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Abstract. Accurate delineation of primary head and neck tumors and
metastatic lymph nodes on PET/CT is critical for radiotherapy planning
and prognostic assessment. Building on this clinical need, the HECK-
TOR 2025 challenge uses a large multi-centric dataset to provide a com-
prehensive benchmark for multimodal methods that integrate imaging
and clinical information across three key tasks: segmentation of the pri-
mary tumor and involved lymph nodes, recurrence-free survival predic-
tion, and HPV status classification. In this study, we (Team MEDAI)
present our solutions for all three challenge tasks. For automated tu-
mor segmentation, we employed an ensemble of ten lightweight STU-Net
(small) models, achieving efficient and precise delineation of both pri-
mary tumors and metastatic lymph nodes. For recurrence-free survival
prediction and HPV status classification, we developed a multimodal
framework that integrates volumetric PET/CT imaging, lesion masks
derived from the segmentation models, and structured clinical variables.
Code is available at https://github.com/Liiiii2101/HECKTOR2025-MEDAI.
Team: MEDAI.
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1 Introduction

Head and neck cancer (HNC), one of the most common malignancy worldwide,
arises from the anatomical sites of the upper aerodigestive tract [5,11]. Positron
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emission tomography /computed tomography (PET/CT), which provide com-
plementary and synergistic information for HNC lesion segmentation and tumor
characterization by highlighting metabolic and morphological tissue properties,
is recommended for staging HNC, with additional roles in prognostication, treat-
ment planning, and identifying unknown primary tumors [6]. Currently, radio-
therapy is integral to the therapeutic management of HNC [2]. Precise tumor
contouring is essential to ensure adequate dose delivery to the targeted tumor
while sparing neighboring normal tissues. Manual segmentation of head and neck
tumors and involved lymph nodes is time-consuming, labor-intensive, and prone
to inter-observer variability. Accurate and automated segmentation of primary
gross tumors and involved lymph nodes can support and streamline clinical work-
flows. Furthermore, when combined with clinical features, automated segmenta-
tion masks can be used to predict recurrence-free survival (RFS), offering valu-
able prognostic insight for HNC. Accurate RFS prediction helps identify patients
at elevated risk of early recurrence, those who may benefit from treatment inten-
sification, closer surveillance, or early referral for supportive interventions, while
also supporting more individualized follow-up strategies for lower-risk patients.
Additionally, accurate assessment of biomarkers such as human papillomavirus
(HPV) status from PET/CT and clinical data can improve risk stratification
and diagnostic accuracy.

In the past decade, deep learning (DL) has shown promising results in medical
image analysis [1]. Notably, DL models have demonstrated strong performance in
HNC tumor segmentation using PET/CT in previous HEad and neCK TumOR
Lesion Segmentation, Diagnosis and Prognosis (HECKTOR) challenge 2022 [3].
HECKTOR 2025 [13] provides a platform for developing 3D algorithms to seg-
ment primary HNC tumors (GTVp) and nodal metastases tumors (GTVn) on
PET/CT, as well as for recurrence survival prediction and HPV status classifi-
cation using multimodal and multi-centric dataset.

In this article, we present our approaches for all three tasks: automatic seg-
mentation of primary tumors and involved lymph nodes on FDG-PET/CT, pre-
diction of recurrence-free survival using PET/CT and clinical data, and classifi-
cation of HPV status based on PET/CT and clinical information.

2 Dataset

2.1 Overview

For HECKTOR 2025, the dataset comprises a large-scale, multi-centric collec-
tion of multimodal PET/CT scans and detailed clinical data from 1,123 patients
with histologically confirmed HNC. The publicly available training set comprises
approximately 700 cases collected from eight different centers. The hidden leader-
board validation set contains approximately 50 unseen cases, whereas the hidden
final leaderboard test set comprises around 450 cases from three centers.
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2.2 Preprocessing

Resampling and Cropping The data preprocessing is inspired by the first-
place solution of HECKTOR 2022 by Myronenko et al. [12]. All images were
resampled to isotropic voxel spacing of 1 × 1 × 1 mm³ using B-spline in-
terpolation for CT/PET and nearest-neighbor interpolation for lesion masks.
Overlapping bounding boxes between CT and PET volumes were computed to
ensure spatial alignment and remove excess background to focus on the relevant
anatomical region. A region-of-interest (ROI) was automatically determined us-
ing PET intensities. The top portion of the PET was analyzed to identify the
largest high-intensity region. The crop center was defined as the centroid of this
region. A fixed-size crop (200 × 200 × 310) around this center was extracted
for CT, PET, and segmentation masks if available. This resampling and crop-
ping were applied across all three tasks to reduce input image size, significantly
accelerating training and minimizing network workload on irrelevant regions.

Normalization for Segmentation nnU-Net [9] CT normalization scheme was
applied to all cropped CT images. Intensity values from all foreground classes
(excluding background) across the training set were collected to compute the
mean, standard deviation, and 0.5/99.5 percentiles. Values were clipped to these
percentiles, normalized by subtracting the mean, and scaled by the standard
deviation. For PET, Z-Score normalization was applied by subtracting the mean
and dividing by the standard deviation.

RFS Prediction and HPV Status Classification Structured clinical vari-
ables xclin ∈ Rp included demographic and treatment-related information (age,
sex, tobacco and alcohol use, performance status, M stage, treatment regimen),
as well as quantitative imaging-derived biomarkers. The latter comprised conven-
tional parameters such as MTV (primary tumor volume), NTV (positive lymph
node volume), T-SUV (primary tumor SUVmax), N-SUV (nodal SUVmax), TLG
(total lesion glycolysis), and NLG (nodal lesion glycolysis). For each patient, a
96× 96× 96 3D patch was extracted around the lesion centroid (computed from
lesion masks; if absent, the geometric center was used). CT values were clipped
to [−1000, 3000] Hounsfield units and linearly normalized to [0, 1]. The final in-
put tensor was stacked as [CT,PET,Mask] ∈ R3×D×H×W , where mask labels
{0, 1, 2} corresponded to background, primary tumor, and nodal disease, respec-
tively. The mask channel was converted to one-hot and the {1, 2} channels were
used as explicit lesion guidance. Continuous variables were median-imputed for
missing values and standardized using Z-Score normalization, while categorical
variables were imputed with “Unknown” and one-hot encoded.
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3 Method

3.1 GTVp and GTVn Segmentation

Architecture For GTVp and GTVn segmentation on CT/PET, the Scalable
and Transferable U-Net (STU-Net) [8] was employed. STU-Net, an extension of
the nnU-Net framework known for its strong performance, incorporates refined
convolutional blocks to enhance scalability, see Figure 1. Specifically, the basic
nnU-Net convolutional blocks were augmented with residual connections [7] to
facilitate scaling of model depth. Inspired by Liang et al. [10], the STU-Net small
(STU-Net-S) configuration was adopted, with a depth of (1, 1, 1, 1, 1, 1) and
width of (16, 32, 64, 128, 256, 256), making it considerably lighter and smaller
than the other variants. The preprocessed images (CT/PET) were concatenated
as a two-channel input, and the model was trained to simultaneously segment
both GTVp and GTVn.

Fig. 1: STU-Net illustration by Huang et al. [8]. (a) architecture overview; (b)
residual blocks for large-scale modeling; (c) downsampling in encoder stages;
(d–e) stem and segmentation head for channel conversion; (f) weight-free inter-
polation for task-adaptive upsampling.

Loss The loss function is the combination of cross-entropy and Dice loss.
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pi,c is the predicted probability (softmax) that voxel i belongs to class c; yi,c
is ground truth (1 if voxel i is class c, else 0). GTVp and GTVn were trained
together. We empirically set λCE = λDice = 1.

Data Split STU-Net-S was trained with 5-fold cross-validation on all training
cases, and a separate 10-fold cross-validation was also trained on the same data.

Optimization Built on nnU-Net, STU-Net automatically configured all hyper-
parameters. Training for each fold used a batch size of 2, a patch size of (192,
112, 112), and 1,000 epochs on an NVIDIA RTX A6000 GPU. During training,
diverse real-time augmentation strategies are utilized, such as geometric trans-
formations (rotation and scaling), intensity adjustments (brightness, contrast,
and gamma correction), noise and blur perturbations, low-resolution simulation,
and image mirroring.

3.2 RFS Predication

We developed a multimodal survival prediction network that integrates volumet-
ric PET/CT imaging, lesion masks, and structured clinical features, see Figure 2.

Image encoder with explicit lesion guidance. The image backbone was
a 3D ResNet-18 [7], which processed the CT and PET channels. In parallel,
a lightweight Lesion-Guidance Module (LGM) encoded the two lesion channels
(GTVp and GTVn ground truth masks) into feature maps matching the back-
bone’s first stage output. After the backbone’s initial feature extraction layer,
which captures low-level visual patterns, the two streams were fused by element-
wise addition to incorporate explicit lesion guidance at the earliest stage.

ffuse = ϕconv1([CT, PET]) + LGM(Mask),

which was subsequently propagated through the residual blocks, global av-
erage pooling, and flattened into an image-level representation fimg ∈ Rd.

Clinical Feature Processing. Structured clinical variables xclin ∈ Rp included
continuous features (age, MTV, NTV, SUV, TLG, NLG) and categorical factors
(sex, tobacco/alcohol use, performance status, M stage, treatment). Continuous
features were median-imputed and Z-Scored, while categorical features were im-
puted with “Unknown” and one-hot encoded. A single-layer MLP produced a
clinical embedding:

fclin = MLP(xclin) ∈ R256.
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Multimodal fusion and survival head. The final representation was ob-
tained by concatenating image and clinical embeddings,

f = [fimg; fclin],

followed by dropout and an MLP head to output logits z ∈ RK for K dis-
crete time intervals (here K = 4; cut points at 769, 1357, and 2626 days). The
cut points were chosen based on the empirical distributions of RFS times and
ensuring sufficient samples per intervals for stable optimization.

Discrete-time survival modeling. We adopted a discrete-time hazard pa-
rameterization [14]:

hk = σ(zk), k = 1, . . . ,K,

Sk =

k∏
j=1

(1− hj), S0 = 1

where hk is the hazard in interval k, and Sk the survival probability up
to interval k. Given observed interval index y ∈ {0, . . . ,K − 1} and censoring
indicator c ∈ {0, 1}, the negative log-likelihood was

ℓbase = −(1− c)
[
logSy−1 + log hy

]
− c logSy.

We further applied a convex combination with the uncensored component (weight
α = 0.5) to stabilize optimization:

L =
∑
i

(
(1− α) ℓbase,i + α ℓuncens,i

)
.

The patient-level risk score was defined as

r = −
K∑

k=1

Sk,

which is monotonically associated with recurrence risk.

Data Split A 5-fold cross-validation was performed on all training cases.

Optimization Optimization used AdamW (weight decay 10−2) with learning
rates 1× 10−4 for the image (ResNet-18+LGM) and clinical+classifier branches
(5× 10−4). Models were trained for 20 epochs with batch size 16 on an NVIDIA
RTX A6000 GPU. Early stopping was guided by validation concordance index
(C-index), computed in a Harrell-style fashion from comparable event pairs. The
best model per fold was selected by maximal internal validation C-index.
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Fig. 2: The illustration of the proposed multimodal survival prediction network.
PET/CT images and lesion masks are processed in parallel and fused through an
early convolutional layer, while clinical variables are encoded through fully con-
nected layers. The lesion mask is processed by a lesion-guidance module (LGM,
grey dashed box, indicated by the grey arrow), which transforms the three-class
mask (representing tumor, lymph nodes, and background) into a one-hot repre-
sentation. This transformed mask is passed through convolution, batch normal-
ization, and ReLU layers to generate lesion-aware feature maps, which enhance
the focus on regions of interest. Image features and clinical features are then
concatenated and passed through joint classifiers to predict the risk score.

3.3 HPV status classification Task

The HPV classification task employed the same multimodal network and pre-
processing pipeline as described for survival prediction—combining volumetric
PET/CT imaging, lesion masks via the LGM, and structured clinical features.
The only architectural difference was the prediction head, which produced a
single logit z ∈ R corresponding to HPV status (y ∈ {0, 1}), with probability
p = σ(z).

Loss function and calibration. To address class imbalance, training opti-
mized a per-sample weighted binary cross-entropy loss,

LBCE-w = −w(y) [ y log p+ (1− y) log(1− p) ],

where w(y) = wpos if y = 1 and w(y) = wneg if y = 0. Unless otherwise specified,
we set wpos = 1 and wneg =

npos
max(nneg,1)

according to training-set class counts.
Balanced accuracy at a reference threshold of 0.5 was additionally logged during
training and testing.

Data Split A 5-fold cross-validation was performed on all training cases.

Optimization Optimization used AdamW (weight decay 10−2) with learning
rates 1× 10−4 for the image (ResNet-18+LGM) and clinical+classifier branches
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(5× 10−4). Models were trained for 30 epochs with batch size 16 on an NVIDIA
RTX A6000 GPU. The best checkpoint per fold is selected by the maximal
validation balanced accuracy.

4 Result

4.1 GTVp and GTVn Segmentation

Segmentation performance was evaluated using the Dice Similarity Coefficient
(Dice) for GTVp and GTVn, and the F1 score computed from IoU (≥30%).
Segmentation results were first evaluated in cross-validation (Table 1, 2) , after
which our algorithms were submitted to the validation leaderboard (Table 3)
and final test leaderboard. On average, 10-fold cross-validation did not out-
perform 5-fold cross-validation; however, applying the 10-fold ensemble strat-
egy yielded improvements on the validation leaderboard set (around 50 unseen
cases), particularly for the F1 score of GTVn. Interestingly, although STU-Net-S
(both 5-fold and 10-fold) achieved better GTVp segmentation in cross-validation,
it showed stronger performance (Dice) on GTVn than GTVp in the leader-
board validation and final leaderboard test. Other STU-Net variants, includ-
ing STU-Net Base (STU-Net-B), were also trained using 5-fold cross-validation.
The cross-validation results showed no significant performance improvement (see
Appendix). However, STU-Net-B has a larger number of trainable parameters,
higher GPU memory requirements, and requires approximately twice the train-
ing time compared to STU-Net-S (see Table 4).

Table 1: Segmentation Performance Using 5-Fold Cross-validation (STU-Net-S)
Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Dice (GTVp) 0.7307 0.6761 0.6921 0.6934 0.6790 0.6943
Dice (GTVn) 0.6399 0.6621 0.6862 0.6595 0.6632 0.6622
F1 (GTVn) 0.5942 0.6590 0.6768 0.6581 0.6269 0.6430

Table 2: Segmentation Performance Using 10-Fold Cross-validation (STU-Net-S)
Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Dice (GTVp) 0.6891 0.7295 0.6586 0.7384 0.6710 0.6813 0.6551 0.6292 0.7027 0.6777 0.6833
Dice (GTVn) 0.6523 0.6290 0.6713 0.6170 0.5558 0.6528 0.6532 0.6423 0.6617 0.6232 0.6359
F1 (GTVn) 0.6165 0.6085 0.6748 0.5371 0.5573 0.5990 0.6096 0.6466 0.6078 0.5495 0.6007
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Table 3: Leaderboard External Validation of Segmentation Performance
Metrics Ensemble (5-Fold) Ensemble (10-Fold) Final (10-Fold)

Dice (GTVp) 0.7626 0.7653 0.7418
Dice (GTVn) 0.7931 0.7932 0.7640
F1 (GTVn) 0.6385 0.6641 0.6472

Both Emsemble (5-Fold and 10-Fold) were validated using around 50 unseen cases
Final refers to the Final leaderboard test results, based on around 450 unseen cases.

Table 4: Computational Expenses
Network Param (M) FLOPs (T) VRAM (G) Train (s) Infer (s) Depth Width

STU-Net-S 14.55 0.66 4.4 41 5 (1,1,1,1,1,1) (16,32,64,128,256,256)
STU-Net-B 58.16 2.62 7.9 78 15 (1,1,1,1,1,1) (32,64,128,256,512,512)

The comparison of computational cost of STU-Net-S and STU-Net-B
Train: averaged training time per epoch
Infer: averaged inference time per case

4.2 RFS Prediction

The C-index was used to evaluate RFS prediction. The leaderboard validation
results were obtained from an ensemble of our 5-fold cross-validation models,
showing similar C-index values to those observed in the 5-fold cross-validation.
However, a substantial drop in performance was observed on the final leader-
board test set, with the C-index decreasing to 0.5281. see Table 5.

Table 5: RFS Prediction Results
Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Validation Final
C-Index 0.7073 0.6383 0.7009 0.7160 0.7715 0.7068 0.7060 0.5281

Validation refers to the leaderboard validation results, based on around 50 unseen
cases.
Final refers to the Final leaderboard test results, based on around 450 unseen cases.

4.3 HPV Status Classification

Balanced accuracy and specificity were used to evaluate HPV status classifica-
tion. The leaderboard validation results, obtained from an ensemble of our 5-fold
cross-validation models, revealed a notable performance gap: balanced accuracy
was substantially lower on the leaderboard compared to cross-validation. This
trend persisted on the final leaderboard test set, where the balanced accuracy
further dropped to 0.5085, highlighting a discrepancy between cross-validation
and unseen test performance. see Table 6.
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Table 6: HPV Status Classification Results
Fold Balanced Accuracy Specificity
Fold 1 0.8532 1.0000
Fold 2 0.8183 0.6667
Fold 3 0.9361 0.9000
Fold 4 0.7837 0.6154
Fold 5 0.9541 1.0000
Average 0.8691 0.8364
Validation 0.6076 0.9048
Final 0.5085 -

Validation refers to the leaderboard validation results, based on around 50 unseen
cases.
Final refers to the final leaderboard test results, based on around 450 unseen cases.
consist of 80% HPV-positive cases and 20% HPV-negative cases.

5 Discussion and Conclusion

In this study, we employed the small variant of STU-Net to efficiently perform
simultaneous segmentation of GTVp and GTVn. Across the leaderboard vali-
dation, the 10-fold ensemble outperformed the 5-fold ensemble across all three
metrics, with a notable 3% increase in the GTVn F1 score. Consequently, the 10-
fold ensemble was selected for the final leaderboard test, where it achieved first
place overall in the segmentation task. GTVn are smaller and more variable in
shapes and locations. The 10-fold ensemble, benefiting from increased model di-
versity and reduced prediction variance, effectively detects and localizes GTVn.
We also evaluated other STU-Net variants, including STU-Net Base (STU-Net-
B). Cross-validation results showed no significant performance improvement de-
spite the substantially higher computational cost. Due to submission constraints,
evaluation of STU-Net-B on the leaderboard was not conducted at this stage.

Using a 5-fold ensemble of the multimodal survival prediction network, which
integrates imaging, predicted lesion masks, and structured clinical features, the
C-index on the leaderboard validation was comparable to cross-validation. How-
ever, a substantial performance gap was observed on the final leaderboard test,
indicating limited model generalization. It is worth noting that RT-Dose and
CT-planning scans were not included in our model, and their incorporation
could potentially further enhance the performance of RFS prediction. The same
multimodal framework was applied to the HPV status classification task. How-
ever, substantial overfitting was observed, with leaderboard validation and final
leaderboard test metrics—particularly balanced accuracy—considerably worse
than cross-validation, likely due to high model complexity and class imbalance.
Future work could explore strategies to address class imbalance, such as ad-
vanced sampling techniques and to reduce model complexity through architec-
ture simplification or regularization. The study by Celgla et al. [4] has shown
that primary tumor features—SUVmax, TotalSUV, MTV, TLG, TLRmax, and
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TLRTLG—are informative for predicting HPV status, particularly for identify-
ing HPV-negative tumors. Future work could further explore these features to
develop more accurate models for HPV classification.

In this study, we present our solutions for the three tasks of the HECKTOR
2025 challenge. A 10-fold ensemble of STU-Net-S achieved strong segmenta-
tion performance. Using the predicted lesion masks, we developed a multimodal
network that integrates the original images with clinical features to predict
recurrence-free survival (RFS) and classify HPV status. Future work will focus
on improving the generalizability of the RFS prediction and HPV classification
models.
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Appendix

Segmentation Performance Using 5-Fold Cross-validation (STU-Net-B)
Metris Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Dice (GTVp) 0.7254 0.6744 0.6899 0.6974 0.6693 0.6913
Dice (GTVn) 0.6323 0.6885 0.6870 0.6831 0.6464 0.6675
F1 (GTVn) 0.5843 0.6751 0.6789 0.6481 0.6258 0.6424

The experiment setup is the same as 5-fold cross validation using STU-Net-S

https://arxiv.org/abs/2509.00367
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