with ε ≥ log4(k)

d · 1
8 log4(d+1) . This establishes the optimality of ε within a

logarithmic factor.
3. Finally, we adapt our proof techniques to obtain a new “neighborhood” variant

of the cubical KKM lemma (or cubical Sperner’s lemma): For any coloring
of [0, 1]d in which no color is used on opposing faces, it holds for each
ε ∈ (0, 1

2 ] that there is a point where the open ε-radius ℓ∞-ball intersects at
least (1 + 2

3ε)
d colors. While the classical Sperner/KKM lemma guarantees

the existence of a point that is "adjacent" to points with (d+1) distinct colors,
the neighborhood version guarantees the existence of a small neighborhood
with exponentially many points with distinct colors.

1 Introduction

Can we design learning algorithms that are replicable? Typically, learning algorithms observe samples
from an unknown distribution and output a hypothesis. Since different runs of a learning algorithm
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may observe different samples, the algorithm may output different hypotheses on different runs,
making standard learning algorithms non-replicable. Several recent works have been investigating
various notions of replicability in learning algorithms. Intuitively, a replicable learning algorithm
should output the same canonical hypothesis, on multiple runs (with high probability). However, it has
been observed that such an ideal notion of replicability may not be achievable even in simple learning
tasks such as learning one-dimensional thresholds. This led to relaxed definitions of replicability
including ρ-replicability [31], stability [10], global-stability [24], and list-replicability [17].

A significant insight that emerged form these works is the profound connection between geometry and
algorithmic replicability [17, 13, 31, 12]. These works use geometric partitions to design replicable
algorithms and employ (variants of) Sperner/KKM lemma, including Poincare-Miranda and Borsuk-
Ulam theorems, to obtain lower bound results. In particular, in [17], the authors use the notion of
secluded partitions of Rd [44] to design replicable learning algorithms with small list complexity.
The works of [13, 12, 17] used Sperner/KKM, Poincare-Miranda and Borsuk-Ulam theorems to
obtain lower bounds on list complexity and stability parameters for various learning tasks.

Motivated by these connections we undertake an in-depth investigation into secluded partitions.
Our first contribution is a comprehensive understanding of the optimality of secluded partition
constructions. Our second contribution is the discovery of a new neighborhood variant of the
Sperner/KKM lemma.

Secluded partitions have found applications beyond replicable learning including deterministic
rounding, pseudodeterministic algorithms, and quantum computaion [44, 7]. Moreover, the notion of
secluded partitions is simple and natural and is rooted in the works of Lebesgue and Brouwer [36, 8].
Thus, our investigation of secluded partitions should be seen as a fundamental endeavor.

The applicability of the Sperner/KKM lemma, and other equivalent results such as Brouwer’s
fixed point theorem, the Poincaré-Miranda theorem, and the Lebesgue covering theorem is not
just limited to the area of replicable algorithms. These lemmas and their variants have found
numerous applications in various contexts: distributed and parallel computing [2, 4, 39, 28, 42, 6],
communication complexity [21, 11], computational complexity [25, 35, 40, 16], algorithmic game
theory [14, 15], and fair-division [37, 38, 5]. We expect that the neighborhood variant we established
will also be useful in computer science applications.

2 Preliminaries

A learning algorithm is k-list replicable if the output of the learning algorithm belongs to a list L
consisting of at most k good hypotheses with high probability. Below is a more formal definition
from [17].

Let X be a domain over which a family of distributions D are defined, let H be a set (representing
hypotheses), and err : D × H → [0,∞) be an error function. A learning algorithm on input ε, δ
observes m samples from a distribution D ∈ D and learns a hypothesis h ∈ H with a small error
err(D,h) ≤ ε.
Definition 2.1 (List Replicability). Let k ∈ N, ε ∈ (0,∞), and δ ∈ [0, 1]. A learning algorithm A is
(k, ε, δ)-list replicable if there exists n ∈ N such that for every D ∈ D, there exists a list L ⊆ H of
size at most k such that for all h ∈ L, err(D,h) ≤ ε, and

Pr
s∼Dn

[A(s, ε, δ) ∈ L] ≥ 1− δ.

For k ∈ N, we call A k-list replicable if for all ε ∈ (0,∞) and δ ∈ (0, 1], A is (k, ε, δ)-list replicable.
We say that n is the sample complexity of A and k is the list complexity of A.

The above definition captures the ideas over multiple runs of the learning algorithm, we may see
at most k different hypotheses. Note that the ideal scenario is when k = 1. A generic goal is to
design list replicable algorithms with small list and sample complexities. The work of [17] designed
list-replicable algorithms for various learning tasks including a general theorem that any concept
class that is learnable with k non-adaptive statistical queries has a k + 1-list replicable algorithm.

A key ingredient in their list replicable algorithms is the geometric notion of secluded partitions that
we define next. Given a point p⃗ ∈ Rd, let B∞(ε, p⃗) (B◦

∞(ε, p⃗)) denote the closed (respectively, open)
ε-ball around p⃗ in the ℓ∞ norm.
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Definition 2.2 ([44]). A partition P of Rd is called a (k, ε)-secluded partition if for every p⃗ ∈ Rd,
the ball B∞(ε, p⃗) intersects at most k members of P . The parameters k and ε are called the degree
and tolerance respectively.

Remark. To avoid trivial partitions where each point is a partition member or the entire Rd is a single
partition member, all the partitions considered in this work have non-zero, bounded measure partition
members.

It is easy to see that the standard grid partition of Rd with unit cubes is (2d, 1
2 )-secluded. The

following result [44, 30] improves the degree parameter substantially.
Theorem 2.3. There is a (d+ 1, 1

2d )-secluded partition where each partition member is a unit cube.

Sperner/KKM Lemma, Poincaré-Miranda Theorem, and Borsuk-Ulam Theorem can be viewed as
fixed point theorems and are known to be equivalent to each other (in the sense that any of these
theorems can be derived from the other theorem). We state the Sperner/KKM Lemma below. First
we introduce the necessary definitions and notation.

Recall that a d-dimensional cube is the set [0, 1]d. For a set of colors C, a coloring is a mapping
χ : [0, 1]d → C. For a color c ∈ C, let Xc denote the set of points assigned color c by χ. That is,
Xc = χ−1(c). A coloring χ is a Sperner/KKM coloring if no two points from opposite faces of the
cube gets the same color. That is, for every c ∈ C the set Xc has the property that for each coordinate
i ∈ [d], the projection πi(Xc) = {xi : x⃗ ∈ Xc} does not contain both 0 and 1.

Theorem 2.4 (Sperner/KKM). Given a valid Sperner/KKM coloring of [0, 1]d by finitely many colors,
there exists a point in the closure of at least d+ 1 different colors.

3 Our Contributions

This section provides an overview of the results established in this work.

Secluded Partitions and replicability. The relationship between replicability and partitions can
be best abstracted by considering d-coin bias estimation problem [17]: given d coins with unknown
biases, estimate the biases of each coin within an additive error of ν. The work of [17] showed that a
(k, ε)-partition of Rd yields a k-list replicable algorithm for this task. They used a known construction
of (d+ 1, 1

2d )-secluded partition of Rd from Theorem 2.3to obtain a d+ 1-list replicable algorithm
for this task. However, there is a cost to replicability. The sample complexity of the replicable
algorithm blows up by a factor of O(d2) (compared to the sample complexity of the non-replicable
algorithm). In general a (k, ε)-secluded partition gives rise to a k-list replicable algorithm whose
sample complexity blows up by a factor of O( 1

ε2 ) (compared to the “non-replicable” algorithms).

Thus constructions of secluded partitions with low-degree (k) and high tolerance (ε), will lead to
list replicable algorithms with low list and sample complexities. It is also known that the degree
parameter k must be at least d+ 1 [44]. This leads to the following fundamental questions: Can we
design secluded partitions that substantially improve the tolerance with little or no degradation of the
degree? For example, consider the (d+1, 1

2d )-secluded partition from Theorem 2.3. Can we improve
this and construct a (d+ 1, ω( 1d ))-secluded partition? Or can we loosen the degree requirement from
k = d+ 1 to k ∈ poly(d) in favor of improving the tolerance from ε ∈ Θ( 1d ) to ε ∈ ω( 1d )? Our first
contribution is the following upper bound result on the tolerance parameter.
Theorem 3.1. Let d ∈ N, ε ∈ [0,∞), and P a partition of Rd such that every member has outer
Lebesgue measure at most 1. Then there exists some p⃗ ∈ Rd such that B◦

∞(ε, p⃗) intersects at least
(1 + 2ε)d members of P . Thus, if P is a (k, ε)-secluded partition, then k ≥ (1 + 2ε)d. Consequently,
if k ≤ 2d, then it must be that ε ≤ log4(k)

d .

This result shows that even if one relaxes k ∈ poly(d), ε ∈ O( log d
d ). This shows that the (d+ 1, 1

2d )-
secluded partition construction is near optimal in terms of the tolerance parameter, for degree d+ 1.
Stated in terms of replicability, this result implies one can not hope to design list-replicable algorithms
with improved sample complexity using a secluded partitions approach.

Our second result is a construction of secluded partitions for various choices of the degree parameter
k with tolerance parameter ε almost matching the bound from Theorem 3.1. Until this work, we knew
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of secluded partitions for only two choices of the degree parameter k: the standard grid partition of
Rd that is (2d, 1

2 )-secluded and the (d+1, 1
2d ) partition from Theorem 2.3. We did not know secluded

partition constructions for other choices of k. Our second main contribution is the construction of
near-optimal secluded partitions for all choices of k.

Theorem 3.2. Let d ∈ N and k ∈ [2d] \ [d]. Then there exists a (k, ε)-secluded unit cube partition of
Rd with ε ≥ log4(k)

8d log4(d+1) .

Note that by Theorem 3.1, ε ≤ log4 k
d and the above construction achieves ε ≥ log4(k)

8d log4(d+1) . Thus
this construction is optimal up to log factors. As a corollary of this construction, we obtain a smooth
tradeoff between list and sample complexities for the problem of estimating the bias of d-coins

Corollary 3.3. For the d-coin bias estimation problem, there exists a k-list replicable algorithm with
sample complexity Õ( d

2 log2 d
ν2 log2 k

), for any k ∈ [2d] \ [d], per coin.

For example, if we allow k = 2
√
d, then the sample complexity is Õ( d

ν2 ), per coin.

Sperner/KKM Lemma and replicability. While the geometric tool of secluded partitions has
been used to design list replicable algorithms, interestingly works that establish lower bounds on
the list complexity of replicable algorithms [17, 13, 12] employ geometric/topological tools such as
Sperner/KKM Lemma, Poincaré-Miranda Theorem, and Borsuk-Ulam Theorem. For example, the
work [17] used Sperner/KKM lemma to establish a lower bound of d+1 on the list complexity for the
problem of estimating the bias of d coins as well as for the d-dimensional threshold learning problem.
The work of [13] used Poincaré-Miranda Theorem to establish a lower bound on the list complexity
of classes with VC-Dimension d. As our third contribution, we generalize the Sperner/KKM Lemma
and obtain a neighborhood variant.

Theorem 3.4 (Neighborhood Sperner/KKM Lemma). Given a Sperner/KKM coloring of [0, 1]d, for
any ε ∈ (0, 1

2 ], there exists a point p⃗ ∈ [0, 1]d such that B◦
∞(ε, p⃗) contains at least

(
1 + 2

3ε
)d

points
with distinct colors.

Sperner/KKM Lemma(Lemma 2.4) states that in valid coloring of the d-dimensional hypercube,
there is a point p⃗ whose closure has at least d+ 1 colors. That is, for every ε > 0, the ε-ball around p⃗
intersects at least d+ 1 colors. Our theorem is a quantitative generalization of this result. It states
that the ε-ball around p⃗ intersects exponentially many colors—at least (1 + 2

3ε)
d many colors.

4 Related Work

One of the first works that studied replicability in the context of learning algorithms is the seminal
work of Bun, Livny, and Moran [10]; they used the term global stability to capture this notion.
A learning algorithm A to be (n, η)-globally stable with respect to a distribution D if there is a
hypothesis h such that PrS∼Dn(A(S) = h) ≥ η, here η is called the stability parameter. They
used the notion of stability, combined with the work of [3], to obtain the equivalence between
online learnability and differentially private PAC learnability. Ghazi, Kumar and Manurangsi [24]
generalized the notion of stability to pseudo-global stability and list-global stability. Impagliazzo, Lei,
Pitassi, and Sorrell [31] introduced the notion of ρ-replicabililty and designed replicable algorithms
for various learning tasks. One of their replicable algorithms uses a partition/tiling known as “foams
tiling” [34]. Dixon, Pavan, Vander Woude and Vinodchandran [17] studied the notions of list
replicability and certificate replicability as a measure of the degree of (non)-replicability. Chase,
Moran and Yehudayof [13] related the notions list complexity and stability. They established that a
learning task has list complexity k if and only if its stability parameter is 1/k. They also established
lower bounds the list-complexity (upper bound on the stability) on the PAC-learnability of classes
with bounded VC-dimension. In [12], the authors use Borsuk-Ulam theorem to establish impossibility
results for replicable agnostic PAC learning.

In the context of randomized algorithms, the notion of replicability is studied under the terminology
pseudodeterminism. This notion was introduced by Gat and Goldwasser [23] and has been extended
to notions called multi-pseudodeterminism [26] and influential-bit algorithms [27]. The study of
replicability in the context of learning has been receiving growing attention over the past few years
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and researchers have been investigating this notion under various scenarios. The notion of replicability
in the context of stochastic bandits and reinforcement learning has been studied in [19, 33, 18], and
the work of [1] studies replicability for optimization problems. Other very recent works include those
reported in [9, 29, 32]. A notion that is related to replicability is that of reproducibility. The article by
[41] distinguishes these two notions.

5 Proof Sketches of Main Results

The main technical tools that we use come from measure theory and the geometry of numbers and
include generalized Brunn-Minkowski Inequality and ideas from the standard proof of Blichfeldt’s
theorem. The generalized Brunn-Minkowski inequality gives a lower bound on the measure of a
Minkowski sum of sets (A + B =

{
a⃗+ b⃗ : a⃗ ∈ A, b⃗ ∈ B

}
) based on the measures of those sets.

We use the following version of the statement from [22, Equation 11]. Here m(A) is the Lebesgue
measure of a set A ⊆ Rd.
Theorem 5.1 (Generalized Brunn-Minkowski Inequality). Let d ∈ N and A,B ⊆ Rd be Lebesgue
measurable such that A+B is also Lebesgue measurable. Then

m(A+B) ≥
[
m(A)

1
d +m(B)

1
d

]d
.

A common technique in the proof of Blichfeldt’s theorem is to use an averaging argument to show
that if a set A is covered by a large family of other sets, then some point in A is covered many times.

5.1 Proof Sketch of Theorem 3.1

We present the high-level ideas and the intuition behind the proof of Theorem 3.1. In the appendix,
we provide a complete proof. Figure 1 serves as a visual.

The goal is to find some point p⃗ ∈ Rd such that B◦
∞(ε, p⃗) intersects at least (1 + 2ε)d members of

the partition. Instead of directly trying to establish this, we take a critical change of perspective:
for any p⃗ ∈ Rd and X ∈ P (or really any X ⊆ Rd), it holds that B◦

∞(ε, p⃗) ∩ X ̸= ∅ if and only
if p⃗ ∈

⋃
x⃗∈X B◦

∞(ε, x⃗). Thus, what we do is to “replace” every member X of the partition with
the enlarged set

⋃
x⃗∈X B◦

∞(ε, x⃗) and try to find a point p⃗ that belongs to at least (1 + 2ε)d of these
enlarged sets. To achieve this, we take inspiration from a common proof of Blichfeldt’s theorem—
specifically, the following result which says that if we have a collection of sets A1, A2, A3, . . . which
are subsets of another set S, then there is a point in S occurring in multiple Ais provided together the
Ais have enough volume/measure. We can in fact give a lower bound on the number of Ais to which
such a point belongs to. The following is the formal claim of this known result.
Proposition 5.1 (Continuous Multi-Pigeonhole Principle). Let d ∈ N and S ⊂ Rd be bounded and
measurable. Let A be a family of measurable subsets of S, and let k =

⌈∑
A∈A m(A)

m(S)

⌉
. Then if

k < ∞, there exists p⃗ ∈ S such that p⃗ belongs to at least k members of A. (And if k = ∞, then for
any n ∈ N there exists p⃗(n) ∈ S such that p⃗(n) belongs to at least n members of A.)

There is an immediate issue we have to deal with to be able to use Proposition 5.1 for our ap-
plication. We would like to take A to be the indexed collection of enlarged partition members:
A =

{⋃
x⃗∈X B◦

∞(ε, x⃗)
}
X∈P , but then all we know is that each of these is a subset of S = Rd which

is not bounded. This is a simple enough issue to deal with using a standard measure theory technique
of considering instead a sequence S1, S2, S3, . . . of sets which are bounded and get larger and larger
so that

⋃∞
n=1 Sn = Rd; we work with each of these sets individually and then try to use a limiting

argument to pass the result back to S = Rd. Specifically, we will take Sn = [−n, n]d as illustrated in
the first two panes of Figure 1. The third pane of Figure 1 illustrates that we will specifically consider
the partition of Sn induced by P which we denote by Sn. That is, the induced partition Sn is the set
{X ∩ Sn : X ∈ P and X ∩ Sn ̸= ∅}. Then for each Sn we consider a collection An of the enlarged
members of the induced partition: An = {AY }Y ∈Sn

where AY
def
=
⋃

y⃗∈Y B◦
∞(ε, y⃗). Note that each

AY is a subset of S′
n

def
= [−(n+ ε), n+ ε]d as in the fourth pane of Figure 1.
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Figure 1: Pane 1: A partition of R2. Pane 2: We consider only members of the partition which
intersect [−n, n]2. Pane 3: The partition that P induces on [−n, n]2. Pane 4: We enlarge each
member by placing an ε-ball at each point of the member. These enlarged elements are still contained
within [−(n+ ε), n+ ε]2. Pane 5: The sum of areas of the expanded members is “significantly” more
than the area of [−(n+ ε), n+ ε]2.

However, there remains one other issue to deal with to utilize Proposition 5.1—for each n, we have to

have some lower bound on the expression
⌈∑

AY ∈An
m(AY )

m(S′
n)

⌉
. We know that m(S′

n) = (2(n+ ε))d,

and using the fact that Sn is a partition of Sn = [−n, n]d, we have the following if Sn is countable1

(meaning finite or countably infinite):

∑
AY ∈An

m(AY ) ≥
∑

Y ∈Sn

m(Y ) = m

( ⊔
Y ∈Sn

Y

)
= m(Sn),

but this is not nearly good enough, because it just gives⌈∑
AY ∈An

m(A)

m(S′
n)

⌉
≥
⌈
m(Sn)

m(S′
n)

⌉
≥
⌈

(2n)d

(2(n+ ε))d

⌉
=

⌈(
n

n+ ε

)d
⌉
= 1

whereas we want it ≥ (1 + 2ε)d. Basically, this lower bound is not good because we did not account
for the fact that each AY ∈ An is enlarged from Y ∈ Sn. Thus, we want some way to give for each
Y ∈ Sn, a lower bound on the measure of the enlarged set AY . One might observe that enlarging
with an ε-ball looks something like scaling by a factor of 1 + ε, and since the Lebesgue measure
(i.e. typical notion of volume/measure in Rd) has the property that scaling by (1 + ε) increases the
measure by a factor of (1 + ε)d, we might be able to show that the enlarged version of each member
increases by a factor of (1 + ε)d (which is basically what we are looking to get).

1If Sn is uncountable, one of the equalities in the chain becomes the wrong inequality as we get that∑
Y ∈Sn

m(Y ) ≤ m
(⊔

Y ∈Sn
Y
)

by B.2 in B.
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This intuition holds, though the actual reason is not related to scaling, and is dependent on the
members having measure at most 1. Rather, we use a specialized adaption of Theorem 5.1 to show
that

m(AY ) ≥ m(Y ) · (1 + 2ε)d (1)
holds. Now that we have dealt with both issues that arise with trying to apply Proposition 5.1, we can
consider a fixed n and can continue. We proceed in two cases: (1) the interesting case in which Sn

has only countably many members, and (2) the nearly trivial case in which the partition Sn contains
uncountably many members. In case (1) we have⌈∑

AY ∈An
m(AY )

m(S′
n)

⌉
=

⌈∑
Y ∈Sn

m(AY )

m(S′
n)

⌉
(Re-index)

≥

⌈∑
Y ∈Sn

[
m(Y ) · (1 + 2ε)d

]
m(S′

n)

⌉
( Equation 1)

=

⌈
(1 + 2ε)d ·

∑
Y ∈Sn

m(Y )

m(S′
n)

⌉
(Linearity of summation)

=

⌈
(1 + 2ε)d ·m

(⊔
Y ∈Sn

Y
)

m(S′
n)

⌉
(Countable additivity of measures)

=

⌈
(1 + 2ε)d ·m(Sn)

m(S′
n)

⌉
(Sn =

⊔
Y ∈Sn

Y )

=

⌈
(1 + 2ε)d ·

(
n

n+ ε

)d
⌉

(m(Sn)
m(S′

n)
= ( n

n+ε )
d as above)

Since (for fixed d and ε) we have limn→∞

(
n

n+ε

)d
= 1, then limn→∞(1 + 2ε)d ·

(
n

n+ε

)d
=

(1 + 2ε)d, so because there is a ceiling involved, we can take N ∈ N to be large enough that⌈
(1 + 2ε)d ·

(
N

N+ε

)d⌉
=
⌈
(1 + 2ε)d

⌉
, so by Proposition 5.1, there is a point p⃗ ∈ S′

n that is

contained in at least (1 + 2ε)d many sets in AN , and by our change of perspective, this point p⃗ has
the property that B◦

∞(ε, p⃗) intersects at least (1 + 2ε)d many members of P .

In case (2) where some SN contains uncountably many members, then we completely ignore the
lower bound for m(AY ) in Equation 1 because it might be that lots of members Y (possibly all of
them) have measure 0, and so that bound only tells us that m(AY ) ≥ 0. Instead, we note that Y is at
least non-empty, so contains at least one point y⃗, and thus AY ⊇ B◦

∞(ε, y⃗) =
∏d

i=1[yi − ε, yi + ε],

and so m(AY ) ≥ (2ε)d. Thus,
⌈∑

AY ∈AN
m(AY )

m(S′
N )

⌉
= ∞, so by Proposition 5.1, there is a point

p⃗ ∈ S′
N that is contained in at least (1 + 2ε)d many sets in AN , and by our change of perspective,

this point p⃗ has the property that B◦
∞(ε, p⃗) intersects at least (1 + 2ε)d many members of P .

5.2 Proof of Theorem 3.2

The partitions that we construct, to establish Theorem 3.2, are of a very natural form: we build a
partition of a large dimension d space, by splitting up the coordinates into smaller sets, and separately
partitioning each set of coordinates. In the end, the smaller partitions will be known partition
constructions from Theorem 2.3. We will define the construction very generically. We need the
observation that if a partition is (k, ε)-secluded, then we can increase k to k′ and decrease ε to ε′ and
the partition is trivially (k′, ε′)-secluded. We refer to this property as the “monotonicity” property.

Definition 5.2 (Partition Product). Let d1, . . . , dn ∈ N and P1, . . . ,Pn be partitions of Rd1 , . . . ,Rdn

respectively. Letting d =
∑n

i=1 dn, we define the product partition of Rd as

n∏
i=1

Pi
def
=

{
n∏

i=1

Xi : Xi ∈ Pi

}
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where
∏n

i=1 Xi is viewed as a subset of Rd.

We specifically stated that
∏n

i=1 Xi is viewed as a subset of Rd, because technically it is a subset
of
∏n

i=1 Rdi , but this is naturally isomorphic to Rd = R
∑n

i=1 di . For example, technically, if
d1 = d2 = d3 = 2, then the elements of

∏n
i=1 Rdi are of the form ⟨⟨x1, x2⟩, ⟨x3, x4⟩, ⟨x5, x6⟩⟩, but

this is trivially isomorphic to R6 by instead considering the element as ⟨x1, x2, x3, x4, x5, x6⟩.
We can now show that if we take a product of partitions, and we have a guarantee for each Pi that
it is (ki, εi)-secluded, then we can guarantee the product partition is (k, ε)-secluded where k is the
product of the ki’s and ε is the minimum of the εi’s.

Proposition 5.2 (Product Partition Seclusion Guarantees). Let n ∈ N. For each index i ∈ [n], let
di, ki ∈ N, εi ∈ (0,∞) and Pi be a (ki, εi)-secluded partition of Rdi . Then the product partition
P =

∏n
i=1 Pi is a (k, ε)-secluded partition of Rd where d =

∑n
i=1 di, and k =

∏n
i=1 ki, and

ε = mini∈[n] εi.

Proof Sketch. The basic idea is that for any point p⃗ ∈ Rd, we consider how many members of P
intersect Bε(p⃗). Conceptually we think of p⃗ as a sequence ⟨p⃗(i)⟩ni=1 of n points where the ith point
p⃗(i) belongs to Rdi . Because we are working with the ℓ∞ norm (that is the norm used by the definition
of secluded), the ε ball around p⃗ is the product of the ε balls around each p⃗(i) which is smaller than
the product of εi balls around each p⃗(i) because we chose ε as the minimum size. Thus, if the ε
ball around p⃗ intersects a member X of the partition P , then conceptually viewing X as a sequence
⟨Xi⟩ni=1 where Xi is a member of Pi, it must be for each i ∈ [n] that the ε ball around p⃗(i) intersects
Xi (and thus so does the εi ball since εi ≥ ε). This means (for each i ∈ [n]) that Xi is one of at most
ki members of Pi because at most ki members of Pi intersect the εi ball around p⃗(i) (by definition
of Pi being (ki, εi)-secluded). Thus X is one of at most

∏n
i=1 ki = k members of P . That is, there

are at most k members of P that intersect the ε ball around p⃗ which is the definition of P being
(k, ε)-secluded.

Utilizing the construction above, we will now take the unit cube partition from Theorem 2.3 for each
Rdi and take their product to obtain a new partition. Since the dimension of each di is smaller than
the dimension d, this allows us to get a larger value of εi for each partition, and thus a larger value of
ε for the partition of Rd than if we had used one of the original partitions. The price we pay for this
is that the value of k also increases.

We establish the following lemma.

Lemma 5.3. Let d ∈ N and d′ ∈ [d].There exists a (k, ε)-secluded unit cube partition of Rd where
k = (d′ + 1)

⌈ d
d′ ⌉ and ε = 1

2d′ .

Proof. Let n = ⌈ d
d′ ⌉. By [44], let P ′ be a (d′ + 1, 1/2d′)-secluded unit cube partition of Rd′

. By
Proposition 5.2 P =

∏n
i=1 P ′ is a (k, ε)-secluded unit cube partition of Rn·d′

where k = (d′ + 1)n

and ε = 1
2d′ . Since n · d′ = ⌈ d

d′ ⌉ · d′ ≥ d, this trivially (by ignoring extra coordinates) gives a
partition of Rd with these same properties which completes the proof.

Finally, we are ready to prove Theorem 3.2.

Proof. Let d′ ∈ [d] be the minimum integer such that (d′ + 1)⌈
d
d′ ⌉ ≤ k and let ε = 1

2d′ . By
Lemma 5.3 and monotonicity, let P be a (k, ε)-secluded unit cube partition of Rd. Now we prove the
bound on ε in two cases: either d′ = 1 or d′ ≥ 2.

In the case that d′ = 1, then ε = 1
2 and k ≥ (d′ +1)⌈

d
d′ ⌉ = 2d and by hypothesis k ≤ 2d, so we have

equality and we conclude that

log4(k)

4d log4(d+ 1)
=

d/2

4d log4(d+ 1)
=

1

8 log4(d+ 1)
≤ 1

8 · 1
2

≤ 1

2
= ε

which proves the bound on ε in the first case.
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In the other case, we have d ≥ d′ ≥ 2. Let d′′ = d′ − 1 > 0 and δ = 1
2d′′ . Note that

ε

δ
=

2d′′

2d′
=

d′ − 1

d′
= 1− 1

d′
≥ 1− 1

2
=

1

2

so ε ≥ 1
2δ. By our choice of d′ and because d′′ < d′, it must be that k ≤ (d′′ + 1)⌈

d
d′′ ⌉. Noting that

⌈ d
d′′ ⌉ ≤ d

d′′ + 1 = d+d′′

d′′ ≤ 2d
d′′ , we have

k ≤ (d′′ + 1)⌈
d
d′′ ⌉ ≤ (d′′ + 1)

2d
d′′ = (d′′ + 1)4dδ ≤ (d′′ + 1)8dε ≤ (d+ 1)8dε

By taking the logarithm of each side and solving for ε, we obtain the desired result that ε ≥
log4(k)

8d log4(d+1) .

5.3 Proof Discussion of Theorem 3.4

Interestingly, the proof of the neighborhood Sperner/KKM lemma relies on the techniques developed
to prove Theorem 3.1: for each color c ∈ C, let Xc be the set of points that are colored c. We
union an ε-ball at each point in Xc, to obtain an enlarged version AXc

of Xc. Now, as before, by
the Continuous Pigeonhole Principle (Corollary 5.1 ), there is a point that belongs to many of the
enlarged sets (and so the ball located at that point intersects many of the original color sets). However,
there are some additional issues that arise on the unit cube that don’t arise in Rd.

In the discussion in the proof sketch of Theorem 3.1, the enlarged set was not contained in the original
region (denoted Sn) and we needed to consider a larger region (denote S′

n) to contain them. In Rd

we could deal with this via a limiting argument so that the ratio of the volume change m(Sn)/m(S′
n)

tends to 1 (i.e. it became negligible when ceilings were involved). If one enlarges every color in a
unit cube [− 1

2 ,
1
2 ]

d in the same way, the measure of each color is guaranteed to increase by a factor of
(1 + 2ε)d as before, but also the smallest set that contains all of these enlargements is the unit cube
[− 1

2 − ε, 1
2 + ε]d which increased in measure by a factor of (1 + 2ε)d compared to the original cube,

so nothing has been gained! Obviously, there will be an overlap of the enlargements, but the bounds
given by the generalized Brunn-Minkowsi inequality tell us no additional information.

We resolve this by employing a trick of first extending the coloring directly to [− 1
2 − ε, 1

2 + ε]d in a
natural way that ensures each color is bounded away from the boundary so that we can perform an
enlargement which is non-uniform (it enlarges only toward one of the 2d orthants) and still have the
enlarged color set contained in [− 1

2 − ε, 1
2 + ε]d. This means we end up knowing that each modified

color has increased in measure by at least a factor of (1 + 2
3ε)

d and that the modified containing
region has not changed in measure at all.

6 Conclusion and Open Questions

This work is a comprehensive study of secluded partitions. Prior to this work, it was known that
the (d + 1, O( 1d ))-secluded partitions of [30, 44] were optimal in regards to the degree parameter
(k = d + 1). However, it was unknown if they were optimal in the tolerance parameter ε for this
choice of k. The present work showed that these constructions are optimal in ε up to a logarithmic
factors. Furthermore, they remain optimal within a logarithmic factor even if we allow the degree k to
be polynomial in the dimension d. We also constructed secluded partitions, optimal up to logarithmic
factors, for all k between d+ 1 and 2d.

This work raises a few open problems. At first glance, it might seem to complete the study of secluded
partitions; however, it only establishes near-matching bounds for the ℓ∞ norm. In Appendix A.8,
we present upper bounds on ε in terms of k for ℓp norms, but no known constructions approach
these bounds. Developing near-optimal partitions for other norms and exploring their applications to
replicability would be an intriguing direction for future research

In replicable algorithm design, there appears to be a cost to achieve replicability—sample complexity
blow-up. This work showed that this blow-up in sample complexity is unavoidable in list replicability
if one uses secluded partitions method. Can we establish a generic lower bound on the sample
complexity of list replicable learning algorithms?
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While Theorem 3.4 gives a new “neighborhood” variant of the Sperner/KKM lemma, the color bound
of (1 + 2

3ε)
d is not tight for small ε because the standard cubical Sperner/KKM lemma (2.4) shows

that even for arbitrarily small ε, the color bound is at least d+ 1. A compelling research goal is to
improve on Theorem 3.4 so that the standard cubical Sperner/KKM lemma follows as a special case.
Finally, finding applications of the neighborhood Sperner/KKM lemma is an interesting research
direction.
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A Complete Proofs

A.1 Notation

The following is a list of some of the notation we will use in this paper.

• We use N to denote the natural numbers starting with 1.

• We continue to use B∥·∥(ε, p⃗), B◦
∥·∥(ε, p⃗), B∞(ε, p⃗), and B◦

∞(ε, p⃗) as before.

• For two sets A,B ⊆ Rd we write A + B to represent the Minkowski sum A +

B
def
=
{
a⃗+ b⃗ : a⃗ ∈ A, b⃗ ∈ B

}
. We also may write a⃗ + B to mean

{
a⃗+ b⃗ : b⃗ ∈ B

}
for

some fixed vector a⃗.
• We will use v∥·∥,d to represent the Borel/Lebesgue measure of the unit radius ball in Rd with

respect to a general norm ∥·∥. This is a normalization factor that appears in some results.

A.2 Proof Theorem 3.1

In this section, we present a complete proof of 3.1. We begin with some prerequisite results in A.2.1.
Then, in A.2.2 we establish a more generic theorem that can handle any norm. Theorem 3.1 follows
as immediate corollary this generic result.

A.2.1 Prerequisite Results

In this section, we will deal with arbitrary norms of Rd. We point out the well-known fact that all
norms on Rd are equivalent in the sense that they all generate the same topology on Rd. Given two
norms ∥·∥a and ∥·∥b on Rd, there exists fixed constants cd, Cd ∈ (0,∞) such that for all vectors
x⃗ ∈ Rd, it holds that cd∥x⃗∥a ≤ ∥x⃗∥b ≤ Cd∥x⃗∥a. Thus the collection of open sets in Rd is the same
no matter which norm we are using. This also means that the Borel and Lebesgue σ-algebras on
Rd are the same no matter which norm is used, and thus balls with respect to any norm on Rd are
measurable.

We begin with four simple facts. The first fact will later allow us to pass a result through a limit since
the answer will be an integer.
Fact A.1. For any α ∈ R, there exists γ ∈ R such that γ < α and ⌈γ⌉ = ⌈α⌉.

The next fact says that the Minkowski sum of a set X and an open ball at the origin can be viewed as
a union of open balls positioned at each point of X .
Fact A.2. For any normed vector space, given a set X and ε ∈ [0,∞), then

X +B◦
∥·∥(ε, 0⃗) =

⋃
x⃗∈X

B◦
∥·∥(ε, x⃗).

The same can be said replacing open balls with closed balls.

The third fact says that we can decompose a ball into a Minkowski sum of two smaller balls.

Fact A.3. For any normed vector space, and any α, β ∈ (0,∞), it holds that B◦
∥·∥(α, 0⃗) +

B◦
∥·∥(β, 0⃗) = B◦

∥·∥(α+ β, 0⃗).

The fourth fact, while also very simple, is the key change of perspective that allowed us to prove the
main results of this section. It says that if we are checking which sets X in our partition intersect
an ε-ball located at p⃗ (in order to see how many there are), we can instead enlarge each member of
the partition by taking its Minkowski sum with the origin-centered ε-ball, and check which of these
enlarged members contain the point p⃗.
Fact A.4. For any normed vector space, for any set X , for any vector p⃗, and any ε > 0, the following
are equivalent:

1. B◦
∥·∥(ε, p⃗) ∩X ̸= ∅

2. p⃗ ∈ X +B◦
∥·∥(ε, 0⃗)
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The same can be said replacing both open balls with closed balls.

Now we introduce the result which is the connection to the above-mentioned key change of perspective.
The result says to consider a bounded, (measurable) subset S ⊆ Rd (so it has finite measure) and
a collection A of (measurable) subsets of S. If we compute the sum of measures of all members
in the collection A (i.e. intuitively the total volume that they take up), and compare this to the
measure/volume of S, then whatever this ratio is, we can find a point in S covered by that many
members of the collection A. For example, in the simplest case that the total measure of members of
A is larger than the measure of S, then there is no way for all of the members of A to be disjoint, so
there has to be some point covered by two members. This simple case can be viewed as a continuous
version of the pigeonhole principle.

In the more generic case, this result should be intuitively true by an averaging argument: if every
point of S is covered only n times, then the total measure of members in A is at most n ·m(S), so
if the ratio of total measure in A to the measure of S is large, then n must also be large. This more
general version is a sort of continuous multi-pigeonhole principle.

Proposition A.1 (Continuous Multi-Pigeonhole Principle). Let d ∈ N and S ⊂ Rd be bounded
and measurable. Let A be a family of measurable subsets of S, and let k =

⌈∑
A∈A m(A)

m(S)

⌉
. Then if

k < ∞, there exists p⃗ ∈ S such that p⃗ belongs to at least k members of A. (And if k = ∞, then for
any n ∈ N there exists p⃗(n) ∈ S such that p⃗(n) belongs to at least n members of A.)

We first encountered this result as the main ingredient in the standard proof of Blichfeldt’s theorem
(which was the source of motivation for our main technique), but many of the sources we found
where proofs of Blichfeldt’s theorem are presented did not prove the result above except in special
cases, so for convenience and completion, we provide a proof in B in two parts: B.4, and B.5.

The next ingredient that we need is a way to measure how large the Minkowski sum in Fact A.4 is. In
order to utilize Proposition A.1 we need a lower bound on the measures, and we can obtain one using
the generalized Brunn-Minkowski inequality stated below.

Theorem A.5 (Generalized Brunn-Minkowski Inequality). Let d ∈ N and A,B ⊆ Rd be Lebesgue
measurable such that A+B is also Lebesgue measurable. Then

m(A+B) ≥
[
m(A)

1
d +m(B)

1
d

]d
.

This version of the statement can be obtained from [22, Equation 11]; in that survey, Gardner states
this theorem with a requirement that the sets be bounded, but in the following paragraph notes that
this is not necessary and the requirement is only stated for convenience of the presentation in that
survey.

In the theorem, the requirement that A + B is Lebesgue measurable is not a triviality; Gardner
discusses that there exist known Lebesgue measurable sets A and B such that the Minkowski sum
A+B is not Lebesgue measurable as shown in [43]. The next result gives us a way to circumvent
this issue in our application even if the members of our partition are not measurable by taking B to
be an open set so that the sum A+B is open (and thus measurable), and using the outer measure of
A so that we don’t need the assumption that A is measurable.

Lemma A.6. Let d ∈ N and let Rd be equipped with any norm ∥·∥. Let Y ⊆ Rd, and
ε ∈ (0,∞). Then Y + B◦

∥·∥(ε, 0⃗) is open (and thus Borel measurable), and m(Y + B◦(ε, 0⃗)) ≥(
mout(Y )

1
d + ε · (v∥·∥,d)

1
d

)d
.

Proof. By Fact A.2, for any ε′′ ∈ (0,∞), Y +B◦
∥·∥(ε

′′, 0⃗) =
⋃

y⃗∈Y B◦
∥·∥(ε

′′, y⃗) which is a union of
open sets, so is itself open and thus Borel measurable. Now, for any ε′ ∈ (0, ε), observe that by Fact
A.3, B◦

∥·∥(ε, 0⃗) = B◦
∥·∥(ε− ε′, 0⃗) +B◦

∥·∥(ε
′, 0⃗) and thus, this sum is measurable because it is an open

ball. Using this equality and the associativity of the Minkowski sum, we have

Y +B◦
∥·∥(ε, 0⃗) = Y +

[
B◦

∥·∥(ε− ε′, 0⃗) +B◦
∥·∥(ε

′, 0⃗)
]
=
[
Y +B◦

∥·∥(ε− ε′, 0⃗)
]
+B◦

∥·∥(ε
′, 0⃗).
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Thus, we have the following chain of inequalities (each justified after it is stated):

m
(
Y +B◦

∥·∥(ε, 0⃗)
)
= m

([
Y +B◦

∥·∥(ε− ε′, 0⃗)
]
+B◦

∥·∥(ε
′, 0⃗)

)
(Open, measurable, equality above)

≥
(
m
(
Y +B◦

∥·∥(ε− ε′, 0⃗)
) 1

d

+m
(
B◦

∥·∥(ε
′, 0⃗)

) 1
d

)d

The above comes from the Theorem A.5 noting that as demonstrated above, terms of the sum[
Y +B◦

∥·∥(ε− ε′, 0⃗)
]

and B◦
∥·∥(ε

′, 0⃗) are open and thus measurable, and the same holds for the sum

itself
(
Y +B◦

∥·∥(ε, 0⃗)
)

. We continue.

≥
(
mout (Y )

1
d +m

(
B◦

∥·∥(ε
′, 0⃗)

) 1
d

)d

The above inequality comes from the definition of the outer measure of Y being the infimum of the
measures of all measurable supersets of Y . Since Y ⊆ Y +B◦

∥·∥(ε
′, 0⃗), we get the inequality above.

Continuing, we have the following:

=

(
mout (Y )

1
d +m

(
ε′ ·B◦

∥·∥(1, 0⃗)
) 1

d

)d

(Scaling of norm-based balls)

=

(
mout (Y )

1
d +

[
(ε′)d ·m

(
B◦

∥·∥(1, 0⃗)
)] 1

d

)d

(Scaling for Lebesgue measure)

=
(
mout (Y )

1
d + ε′ · (v∥·∥,d)

1
d

)d
(Algebra and v∥·∥,d

def
= m

(
B◦

∥·∥(1, 0⃗)
)

)

Since the inequality above holds for all ε′ ∈ (0, ε), it must also hold in the limit (keeping d and Y
fixed):

m
(
Y +B◦

∥·∥(ε, 0⃗)
)
≥ lim

ε′→ε

[(
mout (Y )

1
d + ε′ · (v∥·∥,d)

1
d

)d]
=
(
mout (Y )

1
d + ε · (v∥·∥,d)

1
d

)d
which concludes the proof.

At this point, we are nearly in a position to prove the main result of this section, but we need one
last result which gives an inequality that we will compose with the Theorem A.5. The result below
can be interpreted as saying that for appropriate parameters, we can essentially factor our the “x” in
(x1/d + α)d to get the no larger expression x(1 + α)d.

Lemma A.7. For d ∈ [1,∞), x ∈ [0, 1], and α ∈ [0,∞), it holds that (x1/d + α)d ≥ x(1 + α)d.

Proof. If x = 0, then the result is trivial. Otherwise x ∈ (0, 1], so x1/d ∈ (0, 1]. Because α ≥ 0,
α

x1/d ≥ α, so

(x1/d + α)d =
(
x1/d

(
1 +

α

x1/d

))d
= x

(
1 +

α

x1/d

)d
≥ x(1 + α)d.

A.2.2 A generic result for all Norms, and Theorem 3.1

We establish Theorem 3.1, by proving the following result.
Theorem A.8 (ε-Neighborhoods for Measure Bounded Partitions and Arbitrary Norm). theorem Let
d ∈ N, M ∈ (0,∞), and P a partition of Rd such that every member has outer Lebesgue measure
at most M . Let Rd be equipped with any norm ∥·∥. For every ε ∈ (0,∞), there exists p⃗ ∈ Rd

such that B◦
∥·∥(ε, p⃗) intersects at least k =

⌈(
1 + ε

( v∥·∥,d
M

)1/d)d⌉
members of the partition where

v∥·∥,d
def
= m

(
B◦

∥·∥(1, 0⃗)
)

is the Lebesgue measure of the ∥·∥ unit ball.

15



Proof. Throughout the proof, all lengths will be with respect to ∥·∥, so we will eliminate the clutter
by neglecting to use the ∥·∥ subscript anywhere in the proof. We will also be working in a single
dimension d throughout the proof, so we also drop the d subscript from v throughout.

Consider the following for each n ∈ N. Let Sn = B◦(n, 0⃗) and S′
n = B◦(n+ ε, 0⃗) = Sn+B◦(ε, 0⃗)

and S be the partition of Sn induced2 by P . For each Y ∈ Sn, let CY = Y + B◦(ε, 0⃗). By

Lemma A.6, CY is measurable, and m(CY ) ≥
(
mout (Y )

1
d + ε · v 1

d

)d
. Also observe that CY ⊆ S′

n.
Now consider the following inequalities:

m(CY ) ≥
(
mout (Y )

1
d + ε · v 1

d

)d
(Above)

=

(
M1/d

[
mout (Y )

1
d

M1/d
+

ε · v 1
d

M1/d

])d

(Algebra)

= M

([
mout (Y )

M

] 1
d

+
ε · v 1

d

M1/d

)d

(Algebra)

≥ M · mout (Y )

M
·

(
1 +

ε · v 1
d

M1/d

)d

(A.7 since mout(Y )
M ∈ [0, 1])

= mout (Y ) ·

(
1 +

ε · v 1
d

M1/d

)d

(Simplify)

Informally, the above shows that for each Y ∈ Sn, the set Y +B◦(ε, 0⃗) has substantially more (outer)

measure than Y does—specifically a factor of
(
1 + ε·v

1
d

M1/d

)d

. We will extend this to unsurprisingly

show that this implies that
{
Y +B◦(ε, 0⃗)

}
Y ∈Sn

also has this same factor more (outer) measure

than Sn does, observing that Sn has total (outer) measure of about m(Sn) since Sn is a partition of
Sn (any discrepancy is due to non-measurable members in Sn)

Formally, we claim that there exists a finite subfamily Fn ⊆ Sn such that

∑
Y ∈Fn

m
(
Y +B◦(ε, 0⃗)

)
≥

(
1 +

ε · v 1
d

M1/d

)d

·m(Sn).

To see this, first consider the case that Sn has infinite cardinality. Let Fn ⊂ Sn be any subfamily of

finite cardinality at least
(
1 + ε·v

1
d

M1/d

)d

·m(Sn) · 1
εdv

. This gives

∑
Y ∈Fn

m
(
Y +B◦(ε, 0⃗)

)
≥
∑

Y ∈Fn

m
(
B◦(ε, 0⃗)

)

2I.e. S = {X ∩ Sn : X ∈ P and X ∩ Sn ̸= ∅}. That is, S is the partition of Sn obtained by intersecting
every member of P with the new domain Sn and keeping those that have non-empty intersections.
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where this inequality is because Y +B◦(ε, 0⃗) is a superset of some translation of B◦(ε, 0⃗) since Y ̸= ∅.
Continuing, we use the standard fact that m

(
B◦(ε, 0⃗)

)
= m

(
ε ·B◦(1, 0⃗)

)
= εd ·m

(
B◦(1, 0⃗)

)
=

εdv:

≥
∑

Y ∈Fn

εdv

=

(1 + ε · v 1
d

M1/d

)d

·m(Sn) ·
1

εdv

 · εdv (Cardinality of Fn)

=

(
1 +

ε · v 1
d

M1/d

)d

·m(Sn). (Simplify)

Now consider the other (more interesting) case where Sn has finite cardinality3. Take Fn = Sn so
that

∑
Y ∈Fn

m
(
Y +B◦(ε, 0⃗)

)
=
∑

Y ∈Sn

m
(
Y +B◦(ε, 0⃗)

)
(Fn = Sn)

≥
∑

Y ∈Sn

mout (Y ) ·

(
1 +

ε · v 1
d

M1/d

)d

(Above)

=

(
1 +

ε · v 1
d

M1/d

)d

·
∑

Y ∈Sn

mout (Y ) (Linearity of summation)

≥

(
1 +

ε · v 1
d

M1/d

)d

·mout

( ⋃
Y ∈Sn

Y

)

where the above inequality is due the the countable subaddativity property of outer measures which
states that a countable sum of outer measures of sets is at least as large as the outer measure of the
union of the sets. In the last step we get

=

(
1 +

ε · v 1
d

M1/d

)d

·m (Sn) (
⊔

Y ∈Fn
Y = Sn is measurable)

Thus, regardless of whether Sn has infinite or finite cardinality, there exists a finite subfamily
Fn ⊆ Sn such that

∑
Y ∈Fn

m
(
Y +B◦(ε, 0⃗)

)
≥

(
1 +

ε · v 1
d

M1/d

)d

·m(Sn).

Fix such a subfamily Fn, and let An =
{
Y +B◦(ε, 0⃗)

}
Y ∈Fn

be a family indexed4 by Fn. Note that

for each AY
def
= Y +B◦(ε, 0⃗) ∈ An, since Y ⊆ Sn = B◦(n, 0⃗), we have AY ⊆ Sn+B◦(ε, 0⃗) = S′

n.

3In fact this case also works if Sn is countable even though we have already dealt with that case.
4We require this to be an indexed family rather than just a set, because it is possible that there are distinct

Y, Y ′ ∈ Sn such that Y +B◦(ε, 0⃗) = Y ′ +B◦(ε, 0⃗).
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Thus, by B.55, there is a point p⃗(n) ∈ S′
n which belongs to at least kn-many sets in An where

kn
def
=


∑

Y ∈Fn
m
(
Y +B◦(ε, 0⃗)

)
m(S′

n)

 ≥

(
1 + ε·v

1
d

M1/d

)d

·m (Sn)

m(S′
n)

(Above)

=

(
1 +

ε · v 1
d

M1/d

)d

·
m
(
B◦(n, 0⃗)

)
m
(
B◦(n+ ε, 0⃗)

)
(Def’n of Sn and S′

n)

=

(
1 +

ε · v 1
d

M1/d

)d

· nd · v
(n+ ε)d · v

(Standard scaling fact)

=

(
1 +

ε · v 1
d

M1/d

)d

·
(

n

n+ ε

)d

. (Simplify)

Since p⃗(n) belongs to at least kn-many sets in An, this by definition means that there are at least
kn-many sets Y ∈ Fn such that p⃗(n) ∈ Y +B◦(ε, 0⃗), so by Fact A.4, we have Y ∩B◦(ε, p⃗(n)) ̸= ∅.
For each such Y (since Y ∈ Fn ⊆ Sn), there is a distinct6 XY ∈ P such that Y ⊆ XY and thus
XY ∩B◦(ε, 0⃗) ̸= ∅ showing that there are at least kn-many sets in P which intersect B◦(ε, 0⃗).

For the last step of the proof, we perform a limiting process on n. By Fact A.1, let γ ∈ R such that

γ <

(
1 + ε·v

1
d

M1/d

)d

and ⌈γ⌉ =

⌈(
1 + ε·v

1
d

M1/d

)d
⌉

. Then, because

lim
n→∞

kn ≥ lim
n→∞

(
1 +

ε · v 1
d

M1/d

)d

·
(

n

n+ ε

)d

=

(
1 +

ε · v 1
d

M1/d

)d

> γ,

we can take N ∈ N sufficiently large so that

kN ≥

(
1 +

ε · v 1
d

M1/d

)d

·
(

N

N + ε

)d

> γ.

Then considering the point p⃗(N), we have by the choice of γ and the fact that kN is an integer that

kN = ⌈kN⌉ ≥ ⌈γ⌉ =


(
1 +

ε · v 1
d

M1/d

)d


showing that B◦(ε, p⃗(N)) intersects at least kN ≥

⌈(
1 + ε·v

1
d

M1/d

)d
⌉

members of P as claimed which

completes the proof.

Now Theorem 3.1 follows as a simple corollary of A.8.

Proof. Consider the ℓ∞ norm and M = 1 noting that for each d ∈ N, v∥·∥∞,d = 2d (i.e. the volume
of the ℓ∞ unit ball in Rd is 2d).

Then by A.8, there is a point p⃗ ∈ Rd such that B◦
∞(ε, p⃗) intersects at least(

1 + ε
(v∥·∥∞,d

M

)1/d)d

=

(
1 + ε

(
2d

1

)1/d
)d

= (1 + 2ε)d

5We are taking X in B.5 to be S′
n in this proof, and taking µ to be m and taking A to be An. We have that∑

A∈An
m(A) < ∞ because |An| = |Fn| is finite, and each A ∈ An is a subset of S′

n, so has finite measure.
6I.e. for Y ̸= Y ′ ∈ Sn we have that XY , XY ′ ∈ P and XY ̸= XY ′ so this mapping of Y ’s to X’s is

injective, so we have at least the same cardinality of X’s with the desired property as Y ’s with the desired
property.
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members of P , and thus trivially the closed ball B∞(ε, p⃗) does as well. Thus, if P is (k, ε)-secluded
(meaning by definition that for every p⃗ ∈ Rd it holds that B∞(ε, p⃗) intersects at most k members of
P) then it must be that k ≥ (1 + 2ε)d.

For the consequence, if k ≤ 2d, then this implies ε ≤ 1
2 . Then taking the logarithm of both sides of

our inequality and using the fact that log4(1 + 2x) ≥ x for x ∈ [0, 1
2 ] (see footnote7), we have

log4(k) ≥ d log4(1 + 2ε) ≥ dε

showing that ε ≤ log4(k)
d .

We state the following interesting corollary when k(d) is polynomial.
Corollary A.9. Let ⟨Pd⟩∞d=1 be a sequence of (k(d), ε(d))-secluded partitions of Rd such that every
member of each Pd has outer Lebesgue measure at most 1. If k(d) ∈ poly(d) then ε(d) ∈ O( ln d

d )
(where the hidden constant can be taken to be anything exceeding the polynomial degree of k).

Proof. Since k(d) ∈ poly(d), then there are constants C, n such that for sufficiently large d, we have
k(d) ≤ Cdn which for sufficiently large d is less than 2d so by 3.1, for sufficiently large d we have

ε(d) ≤ ln(k(d))

d
≤ n ln(Cd)

d
∈ O

(
ln(d)

d

)
.

More specifically, for any n′ > n we have for large enough d that (n′ − n) ln(d) ≥ n ln(C), so for
large enough d we have

ε(d) ≤ n ln(Cd)

d
=

n[ln(C) + ln(d)]

d
≤ (n′ − n) ln(d) + n ln(d)

d
=

n′ ln(d)

d
showing that the hidden constant can be taken to be any n′ larger than the degree n of k.

A.3 A Family of Near Optimal Constructions

The partitions that we construct in this section are of a very natural form: we build a partition of a large
dimension d space, by splitting up the coordinates into smaller sets, and separately partitioning each
set of coordinates. In the end, the smaller partitions will be known partition constructions [44]. We
will define the construction very generically. We need two basic results. The following observation
notes that if a partition is (k, ε)-secluded, then we can increase k to k′ and decrease ε to ε′ and the
partition is trivially (k′, ε′)-secluded.
Observation A.10 (Monotonicity in k and ε). Let d ∈ N, k, k′ ∈ N with k′ ≥ k, ε, ε′ ∈ [0,∞) with
ε′ ≤ ε, and P a (k, ε)-secluded partition of Rd. Then P is also a (k′, ε′)-secluded partition of Rd.

Proof. Since P is (k, ε)-secluded, by definition every ε-ball intersects at most k members of P , so
trivially every (no larger) ε′-ball intersects at most k′ ≥ k members of P .

We will frequently refer to the above observation just using the phrase “by monotonicity, P is
(k′, ε′)-secluded”
Fact A.11 (Trivial k for Unit Cube Partitions). Let d ∈ N, ε ∈ [0,∞), and P be any unit cube
partition of Rd. Then P is (k, ε)-secluded for k =

⌊
(2 + 2ε)d

⌋
.

Proof. Consider any point p⃗ ∈ Rd. Observe that for any X ∈ P , X is a unit cube, so diam∞(X) = 1,
so if X intersects B∞(ε, p⃗), then X ⊆ B∞(1 + ε, p⃗).

Because (1) each X ∈ P has measure 1, and (2) every pair of members are disjoint (because P is
a partition), and (3) the measure of B∞(1 + ε, p⃗) = p⃗ + [−1 − ε, 1 + ε]d is (2 + 2ε)d, it follows
that at most

⌊
(2 + 2ε)d

⌋
members of P are a subset of B∞(1 + ε, p⃗) and thus at most

⌊
(2 + 2ε)d

⌋
members of P intersect B∞(ε, p⃗) which shows that P is (k, ε)-secluded for k =

⌊
(2 + 2ε)d

⌋
as

claimed.
7One can verify that the function log4(1 + 2x) − x is concave on its domain (− 1

2
,∞) using the second

derivative and note that it is 0 at x = 0 and x = 1
2

(which is why the base 4 logarithm was chosen) so it is
non-negative on [0, 1

2
].
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A.3.1 Construction

Definition A.12 (Partition Product). Let d1, . . . , dn ∈ N and P1, . . . ,Pn be partitions of
Rd1 , . . . ,Rdn respectively. Letting d =

∑n
i=1 dn we define the product partition of Rd as

n∏
i=1

Pi
def
=

{
n∏

i=1

Xi : Xi ∈ Pi

}

where
∏n

i=1 Xi is viewed as a subset of Rd.

We specifically stated that
∏n

i=1 Xi is viewed as a subset of Rd, because technically it is a subset
of
∏n

i=1 Rdi , but this is naturally isomorphic to Rd = R
∑n

i=1 di . For example, technically, if
d1 = d2 = d3 = 2, then the elements of

∏n
i=1 Rdi are of the form ⟨⟨x1, x2⟩, ⟨x3, x4⟩, ⟨x5, x6⟩⟩, but

this is trivially isomorphic to R6 by instead considering the element as ⟨x1, x2, x3, x4, x5, x6⟩.
Also observe (shown below) that if the original partitions were unit cube partitions, then the product
partition is also a unit cube partition.

Fact A.13 (Unit Cube Preservation). If d1, . . . , dn ∈ N and P1, . . . ,Pn are unit cube partitions of
Rd1 , . . . ,Rdn respectively, then

∏n
i=1 Pi is also a unit cube partition.

Proof. Each member of
∏n

i=1 Pi is of the form
∏n

i=1 Xi where Xi ∈ Pi. Since Pi is a unit cube
partition, each Xi is a product of translates of [0, 1), and thus

∏n
i=1 Xi is also a product of translates

of [0, 1), so the member is a unit cube.

If all partitions P1, . . . ,Pn are “efficiently computable” in the sense that given an arbitrary point,
x⃗ ∈ Rdi there is an efficient algorithm that computes a representation of the member of Pi containing
x⃗, then the product partition is also “efficiently computable” because given some point y⃗ ∈ Rd,
the member that it is contained in can be found by determining which member of P1 the point
⟨yi⟩d1

i=1 is in, and independently determining which member of P2 the point ⟨yi⟩d1+d2

i=d1+1 is in, etc.
The member of

∏d
i=1 Pi that contains y⃗ is just the product of members. This is an important property

for using partitions as the basis of rounding schemes because an algorithm must determine which
member/equivalence class a point is in (even if just implicitly). Because the partitions of [44] are
“efficiently computable” so are the partitions constructed here.

We can now show that if we take a product of partitions, and we have a guarantee for each Pi that
it is (ki, εi)-secluded, then we can guarantee the product partition is (k, ε)-secluded where k is the
product of the ki’s and ε is the minimum of the εi’s.

Proposition A.2 (Product Partition Seclusion Guarantees). Let n ∈ N. For each index i ∈ [n], let
di, ki ∈ N, εi ∈ (0,∞) and Pi be a (ki, εi)-secluded partition of Rdi . Then the product partition
P =

∏n
i=1 Pi is a (k, ε)-secluded partition of Rd where d =

∑n
i=1 di, and k =

∏n
i=1 ki, and

ε = mini∈[n] εi.

Proof Sketch. The basic idea is that for any point p⃗ ∈ Rd, we consider how many members of P
intersect Bε(p⃗). Conceptually8, we think of p⃗ as a sequence ⟨p⃗(i)⟩ni=1 of n points where the ith
point p⃗(i) belongs to Rdi . Because we are working with the ℓ∞ norm (that is the norm used by the
definition of secluded), the ε ball around p⃗ is the product of the ε balls around each p⃗(i) which is
smaller than the product of εi balls around each p⃗(i) because we chose ε as the minimum size. Thus,
if the ε ball around p⃗ intersects a member X of the partition P , then conceptually viewing X as a
sequence ⟨Xi⟩ni=1 where Xi is a member of Pi, it must be for each i ∈ [n] that the ε ball around p⃗(i)

intersects Xi (and thus so does the εi ball since εi ≥ ε). This means (for each i ∈ [n]) that Xi is one
of at most ki members of Pi because at most ki members of Pi intersect the εi ball around p⃗(i) (by
definition of Pi being (ki, εi)-secluded). Thus X is one of at most

∏n
i=1 ki = k members of P . That

is, there are at most k members of P that intersect the ε ball around p⃗ which is the definition of P
being (k, ε)-secluded.

8In other words we identify the set Rd with Rd1 × Rd2 × · · · × Rdn−1 × Rdn
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Utilizing the construction above, we will now take a unit cube partition of [44] for each Rdi and take
the product to obtain a new partition. Since the dimension of each di is smaller than the dimension d,
this allows us to get a larger value of εi for each partition, and thus a larger value of ε for the partition
of Rd than if we had used one of the original partitions. The price we pay for this is that the value of
k also increases.

We establish the following theorem stated as Theorem 5.3 in the main body of the paper.
Theorem A.14. Let d ∈ N and d′ ∈ [d].There exists a (k, ε)-secluded unit cube partition of Rd

where k = (d′ + 1)
⌈ d
d′ ⌉ and ε = 1

2d′ .

Proof. Let n = ⌈ d
d′ ⌉. By [44], let P ′ be a (d′ + 1, 1

2d′ )-secluded unit cube partition of Rd′
.

By Proposition A.2 and Fact A.13, P =
∏n

i=1 P ′ is a (k, ε)-secluded unit cube partition of Rn·d′

where k = (d′ + 1)n and ε = 1
2d′ . Since n · d′ = ⌈ d

d′ ⌉ · d′ ≥ d, this trivially (by ignoring extra
coordinates) gives a partition of Rd with these same properties (alternatively, see footnote9) which
completes the proof.

This construction is sufficiently general that for any dimension d ∈ N and any tolerance parameter in
the domain of interest (k ∈ [2d]), we can construct a (k, ε)-secluded unit cube partition of Rd such
that ε which is within a factor of 8 log4(d+ 1) of the maximum possible tolerance for this choice of
dimension and degree.

Finally, we are ready to prove Theorem 3.2.

Proof. Let d′ ∈ [d] be the minimum integer such that (d′ + 1)⌈
d
d′ ⌉ ≤ k (see justification10), and let

ε = 1
2d′ . By Theorem A.14 and monotonicity, let P be a (k, ε)-secluded unit cube partition of Rd.

Now we prove the bound on ε in two cases: either d′ = 1 or d′ ≥ 2.

In the case that d′ = 1, then ε = 1
2 and k ≥ (d′ +1)⌈

d
d′ ⌉ = 2d and by hypothesis k ≤ 2d, so we have

equality and we conclude that

log4(k)

4d log4(d+ 1)
=

d/2

4d log4(d+ 1)
=

1

8 log4(d+ 1)
≤ 1

8 · 1
2

≤ 1

2
= ε

which proves the bound on ε in the first case.

In the other case, we have d ≥ d′ ≥ 2. Let d′′ = d′ − 1 > 0 and δ = 1
2d′′ . Note that

ε

δ
=

2d′′

2d′
=

d′ − 1

d′
= 1− 1

d′
≥ 1− 1

2
=

1

2

so ε ≥ 1
2δ. By our choice of d′ and because d′′ < d′, it must be that k ≤ (d′′ + 1)⌈

d
d′′ ⌉. Noting that

⌈ d
d′′ ⌉ ≤ d

d′′ + 1 = d+d′′

d′′ ≤ 2d
d′′ , we have

k ≤ (d′′ + 1)⌈
d
d′′ ⌉ ≤ (d′′ + 1)

2d
d′′ = (d′′ + 1)4dδ ≤ (d′′ + 1)8dε ≤ (d+ 1)8dε

By taking the logarithm11, of each side and solving for ε, we obtain the desired result:

ε ≥ log4(k)

8d log4(d+ 1)
.

9An alternate perspective is to let d1, . . . , dn be such that
∑n

i=1 di = d and the first portion of the list

di = d′, and the second portion of the list di = d′′
def
= d′ − 1. Then let P ′ a (d′ + 1, 1

2d′ )-secluded partition of
Rd′ as before, and let P ′′ a (d′′ + 1, 1

2d′′ )-secluded partition of Rd′′ . Since d′′ < d′, P ′′ is (by monotonicity) a
(d′ + 1, 1

2d′ )-secluded partition. Then take Pi = P ′ when di = d′ and Pi = P ′′ when di = d′′. Again, we get
that P is (k, ε)-secluded for k = (d′ + 1)n and ε = 1

2d′ .
10A minimum exists by finiteness and the fact that some d′ satisfies the condition—in particular d′ = d

satisfies the requirement because k ≥ d+ 1 by hypothesis.
11We choose the base 4 logarithm since that is what appears in our upper bound on ε.
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A.4 A Neighborhood Sperner/KKM Lemma: Theorem 3.4

In this section, we restate and prove our neighborhood variant of the Sperner/KKM/Lebesgue result
on the cube. The proof idea is illustrated in Figure 2.

Anonymous author(s) 3

(a) Initial coloring ‰53 (b) Extended coloring “54

(c) Red points (Yred)55 (e) Purple points (Ypurple)57 (g) Gray points (Ygray)59

(d) Ball added (Yred + Bv̨)56 (f) Ball added (Ypurple + Bv̨)58 (h) Ball added (Ygray + Bv̨)60

Figure 1 (a) shows a coloring of the unit cube [≠ 1
2 ,

1
2 ]2 such that no color includes points on

opposite edges. (b) shows the natural extension of the coloring to [≠ 1
2 ≠ Á, 1

2 + Á]2. (c), (e), and (g)
show three of the five colors and demonstrate that there is at least one quadrant of space in which
the color can be enlarged. For red, the lower right quadrant; for purple, the upper right; for gray,
the upper left (shown) or the upper right. (d), (f), and (h) show the resulting enlargements.

61

62

63

64

65

Figure 2: (a) shows a (finite) coloring χ of the unit cube [− 1
2 ,

1
2 ]

2 such that no color includes points
on opposite edges. (b) shows the natural extension γ of that coloring to [− 1

2 − ε, 1
2 + ε]2. The

extension is obtained by mapping each point y⃗ to the point x⃗ for which each coordinate value yi
is restricted to be within [− 1

2 ,
1
2 ], and then y⃗ is given whatever color x⃗ had. (c), (e), and (g) show

three of the five colors and demonstrate that there is at least one quadrant of the ε-ball that can be
Minkowski summed with the color so that the sum remains a subset of the extended cube. For red it is
the lower right quadrant, for purple it is the upper right, and for gray it could be the upper left (shown)
or the upper right. (d), (f), and (h) show the resulting Minkowski sum for each color. Utilizing the
Brunn-Minkowski inequality, this set will have substantially greater area—by a factor of at least
(1 + ε

1+ε )
2.

Theorem A.15 (Neighborhood Sperner/KKM Lemma). Given a Sperner/KKM coloring of [0, 1]d,
for any ε ∈ (0, 1

2 ], there exists a point p⃗ ∈ [0, 1]d such that B◦
∞(ε, p⃗) contains at least

(
1 + 2

3ε
)d

points with distinct colors.

Proof. For convenience, we will assume that the cube is [− 1
2 ,

1
2 ]

d rather than [0, 1]d. Let C be a
finite set (of colors) and χ : [− 1

2 ,
1
2 ]

d → C be a Sperner/KKM coloring of the unit cube [− 1
2 ,

1
2 ]

d.
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The first step in the proof is to extend the coloring χ to the larger cube [− 1
2 − ε, 1

2 + ε]d in a natural
way. Consider the following function f which truncates points in the larger interval to be in the
smaller interval:

f : [− 1
2 − ε, 1

2 + ε] → [− 1
2 ,

1
2 ]

f(y)
def
=


− 1

2 y ≤ − 1
2

y y ∈ (− 1
2 ,

1
2 )

1
2 y ≥ 1

2

Let f⃗ : [− 1
2−ε, 1

2+ε]d → [− 1
2 ,

1
2 ]

d be the function which is f in each coordinate: f⃗(y⃗) def= ⟨f(yi)⟩di=1.

Now extend the coloring χ to the coloring γ : [− 1
2 − ε, 1

2 + ε]d → C defined by

γ(x⃗)
def
= χ

(
f⃗ (x⃗)

)
.

For each color c ∈ C, let Yc = γ−1(c) denote the points assigned color c by γ and note that Yc ⊇ Xc.
Consistent with this notation, we will typically refer to a point in the unit cube as x⃗ and a point in the
extended cube as y⃗.

We make the following claim which implies that for each color c ∈ C, the set Yc of points of that
color in the extended coloring are contained in a set bounded away from one side of the extended
cube [− 1

2 − ε, 1
2 + ε]d in each coordinate.

Subclaim A.16. For each color c ∈ C there exists an orientation v⃗ ∈ {−1, 1}d such that Yc ⊆∏d
i=1 vi · (−

1
2 ,

1
2 + ε].

Proof of Claim. Fix an arbitrary coordinate i ∈ [d]. Note that for every y⃗ ∈ Yc we have f(y⃗ ∈ Xc

which is to say that the y⃗ has the same color in the extended coloring as f(y⃗) does in the original
coloring (see justification12).

Note that if there is some y⃗ ∈ Yc with yi ≤ − 1
2 , then f(yi) = − 1

2 so πi(Xc) ∋ f(yi) = − 1
2 .

Similarly, if there is some y⃗ ∈ Yc with yi ≥ 1
2 , then πi(Xc) ∋ 1

2 . Recall that by hypothesis,
πi(Xc) does not contain both − 1

2 and 1
2 which means it is either the case that for all y⃗ ∈ Yc we

have yi > − 1
2 (so πi(Yc) ⊆ (− 1

2 ,
1
2 + ε]) or it is the case that for all y⃗ ∈ Yc we have yi <

1
2 (so

πi(Yc) ⊆ [− 1
2 − ε, 1

2 )).

Thus we can choose vi ∈ {−1, 1} such that πi(Yc) ⊆ vi · (− 1
2 ,

1
2 + ε]. Since this is true for each

coordinate i ∈ [d] we can select v⃗ ∈ {−1, 1}d such that

Yc ⊆
d∏

i=1

πi(Yc) ⊆
d∏

i=1

vi · (−
1

2
,
1

2
+ ε]

as claimed. ■

For an orientation v⃗ ∈ {−1, 1}d, let Bc⃗ denote the set Bv⃗
def
=
∏d

i=1 −vi · (0, ε) which should be
interpreted as an open orthant of the ℓ∞ ε-ball centered at the origin—specifically the orthant opposite
the orientation v⃗. Building on A.16, we get the following:

Subclaim A.17. For each color c ∈ C, there exists an orientation v⃗ ∈ {−1, 1}d such that Yc+Bv⃗ ⊆
[− 1

2 − ε, 1
2 + ε]d.

12 For every y⃗ ∈ Yc we have (by definition of Yc) that γ(y⃗) = c and (by definition of γ) that γ(y⃗) = χ(f(y⃗))
showing that χ(f(y⃗)) = c and thus (by definition of Xc) that f(y⃗) ∈ Xc.
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Proof of Claim. Let v⃗ be an orientation given in A.16 for color c. We get the following chain of
containments:

Yc +Bv⃗ = Yc +

(
d∏

i=1

−vi · (0, ε)

)
(Def’n of Bv⃗)

⊆

(
d∏

i=1

vi · (− 1
2 ,

1
2 + ε]

)
+

(
d∏

i=1

−vi · (0, ε)

)
(A.16)

=

(
d∏

i=1

vi · (− 1
2 ,

1
2 + ε]

)
+

(
d∏

i=1

vi · (−ε, 0)

)
(Factor a negative)

=

d∏
i=1

vi · (− 1
2 − ε, 1

2 + ε) (Minkowski sum of rectangles)

⊆ [− 1
2 − ε, 1

2 + ε]d. (vi ∈ {−1, 1})

This proves the claim. ■

We also claim that Yc +Bv⃗ has a substantial measure.

Subclaim A.18. For each color c ∈ C and any orientation v⃗ ∈ {−1, 1}d, the set Yc +Bv⃗ is Borel

measurable and m(Yc +Bv⃗) ≥ mout(Yc) ·
(
1 + ε

1+ε

)d
.

Proof of Claim. Let M = (1 + ε)d which is the measure of
∏d

i=1 vi · (−
1
2 ,

1
2 + ε], and because by

A.16, Yc is a subset of this set, we have mout(Yc) ≤ M .

We have that Yc +Bv⃗ is Borel measurable and that m (Yc +Bv⃗) ≥
(
mout(Yc)

1
d + ε

)d
by A.6 (see

details13). Thus, we have the following chain of inequalities:

m(Yc +Bv⃗) ≥
(
mout(Yc)

1/d + ε
)d

(Above)

= M ·
(
mout(Yc)

1/d

M1/d
+

ε

M1/d

)d

(Factor out M )

≥ M ·
(
mout(Yc)

M

)
·
(
1 +

ε

M1/d

)d
(A.7)

= mout(Yc) ·
(
1 +

ε

1 + ε

)d

(Simplify and use M = (1 + ε)d)

■

Now, consider the indexed family A =
{
Yc +Bv⃗(c)

}
c∈C

(where v⃗(c) is an orientation for c as in
A.16 and A.17) noting that it has finite cardinality because C has finite cardinality. Considering the

13Note that for the ℓ∞ norm, the measure of the unit ball is v∥·∥∞,d = 2d. Then note that Bv⃗ is an open
orthant of an ε ball with respect to ℓ∞, so is in fact itself an ε

2
ball with respect to ℓ∞. This is why we get “ε”

instead of the “2ε” in A.6. We could translate this open ball to the origin and translate the set Yc accordingly to
get the same Minkowski sum without changing the measures, and after doing so we could apply A.6 verbatim.
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sum of measures of sets in A, we have the following:∑
A∈A

m(A) =
∑
c∈C

m
(
Yc +Bv⃗(c)

)
(Def’n of A; measurability was shown above)

≥
(
1 +

ε

1 + ε

)d

·
∑
c∈C

mout(Yc) (A.18 and linearity of summation)

≥
(
1 +

ε

1 + ε

)d

·mout

(⋃
c∈C

Yc

)
(Countable/finite subaddativity of outer measures)

=

(
1 +

ε

1 + ε

)d

·mout

(
[− 1

2 − ε, 1
2 + ε]d

)
(The Yc’s partition [− 1

2 − ε, 1
2 + ε]d)

=

(
1 +

ε

1 + ε

)d

· (1 + 2ε)d (Evaluate outer measure)

By A.17, each member of A is a subset of [− 1
2 − ε, 1

2 + ε]d, so by 5.1, there exists a point p⃗ ∈
[− 1

2 − ε, 1
2 + ε]d that belongs to at least

(
1 + ε

1+ε

)d
· (1 + 2ε)d

(1 + 2ε)d

 =

⌈(
1 +

ε

1 + ε

)d
⌉

sets in A. That is, p⃗ belongs to Yc +Bv⃗(c) for at least
⌈(

1 + ε
1+ε

)d⌉
colors c ∈ C. For each such

color c, it follows that p⃗+(−ε, ε)d intersects Yc (see justification14). Note that with respect to the ℓ∞

norm, p⃗ + (−ε, ε)d = B◦
∞(ε, p⃗) showing that B◦

∞(ε, p⃗) contains points of at least
⌈(

1 + ε
1+ε

)d⌉
colors (according to the coloring of γ since we are discussing sets Yc).

What we really want, though, is a point in the unit cube that has this property rather than a point in
the extended cube, and we want it with respect to the original coloring χ rather than the extended
coloring γ. We will show that the point f⃗ (p⃗) suffices.

Subclaim A.19. If c ∈ C is a color for which B◦
∞(ε, p⃗)∩ Yc ̸= ∅, then also B◦

∞(ε, f⃗ (p⃗))∩Xc ̸= ∅.

Proof of Claim. Let y⃗ ∈ B◦
∞(ε, p⃗)∩Yc⃗. Then because y⃗ ∈ B◦

∞(ε, p⃗), we have ∥y⃗− p⃗∥∞ < ε, so for
each coordinate i ∈ [d], |yi − pi| < ε. It is easy to analyze the 9 cases (or 3 by symmetries) arising in
the definition of f to see that this implies |f(yi)−f(pi)| < ε as well (i.e. f maps pairs of values in its
domain so that they are no farther apart), thus ∥f⃗ (y⃗)− f⃗ (p⃗)∥∞ < ε and thus f⃗ (y⃗) ∈ B◦

∞(ε, f⃗ (p⃗)).

Also, as justified in a prior footnote12, for any y⃗ ∈ Yc we have f⃗(y⃗) ∈ Xc so that f⃗ (y⃗) ∈
B◦

∞(ε, f⃗ (p⃗)) ∩Xc which shows that the intersection is non-empty. ■

Thus, because B◦
∞(ε, p⃗) intersects Yc for at least

⌈(
1 + ε

1+ε

)d⌉
choices of color c ∈ C, by A.19

f⃗ (p⃗) is a point in the unit cube which intersects Xc for at least
⌈(

1 + ε
1+ε

)d⌉
different colors c ∈ C.

That is, this ball contains points from at least this many of the original color sets.

The final step in the proof of the theorem is to clean up the expression with an inequality. Note that C
must contain of at least 2d colors because each of the 2d corners of the unit cube must be assigned a

14If p⃗ ∈ Yc + Bv⃗(c) ⊆ Yc + (−ε, ε)d, then by definition of Minkowski sum there exists y⃗ ∈ Yc and
b⃗ ∈ (−ε, ε)d such that p⃗ = y⃗ + b⃗ so Yc ∋ y⃗ = p⃗− b⃗ ∈ p⃗+ (−ε, ε)d demonstrating that these two sets contain
a common point.
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unique color since any pair of corners belong to an opposite pair of faces on the cube. For this reason
it is trivial that for ε > 1

2 there is a point p⃗ such that B◦
∞(ε, p⃗) intersects at least 2d colors: just let p⃗

be the midpoint of the unit cube. Thus, the only interesting case is ε ∈ (0, 1
2 ], and for such ε we have

1 + ε ≤ 3
2 and thus ε

1+ε ≥ 2
3ε showing that

(
1 + ε

1+ε

)d
≥ (1 + 2

3ε)
d. This completes the proof of

the theorem.

B Measure Theory

Throughout this section, we use the word “countable” to mean finite or countably infinite.
Fact B.1 (ℓ∞ Diameter Ball). Let d ∈ N and X ⊆ Rd be a bounded set with diameter D (with respect
to ℓ∞). Then there exists p⃗ ∈ Rd such that X ⊆ BD/2(p⃗). As a consequence, mout(X) ≤ Dd where
mout denotes outer Lebesgue measure.

Proof Sketch. For each coordinate i ∈ [d], consider the set Xi = {πi(x⃗) : x⃗ ∈ X} ⊆ R of the ith
coordinates of each point in X . The infimum and supremum are distance at most D apart, because
otherwise there would be points y⃗, z⃗ ∈ X such that |πi(z⃗)−πi(y⃗)| > D which means ∥z⃗− y⃗∥∞ > D.
Thus taking p⃗ = ⟨ inf(Xi)+sup(Xi)

2 ⟩di=1 we have X ⊆
∏d

i=1[inf(Xi), sup(Xi)] ⊆ p⃗ + [−D
2 ,

D
2 ]

d =

B(D/2, p⃗).

Fact B.2. If µ is a measure and A is a (possibly uncountable) family of pairwise disjoint measurable
sets, then

µ(
⊔
A∈A

A) ≥
∑
A∈A

µ(A).

Proof. By definition of the arbitrary summation (c.f. [20, p. 11]) we have∑
A∈A

µ(A)
def
= sup

{∑
A∈F

µ(A) : F ⊆ A, F finite

}
and for any F ⊆ A we have

µ(
⊔
A∈A

A) ≥ µ(
⊔
A∈F

A) =
∑
A∈F

µ(A).

Thus µ(
⊔

A∈A A) is an upper bound for the set
{∑

A∈F µ(A) : F ⊆ A, F finite
}

and thus greater
than or equal to the supremum.

Fact B.3 (Interchange of Countable Sums with Non-negative Terms). If I, J are countable sets, and
ai,j ≥ 0 for all (i, j) ∈ I × J , then ∑

i∈I

∑
j∈J

ai,j =
∑
j∈J

∑
i∈I

ai,j

Proof. This can be proved directly via basic analysis methods if I and J are assumed to be N and the
definition of the infinite sum as a limit of finite sums is used. Alternatively, viewing the summation as
an integral over a countable measure space, this can be viewed as a corollary to Tonelli’s theorem.

Lemma B.4 (Upper Bound Measure of Multiplicity). Let n ∈ N. Let X be a measurable set in some
measure space (the measure being denoted by µ) and let A be a countable family of measurable
subsets of X such that for each x ∈ X , x belongs to at most n members of A. Then∑

A∈A
µ(A) ≤ n · µ(X).

Proof. 15 For ease of indexing, assume A = {Ai}∞i=1. Let IAi denote the indicator function for Ai,
and note that by hypothesis, for any k ∈ N, the function

∑k
i=1 IAi is bounded above by the constant

15We thank an anonymous researcher who pointed out that our original proof was overcomplicating things
and pointing us to this elementary proof.
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function n. Thus, recalling that µ(Ai) =
∫
X
IAidµ (because Ai ⊆ X) we have the following for any

k ∈ N:
k∑

i=1

µ(Ai) =

k∑
i=1

[∫
X

IAi
dµ

]
=

∫
X

[
k∑

i=1

IAi

]
dµ ≤

∫
X

ndµ = n · µ(X).

Since this holds for all k, it also holds in the limit:∑
A∈A

µ(A) =

∞∑
i=1

µ(Ai) = lim
k→∞

[
k∑

i=1

µ(Ai)

]
≤ n · µ(X).

Corollary B.5 (Lower Bound Cover Number). Let X be a measurable set in some measure space (the
measure being denoted by µ) such that 0 < µ(X) < ∞. Let A be a countable family of measurable
subsets of X such that

∑
A∈A µ(A) < ∞. Then there exists x ∈ X such that x belongs to at least⌈∑

A∈A µ(A)

µ(X)

⌉
-many members of A.

Proof. First observe that by hypothesis,
⌈∑

A∈A µ(A)

µ(X)

⌉
is finite. Suppose for contradiction that each

x ∈ X belongs to strictly less than
⌈∑

A∈A µ(A)

µ(X)

⌉
-many members of A. Let n =

⌈∑
A∈A µ(A)

µ(X)

⌉
− 1

(noting that n <
∑

A∈A µ(A)

µ(X) ). Then each x ∈ X belongs to at most n-many members of A, so we
have ∑

A∈A
µ(A) ≤ n · µ(X) (Lemma B.4)

<

∑
A∈A µ(A)

µ(X)
µ(X) (0 < µ(X) < ∞ and n <

∑
A∈A µ(A)

µ(X) )

=
∑
A∈A

µ(A)

which is a contradiction.

Remark B.6. In Corollary B.5 above, it was important that we required
∑

A∈A µ(A) to be finite. If
we allowed it to be infinite, then the claim would have been that there was some x ∈ X belonging to
infinitely many members of A, but this is in general not true (see B.7 below). Nonetheless, it is true
(and a straightforward corollary of the above) that if

∑
A∈A µ(A) = ∞, then for any n ∈ N0, there

exists a point xn ∈ X that is contained in at least n-many sets of A. The distinction is that this point
might have to depend on the choice of n.

Example B.7 (Harmonic Cover of Open Unit Interval). Let X = (0, 1) be equipped with the Borel
or Lebesgue measure µ. Let A =

{
(0, 1

i ) : i ∈ N
}

. Then
∑

A∈A µ(A) =
∑

i∈N
1
i = ∞. For any

n ∈ N, we can consider the point xn = 1
n+1 which is contained in (0, 1

i ) for i ∈ [n] and not for any
other i, so it belongs to exactly n sets in A.

However, no point in X belongs to infinitely many sets in A. To see this, consider an arbitrary point
x ∈ X = (0, 1). Then for sufficiently large i ∈ N, x ̸∈ (0, 1

i ) so x belongs to only finitely many
members of A.

The prior results have been stated in typical measure theory notation, but in the body of the paper we
present B.5 as follows for Rd specifically with notation matching what is used elsewhere in the paper.

Proof of Proposition A.1 This follows trivially from B.5 and B.6.
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provided in the main body/appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Our paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Our paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] ,

Justification: There are no potential harms caused by this research work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper has no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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