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Abstract

We establish explicit dynamics for neural networks whose training objective has a regular-
ising term that constrains the parameters to remain close to their initial value. This keeps
the network in a lazy training regime, where the dynamics can be linearised around the
initialisation. The standard neural tangent kernel (NTK) governs the evolution during the
training in the infinite-width limit, although the regularisation yields an additional term
that appears in the differential equation describing the dynamics. This setting provides an
appropriate framework to study the evolution of wide networks trained to optimise general-
isation objectives such as PAC-Bayes bounds, and hence contribute to a deeper theoretical
understanding of such networks.

1 Introduction

The analysis of infinitely wide neural networks can be traced back to Neal (1995), who considered this limit
for a shallow (1-hidden-layer) network and showed that, before the training, it behaves as a Gaussian process
when its parameters are initialised as independent (suitably scaled) normal distributions. A similar behaviour
was later established for deep architectures, also allowing for the presence of skip-connections, convolutional
layers, etc. (Lee et al., 2018; 2019; Arora et al., 2019a; Novak et al., 2019; Garriga-Alonso et al., 2019; Yang,
2019; Hayou et al., 2021). Lee et al. (2019; 2020), among others, brought empirical evidence that wide (but
finite-size) architectures are still well approximated by the Gaussian limit, while finite size corrections were
derived in Antognini (2019) and Basteri & Trevisan (2022).

Although the previous results hold only at the initialisation (as the Gaussian process approximation is only
valid before the training), Jacot et al. (2018) established that the evolution of an infinitely wide network can
still be tracked analytically during the training, under the so-called neural tangent kernel (NTK) regime. In
a nutshell, they showed that the usual gradient flow on the parameters space induces the network’s output to
follow a kernel gradient flow in functional space, governed by the NTK. A main finding of Jacot et al. (2018)
is that although for general finite-sized networks the NTK is random at the initialisation and evolves during
the training, in the infinite-width limit it becomes a deterministic object that can be exactly computed, and
it stays fixed throughout the training. Later, Lee et al. (2019) provided a new proof of the convergence
to the NTK regime, while Yang (2019) established similar results for more general architectures, such as
convolutional networks. Chizat et al. (2019) extended the idea of linearised dynamics to more general models,
introducing the concept of lazy training and finding sufficient conditions for a network to reach such regime.
They also pointed out that this linearised behaviour may be detrimental to learning, as also highlighted by
Yang & Hu (2022) who showed that the NTK dynamics prevent a network hidden layers from effectively
learning features. However, the NTK has been a fruitful tool to analyse convergence (Allen-Zhu et al.,
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2019b; Du et al., 2019) and generalisation (Allen-Zhu et al., 2019a; Arora et al., 2019b; Cao & Gu, 2019) for
over-parameterised settings under (stochastic) gradient descent.

The standard derivation of the NTK dynamics (Jacot et al., 2018; Lee et al., 2019) requires the network to
be trained by gradient descent to optimise an objective that depends on the parameters only through the
network’s output. This setting does not allow for the presence of regularising terms that directly involve
the parameters. Yet, in practice, a network reaches the NTK regime when its training dynamics can be
linearised around the initialisation. This happens if the network parameters stay close enough to their initial
value throughout the training, the defining property of the lazy training regime. It is then natural to expect
that a regularising term that enforces the parameters to stay close to their initialisation will still favour
linearised dynamics, and so bring a training evolution that still can be expressed in terms of a fixed and
deterministic NTK. This is the focus of the present paper, where we discuss the evolution of a network
in the NTK regime trained with an ¢?-regularisation that constrains the parameters to stay close to their
initial values. We remark that similar ideas are also present in Hu et al. (2020), where the authors study
the evolution of a linearised approximation of a neural network under the #2-regularisation, without however
proving the convergence of the original network’s dynamics to those of the linearised model.

We note that regularisers centred at the initialisation typically appear in PAC-Bayes-inspired training objec-
tives, where the mean vector of normally distributed stochastic parameters is trained via (stochastic) gradient
descent on a generalisation bound (an approach initiated by the seminal work of Langford & Caruana, 2001
and further explored by Alquier et al., 2016; Dziugaite & Roy, 2017; Neyshabur et al., 2018; Letarte et al.,
2019; Nagarajan & Kolter, 2019; Zhou et al., 2019; Nozawa et al., 2020; Biggs & Guedj, 2021; 2022; Dziugaite
et al., 2021; Pérez-Ortiz et al., 2021a;b; Pérez-Ortiz et al., 2021; Chérief-Abdellatif et al., 2022; Lotfi et al.,
2022; Tinsi & Dalalyan, 2022; Clerico et al., 2022; 2023a; Viallard et al., 2023). As these training objectives
yield generalisation guarantees, we conjecture that the exact dynamics that we derive could be a starting
point to obtain generalisation bounds for more general kernel gradient descent algorithms.

As final remarks, we note that Chen et al. (2020) considers a NTK regime that allows for regularisation, but
they only consider the mean-field setting of two-layer neural networks (introduced by Chizat & Bach, 2018;
Mei et al., 2018, and further explored by Mei et al., 2019; Wei et al., 2019; Fang et al., 2019), where the
network is not initialised with a scaling yielding a Gaussian process. Finally, we mention that also Huang
et al. (2022) attempted the analysis of PAC-Bayesian dynamics via NTK. However, their approach differs
from ours, it does not highlight the effect of the regularisation term, and the whole analysis deals with a
simple shallow stochastic architecture where only one layer is trained.

Outline. We present our framework and notation in Section 2 and then treat the unregularised NTK
dynamics in Section 3 as a starter. We then move on to the more interesting case of regularised dynamics
in Section 4, first for the simple case of ¢?>-regularisation and then for a more general regularising term. We
instantiate our analysis to the example of least square regression in Section 5 and illustrate the merits of
our work with an application to PAC-Bayes training of neural networks in Section 6. The paper ends with
concluding remarks in Section 7 and we defer technical proofs to Appendix A.

2 Setting and notation

We consider a fully-connected feed-forward neural network of depth L, which we denote as F : X — RY,
where X C R? is a compact set. We denote as n; the width of the [-th hidden layer of the network, as ng = p
the input dimension and nj = ¢ the output dimension. We consider the network

g

Fo)=UH@): U@ = = 3 W) Ul = oY Wy
=1 j=1

where ¢ is the network’s activation, acting component-wise. The network’s prediction in the label space )
is g(z) = f(F(x)), for some f : R? — ). We denote as W the parameter space where the weights lie, and
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as W the parameters of the network. We consider the infinite-width limit, where all the hidden widths n;
(I=1,...,L —1) are taken to infinity'.

Data consists of pairs instance-label z = (z,y) € Z2 = X x ), with x € X and y € V. We consider a
non-negative loss function ¢ : W x Z — [0, 00). For a dataset s € Z™, we define the empirical loss L as the

average of £ on s, namely
1
= — E LW, 2).
m (W.2)
zEs

As we will often encounter empirical averages, we define the following handy notation
1
{9(2))s = {9(X,Y)), = — > gx,y),
(Eﬂ/)es

so that L, (W) = (¢(W, Z)> We assume that ¢ depends on W only through the network’s output F), i.e.,
there exists a function # such that we can rewrite

(W, 2) = U(F(z),y).
The network training follows the gradient of a learning objective Cs, namely

KW (t) = =VC,(W (1)),

where V denotes the gradient with respect to the parameters. We assume that Cs can be split into two
terms, the empirical loss, and a regularisation term that depends directly on the parameters (without passing
through the network’s output F') and does not depend on s:

Cs=Ls+ IR, (1)

for some A > 0. We let p: RT™ — R™T be a strictly increasing differentiable function such that p(0) = 0, and
we consider the case of a regulariser in the form

ROV) = p (517 = WO)IE) 2

with W(0) denoting the value of the parameters at the initialisation, and with || - ||% denoting the square of
the Frobenius norm on W, namely |[W|jZ = >, (W; ) .

For conciseness, we write Ag(t) for g(t) — g(0), where g is any time-dependent term. Moreover, we introduce
the following notation

0 OU! (x5t
ng;lij(x;t) = ({;Vi/'ll ) )
0L, (z,2;t) Zw (z;t) wfc,l (a'5t); (3)

I'=1
=5 Z it (wst) - AW (1),
I'=1

where - 7 denotes the component-wise inner product between matrices (or vectors) of the same size. ©F
is the so-called neural tangent kernel (NTK) of the network. We remark that if =' represent the linear
approximation of the variation of U! with respect to changes in the parameters.

1Following the approach of Jacot et al. (2018), we will consider the case where this limit is taken recursively, layer by layer
(that is we also have n;41/n; — 0).
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3 The unregularised dynamics

Without regularisation (namely when we set p = 0) the standard NTK dynamics hold (Jacot et al., 2018;
Lee et al., 2019). We briefly cover this case, where the width of the network is taken to infinity.

At the initialisation, the network’s output behaves as a centred Gaussian process, whose covariance kernel can
be computed recursively. More precisely, we have that all the components of the output are i.i.d. Gaussian
processes defined by

Fy, ~ GP(0,%"),
where

z-x

vz, 2') = g S (@, 2") = B¢ enmno,5 (z.e) [6(Od(C)] - (4)

Moreover, the neural tangent kernel ©F, defined in (3), tends to a diagonal deterministic limit (with respect
to the initialisation randomness), and stays constant during the training. In particular, we have

oL (z,2';t) = OF (2, 2") o ,

where ©F can be computed recursively as follows:

él = 21 5 él+1(xa I/) = El+1(xa I/) + E(Cvc/)NN(O,El(y;,w’))[d)(C)Q.S(CI)]GZ(xa :E/) 5 (5)
with ¢ denoting the derivative of ¢.

During the training, the network’s output obeys the dynamics

('“)tFk(:v;t):—% Z @L(x,x)W:—<@L(x,X)W> . (6)
(z.y)€s ) s

We remark that the network being in the NTK regime simply means that the model is linear around the
initialisation. Indeed, neglecting terms of order O(||AW (¢)]|?) one has

F(x;t) ~ F(2;0) + Jw [F(X;0)] AW (1),

with Jy denoting the Jacobian with respect to the parameters. Assuming that this linear approximation
holds we also have
O F(z;t) = Jw [F(X;0)] 0, W (1) .

Now, up to terms of order O(||AW (¢)]|),

QW (t) = —VL (W () = — <JW[F(X;t)]T VFE(F(X;t),Y)> ~_ <JWF(X;t)T VRl(F(X; 0),Y)>

S S

Jacot et al. (2018) showed that in the infinite-width limit this linear approximation becomes exact, and
Jw[F(2';0)] Jw[F(X;0)]" tends in probability to the ©(x,2')Id, leading to the dynamics (6), as

OF (2:) ~ —Jw[F(X;0)] <JW[F(X; T VRl(F(X;1), y>> ~ <éL(x,X)vFé(F(X), Y)>

S S

4 The regularised dynamics
In this section, we discuss the impact of the regularisation term on the NTK dynamics. We first particularise

this to the specific case of £2-regularisation, then move to the treatment of more general regularisers.

Intuitively, we note that the regulariser that we are studying tends to keep the walues of the parameters
close to their initialisation. Hence, we still expect that the dynamics can be linearised. If this assumption
indeed holds, we get (in the simpler case p = id)

W, ~ — <JW[F(X; 0)]T VrI(F(X;0), Y)> “ AW ().

S
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Keeping in mind that for the linearised model we have AF (z;t) ~ Jyw [F(X;0)] AW (¢), now we have
OuF (1:) = — <éL(:v, X)Vrl(F(X), Y)> — AAF(z;t)

which is a regularised version of the NTK evolution. We will establish this more rigorously in the next
sections, showing that under regularised dynamics the linearised model is a valid approximation of the
neural network in the infinite-width limit.

4.1 Simple /%-regularisation

We first consider the case p = id in (2), so that R(W) = 3|AW|% and
A 2
Cs(W) = Ls(W) + S [[AWJE- (7)

By just applying the chain rule to 9, W (t) = —VCs(W (t)), we find that

BV (1) = ~VC,0V (1) = - - <w§;§- (x; t>W> —AAW(). ®
k=1 s

This translates into the following functional evolution of the network’s output

g OU(F(X;t),Y -
OpFi(z5t) = — Z <®£k'(x’X;t)((3Fk/)) — AEf (x51) .

E'=1
Our goal is to prove that in the infinite width limit the next two properties hold:

1. The NTK is constant at its initial value, which coincides with the standard deterministic NTK in
(5), and more generally for all layers

Ol (z,2) = 61O (2, 2') ;

2. The term =¥ is exactly AF, and more generally

El(x;t) = AU (a3 t) = Ul(z;t) — Ul(a;0).

We note that these two properties are actually rather intuitive: the first one tells us that the Jacobian of the
output stays fixed during the training, as if the dynamics where linear; the second one that we can indeed
linearise U around the initialisation. We recall that the standard NTK regime (with no regularisation) holds
when the parameters do not move too much from their initial values, so that the dynamics can be linearised.
The addition of a regularising term does actually enforce the parameters to stay close to their initial value.
Hence, adding regularisation does not hinder the linearisation of the learning dynamics.

From the two properties above, we conclude that the NTK evolution of F' is given by the following.
Theorem 1. In the infinite-width limit, taken recursively layer by layer, the network’s output evolves as

OFwi) =~ 3 e D)

(z,y)€s

— MFg(z;t) — Fr(;0)),

where OF is defined in (5).

Note the term —A(Fy(z;t) — Fj(x;0)), which constrains the network’s output to stay close to its initialisation,
is not present in the standard NTK dynamics (6).



Published in Transactions on Machine Learning Research (04,/2024)

Evolution of the training objective. As a side remark, we can see how the training objective Cs evolves
during the training. First,

DL (W(H)) = — <VFE<F(X; £),Y) ~8tF(X;t)>

S

- <é(X, X)WV el(F(X:1),Y) - VFE(F(X’;t),Y’)> A <vFé(F(X;t),Y) : AF(X;t)> :

5Qs

where the notation (g(Z, Z'))sgs denotes 23> >, g(z,2'). On the other hand, for the regularising
term we have that

OR(W () = — <VFE(F(X;t),Y) : AF(X;t)> CNR(W(L). 9)
Thus, overall we get that
Cs(W (1))
S <é(X, X)VRpl(F(X:1),Y) Vpl(F(X';1), Y’)> —2A <VFZ(F(X; £),Y) - AF(X; t)> CONIR(W(2)).

s®s s
As a side remark, we note that if 7 is convex in F', then we always have that
Vrl(F(a;t),y) - AF (1) > AU(F(251), y) = H(F(25t),y) — 0(F(2;0),y).
In particular we get that
OR(W (1)) < (AL(F(x;t),Y)), —2AR(W(t)) = —AC;(W(t)) — AR(W (¢)) .
Since t — ACs(W (t)) is non-decreasing, we obtain that

1 _
ROV(H) < 5 (€. 7(0) = (W) ) (1 -,
from which it follows that R(W (t)) can be controlled by the variation in Ls(W (t)) as

e
NR(OW (1)) < 5= (LW (0) — LW (1)

T 2—e M
4.2 General regulariser

We consider the case of a more general regularising term, which still leads to tractable training dynamics.
Let p: Rt — R™ be a differentiable strictly increasing function. Define

ORI INGOIS
and let
ROW (1)) = p(D(1))

Theorem 2. Consider a function p : [0,00) — [0,00) as above and assume that { is locally Lipschitz.
Assume that the dynamics are given by

W (t) = =VC(W(t)) = =VL(W(t)) = AR(W (1))

Then, in the infinite-width limit (taken recursively layer by layer) we have

OrFy(z;t) = — <@(x;X)W> — M (D(t)AFy(2;t) ;

D) = -3 <AFk<X; t>W> — 20/ (D(1)) D)
k=1 s
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Proof. The proof is based on the following result, which we establish in Appendix A.1.
Proposition 1. Fiz a time horizon T > 0 and a depth L. Assume that for t € [0,T) and for alll € [1: L]

nr,

WLt = =Y (VELXOV(Zit)) = M(D@:AWS(D),
k=1

for some mappings V : Z x R — R" and r : [0,00)%2 — R. Then we have that UL obeys the dynamics

QU (w3t) = = Y (O (&, Xst)Vir (F(X51),Y)) = Ar(D(#); )Ef; (w31) -
k'=1

Moreover, if D(t) = O(1) for allt € [0,T],

T

T
/O AV (Z:0)), dt = 0(1)  and / Ir(D(t): £)|dt = O(1)

0

if ¢ is vg-Lipschitz and By-smooth, then (in the infinite-width limit taken starting from the layer 1 and then
going with growing index), for all 1 € [1 : L], ©! is constant during the training, and Z' = AU

To prove Theorem 2, we need to check that the assumptions of the above proposition hold when setting
r(D;t) = p/(D(t)) and V(z;t) = Vel(F(x;t),y). First, notice that Cs(t) < C4(0) = L4(0) for all ¢ > 0,
as we are following the gradient flow. Now, with arbitrarily high probability (on the initialisation), we
can find a finite upperbound J for £4(0), which holds when taking the infinite-width limit (as the network
output becomes Gaussian). In particular, we have that since J is independent of the width and we can write
J = O(1) (where the O notation is referred to the infinite width limit). Now, we have that

R(t) < J/A=0(Q).
Since p is invertible, in particular for all ¢ > 0 we have that
D) < p~X(J) = 0(1).

We prove in Lemma 1 (Appendix A.1) that AF(t) = O(1), and so we know that with arbitrarily high
probability we can find a radius J’ such that ||F(x;t)| < J’ for all ¢ > 0. In particular, the regularity of
{ implies that V (z;t) = Vpl(F(x;t),y) is uniformly bounded for all ¢ > 0. So, fOT (IV(Z;0)]),dt = O(1).
Finally, we have that the r(D;t) in the previous statement is p'(D(t)). Since D(t) is bounded throughout
the training and p is locally Lipschitz we can bound the integral over r and apply Proposition 1.

Finally, the dynamics for D(t) follow from the chain rule. O

Clearly Theorem 1 is just a particular instance of Theorem 2, as we only need to set p as the identity.

5 The example of least square regression

As a simple application of what we established, we study the evolution of a network under least square
regression, namely when we have £(§,y) = %(gj —y)2. The dynamics of the training are given by

O F(z;t) = — (O, X)(F(X;t) = Y))_ — AF(x;t) — F(x;0)) .

This is a linear ODE and can be solved exactly. For convenience we introduce the following notation. We let
O denote the NTK Gram matrix whose entries are ©(z,z’)/m, with = and 2’ ranging among the instances
of the training sample s. Similarly F (t) and Y are the vectors made of the network’s output and labels, for
the datapoints in s. We thus have

O F(t) = —O(F(t) — Y) — A(F(t) — F(0)),
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which brings B B o
F(t) = F(0) + (Id — e ™"V 'O(Y — F(0)),

where V) = Ald + (:), which is always invertible for A > 0.
Note that asymptotically for large ¢ we have that

F(t) = F(c0) = (Id - V;lé) F(0) + Vv, 'eY,

which is exactly what one would obtain optimising Cs in (1). Clearly, for small values of A the labels are
almost perfectly approximated, as we have

F(oo) =Y + X071 Id+ 20" H)"HF(0) = Y) =Y + O()).

On the other hand, if A is very large then ﬁ(oo) ~ F(0), as

F(c0) = F(0) + i) <Id + ?) (Y — F(0)) = F(0) + O(1/X).

Once the evolution of F on the training datapoints has been computed, one can directly evaluate the value
of F(x;t) for any input that is not in the training sample. Defining

7(x5t) = <(:)(I,X)(F(X;t) — Y)>s ,2

we have

¢
F(x;t) = F(x;0) + (1 — e_M)/ Tz t)e M dt’
0

6 An application to PAC-Bayesian training

A motivation to study dynamics in the form of (8) comes from the PAC-Bayesian literature. We consider a
dataset s made of i.i.d. draws from a distribution p on Z. We are seeking for parameters W with a small
population loss

Lz(W) =E.[((W)].

As p is unknown, we rely on the empirical loss L as a proxy for Lz.

The PAC-Bayesian bounds (introduced in the seminal works of Shawe-Taylor & Williamson, 1997;
McAllester, 1999; Seeger, 2002; Maurer, 2004; Catoni, 2004; 2007 — we refer to the recent surveys from
Guedj, 2019; Alquier, 2021; Hellstrom et al., 2023 for a thorough introduction to PAC-Bayes) are generali-
sation guarantees that upperbound in high probability the population loss of stochastic architectures, in our
case networks whose parameters W are random variables (this means that every time that the network sees
an input z, it draws W from some distribution @), and then evaluate F'(z) for this particular realisation of
the parameters). The PAC-Bayesian bounds hold in expectation under the parameters law ¢ (commonly
referred to as posterior). Here is a concrete example of this kind of guarantees. Fix a probability measure
P and n > 0, for a bounded loss ¢ € [0, 1] we have (see, e.g., Alquier, 2021)

KL(Q|P) + log(1/5)>
EwoL,(W)] < Ewg[lsW)]+ — 1+ ,
wol€uW)] < Bmolea(W)]+ = (1 -
where the inequality holds uniformly for every probability measure @, in high probability (at least 1 — §)
with respect to the draw of s. The probability measure P (typically called prior) in (10) is arbitrary, as long
as it is chosen independently of the particular dataset s used for the training.

(10)

Several studies (see Section 1 — this line of work started with Langford & Caruana, 2001, was reignited by
Dziugaite & Roy, 2017 and then followed by a significant body of work by many authors) have proposed

2We remark that 7(z;t) can be computed: when averaging on s, F'(X;t) only takes as values the components of F(t).
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to train stochastic neural networks by optimising a PAC-Bayesian bound. A possible approach consists in
considering the case when all the parameters of the network are independent Gaussian variables with unit
variance (namely W}, ~ N(ml;,1)). The training then usually amounts to tune the means m. Typically,
the initial values of the means are randomly initialised (we denote them as m(0)), and P can be chosen as
the distribution of the networks parameters at initialisation (Dziugaite & Roy, 2017), namely a multivariate

normal with the identity as covariance matrix and m(0) as mean vector. In this way, one gets that
1
KL(Q|P) = 5|lm(t) — m(0)] -

Defining £,(m) = Eyynr(m,1a)[Ls(W)], we see that using the bound (10) as training objective is equivalent
to optimise

C.m) = £ufm) + 3~ mO)l (1)

which is exactly in the form of (7) with A = 1/(nv/8m). More generally, many PAC-Bayesian bounds are
not linear in the KL therm. However, they can still fit in our framework (with a general reguliriser p as in
Section 4.2) as long as they are in the form

Ew~qlLu(W)] < Ewnglls(W)] + A(KL(QIP))

for some strictly increasing and differentiable p. This is for instance the case for the training objective used
for the PAC-Bayesian training by Dziugaite & Roy (2018).

While significant experimental work has focused on PAC-Bayesian training methods and achieved promising
results, to our knowledge the literature lacks of rigorous theoretical studies of these training dynamics. Since
the NTK formulation has already been successfully used for the study of gradient descent in the unregularised
case, we anticipate that the closed-form expression for the network’s evolution that we derived could help
study various properties (such as rates of convergence, convergence to global/local minima, etc.).

Training of wide and shallow stochastic networks

Clerico et al. (2023b) has recently shown that, when considering the infinite-width limit for a single-hidden-
layer stochastic network, a close form for ﬁs(m) can be computed explicitly, and one can actually see the
stochastic network as a deterministic one (with a different activation function), where the means m are the
trainable parameters. We summarise and rephrase the results of Clerico et al. (2023b), and show explicitly
how exact continuous dynamics can be established via our results, in the infinite-width limit.

We focus on a binary classification problem (i.e., Y = {£1}), where we assume that all the inputs x are
normalised so that ||z| = \/ng (i.e., X = S™~!( /ng), the sphere of radius \/ng in R™). We consider
a stochastic network with a single hidden layer and one-dimensional output, and Lipschitz and smooth
activation ¢,

1 n 1 no
Flo)= =Y WU} @) Ula)= = Wha,.
vn j=1 VI 55
The prediction of the network is the sign of the output. The stochastic parameters can be rewritten as
wh=¢+mh,

where (! is a matrix of the same dimension of W', whose components are all independent standard normals
(resampled every time that a new input is fed to the network) and m! is a matrix of trainable parameters
(the means of W'). We assume that the components of m! are all randomly initialised as independent draws
from a standard normal distribution. In this setting, Clerico et al. (2023b) showed that in the infinite-width
limit n — oo

F(z) ~ N(M?*(z),Q*(x)),* (12)

3The limit is in distribution with respect to the intrinsic stochasticity of the ¢’s, and in probability with respect to the
random initialisation.
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where M? and Q? are the output mean and variance in the limit.

When the training objective is in the form (11), the network is constraint to remain close to its initialisation.
Interestingly, in this lazy training regime Q? stays constant to its initial value, which is deterministic (with
respect to the initialisation randomness) and independent of = when X is a sphere. We can thus define o > 0
such that Q?(x;t) = o2, for all x € X and t. We refer to the Appendix A.2 for details.

Following the derivation of Clerico et al. (2023b) we note that M? can actually be seen as the output of a
neural network with parameters m, whose activation function is v, defined as a Gaussian convolution of ¢,

Y(u) = Ecopnr(o,n[o(C +u)].
Concretely, this means that

_ L

M? () T

m*p(M(2));  M'(z) = —=m'a.

Now, for a loss function @(F, z), we can define the expected loss
E(Mv Z) = ECNN(O,I) [E(UC + Mv Z)] .
In this way, we have that the expected empirical loss £4(m) appearing in (11) is given by
_ 1 _
Lum) = 1 S EL ). 0).
Hence, optimising the PAC-Bayes bound (10) induces the dynamics

oU(M?(X;t),Y)
OM?

&gMZ(:z:;t) = — <(:)(x,X) > B AMZ(:c;t), (13)
s N

V8m
where O(z,2') = Viu M?(2;0) - Voo M?(2';0) is given by

with (¢, ') ~ N (O 1 ( no @z’ )) and 1) denoting the derivative of 1.

’
"no \ z-x’ ng

Misclassification loss. A common choice is to set /(F,z) = 1 if sign F(z) # y, and 0 otherwise, that is
the so-called misclassification loss. In such a case we can easily derive that

(- (22)

e~ M*(X5t)/(207) 1
nv8m

This does not have a simple close-form solution, and can only be solved using numerical integrators.

N |

0(M, 2) = Peonon) (C > yM(x)) =

(2

It follows that (13) now reads

AM?(z;t).

O M?(z;t) = <Y(:)(x;X)

oV2r

Quadratic loss. In order to obtain simpler dynamics we consider the loss /(F,z) = (1 — yF(z))2. Note
that this quadratic loss is unbounded, and so a generalisation bound such as (10) is not guaranteed to hold.
However, the quadratic loss is always greater than the misclassification loss, so the RHS of (10) is still a valid
generalisation upperbound for the misclassification population loss. This choice of 1 yields the dynamics

1

O M?(x3t) = —2(0(2; X)(M? (23 t) — Y)>S - WAMZ(x;t) .

10
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Proceeding as in Section 5, and again using a tilde to denote vectors and matrices indexed on the training
sample s, we get that . . o
N () = M2(0) + (1d — e2r2) V AB(Y — M2(0)),

where V) /5 = Ald/2 + O and \ = 1/(nv8m). Asymptotically, for large ¢, M? will approach

M?(00) = M?(0) + Vy 46(Y — M*(0)).
For large t, the empirical loss approaches

_ 1 —
‘COO:EHMQ( ) Y||()\/2 2V 27
where for a positive definite matrix A we define |[v[|% = vT Av. We note that the eigenvalues of (\/2)? V/\_/g
are in the form

A2 /4
2+ 0

Q; =

where the 60;’s are the eigenvalues of O. In practice, we can expect the largest eigenvalues of O to be of order
1 (i.e., max; 0; ~ 1) when the sample size m grows to infinity (Murray et al., 2023). Since A ~ 1/y/m, we

get that the network will be able to reach a small empirical loss (of order A\? ~ 1/m) if M? (0) = Y lies in
eigenspaces of © where the eigenvalues 6; ~ 1> 1//m.

On the other hand, for large ¢ the regularising term R will approach R, which from (9) must satisfy

%AM(OO) (M(x0) = V) = —22Row

From this we can derive that 1
Reo = — | M2(0) = Y2 _,~
= 5O - T

Here, the eigenvalues of V /2@ are of the form

0;
Bi= o
(A/2+6;)
If we are in the regime where the datapoints are such that M 2(0) — Y again lies where 6; ~ 1, then we can
expect R, ~ 1. This means that if we are able to learn well the labels while optimising the PAC-Bayesian
bound, we are ensured that the KL term is of order 1, and so the objective (11) will be of order 1/y/m,
resulting in a non-vacuous bound. We argue that this is what happens when data comes from a reasonable
underlying distribution, matching the implicit regularisation induced by the NTK.

We finally note that the §;’s are small also when 6; < 1/4/m. However this is due to the fact that these
directions are not promoted by the NTK dynamics and so if M? (0) — Y completely lies in eigenspaces with
very small eigenvalues of (:)7 then the network will essentially stay fixed to its initial configuration, keeping
a small penalty, but also not improving its performance.

7 Conclusion

We established explicit dynamics for infinitely wide fully connected networks trained to optimise a regularised
objective, where the regularisation pushes the parameters to stay close to their initialisation. Under this
regime we show that the model undergoes linearised dynamics during the training, which turns out to be a
regularised version of the standard NTK evolution.

Our analysis follows similar ideas to the NTK convergence proof of Jacot et al. (2018) and presents the first
regularised NTK analysis that can also be applied to PAC-Bayesian training. We conjecture that stronger

11
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follow-up results could be derived, for instance, following the approach of Lee et al. (2019) to show that
the convergence holds when the infinite width limit is taken for all the hidden layers simultaneously, and to
study discretised dynamics.

We also anticipate that further analytical and empirical studies of the induced PAC-Bayesian dynamics
might be of interest to shed some light on generalisation-driven training of neural networks.

References

Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural networks, going
beyond two layers. NeurIPS, 2019a.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization. ICML,
2019b.

P. Alquier. User-friendly introduction to PAC-Bayes bounds. arXiv:2110.11216, 2021.

P. Alquier, J. Ridgway, and N. Chopin. On the properties of variational approximations of Gibbs posteriors.
Journal of Machine Learning Research, 17, 2016.

J.M. Antognini. Finite size corrections for neural network Gaussian processes. ICML Workshop, 2019.

S. Arora, S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an infinitely
wide neural net. NeurIPS, 2019a.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generalization for
overparameterized two-layer neural networks. ICML, 2019b.

A. Basteri and D. Trevisan. Quantitative Gaussian approximation of randomly initialized deep neural
networks. arXiv:2203.07379, 2022.

F. Biggs and B. Guedj. Differentiable PAC-Bayes objectives with partially aggregated neural networks.
Entropy, 23(10), 2021.

F. Biggs and B. Guedj. Non-vacuous generalisation bounds for shallow neural networks. ICML, 2022.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities - A Nonasymptotic Theory of Indepen-
dence. Oxford University Press, 2013.

Y. Cao and Q. Gu. Generalization error bounds of gradient descent for learning over-parameterized deep
relu networks. AAAI Conference on Artificial Intelligence, 2019.

O. Catoni. Statistical Learning Theory and Stochastic Optimization. Ecole d’Eté de Probabilités de Saint-
Flour. Springer, 2004.

O. Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical learning. IMS Lecture
Notes Monograph Series, 2007.

Z. Chen, Y. Cao, Q. Gu, and T. Zhang. A generalized neural tangent kernel analysis for two-layer neural
networks. NeurIPS, 2020.

B.E. Chérief-Abdellatif, Y. Shi, A. Doucet, and B. Guedj. On PAC-Bayesian reconstruction guarantees for
VAEs. AISTATS, 2022.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using
optimal transport. NeurlPS, 2018.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. NeurIPS, 2019.

E. Clerico, G. Deligiannidis, and A. Doucet. Conditionally Gaussian PAC-Bayes. AISTATS, 2022.

12



Published in Transactions on Machine Learning Research (04,/2024)

E. Clerico, G. Deligiannidis, and A. Doucet. Wide stochastic networks: Gaussian limit and PAC-Bayesian
training. ALT, 2023a.

E. Clerico, T. Farghly, G. Deligiannidis, B. Guedj, and A. Doucet. Generalisation under gradient descent
via deterministic PAC-Bayes. arXiv:2209.02525, 2023b.

S.S. Du, J.D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. ICML, 2019.

G.K. Dziugaite and D.M. Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural
networks with many more parameters than training data. UAI 2017.

G.K. Dziugaite and D.M. Roy. Data-dependent PAC-Bayes priors via differential privacy. NeurlPS, 31, 2018.

G.K. Dziugaite, K. Hsu, W. Gharbieh, G. Arpino, and D.M. Roy. On the role of data in PAC-Bayes bounds.
AISTATS, 2021.

C. Fang, Y. Gu, W. Zhang, and T. Zhang. Convex formulation of overparameterized deep neural networks.
arXiv:1911.07626, 2019.

A. Garriga-Alonso, C.E. Rasmussen, and L. Aitchison. Deep convolutional networks as shallow gaussian
processes. ICLR, 2019.

B. Guedj. A primer on PAC-Bayesian learning. Second congress of the French Mathematical Society, 2019.
S. Hayou, E. Clerico, B. He, G. Deligiannidis, A. Doucet, and J. Rousseau. Stable ResNet. AISTATS, 2021.

F. Hellstrom, G. Durisi, B. Guedj, and M. Raginsky. Generalization bounds: Perspectives from information
theory and PAC-Bayes. arXiv:2309.04381, 2023.

W. Hu, Z. Li, and D. Yu. Simple and effective regularization methods for training on noisily labeled data
with generalization guarantee. ICLR, 2020.

W. Huang, C. Liu, Y. Chen, T. Liu, and Richard Y. Da X. Demystify optimization and generalization of
over-parameterized PAC-Bayesian learning. arXiw:2202.01958, 2022.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: convergence and generalization in neural
networks. NeurIPS, 2018.

J. Langford and R. Caruana. (Not) bounding the true error. NeurIPS, 2001.

J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural networks as
Gaussian processes. ICLR, 2018.

J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide neural
networks of any depth evolve as linear models under gradient descent. NeurIPS, 2019.

J. Lee, S. Schoenholz, J. Pennington, B. Adlam, L. Xiao, R. Novak, and J. Sohl-Dickstein. Finite versus
infinite neural networks: an empirical study. NeurIPS, 2020.

G. Letarte, P. Germain, B. Guedj, and F. Laviolette. Dichotomize and generalize: PAC-Bayesian binary
activated deep neural networks. NeurIPS, 2019.

S. Lotfi, M. Finzi, S. Kapoor, A. Potapczynski, M. Goldblum, and A. Gordon Wilson. PAC-Bayes compres-
sion bounds so tight that they can explain generalization. NeurIPS, 2022.

A. Maurer. A note on the PAC Bayesian theorem. arXiv:0411099, 2004.
D.A. McAllester. PAC-Bayesian model averaging. COLT, 1999.

S. Mei, A. Montanari, and P.M. Nguyen. A mean field view of the landscape of two-layer neural networks.
Proceedings of the National Academy of Sciences, 115, 2018.

13



Published in Transactions on Machine Learning Research (04,/2024)

S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks: dimension-free
bounds and kernel limit. COLT, 2019.

M. Murray, H. Jin, B. Bowman, and G. Montufar. Characterizing the spectrum of the NTK via a power
series expansion. ICRL, 2023.

V. Nagarajan and J. Zico Kolter. Deterministic PAC-Bayesian generalization bounds for deep networks via
generalizing noise-resilience. ICLR, 2019.

R.M. Neal. Bayesian learning for neural networks. Springer Science & Business Media, 118, 1995.

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A PAC-Bayesian approach to spectrally-normalized margin
bounds for neural networks. ICLR, 2018.

R. Novak, L. Xiao, J. Lee, Y. Bahri, G. Yang, J. Hron, D. A Abolafia, J. Pennington, and J. Sohl-Dickstein.
Bayesian deep convolutional networks with many channels are gaussian processes. ICLR, 2019.

K. Nozawa, P. Germain, and B. Guedj. PAC-Bayesian contrastive unsupervised representation learning.
UAI 2020.

M. Pérez-Ortiz, O. Rivasplata, E. Parrado-Hernandez, B. Guedj, and J. Shawe-Taylor. Progress in self-
certified neural networks. NeurIPS workshop on Bayesian Deep Learning, 2021.

M. Pérez-Ortiz, O. Risvaplata, J. Shawe-Taylor, and C. Szepesvari. Tighter risk certificates for neural
networks. Journal of Machine Learning Research, 22, 2021a.

M. Pérez-Ortiz, O. Rivasplata, B. Guedj, M. Gleeson, J. Zhang, J. Shawe-Taylor, M. Bober, and J. Kittler.
Learning PAC-Bayes priors for probabilistic neural networks. arXiv:2109.10304, 2021b.

M. Seeger. PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification. Journal of
Machine Learning Research, 3, 2002.

J. Shawe-Taylor and R.C. Williamson. A PAC analysis of a Bayesian estimator. COLT, 1997.

L. Tinsi and A.S. Dalalyan. Risk bounds for aggregated shallow neural networks using gaussian priors.
COLT, 2022.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, chapter 5 in Compressed
Sensing: Theory and Applications, pp. 210-268. Cambridge University Press, 2012.

P. Viallard, M. Haddouche, U. Simsgekli, and B. Guedj. Learning via Wasserstein-based high probability
generalisation bounds. NeurIPS, 2023.

C. Wei, J.D. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization and optimization of neural
nets v.s. their induced kernel. NeurIPS, 2019.

G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient
independence, and neural tangent kernel derivation. arXiv:1902.04760, 2019.

G. Yang and E.J. Hu. Feature learning in infinite-width neural networks. arXiv:2011.14522, 2022.

W. Zhou, V. Veitch, M. Austern, R.P. Adams, and P. Orbanz. Non-vacuous generalization bounds at the
ImageNet scale: a PAC-Bayesian compression approach. ICLR, 2019.

14



Published in Transactions on Machine Learning Research (04,/2024)

A Appendix

A.1 Proof of Proposition 1

Lemma 1. Assume that, when the infinite-width limit is taken recursively layer by layer, D(t) = O(1).
Assume that ¢ is vy4-Lipschitz, then we have that for each layer

IAU (z;1)]| = O(1).

Proof. We have that

AT (s t)] < VIEOIIAWO(t)IIIxII =0(1).

Then, recall that at initialisation the components of U l(x,O) are independent normal distributions, with
mean 0 and variance X! (z,z), as defined in (4). So, we have that all the ¢(U}(z;0))?’s are independent and
equally distributed, with finite variance (thanks to the Lipschitzness of ¢). By the standard CLT we get
that

6 @i 0)) | = Z¢ {(250) “aZE (B! :0)] = 0(1)

and so [|¢(U'(z;0))|| = O(y/m;). Now, using the Lipschitzness of ¢ we get

1

AU (@ 0)] < —= (IIW”I( el AT (@) + |AW @)l (U (25 0)) | + 16 AT (s ) [ AW (B)]])

_o (1+ (14 /22) javtann )

where we used that [|[W!*1(0)|| = O(/n; + \/i51), a classical result in random matrix theory (Vershynin,
2012). Assuming that the limit is taken layer after layer, we have that n;41/n; — 0 and so

AU (@3 1)]| = O(1)

by induction. O

For the rest of this section, we define D'(t) as

l
= I ) - W )

=1
Now, we restate and prove Proposition 1.
Proposition 1. Fiz a time horizon T > 0 and a depth L. Assume that for t € [0,T) and for alll € [1 : L]

oL = — 5 (b (Xst(2: 1) =MD )AW, (),
k=1

for any mappings V : Z x R — R" and r : [0,00)%2 — R. Then we have that UL obeys the dynamics

nr

DU (1) = = > (O (@, X;0)Viu (F(X;1),Y)) | = Ar(D"(2); )= (w;t) .

k'=1

Moreover, if D*(t) = O(1) for all t € [0,T],

T
/<||v<z;t>|\>sdt 1and/ (DM (1): )]dt = O(1).
0

if ¢ is vyg-Lipschitz and Bg-smooth, then (in the infinite-width limit taken starting from the layer 1 and then
going with growing index), for all l € [1 : L], ©! is constant during the training, and Z! = AU'.
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Proof. The first statement follows directly from the chain rule. For the second statement, we proceed by
induction, taking inspiration in the original NTK proof of Jacot et al. (2018). For L = 1 the model is linear
and the statement holds. Now, assume that the statement holds for networks of depth L, we want to show
that it is true also for architectures of depth L 4+ 1. We hence consider a network of depth L 4 1 following

the dynamics
NnL41

atWilj(t) == Z <1/’1€Z+JI f(x; t)Vk(Z§t)> - >\7”(DL+1(t);t)AWilj(t)
k=1 s

and satisfying [, (|V(Z;8)|),dt = O(1), [, #(DEFY(t);6)dt = O(1), DEFL(t) = O(1), for all t € [0, T).
We note that for [ € [1: L]

Viay (@ >—W=2_W% T 2 W 00U s )it
We define
ot 1 L+1/4\ i(77L
Vir(23t) = N3 ; Wi (0)0(Upi (58))Vie(231)
and

7(Dst) = r(|AWEF (@)][E/2 + Dst)
so that we can rewrite the dynamics for [ € [1: L] as

nr

OWL(t) = = 3 (Wb, (X)W (Z58)) = XD () AW, (0).
k'=1

We have that . .
V(7 76 L+1 ,
| (wzony ar< 2 [Tt avizon, a

which is of order O(1) if |[WE+L(¢)||/\/nr is. This is indeed the case, as we know that [|[AWEFL(¢)|| <
[AWETLH(#)||[p = O(1), and [WETL(0)]| = O(/nrs1 + /nr) (this is a classical result on random matrix
theory; see for instance Vershynin, 2012). Moreover, for each t we have that 7(DL(t);t) = r(DET1(¢);t), so
that in particular

T T
/0 [F(D () 1)t = / I (DE (1) 8)[dt = O(1)

We can hence apply the inductive hypothesis to the sub-network made of the first L layers, and obtain that,
for I € [1: L], ©! stays constant during the training and = = AU!. We also recall that at initialisation the
kernels ©' are diagonal, and so we have that for all t € [0 : T

Ok (z,2';t) = S Ol (z,2') .

Now, in order to conclude we need to check that the claim holds also for the last layer. We have

L+1 ng

L+1il( L4131
oL (x,2';1) Zzw T t) N (2 t)

=1 k=1

. . ot QUETY (z;t) UL (a5t
£+1,L+1(x;t)'w£/+1,L+1<x/;t)+ Z kan ) k@U(L )GL"(x,x’;t)
j/

jj’:1

L+1 L+1(,./
. M ! ;t Q)
AL gy L G LHLHL g Z U}, ;1) OUL " (x )@L(x, ).

’ aUL oUE

16



Published in Transactions on Machine Learning Research (04,/2024)

8U,f+1 (z;t)

Let us denote as uy(z;t) the vector with components uy;(z;t) = —%55z
J

. We easily see that

v i v
ezl € =W O < =W O+ 1AW @l = 0),

where we used that |[W1(0)| = \/nr and that the norm of the row of a matrix is always bounded by the
Frobenius norm of the matrix. On the other hand, we have that

ﬁuwﬁwmnmnw%wu,

where we used that ¢ is y,-Lipschitz and fg-smooth. We know that [|[AWLTL(t)|| = O(1) as DI =
O(1). Moreover |[WET1(0)|o behaves as the maximum of nj independent standard normals, that is

|H/Vk,L,+1(O)||OO = O(v/lognz) (Boucheron et al., 2013). On the other hand, |AUL(¢)|| = O(1) by Lemma 1.
We hence easily conclude that

.,
| Ay, (3 8)]| < T%HAWL“@)H +

A i QUL ;1) QUL (a5 t)

oL (z,2") | = 0(/log(nr)/nz) .
8UjL 5‘UjL

j=1

Now to show that the variation of the NTK vanishes during the training we only need to control
Ay T s t) - PPN (e 1)), First, notice that

lo T (25 0)) < (/OL+ L (2,27) = O(1).

Moreover, we have that 1y (z;1) = %qﬁ(U{“(m; t)) and so

v @) < AU i) = 00/ V).

We thus deduce that
A T s ) T (' 8) = 01/ V)
and so
AOL (z,25t) = O(\/log(nr) /nL)
which shows that in the infinite-width limit the NTK stays constant during the training.

oU, " (zit)

Now we are left with showing that ZF! = AUL*!. Recalling the notation up (2;t) = —L57——=, we can
write *
L+1
i @it) = 3wl AW = o @) AWE @) + o) - B @30).

=1

Using the induction hypothesis ZF = AUL, we get that
5 st = o T @) - AW ) (s t) - AU (a31).
Using that 6tUkL+1 = %D;fH;LH COWETL 4wy - 9,U*, we can write
Er T (wt) — AUE (31)
- /Ot (w£+1;L+1(l‘;t) LI (g t')) QWA + /Ot (up(238) — wy(w; ) - QUL (z; t)dt .
In particular,
25 (25t) — AUE (a5 1))|

gzts%)ﬂ | Ay tEE (g ||/ |8, WEFL(#) || pdt’ + 2 31[1(1)0 (| Ay (25 )| HatUL (z;t)||d¢’ .
’elo, t'e
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From what we have shown already, we know that

P 1Ay T @) = O(1/y/n)  and sup, [Aug(2:1")]| = O(/log(nr)/nL),
0,t t'€[0,t

so we are left with checking that the last two integrals are of order O(1) in order to conclude. First, we have

1
N
Since [|A¢(UE(25t))|| = O(1), we have ||¢p(UL(2;t))|| = O(y/nr), and we can define

WL (t) = - (d(UF(X50)Vi(X;1)), — Ar(DM (1) ) AW (1)

K' =

\}nguegww% Dl = o).

We have thus obtained
oW ERL @) < K" (IV(Z: )11}, + Alr(DFFH @) )| AW @)
So,

t t
/ ||8tWL+1(t’)||dt’§K’/ UV(Z: ), b+ sup [AWEH (¢ ||)\/ r(DEFL (1) ) [dt = O(1),
0 t’€0,t]

since both integrals in the RHS can be controlled by hypothesis.
Now we just need to control fot 10,U* (;¢')||d¢’. Defining K (z) = sup,, |0%(x,2')|, we easily get that

|0 (s )| < K (@) (IV(Z:0)]1)_+ NFDEO: )| AU (w3
We have established that fot <||‘~/(Z;t’)||>sdt’ = O(1) and supy (o |AU*(z;t')|| = O(1). In particular,
since by assumption fg |r(DEFI(#");¢")|dt’ = O(1), we have that indeed

t
| 1wt elar =oq).
0

With this last step we have shown that in the infinite width limit

2 (2 t) = AU (a3t)
which concludes the proof. O
A.2 Variance of the wide stochastic network

From Clerico et al. (2023b) (eq. 5 therein, applied to a one-dimensional output) we know that the output’s
variance 2 of a shallow wide stochastic network is given by

Z PEMH (1)) — = S (B (0) (M (1)),

3\*—‘

where we define £(u) = E¢upn0,1)[#(¢ + ©)?] and we recall that 1 (u) = Ecpro,1)[6(¢ + w)).

We now consider an initialisation where each component of m! and m? is sampled independently from N(0, 1).
Then, since for any input = we have [|z| = \/ng, each component of M} (0) is distributed (with respect to
the initialisation’s randomness) as a standard normal distribution. Since m? is independent of M (0) we can
easily derive that, in the limit n — oo,

Q2($; 0) = 2Ec~/\/(0,1)[€(§)] - EC~N(0,1)[¢(C)2] = 027
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which is a deterministic value.

We now show here that Q2 keeps constant during the training. We have that

1
IAM! ;)] < —=[lAm! (t)][[]z]| = [|Am* ()] = O(1).
Vg
Now, let u;(t) = 14 m?(t)2. We have that

A (Z(l + (m?(t))Q)S(M}(x;t))) = u(0) - AG(M ' (2;1)) + Au(t) - E(M" (2;0)) + Aut) - AE(M (w31)).

j=1
Let us start by the first term. We have that
AE(M} (w31)) = Egnrio,n | (26(M] (250) + €) + A(M] () + O)AS(M (:) +C)]
and so (recalling that we are assuming that ¢ is C Lipschitz)
[u(0) - AG(M (1))

n

> Econiom [u5(0)6(M; (250) + OAG(M] (w5) + O)|| +

j=1

<2

i E[u;(0) A¢(M] (:1) + ¢)?]

1/2
< 204[|AM ! (23 1) [Ecmnro.1) ZIIUj(0)¢(Mj1(x;0)+C)|I2] + CR[IAM ! (2;) [ |u(0)] -
j=1

For large n we have that
*ZHUJ (50) + QII* = 2E¢rnno,n[9(¢" +¢)*] = O(1)

(in probability with respect to the random initialisation) and ||u(0)|| — v/2n. Since ||[AM?(z;t)| = O(1),
we have that

u(0) - AL(M ' (w;t)) = O(v/n) .

Proceeding similarly we get that

|Au(t) - (M (w;0))] < 2 (Zm (M (x30)) ) 1Am? (@) + [|Am* (#) [ ]1€(M* (3 0)]|
) 1Am*(#)]| + [|Am* (@) [3]1§(M* (23 0)[| = O(Vn) -

<2 (Zm
Finally, we have that

Au(t) - AE(M (z;8)) = 2§n:m?(0)Amj( ) + zn: 2AE(ML(L)).
j=1

j=1
We have that

S m2(0)Am? (1AM (1)

- 1/2
n

< 2C4Ecno,) | D WP (0)°$(C + M (2:0)* | Am(t) [ AM* (;8)]|4

j=1

+ Cgllm* )l Am* (B) [ | AM (25 ) |5 = O(V/n)
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and

> Ami()*AL(M[ (1)
j=1
1/2
< 204Ecno) [196(¢+ M (25 0))I°] 7 [Am? (@) R AM (23 t) 14 + CEAm* (@) [F|AM (23 8)||F = O(Vn).
With analogous reasoning, we can obtain that
1 n
Al D@30 0(M] (x:1))* | = O(1/v/n),
j=1
and so conclude that

AQ*(x3t) = O(1/v/n)

namely the output’s variance is constant to the deterministic value o2 throughout the training, as n — oco.
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