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Abstract

We study games with N players where each player aims to minimize their own
loss. These games are gaining popularity due to their wide range of applications
in machine learning. For instance, minimax optimization problems are a special
case of N -player games. Stochastic Gradient Descent (SGD) is among the main
methods for solving such games. However, in many distributed game optimization
applications, this approach can result in high communication overhead, as each
player needs access to the other players’ strategies at every time step to compute a
gradient. In this paper, we introduce a new optimization paradigm called Decou-
pled SGD. This framework allows individual players to carry out SGD updates
independently, with occasional strategy exchanges at predetermined intervals. We
analyze the convergence properties of this approach in various scenarios. Primarily,
we consider the popular minimax bi-linear game and establish the convergence
rate of our method in this setting. We also derive explicit formulas for the opti-
mal length of synchronization intervals and step size. We then provide a general
algorithm for N -player games for cases where strategy synchronization is costly.
We derive its convergence rate when the resulting operator is strongly monotone.
Finally, for minimax optimization problems, we investigate the combination of our
Decoupled SGD with classical distributed paradigms, where players have multiple
processors/clients and synchronize their strategies sporadically.

1 Introduction

Reinforcement learning (RL) is a versatile and robust framework designed for making decisions
under uncertainty. It has gained considerable traction due to its general applicability and powerful
problem-solving capabilities. RL has achieved human-level performance in different games like
Go and Atari games Silver et al. [2016], Mnih et al. [2015]. Multi-agent systems are one of the
important applications of RL, where multiple agents interact within a shared environment. This
interaction can be competitive, cooperative, or a mix of both. Multi-agent RL problems are closely
related to game theory, as they can be viewed as specific types of multiplayer games where agents
interact within a shared environment. In both fields, agents aim to maximize their own rewards, often
considering the strategies and actions of other agents to do so. Game theory provides a theoretical
framework for understanding the strategic interactions among agents, which is directly applicable to
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multi-agent RL scenarios. Moreover, Many real-world problems in various fields, such as economics
and computer science, can be formulated as N -player differentiable games. The goal is to find a set of
strategies that no player has an incentive to change their strategy unilaterally. This set is the so-called
Nash Equilibrium (NE). Minimax optimization problems, as a special case of N -player games have
gained huge attention because of their wide range of applications. This concept appears in areas
such as: game theory Von Neumann and Morgenstern [2007], Generative Adversarial Networks
(GANs) Goodfellow et al. [2014], adversarial training and robustness Shafahi et al. [2019], Madry
et al. [2017], multi-agent RL Li et al. [2019] and adversarial RL Yu et al. [2019]. The most widely
used method for finding NE in N -player games is the use of first-order methods such as Gradient
Descent Ascent (GDA). A critical assumption in these methods is that each player has access to
the strategies of other players, allowing them to compute their gradients accurately and update their
strategies accordingly. However, this assumption is not aligned with the realities of multi-agent
adversarial RL problems, where agents often do not have direct access to the strategies or parameters
of their opponents.

To address this gap, we propose a novel formulation of distributed minimax optimization tailored
for N-player games. Our algorithm, proposed in Algorithm 1, effectively computes the NE without
violating the realistic constraints discussed. We provide a convergence proof, demonstrating that our
algorithm converges to the NE at an exponential rate. This new approach not only distributes the
computational load efficiently but also incorporates the practical dynamics of real-world competition.

It might also be the case that each player is on a separate device and these devices are performing
online learning. For instance, players can be multiple robots that are cooperating towards accom-
plishing a goal, each having only access to their own observations of the environment. In this setting,
communicating all of the robot’s strategies at every time step is very costly and not feasible in
real-world problems. All these reasons motivated us to design a new algorithm that is efficient in
terms of the number of communications and allows players to avoid sharing their strategies at each
step.

1.1 Contributions

• We propose a new algorithm called Decoupled SGD, which aims to solve the general
N -player games assuming each player has a strongly convex payoff function. With this
algorithm, players improve their strategies for K iterations (local steps) without being
informed about the most recent strategies of their opponents. This way players only share
their parameters every K step which is efficient.

• We first show the convergence of our method for a special simplified class of bi-linear
zero-sum games with two players. This case provides more intuition as we have propose an
explicit rate based on the parameters of our setting. We show the trade-off between step size
and number of local steps and discuss the optimal combination of these two.

• We generalize our convergence rate for the case that there exists N players, each having a
strongly convex objective.

• Finally, we provide a convergence rate for our method in the distributed minimax games in
which there are only two players having their data distributed across computing nodes.

Note that throughout the paper, when the problem is minimax, we use the name Decoupled (S)GDA
for our method and when we are in N -player setting, we use the name Decoupled SGD. The rest of
the paper is organized as follows: in Section 2, we discuss some of the related works. In Section 3,
we introduce the our notation, In Section 4, we introduce our new formulation and Decoupled SGD
algorithm for N -player games. In Section 5, we will provide convergence rates for Decoupled SGD.
In Section 6, we extend our method for the distributed minimax games and provide a rate for this
setting. Finally, in the last section we provide some experiments to show the effectiveness of our
method.
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2 Problem formulation

N -player games are defined in the following way:
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min
x1

f1px1,x2, ...,xN q

min
x2

f2px1,x2, ...,xN q

...
min
xN

fN px1,x2, ...,xN q

(1)

Where Xn Ď Rdn ,@n P rN s is a convex set which the function fn : X1 ˆ ... ˆ XN Ñ R is defined
on. We recover the well-known zero-sum minimax games as a special case of (1) when N “ 2 and
f “ f1 “ ´f2. In general, minimax optimization refers to finding the saddle point of objective
fpx,yq where we minimize over x and maximize over y. This problem can be formulated as:

min
xPX

max
yPY

fpx,yq. (2)

Where X Ď Rm and Y Ď Rn are two convex sets on which our function f : X ˆ Y Ñ R is
defined. Many methods have been proposed for solving the above problems Nouiehed et al. [2019],
Korpelevich [1976], Popov [1980], Chavdarova et al. [2020], but the most common way of solving
games is to take gradient steps for each player. In zero-sum minimax games, we update the variable x
in the opposite direction of the gradient while updating the variable y in the direction of the gradient.
This method is called Gradient Descent Ascent (GDA). In many real-world scenarios, players in
the game can be distributed across several processing units. This leads us to utilize distributed
optimization methods in the context of games. However, the most concerning issue in distributed
optimization is communication efficiency, as communication is expensive, especially in networks
with limited bandwidth. Existing works have studied the case of minimax zero-sum games with
two players in the context of distributed learning. However, they often assume that all processors
have access to both variables x and y and can update them simultaneously. This problem can be
formulated as follows:

min
xPX

max
yPY

fpx,yq “ min
xPX

max
yPY

1

M

M
ÿ

m“1

fmpx,yq. (3)

Some works consider the heterogeneous version of the above problem, where fms are different, while
others assume that all processors have the same f .

3 Related works

We discuss the works on minimax optimization in three categories centralized, decentralized, and
distributed. Also we point out to some relevant works on bandits.

Centralized minimax optimization. Many works proposed algorithms for solving minimax opti-
mization on a single machine. Nemirovski [2004], Nesterov [2007] studied the case of convex-concave
minimax and proposed a method for this problem that can achieve a rate of Op 1

T q. Thekumparampil
et al. [2019] combined the idea from Nestrov’s Accelerated Gradient and mirror-prox and achieved
a rate of Õp 1

T 2 q for strongly-convex-strongly-concave functions. Wang and Li [2020] designed an
efficient algorithm for general strongly-convex-strongly-concave functions by using the idea from an
accelerated proximal point algorithm and can achieve a linear rate. Kovalev and Gasnikov [2022] was
the first to propose the optimal method for this class of functions achieving a rate of Op

?
κxκy log

1
ϵ q

which matches the lower bounds in Zhang et al. [2022b], Ibrahim et al. [2020]. Another line of
research on minimax optimization [Lee et al., 2024, Zhang et al., 2022a] discovers the effect of
alternating in the convergence of GDA.

Decentralized minimax optimization. Decentralized optimization is widely studied for the case
of minimization [Xiao and Boyd, 2004, Tsitsiklis, 1984] with the goal of not relying on a central
node or server. This idea is also applied to the case of minimax optimization problems. The paper
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Liu et al. [2020] is the first who studied non-convex-non-concave decentralized minimax. They also
used the idea of optimistic gradient descent and achieved a rate of Opϵ´12q. In Xian et al. [2021],
authors proposed an algorithm called DM-HSGD for non-convex decentralized minimax by utilizing
variance reduction and achieved a rate of Opκ3ϵ´3q. Recently, authors in Liu et al. [2023] proposed
an algorithm named Precision for the non-convex-strongly-concave objectives which has a two-stage
local updates and gives a rate of Op 1

T q.

Distributed minimax optimization. There is a long track of work for distributed minimization so
called Federated Learning (FL) starting with McMahan et al. [2017]. Several works studied FL under
different assumptions and data distributions Stich [2018], Koloskova et al. [2020], Karimireddy et al.
[2020], Woodworth et al. [2020a,b]. In the context of minimax optimization, there are a few works
who studied distributed version of it. The works Deng and Mahdavi [2021], Sharma et al. [2022]
proposed rate for different classes of functions in the both heterogeneous and homogeneous regimes.
These papers used the formulation 3 which is discussed before. The main difference between these
works and ours, is this formulation.

Multiplayer multi-armed bandit. In this class of problems, we have an environment with N
players trying to solve a Multi-Armed Bandit (MAB) problems while collaborating with other players.
The goal is to maximize the cumulative reward or to minimize the regret. The work Wang et al. [2020]
proposed a new method for solving distributed MAB problems that can achieve the same regret bound
as in the centralized setting. Another work Agarwal et al. [2022] considered a regime in which the
goal is not only to minimize the regret, but also the number of communication and the number of bits
used in each communication. Another variation of distributed MAP is to collaboratively identify the
arm with the highest average reward. Authors in Mitra et al. [2021] proposed Fed-SEL which is a
communication efficient method that benefits from high heterogeneity of arms. Chen et. al Chen et al.
[2023] studied MAB assuming players have different speeds in decision making and proposed a new
protocol to tackle this issue.

4 Setting and preliminaries

In this section, we start by introducing the notations and definitions that will be used frequently
throughout this paper.

4.1 Notations and basic definitions

N -player games. We use xn,r
k as the parameters of player n at some round r and after k local steps.

Also we use x´n,r
k to denote the concatenation of all players’ parameters excluding player n. The

concatenation of all players’ parameters is shown by zrk. Moreover, we define the operator Gpzq as
follows:

Gpzq :“

¨

˚

˝

∇x1f1px1, . . . ,xN q
...

∇xN fN px1, . . . ,xN q

˛

‹

‚

(4)

The NE in N -player games Bravo et al. [2018] is defined as:

fnpxn
‹ ;x

´n
‹ q ď fnpxn;x´n

‹ q, @xn P Xn , n P rN s (5)

Where xn
‹ is the strategy of player n at NE. The point z‹ :“

“

x1
‹; . . . ;x

N
‹

‰

has to satisfy the following
condition in an unconstrained game:

Gpz‹q “ 0 (6)

For the special case of N “ 2 and f “ f1 “ ´f2, we recover the definition of well-known minimax
games. In these games, we aim to find the saddle point px‹,y‹q which has to satisfy the following
property:

fpx‹,yq ď fpx‹,y‹q ď fpx,y‹q,@x P X ,@y P Y. (7)
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5 Decoupled SGD for N -player games

In this section, we introduce our Decoupled SGD algorithm for N -player games. Our algorithm has a
round-wise structure meaning that at the beginning of some round r, player n sends his parameters
to all other players and also receives the parameters of all other players. Then all players start
taking SGD updates for K steps, only updating their own strategies. The advantage of our method is
that each player doesn’t need to compute the gradient of his payoff function with respect to the
strategies of other players. It only requires an outdated version of their parameters which has been
received at the beginning of the round, leading to communication efficiency. In line 8 of our method
in Algorithm 1, communication can be done peer-to-peer or through a central server.

Algorithm 1 Decoupled SGD for N -player games
1: Input: step size γ, initialization x1

0, . . . ,x
N
0

2: for r P t1, . . . , Ru do
3: for k P t0, . . . ,K ´ 1u do
4: for n P t1, . . . , Nu in parallel do
5: Update local model xn,r

k`1 Ð xn,r
k ´ γ∇fnpxn,r

k ;x´n,r
0 q

6: end for
7: end for
8: Communicate

”

x1,r
K , . . . ,xN,r

K

ıJ

to all players
9: end for

10: Output: x1,R
K , . . . ,xN,R

K

In the following, we introduce the assumptions that are crucial for the convergence of our Algorithm.
Assumption 1. The variance of stochastic gradient on function fn is uniformly upper bounded.

Eξn

”

›

›∇xnfnpx1, . . . ,xN ; ξnq ´ ∇xnfnpx1, . . . ,xN q
›

›

2
ı

ď σ2. (8)

Assumption 2. An operator G : Rd Ñ Rn is called to be L-smooth if for all x,y P Rd, there exist a
constant L ą 0 such that:

}Gpxq ´ Gpyq} ď L }x ´ y} . (9)

Assumption 3. An operator G : Rd Ñ Rd is called to be µ strongly monotone if for all x,y P Rd,
there exist a constant µ ą 0 such that:

A

Gpxq ´ Gpyq,x ´ y
E

ě µ }x ´ y}
2
. (10)

6 Convergence analysis

In this section, we provide convergence guarantees for our proposed methods. We start this section by
providing a rate for the case of bi-linear zero-sum minimax games. This gives more intuition about
our method as we have a closed form for the class of bi-linear games. Next, we generalize our results
to the class of N -player games with strongly convex objectives.

6.1 Decoupled GDA (Alg. 1) for bi-linear games

A simplified bi-linear game can be defined as:

fpx,yq “
1

2
xJpωIqx ´

1

2
yJpωIqy ` xJCy (11)

Where ω P R and C P Rdˆd is a symmetric matrix defining the interactive part of the game.
Theorem 1. For any K,R after running Decoupled GDA for a total of T “ KR iterations on the
problems in the form of (11), with a learning rate of γ ď 1

ω , we have a last iterate convergence rate
of:

›

›zRK ´ z‹
›

›

2
ď

´

p1 ´ γωq2K `
`

p1 ´ γωqK ´ 1
˘2

ω´2λ2
maxpCq

¯R
›

›z00 ´ z‹
›

›

2
(12)

Where λmaxpCq refers to the maximum eigenvalue of the matrix C.
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Discussion To ensure the convergence of our method, the coefficient of
›

›z00 ´ z‹
›

›

2
should be less

than one. This gives us some conditions on the steps size and number of local steps. In general, the
more number of local steps we take, the smaller step size should be used.
Corollary 2. There exists an optimal combination of number of local steps and step size pγ‹,K‹q

for Theorem 1, which gives the optimal rate of:

›

›zRK ´ z‹
›

›

2
ď

ˆ

λ2
maxpCq

ω2 ` λ2
maxpCq

˙R
›

›z00 ´ z‹
›

›

2
(13)

From (13) we can see that the when λ2
maxpCq Ñ 0, which means that the game has no interactive

part, we converge in one step which is expected. On the other hand, if ω Ñ 0, we never converge as
we have a game with only the term xJCy. It’s widely known that GDA doesn’t have a last iterate
convergence guarantee for this type of game.

6.2 N-Player games

Theorem 3. For any K,R,L ą 0, µ ą 0 after running Decoupled SGD for a total of T “ KR
iterations on the problems in the form of (1) with a learning rate of γ ď

µ
32L2KN , assuming that

›

›z00 ´ z‹
›

›

2
ď B2 and operator G is strongly monotone, we have the following convergence rate up

to some logarithmic factors:

E
›

›zRK ´ z‹
›

›

2
“ Õ

ˆ

B2 exp

ˆ

´
µ2

NL2
R

˙

`
σ2

µ2KR

˙

Discussion From the Theorem 3 it’s clear that R “ ωpNq for the convergence. This comes from
the fact that we need to scale the step size with the number of players. As this number increases, we
have more outdated parameters being used in our update rule which results in a higher error so it’s
intuitive to choose a smaller learning rate when the number of players is very large.

7 Decoupled SGDA for distributed zero-sum minimax games

In this section, we study an extension of our algorithm for distributed setting. For simplicity and in
order to be aligned with other works Deng and Mahdavi [2021], Sharma et al. [2022], we consider
two-player zero-sum minimax games. Our results for the distributed setting can be extended to the
N -player case.

Notations In this setting, we assume that each player’s data is distributed across M processors. So
each processor has access to a function fmpx,yq on which it can perform gradient steps. The distri-
bution of data across processors can be either homogeneous or heterogeneous. In the heterogeneous
regime, which is the case of study in this paper, each processor holds a different payoff function. To
measure this difference, we use the following assumption:
Assumption 4. There exists a constant ζ‹ satisfying the following inequality in distributed minimax
games:

max

"

sup
m

}∇xfmpz‹q}
2
, sup

m
}∇yfmpz‹q}

2

*

ď ζ2‹ (14)

Where z‹ :“ rx‹;y‹s is the saddle point.

We denote xm,r
k and ym,r

k as the parameters of players x and y on client m in some round r after
k local steps. The concatenation of x and y is denoted by z. We also operators Gpzq, Gmpzq are
defined as follows:

Gmpzq :“

ˆ

∇xfmpzq

´∇yfmpzq

˙

, Gpzq :“

ˆ

∇xfpzq

´∇yfpzq

˙

(15)

Note that in general Gmpz‹q ‰ 0. In Algorithm 2, we discuss the distributed version of our method,
where two players x and y have their data distributed across M processors each. At every round,
each set of processors update their local models while having access to an outdated version of the
other opponent parameters which was received at the beginning of the round. By the end of the round,
both set of x and y processors send the their parameters to a central server which will compute the
average of the parameters and send them back to all processors.
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Algorithm 2 Decoupled SGDA for 2-player distributed minimax games
1: Input: step size γ, initialization x0,y0

2: Initialize: @m P rM s ,xr,0
0 Ð x0, yr,0

0 Ð y0

3: for r P t1, . . . , Ru do
4: @m P rM s ,xm,r

0 Ð x̄r
0, ym,r

0 Ð ȳr
0

5: for k P t0, . . . ,K ´ 1u do
6: for m P t1, . . . ,Mu in parallel do
7: Update local model xm,r

k`1 Ð xm,r
k ´ γ∇fpxm,r

k ,ym,r
0 q

8: Update local model ym,r
k`1 Ð ym,r

k ` γ∇fpxm,r
0 ,ym,r

k q

9: end for
10: end for
11: x̄r`1

0 Ð 1
M

řM
m“1 x

m,r
K , ȳr`1

0 Ð 1
M

řM
m“1 y

m,r
K

12: Communicate x̄r
K to all processors with y player and ȳr

K to all processors with x player
13: end for
14: Output: x̄R

K , ȳR
K

Figure 1: Convergence rates for different synchronization rounds in two scenarios: (A) Quadratic
Payoff Function and (B) Smooth Payoff Function. In both cases, increasing the synchronization
rounds (K) results in faster convergence, with higher K values showing a more rapid decline in error.

Theorem 4. For any K,R,L ą 0, µ ą 0 after running Decoupled SGDA for a total of T “ KR
iterations on the problems in the form of (2) in a distributed setting with a learning rate of γ ď

µ
32L2K ,

assuming that }z0 ´ z‹}
2

ď B2 and operator G is strongly monotone, we have the following
convergence rate:

E
›

›z̄RK ´ z‹
›

›

2
“ Õ

ˆ

B2 exp

ˆ

´
µ2

L2
R

˙

`
L2ζ2‹
µ4R2

`
L2σ2

µ4KR2
`

σ2

µ2MKR

˙

Discussion The first term in our rate benefits from an exponential decrease. The second term is
affected by ζ‹ which comes from the fact that we assumed data is not identically distributed across
the processors. We can recover the result for identically distributed data by just setting ζ‹ “ 0.

8 Experiments

In this section, we show some of the theoretical properties of our proposed method with experiments3.
We used a MacBook m2 laptop for running the experiments.

3https://anonymous.4open.science/r/Decoupled-Stochastic-Gradient-Descent-for-N-
-Player-Games-C3C5/

7

https://anonymous.4open.science/r/Decoupled-Stochastic-Gradient-Descent-for-N--Player-Games-C3C5/
https://anonymous.4open.science/r/Decoupled-Stochastic-Gradient-Descent-for-N--Player-Games-C3C5/


1.5 1.0 0.5 0.0 0.5 1.0 1.5
X Coordinate

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Y 
Co

or
di

na
te

K=1 (GDA)
K=2
K=4
K=6
K=10
K=30

Figure 2: This figure illustrates players’ strategies trajectories when different local steps are used. We
can see that Decoupled GDA diverges for K larger than some threshold value. This value for this
problem set is K “ 10.

8.1 Finding the saddle point of bi-linear games

In the first experiment, we demonstrate the validity of our claim that local steps can accelerate
convergence in terms of communication rounds. As shown on the left side of Figure 1, we consider a
simple bi-linear game formulated as

fpx,yq “
1

2
xJAx ´

1

2
yJBy ` xJCy

to investigate the impact of the number of local steps on the convergence rate. The matrices A,
B, and C are positive semi-definite matrices, randomly generated in R5ˆ5. Each of these random
matrices is then normalized to have a fixed maximum eigenvalue. From the figure, it is evident that
incorporating local steps results in a significant speed-up in convergence.

8.2 Communication efficiency of Decoupled SGD for functions beyond bi-linear

Here we present a synthetic minimax optimization problem that doesn’t have a bi-linear form then
we show that our method is communication efficient on this function. The function we consider is
defined as follows:

min
x

max
δ

1

N
}σpApx ` δqq ´ y}

2
` λ1 }x}

2
´ λ2 }δ}

2

Where x,y, δ P R5 ,A P R100ˆ5 and λ1, λ2 P R are just regularization parameters. In the above
equation, σ is the sigmoid function. It prevents the above equation from having a bi-linear form. This
type of problem formulation can be found in the context of adversarial training.The right-hand side of
Figure 1 illustrates the norm of the operator after running GD and Decoupled GD with their optimal
step size. The algorithm is run for different step sizes for each value of K, and the best-performing
one is chosen to be illustrated here. It is clear that for a fixed accuracy, our algorithm with K “ 50
had the best performance and required the least number of communication rounds.
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9 Conclusion

In this work, we introduced a novel approach for solving N -player games, which we believe is more
practical and suitable for real-world applications. The primary advantage of our method lies in its
ability to operate without requiring access to all players’ strategies at each step. This feature provides
greater autonomy to players who may prefer not to continuously share their parameters. Furthermore,
we have theoretically demonstrated that our method achieves convergence even when utilizing
outdated gradients. There might be some room for improvement by utilizing newer approaches in
minimax optimization such as Extra Gradient method which we leave for future works.
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A Appendix

Lemma 5. For a convex function f we have:

f

˜

1

M

M
ÿ

m“1

xm

¸

ď
1

M

M
ÿ

m“1

fpxmq . (16)

Lemma 6. For a set of M vectors a1,a2, ...,aM P Rd we have:
›

›

›

›

›

M
ÿ

m“1

am

›

›

›

›

›

ď

M
ÿ

m“1

}am} . (17)

Lemma 7. For a set of M vectors a1,a2, ...,aM P Rd we have:
›

›

›

›

›

M
ÿ

m“1

am

›

›

›

›

›

2

ď M
M
ÿ

m“1

}am}
2
. (18)

Lemma 8. For two arbitrary vectors a,b P Rd and @γ ą 0 we have:

}a ` b}
2

ď p1 ` γq }a}
2

` p1 ` γ´1q }b}
2
. (19)

Lemma 9. Let Assumption 1 holds. Then we have:

Eξm

›

›

›

›

›

1

M

M
ÿ

m“1

∇xfmpx,y, ξmq ´
1

M

M
ÿ

m“1

∇xfmpx,yq

›

›

›

›

›

2

ď
σ2

M
. (20)

The same argument holds for gradient with respect to y.
Lemma 10 (Duality gap). For a strongly-convex-strongly-concave function fpx,yq we have:

´ xF pztq, zt ´ z‹y ď ´

”

fpxt,y
‹q ´ fpx‹,ytq

ı

´
µ

2
}zt ´ z‹}

2 (21)
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Proof. We know that our objective is strongly convex in x and strongly concave in y which implies:

´ x∇xfpxt,ytq,xt ´ x‹y ď fpx‹,ytq ´ fpxt,ytq ´
µ

2
}xt ´ x‹}

2

´ x∇yfpxt,ytq,y
‹ ´ yty ď fpxt,ytq ´ fpxt,y

‹q ´
µ

2
}yt ´ y‹}

2

Summing up the above inequalities gives us:

´ x∇xfpxt,ytq,xt ´ x‹y ´ x∇yfpxt,ytq,y
‹ ´ yty ď fpx‹,ytq ´ fpxt,y

‹q ´
µ

2
}xt ´ x‹}

2
´

µ

2
}yt ´ y‹}

2

By re-writing the above expression based on z we have:

´ xF pztq, zt ´ z‹y ď ´

”

fpxt,y
‹q ´ fpx‹,ytq

ı

´
µ

2
}zt ´ z‹}

2

Lemma 11. Let trtutě0 be a non-negative sequence of numbers that satisfy

rt`1 ď p1 ´ aγqrt `
b

K
γ

t
ÿ

i“maxt0,t´K`1u

ri ` cγ2 ,

for constants a ą 0, b, c ě 0 and integer K ě 1 and a parameter γ ě 0, such that aγ ď 1
K . If

b ď a
4 , then it holds

rt ď

´

1 ´
a

2
γ

¯t

r0 `
2c

a
γ . (22)

Proof. By assumption on rt:

rt`1 ď

´

1 ´
aγ

2

¯

rt ´
aγ

2
rt `

b

K
γ

t
ÿ

i“maxt0,t´K`1u

ri ` cγ2 ,

and by unrolling the recursion:

rt`1 ď

´

1 ´ a
γ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K`1u

rj

fi

fl `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

cγ2

ď

´

1 ´
aγ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K`1u

rj

fi

fl `
2c

a
γ

“

´

1 ´ a
γ

2

¯t

r0 `

t
ÿ

i“0

´

1 ´
aγ

2

¯t´i

»

–´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

´

1 ´
aγ

2

¯i´j

ri

fi

fl `
2c

a
γ

where we used
řt

i“0p1 ´
aγ
2 qi ď 2

aγ (for p
aγ
2 q ă 1) for the second inequality.

By estimating

´
aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

p1 ´
aγ

2
qi´jri ď ´

aγ

2
ri `

b

K
γ

i
ÿ

j“maxt0,i´K´1u

´

1 ´
aγ

2

¯1´K

ri

ď ´
aγ

2
ri ` bγri

´

1 ´
aγ

2

¯1´K

ri

ď ´
aγ

2
ri ` 2bγri ď 0 ,

with and p1 ´
aγ
2 q1´K ď 2 for aγ ď 1

K , and the assumption b ď a
4 (and ri ě 0).
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The validity of the inequality, p1 ´
aγ
2 q1´K ď 2 for aγ ď 1

K can be shown in the following way:

´

1 ´
aγ

2

¯1´K

ď

´

1 ´
aγ

2

¯´K

ď e
aγK

2

For the last inequality above we used the approximation p1 ´ xq´n ď enx for x ě 0 and n ě 0:

Given that aγ ď 1
K , we have:

e
aγK

2 ď e
1
2 .

Thus, we have
´

1 ´
aγ

2

¯1´K

ď 2

Going back to the main proof, we conclude

rt`1 ď

´

1 ´
aγ

2

¯t

r0 `
2c

a
γ .

as claimed.

Lemma 12 (Gershgorin’s Theorem for Block Matrices Varga [2004]). Consider A “ pAijq P

Rdnˆdn where Aij P Rdˆd. Suppose σp¨q is the spectrum of a matrix. If we denote

Gi ≜ σ pAiiq Y

#

λ R σ pAiiq :
›

›

›
pAii ´ λIdq

´1
›

›

›

´1

ď

n
ÿ

j“1,j‰i

}Aij}

+

then

σpAq P

n
ď

i“1

Gi

Theorem 1 means the eigenvalue of A either equals σ pAiiq or in that specific region. Corollary 1. If
Aii is symmetric, then the region can be specifically expressed as

Gi ≜ σ pAiiq Y

#

n
ď

k“1

C

˜

λk pAiiq ,
n

ÿ

j“1,j‰i

}Aij}

¸+

Where Cp˚, ˚q donotes a disk
Cpc, rq “ tλ : }λ ´ c} ď ru

As shown above Gi contains d circles centered at all the eigenvalues of Aii.

A.1 Consensus error

In this work when we use the term consensus error, we mean the error that is either caused by (1):
The use of outdated gradients in our algorithm. (2) The deviation of iterates from their average when
we have M processors for each player.

A.1.1 Consensus error in N -player games

In this setting, we only have the error caused by the use of outdated gradients on each player. We
define this error for this setting as follows:

Φpxn,r
k q :“

N
ÿ

n“1

}xn,r
k ´ xn,r

0 }
2
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A.1.2 Consensus error in two-player distributed minimax games

In this setting, we have both errors related to the use of outdated gradients and deviation from the
average iterates. Total error is the sum of both errors. We define the consensus error in this setting as
follows:

Ψpxm,r
k q :“

1

M

M
ÿ

m“1

}xm,r
k ´ x̄r

k}
2
, Ψpym,r

k q :“
1

M

M
ÿ

m“1

}ym,r
k ´ ȳr

k}
2

Φpx̄r
kq :“ }x̄r

0 ´ x̄r
k}

2
, Φpȳr

kq :“ }ȳr
0 ´ ȳr

k}
2

Ψpzm,r
k q “ Ψpxm,r

k q ` Ψpym,r
k q, Φpz̄rkq “ Φpx̄r

kq ` Φpȳr
kq

The total consensus error can be computed by summing both errors with respect to x and y:

Consensus error :“ Ψpxkq ` Ψpykq
l jh n

error caused by multiple clients

` Φpxkq ` Φpykq
l jh n

error caused by outdated gradients

In the following, the upper bound for consensus error in different settings will be discussed. Note
that in the case of multi client, we get different upper bounds based on the assumption on data
heterogeneity.

Lemma 13 (Consensus error for M clients and two players in heterogeneous setting). After
running Decoupled Local SGDA for k local steps at some round r with a step-size of γ ď

µ
32L2K , the

error Ψpzm,r
k q ` Φpz̄rkq can be upper bounded as follows: After running Decoupled Local SGDA

for k local steps at some round r with a step-size of γ ď
µ

32L2K , the error Ψpzm,r
k q ` Φpz̄rkq can be

upper bounded as follows:

ErΨpzm,r
k q ` Φpz̄rkqs ď

K
ÿ

i“1

µ2

8KL2
}z̄ri ´ z‹}

2
` 32K2γ2ζ2‹ `

2Kγ2σ2

M
` 2Kγ2σ2 (23)
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Proof.

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs

“
1

M

M
ÿ

m“1

E

›

›

›

›

›

xm,r
k ´ γ∇xfmpxm,r

k ,ym,r
0 ; ξmq ´ x̄r

k `
γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 ; ξmq

›

›

›

›

›

2

`

E

›

›

›

›

›

x̄r
0 ´ x̄r

k `
γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 ; ξmq

›

›

›

›

›

2

“
1

M

M
ÿ

m“1

E

›

›

›

›

›

xm,r
k ´ γ∇xfmpxm,r

k ,ym,r
0 q ´ x̄r

k `
γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 q

›

›

›

›

›

2

`

E

›

›

›

›

›

x̄r
0 ´ x̄r

k `
γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 q

›

›

›

›

›

2

`
γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs `
2Kγ2

M

M
ÿ

m“1

E

›

›

›

›

›

∇xfmpxm,r
k ,ym,r

0 q ´
1

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 q

›

›

›

›

›

2

`

2Kγ2

M

M
ÿ

m“1

E }∇xfmpxm,r
k ,ym,r

0 q}
2

`
γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs `
4Kγ2

M

M
ÿ

m“1

E }∇xfmpxm,r
k ,ym,r

0 q}
2

`
γ2σ2

M
` γ2σ2

“

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs`

4Kγ2

M

M
ÿ

m“1

E }∇xfmpxm,r
k ,ym,r

0 q ´ ∇xfmpx̄r
k, ȳ

r
kq ` ∇xfmpx̄r

k, ȳ
r
kq}

2
`

γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs `
8Kγ2

M

M
ÿ

m“1

E }∇xfmpxm,r
k ,ym,r

0 q ´ ∇xfmpx̄r
k, ȳ

r
kq}

2
`

8Kγ2

M

M
ÿ

m“1

E }∇xfmpx̄r
k, ȳ

r
kq}

2
`

γ2σ2

M
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs ` 8KL2γ2 ErΨpxm,r
k qs ` 8KL2γ2 ErΦpȳr

kqs`

8Kγ2

M

M
ÿ

m“1

E }∇xfmpx̄r
k, ȳ

r
kq}

2
`

γ2σ2

M
` γ2σ2

“

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs ` 8KL2γ2 ErΨpxm,r
k q ` Φpȳr

kqs`

8Kγ2

M

M
ÿ

m“1

E }∇xfmpx̄r
k, ȳ

r
kq ´ ∇xfmpx‹,y‹q ` ∇xfmpx‹,y‹q}

2
`

γ2σ2

M
` γ2σ2

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs ` 8KL2γ2 ErΨpxm,r
k q ` Φpȳr

kqs`

16Kγ2

M

M
ÿ

m“1

E }∇xfmpx̄r
k, ȳ

r
kq ´ ∇xfmpx‹,y‹q}

2
` 16Kγ2ζ2‹ `

γ2σ2

M
` γ2σ2
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we continue:

ErΨpxm,r
k`1q ` Φpx̄r

k`1qs ď

ˆ

1 `
1

K

˙

ErΨpxm,r
k q ` Φpx̄r

kqs ` 8KL2γ2 ErΨpxm,r
k q ` Φpȳr

kqs`

16KL2γ2 E }z̄rk ´ z‹}
2

` 16Kγ2ζ2‹ `
γ2σ2

M
` γ2σ2

After doing the same computation with respect to y we get:

ErΨpym,r
k`1q ` Φpȳr

k`1qs

ď

ˆ

1 `
1

K

˙

ErΨpym,r
k q ` Φpȳr

kqs ` 8KL2γ2 ErΨpym,r
k q ` Φpx̄r

kqs`

16KL2γ2 E }z̄rk ´ z‹}
2

` 16Kγ2ζ2‹ `
γ2σ2

M
` γ2σ2

Now we sum up both inequalities and we get:

ErΨpzm,r
k`1q ` Φpz̄rk`1qs

ď

ˆ

1 `
1

K

˙

ErΨpzm,r
k q ` Φpz̄rkqs ` 8KL2γ2 ErΨpzm,r

k q ` Φpz̄rkqs`

32KL2γ2 E }z̄rk ´ z‹}
2

` 32Kγ2ζ2‹ `
2γ2σ2

M
` 2γ2σ2

With the choice of γ ď
µ

32L2K we simplify the above inequality as:

ErΨpzm,r
k`1q ` Φpz̄rk`1qs

ď

ˆ

1 `
1

K
`

1

128K

˙

ErΨpzm,r
k q ` Φpz̄rkqs `

µ2

32KL2
E }z̄rk ´ z‹}

2
` 32Kγ2ζ2‹ `

2γ2σ2

M
` 2γ2σ2

After unrolling the recursion for the last K steps and considering the fact that
`

1 ` 1
K ` 1

128K

˘K
ď 4

we have:

ErΨpzm,r
k`1q ` Φpz̄rk`1qs ď

K
ÿ

i“1

µ2

8KL2
E }z̄ri ´ z‹}

2
` 32K2γ2ζ2‹ `

2Kγ2σ2

M
` 2Kγ2σ2

Lemma 14 (Consensus error for N -player games). After running Decoupled SGD for k local steps
at some round r with a step-size of γ ď

µ
32L2K , the error

řN
n“1 Φpxm,r

k q can be upper bounded as
follows:

N
ÿ

n“1

ErΦpxn,r
k qs ď

K
ÿ

i“1

µ2

64KNL2
E }zri ´ z‹}

2
` 4NKγ2σ2 (24)

Proof. We start by upper bounding this error for some player n:

ErΦpxn,r
k`1qs

“ E
›

›xn,r
k`1 ´ xn,r

0

›

›

2

“ E
›

›xn,r
k ´ ∇xnfnpxn,r

k ;x´n,r
0 ; ξnq ´ xn,r

0

›

›

2

ď E
›

›xn,r
k ´ ∇xnfmpxn,r

k ;x´n,r
0 q ´ xn,r

0

›

›

2
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΦpxn,r
k qs ` 2Kγ2 E

›

›∇xnfnpxn,r
k ;x´n,r

0 q
›

›

2
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΦpxn,r
k qs ` 2Kγ2 E

›

›∇xnfnpxn,r
k ;x´n,r

0 q ´ ∇xnfnpxn,r
k ,x´n,r

k q ` ∇xnfnpxn,r
k ,x´n,r

k q
›

›

2
` γ2σ2

ď

ˆ

1 `
1

K

˙

ErΦpxn,r
k qs ` 4KL2γ2

N
ÿ

i“1

E
›

›

›
xi,r
k ´ xi,r

0

›

›

›

2

` 4KL2γ2 E }zrk ´ z‹}
2

` γ2σ2

16



Summing over all players gives us:

N
ÿ

n“1

ErΦpxn,r
k`1qs

ď

ˆ

1 `
1

K

˙ N
ÿ

n“1

ErΦpxn,r
k qs ` 4KL2γ2

N
ÿ

n“1

N
ÿ

i“1

E
›

›

›
xi,r
k ´ xi,r

0

›

›

›

2

` 4KNL2γ2 E }zrk ´ z‹}
2

` Nγ2σ2

ď

ˆ

1 `
1

K

˙ N
ÿ

n“1

ErΦpxn,r
k qs ` 4KNL2γ2

N
ÿ

n“1

ErΦpxn,r
k qs ` 4KNL2γ2 E }zrk ´ z‹}

2
` Nγ2σ2

With the choice of γ ď
µ

32NKL2 we get:

N
ÿ

n“1

ErΦpxn,r
k`1qs

ď

ˆ

1 `
1

K

˙ N
ÿ

n“1

ErΦpxn,r
k qs `

µ2

256KNL2

N
ÿ

n“1

ErΦpxn,r
k qs `

µ2

256KNL2
E }zrk ´ z‹}

2
` Nγ2σ2

“

ˆ

1 `
1

K
`

µ2

256KNL2

˙ N
ÿ

n“1

ErΦpxn,r
k qs `

µ2

256KNL2
E }zrk ´ z‹}

2
` Nγ2σ2

By unrolling the recursion for K steps and considering the fact that
´

1 ` 1
K `

µ2

256KNL2

¯K

ď 4 we
get:

N
ÿ

n“1

ErΦpxn,r
k`1qs ď

K
ÿ

i“1

µ2

64KNL2
E }zri ´ z‹}

2
` 4NKγ2σ2

A.2 Proof of Theorem 4

We begin by upper bounding the distance between the average iterate x̄r
k`1 and the saddle point.

Proof.

E
›

›x̄r
k`1 ´ x‹

›

›

2

“ E

›

›

›

›

›

x̄r
k ´

γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 ; ξmq ´ x‹

›

›

›

›

›

2

ď E

›

›

›

›

›

x̄r
k ´

γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 q ´ x‹

›

›

›

›

›

2

`
γ2σ2

M

“ E

›

›

›

›

›

x̄r
k `

γ

M

M
ÿ

m“1

∇xfmpx̄r
k, ȳ

r
kq ´

γ

M

M
ÿ

m“1

∇xfmpxm,r
k ,ym,r

0 q ´
γ

M

M
ÿ

m“1

∇xfmpx̄r
k, ȳ

r
kq ´ x‹

›

›

›

›

›

2

`
γ2σ2

M

ď

´

1 `
γµ

2

¯

E

›

›

›

›

›

x̄r
k ´

γ

M

M
ÿ

m“1

∇xfmpx̄r
k, ȳ

r
kq ´ x‹

›

›

›

›

›

2

`

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E }∇xfmpx̄r
k, ȳ

r
kq ´ ∇xfmpxm,r

k ,ym,r
0 q}

2
`

γ2σ2

M

17



For the first term in the above inequality we have:

´

1 `
γµ

2

¯

E

›

›

›

›

›

x̄r
k ´

γ

M

M
ÿ

m“1

∇xfmpx̄r
k, ȳ

r
kq ´ x‹

›

›

›

›

›

2

“

´

1 `
γµ

2

¯

E }x̄r
k ´ γ∇xfpx̄r

k, ȳ
r
kq ´ x‹}

2

“

´

1 `
γµ

2

¯

E
”

}x̄r
k ´ x‹}

2
` γ2 }∇xfpx̄r

k, ȳ
r
kq}

2
´ 2γxx̄r

k ´ x‹,∇xfpx̄r
k, ȳ

r
kqy

ı

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q }x̄r
k ´ x‹}

2
´ 2γxx̄r

k ´ x‹,∇xfpx̄r
k, ȳ

r
kqy

ı

For the second term we also have:

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E }∇xfmpx̄r
k, ȳ

r
kq ´ ∇xfmpxm,r

k ,ym,r
0 q}

2

ď

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E }x̄r
k ´ xm,r

k }
2

`

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E }ȳr
k ´ ȳr

0}
2

“

ˆ

1 `
2

γµ

˙

L2γ2 E rΨpxm,r
k qs `

ˆ

1 `
2

γµ

˙

L2γ2 ErΦpȳr
kqs

Where in the last line, we used the fact that ym,r
0 “ ȳr

0. We then repeat the same computation with
respect to y.

E
›

›ȳr
k`1 ´ y‹

›

›

2
“

“ E

›

›

›

›

›

ȳr
k `

γ

M

M
ÿ

m“1

∇yfmpxm,r
0 ,ym,r

k ; ξmq ´ y‹

›

›

›

›

›

2

ď E

›

›

›

›

›

ȳr
k `

γ

M

M
ÿ

m“1

∇yfmpxm,r
0 ,ym,r

k q ´ y‹

›

›

›

›

›

2

`
γσ2

M

“ E

›

›

›

›

›

ȳr
k `

γ

M

M
ÿ

m“1

∇yfmpxm,r
0 ,ym,r

k q ´
γ

M

M
ÿ

m“1

∇yfmpx̄r
k, ȳ

r
kq `

γ

M

M
ÿ

m“1

∇yfmpx̄r
k, ȳ

r
kq ´ y‹

›

›

›

›

›

2

`
γσ2

M

ď

´

1 `
γµ

2

¯

E

›

›

›

›

›

ȳr
k `

γ

M

M
ÿ

m“1

∇yfmpx̄r
k, ȳ

r
kq ´ y‹

›

›

›

›

›

2

`

ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E }∇yfmpx̄r
k, ȳ

r
kq ´ ∇yfmpxm,r

0 ,ym,r
k q}

2
`

γσ2

M

For the first term in the above inequality we have:

´

1 `
γµ

2

¯

E

›

›

›

›

›

ȳr
k `

γ

M

M
ÿ

m“1

∇yfmpx̄r
k, ȳ

r
kq ´ y‹

›

›

›

›

›

2

“

´

1 `
γµ

2

¯

E }ȳr
k ` γ∇yfpx̄r

k, ȳ
r
kq ´ y‹}

2

“

´

1 `
γµ

2

¯

E
”

}ȳr
k ´ y‹}

2
` γ2 }∇yfpx̄r

k, ȳ
r
kq}

2
´ 2γxy‹ ´ ȳr

k,∇yfpx̄r
k, ȳ

r
kqy

ı

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q }ȳr
k ´ y‹}

2
´ 2γxy‹ ´ ȳr

k,∇yfpx̄r
k, ȳ

r
kqy

ı

18



For the second term we also have:
ˆ

1 `
2

γµ

˙

γ2

M

M
ÿ

m“1

E }∇yfmpx̄r
k, ȳ

r
kq ´ ∇yfmpxm,r

0 ,ym,r
k q}

2

ď

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E }x̄r
k ´ x̄r

0}
2

`

ˆ

1 `
2

γµ

˙

L2γ2

M

M
ÿ

m“1

E }ȳr
k ´ ym,r

k }
2

“

ˆ

1 `
2

γµ

˙

L2γ2 ErΦpx̄r
kqs `

ˆ

1 `
2

γµ

˙

L2γ2 ErΨpym,r
k qs

Summing up the results from the inequalities with respect to x and y gives us:

E
›

›z̄rk`1 ´ z‹
›

›

2

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q }z̄rk ´ z‹}
2

´ 2γxz̄rk ´ z‹, F pz̄rkqy

ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpz̄rkq ` Ψpzm,r
k qs `

γ2σ2

M

ď

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q }z̄rk ´ z‹}
2

´ 2γµ }z̄rk ´ z‹}
2
ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpz̄rkq ` Ψpzm,r
k qs `

γ2σ2

M

“

´

1 `
γµ

2

¯

E
”

p1 ´ 2γµ ` γ2L2q }z̄rk ´ z‹}
2
ı

` γ

ˆ

γL2 `
2L2

µ

˙

E rΦpz̄rkq ` Ψpzm,r
k qs `

γ2σ2

M

With the choice of γ ď
µ

16L2 we have:

E
›

›z̄rk`1 ´ z‹
›

›

2

ď

ˆ

1 ´
23γµ

16

˙

E }z̄rk ´ z‹}
2

`
33γL2

16µ
E rΦpz̄rkq ` Ψpzm,r

k qs `
γ2σ2

M

ď

ˆ

1 ´
23γµ

16

˙

E }z̄rk ´ z‹}
2

`
33γµ

128K

K
ÿ

i“1

}z̄ri ´ z‹}
2

`
96K2L2γ3ζ2‹

µ
`

7KL2γ3σ2

µM
`

6KL2γ3σ2

µ
`

γ2σ2

M

We change the current notation for simplicity in proof by substituting r and k with t. t varies from 0
to T “ KR, iterating over all rounds and local steps:

E }z̄t`1 ´ z‹}
2

ď

ˆ

1 ´
23γµ

16

˙

E }z̄t ´ z‹}
2

`
33γµ

128K

t
ÿ

i“maxt0,t´K`1u

}z̄i ´ z‹}
2

`
96K2L2γ3ζ2‹

µ
`

7KL2γ3σ2

µM
`

6KL2γ3σ2

µ
`

γ2σ2

M

Here we use the Lemma 11 with the following parameters,

st “ E }z̄t ´ z‹}
2
, a “

23µ

16
, b “

33µ

128
, c “

96K2L2γζ2‹
µ

`
7KL2γσ2

µM
`

6KL2γσ2

µ
`

γσ2

M

The final inequality is:

E }z̄t ´ z‹}
2

ď

ˆ

1 ´
23γµ

32

˙t

E }z0 ´ z‹}
2

`
32

23µ

ˆ

96K2L2γζ2‹
µ

`
7KL2γσ2

µM
`

6KL2γσ2

µ
`

γσ2

M

˙

γ

ď

´

1 ´
γµ

2

¯t

E }z0 ´ z‹}
2

`
96K2L2γ2ζ2‹

µ2
`

7KL2γ2σ2

µ2M
`

6KL2γ2σ2

µ2
`

γσ2

Mµ

Recall that we assumed γ “
µ

32KL2 .By using this inequality we can dirve :

E }z̄T ´ z‹}
2

ď

´

1 ´
γµ

2

¯KR

E }z0 ´ z‹}
2

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

By setting t “ T “ RK , we get:

E }z̄T ´ z‹}
2

ď

´

1 ´
γµ

2

¯KR

E }z0 ´ z‹}
2

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ

ď exp
´

´
γµ

2
KR

¯

E }z0 ´ z‹}
2

`
96K2L2γ2ζ2‹

µ2
`

6KL2γ2σ2

µ2
`

2γσ2

Mµ
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We can see that with this inequality we can only guarantee convergence to a neighborhood of z‹. To
obtain a convergence the final, as discussed in Stich [2019], we need to choose the step size carefully.
If µ

32KL2 ě
lnpmaxt2,µ4

}z0´z‹
}
2T 2

{σ2
uq

µT then we choose γ “
lnpmaxt2,µ4

}z0´z‹
}
2T 2

{σ2
uq

µT , otherwise

if µ
32KL2 ă

lnpmaxt2,µ4
}z0´z‹

}
2T 2

{σ2
uq

µT then we choose γ “
µ

32KL2

we can see that with these choices, we would have:

E }z̄T ´ z‹}
2

“ Õ
ˆ

exp

ˆ

´
µ2

64L2
R

˙

}z0 ´ z‹}
2

`
K2L2ζ2‹
µ4T 2

`
KL2σ2

µ4T 2
`

2σ2

Mµ2T

˙

A.3 Proof of Theorem 1

Proof.

E
›

›xn,r
k`1 ´ xn

‹

›

›

2

“ E
›

›xn,r
k ´ xn

‹ ´ γ∇xnfnpxn,r
k ;x´n,r

0 ; ξnq
›

›

2

ď E
›

›xn,r
k ´ xn

‹ ´ γ∇xnfnpxn,r
k ;x´n,r

0 q
›

›

2
` γ2σ2

“ E
›

›xn,r
k ´ xn

‹ ´ γ∇xnfnpxn,r
k ;x´n,r

k q ´ γ∇xnfnpxn,r
k ;x´n,r

0 q ` γ∇xnfnpxn,r
k ;x´n,r

k q
›

›

2
` γ2σ2

ď

´

1 `
γµ

2

¯

E
›

›xn,r
k ´ xn

‹ ´ γ∇xnfnpxn,r
k ;x´n,r

k q
›

›

2

`

ˆ

1 `
2

γµ

˙

γ2E
›

›∇xnfnpxn,r
k ;x´n,r

0 q ´ ∇xnfnpxn,r
k ;x´n,r

k q
›

›

2
` γ2σ2

ď

´

1 `
γµ

2

¯

E
”

}xn,r
k ´ xn

‹ }
2

` γ2
›

›∇xnfpxn,r
k ;x´n,r

k q
›

›

2
´ 2γ

A

xn,r
k ´ xn

‹ ,∇xnfnpxn,r
k ;x´n,r

k q

Eı

`

ˆ

γ2 `
2γ

µ

˙

E
›

›∇xnfnpxn,r
k ;x´n,r

k q ´ ∇xnfnpxn,r
k ;x´n,r

0 q
›

›

2
` γ2σ2

ď

´

1 `
γµ

2

¯

E
”

}xn,r
k ´ xn

‹ }
2

` γ2
›

›∇xnfnpxn,r
k ;x´n,r

k q
›

›

2
´ 2γ

A

xn,r
k ´ xn

‹ ,∇xnfnpxn,r
k ;x´n,r

k q

Eı

`

ˆ

γ2L2 `
2γL2

µ

˙ N
ÿ

i“1

E
›

›

›
xi,r
k ´ xi,r

0

›

›

›

2

` γ2σ2

Then we sum up both sides of the above inequality over n:

N
ÿ

n“1

E
›

›xn,r
k`1 ´ xn

‹

›

›

2

ď

´

1 `
γµ

2

¯

E

«

p1 ` γ2L2q

N
ÿ

n“1

}xn,r
k ´ xn

‹ }
2

´ 2γ
N
ÿ

n“1

A

xn,r
k ´ xN

‹ ,∇xnfnpxn,r
k ;x´n,r

k q

E

ff

`

ˆ

γ2L2 `
2γL2

µ

˙

N
N
ÿ

n“1

E }xn,r
k ´ xn,r

0 }
2

` γ2σ2

“

´

1 `
γµ

2

¯

E
”

p1 ` γ2L2q }zrk ´ z‹}
2

´ 2γ
A

zrk ´ z‹, F pzrkq ´ F pz‹q

Eı

`

ˆ

γ2L2 `
2γL2

µ

˙

NΦpxn,r
k q ` γ2σ2

ď

´

1 `
γµ

2

¯

E
”

p1 ´ 2γµ ` γ2L2q }zrk ´ z‹}
2
ı

`

ˆ

γ2L2 `
2γL2

µ

˙

NΦpxn,r
k q ` γ2σ2
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With the choice of γ ď
µ

8L2 we have:

E
›

›zrk`1 ´ z‹
›

›

2

ď

´

1 `
γµ

2

¯ ”

`

1 ´ 2γµ ` γ2L2
˘

E }zrk ´ z‹}
2
ı

` γ

ˆ

γL2 `
4L2

µ

˙

NΦpxn,r
k q ` γ2σ2

ď

´

1 `
γµ

2

¯

„ˆ

1 ´
15γµ

8

˙

E }zrk ´ z‹}
2

ȷ

`
33γL2N

8µ
Φpxn,r

k q ` γ2σ2

ď

ˆ

1 ´
11γµ

8

˙

E }zrk ´ z‹}
2

`
33γL2N

8µ
Φpxn,r

k q ` γ2σ2

ď

ˆ

1 ´
11γµ

8

˙

E }zrk ´ z‹}
2

`
33γµ

512K

K
ÿ

i“1

E }zri ´ z‹}
2

` γ2σ2 `
20NKL2γ3σ2

µ

We change the current notation for simplicity in proof by substituting r and k with t. t varies from 0
to T “ KR, iterating over all rounds and local steps:

E }zt`1 ´ z‹}
2

ď

ˆ

1 ´
11γµ

8

˙

E }zt ´ z‹}
2
`

33γµ

512K

t
ÿ

i“maxt0,t´K`1u

E }zi ´ z‹}
2
`γ2σ2`

20NKL2γ3σ2

µ

Here we use the Lemma 11 with the following parameters,

st “ E }zt ´ z‹}
2
, a “

11µ

8
, b “

33µ

512
, c “

ˆ

1 `
20NKL2γ

µ

˙

σ2

The final inequality is:

E }zt ´ z‹}
2

ď

ˆ

1 ´
11γµ

16

˙t

E }z0 ´ z‹}
2

`
16

11µ
γσ2 `

320NKL2γ2σ2

11µ2

ď

´

1 ´
γµ

2

¯t

E }z0 ´ z‹}
2

`
2

µ
γσ2 `

30NKL2γ2σ2

µ2

By setting t “ T and by considering the inequality γ ď
µ

32NKL2 , we get:

E }zT ´ z‹}
2

ď

´

1 ´
γµ

2

¯KR

}z0 ´ z‹}
2

`
2

µ
γσ2 `

1

µ
γσ2

ď exp
´

´
γµ

2
KR

¯

}z0 ´ z‹}
2

`
3

µ
γσ2

We can see that with this inqualty we can only guarantee convergence to a γσ2

µ -neighborhood of
z‹. To obtain a convergence the final, as discussed in Stich [2019], we need to choose the step size
carefully. If µ

32NKL2 ě
lnpmaxt2,µ2

}z0´z‹
}
2T {σ2

uq

µT then we choose γ “
lnpmaxt2,µ2

}z0´z‹
}
2T {σ2

uq

µT

,otherwise if µ
32NKL2 ă

lnpmaxt2,µ2
}z0´z‹

}
2T {σ2

uq

µT then we choose γ “
µ

32NKL2

we can see that with these choices, we would have:

E }zT ´ z‹}
2

“ Õ
ˆ

exp

ˆ

´
µ2

64NL2
R

˙

}z0 ´ z‹}
2

`
σ2

µ2KR

˙

Lemma 15. Given a general bi-linear game in the following form:

fpx,yq “
1

2
xJAx ´

1

2
yJBy ` xJCy

After k steps of Decoupled GDA at some round r we can compute the explicit form of iterates as
follows:

xr
k “ ´A´1Cyr

0 ` A´1 pI ´ γAq
k

pAxr
0 ` Cyr

0q

yr
k “ B´1CJxr

0 ` B´1 pI ´ γBq
k `

Byr
0 ´ CJxr

0

˘
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Proof. We use induction for the proof of this section. By using the update rule of Local GDA we
would have,

xr
k`1 “ xk ´ γ∇xfpxr

k,y
r
0q

“ xk ´ γ pAxr
k ` Cyr

0q

“ ´A´1Cyr
0 ` A´1 pI ´ γAq

k
pAxr

0 ` Cyr
0q

´ γ
´

A
”

´A´1Cyr
0 ` A´1 pI ´ γAq

k
pAxr

0 ` Cy0q

ı

` Cyr
0

¯

“ ´A´1Cyr
0 ` A´1 pI ´ γAq

k
pAxr

0 ` Cyr
0q

´ γ
´

´Cyr
0 ` pI ´ γAq

k
pAxr

0 ` Cyr
0q ` Cyr

0

¯

“ ´A´1Cyr
0 ` A´1 pI ´ γAq

k
pAxr

0 ` Cyr
0q ´ γ pI ´ γAq

k
pAxr

0 ` Cyr
0q

“ ´A´1Cyr
0 `

`

A´1 ´ γI
˘

”

pI ´ γAq
k

pAxr
0 ` Cyr

0q

ı

“ ´A´1Cyr
0 ` A´1 pI ´ γAq

”

pI ´ γAq
k

pAxr
0 ` Cyr

0q

ı

“ ´A´1Cyr
0 ` A´1 pI ´ γAq

k`1
pAxr

0 ` Cyr
0q

Now we only need to show that our claim also works for k “ 0,

xr
0 “ ´A´1Cyr

0 ` A´1 pI ´ γAq
0

pAxr
0 ` Cyr

0q

“ ´A´1Cyr
0 ` xr

0 ` A´1Cyr
0

“ xr
0

Also, we do the computation with respect to y:

yr
k “ B´1CJxr

0 ` B´1 pI ´ γBq
k `

Byr
0 ´ CJxr

0

˘

By using the update rule of Local GDA we get:

yr
k`1 “ yk ´ γ∇yfpxr

0,x
r
kq

“ yk ` γ
`

´Byr
k ` CJxr

0

˘

“ yk ´ γ
`

Byr
k ´ CJxr

0

˘

“ B´1CJxr
0 ` B´1 pI ´ γBq

k `

Byr
0 ´ CJx0

˘

´ γ
´

B
”

B´1CJxr
0 ` B´1 pI ´ γBq

k `

Byr
0 ´ CJxr

0

˘

ı

´ CJxr
0

¯

“ B´1CJxr
0 ` B´1 pI ´ γBq

k `

Byr
0 ´ CJx0

˘

´ γ
´

CJxr
0 ` pI ´ γBq

k `

Byr
0 ´ CJxr

0

˘

´ CJxr
0

¯

“ B´1CJxr
0 ` B´1 pI ´ γBq

k `

Byr
0 ´ CJx0

˘

´ γ pI ´ γBq
k `

Byr
0 ´ CJxr

0

˘

“ B´1CJxr
0 `

`

B´1 ´ γI
˘

”

pI ´ γBq
k `

Byr
0 ´ CJxr

0

˘

ı

“ B´1CJxr
0 ` B´1 pI ´ γBq

”

pI ´ γBq
k `

Byr
0 ´ CJxr

0

˘

ı

“ B´1CJxr
0 ` B´1 pI ´ γBq

k`1 `

Byr
0 ´ CJxr

0

˘
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Now we only need to show this our claim also works for k “ 0,

yr
0 “ B´1CJxr

0 ` B´1 pI ´ γBq
0 `

Byr
0 ´ CJxr

0

˘

“ B´1CJxr
0 ` yr

0 ´ B´1CJxr
0

“ yr
0

A.4 Proof of Theorem 1

Proof. Here we provide the convergence rate for Decoupled GDA for bi-linear games in the form of:

Recall that from Lemma 15 we know:
xr
k “ ´A´1Cyr

0 ` A´1
pI ´ γAq

k
pAxr

0 ` Cyr
0q

yr
k “ B´1CJxr

0 ` B´1
pI ´ γBq

k
´

Byr
0 ´ CJxr

0

¯

Then we can write our expressions in the matrix form:

zrk “

¨

˝

A´1
pI ´ γAq

k A A´1
´

´C ` pI ´ γAq
k C

¯

B´1
´

CJ
´ pI ´ γBq

k CJ
¯

B´1
pI ´ γBq

k B

˛

‚

ˆ

xr
0

yr
0

˙

“

¨

˝

pI ´ γAq
k A´1

´

´C ` pI ´ γAq
k C

¯

B´1
´

CJ
´ pIγBq

k CJ
¯

pI ´ γBq
k

˛

‚

ˆ

xr
0

yr
0

˙

“

„ˆ

pI ´ γAq
k 0

0 pI ´ γBq
k

˙ ˆ

I A´1C
´B´1CJ I

˙

`

ˆ

0 ´A´1C
B´1CJ 0

˙ȷ ˆ

xr
0

yr
0

˙

“

«

ˆ

pI ´ γAq 0
0 pI ´ γBq

˙k ˆ

I A´1C
´B´1CJ I

˙

`

ˆ

0 ´A´1C
B´1CJ 0

˙

ff

ˆ

xr
0

yr
0

˙

Then we compute the norm squared of }zrk}
2:

}zrk}
2

“

›

›

›

›

›

«

ˆ

pI ´ γAq 0
0 pI ´ γBq

˙k ˆ

I A´1C
´B´1CJ I

˙

`

ˆ

0 ´A´1C
B´1CJ 0

˙

ff

ˆ

xr
0

yr
0

˙

›

›

›

›

›

2

Recall that for simplifying the proof, here we study the bi-linear games where A “ ωI, B “ ωI and C is
symmetric square (C “ CJ). By apply these assumption, we get:

Recall the following equality:

}zrk}
2

“

›

›

›

›

›

«

ˆ

pI ´ γpωIqq 0
0 pI ´ γpωIqq

˙k ˆ

I ω´1C
´ω´1CJ I

˙

`

ˆ

0 ´ω´1C
ω´1CJ 0

˙

ff

ˆ

xr
0

yr
0

˙

›

›

›

›

›

2

“

›

›

›

›

›

ˆ

pI ´ γpωIqq 0
0 pI ´ γpωIqq

˙k ˆ

I ω´1C
´ω´1CJ I

˙ ˆ

xr
0

yr
0

˙

›

›

›

›

›

2

`

›

›

›

›

ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙›

›

›

›

2

` 2

ˆ

xr
0

yr
0

˙J ˆ

I ω´1C
´ω´1CJ I

˙J ˆ

pI ´ γpωIqq 0
0 pI ´ γpωIqq

˙k ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙
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For the last equality we used }v ` u}
2

“ }v}
2

` }u}
2

` 2vTu, where v and u are two vectors.

}zrk}
2

ď

›

›

›

›

›

ˆ

pI ´ γpωIqq 0
0 pI ´ γpωIqq

˙k
›

›

›

›

›

2 ›

›

›

›

ˆ

I ω´1C
´ω´1CJ I

˙ ˆ

xr
0

yr
0

˙›

›

›

›

2

`

›

›

›

›

ˆ

0 ´ω´1
x C

ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙›

›

›

›

2

` 2

›

›

›

›

›

ˆ

pI ´ γpωIqq 0
0 pI ´ γpωIqq

˙k
›

›

›

›

›

ˆ

xr
0

yr
0

˙J ˆ

I ´ω´1C
ω´1CJ I

˙ ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

ď p1 ´ γωq
2k

›

›

›

›

ˆ

I ω´1C
´ω´1CJ I

˙ ˆ

xr
0

yr
0

˙›

›

›

›

2

`

›

›

›

›

ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙›

›

›

›

2

` 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J ˆ

I ´ω´1C
ω´1CJ I

˙ ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

where the second equality follows from the following sequence of reasoning. Using the Lemma 12,
we have:

›

›

›

›

›

ˆ

pI ´ γpωIqq 0
0 pI ´ γpωIqq

˙k
›

›

›

›

›

ď pmax t1 ´ γω, 1 ´ γωuq
k

ď p1 ´ γωq
k

}zrk}
2

ď p1 ´ γωq
2k

›

›

›

›

ˆ

I ω´1C
´ω´1CJ I

˙ ˆ

xr
0

yr
0

˙
›

›

›

›

2

`

›

›

›

›

ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙
›

›

›

›

2

` 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J ˆ

I ´ω´1C
ω´1CJ I

˙ ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

“ p1 ´ γωq
2k

ˆ

xr
0

yr
0

˙J ˆ

I ω´1C
´ω´1CJ I

˙J ˆ

I ω´1C
´ω´1CJ I

˙ ˆ

xr
0

yr
0

˙

`

ˆ

xr
0

yr
0

˙J ˆ

0 ´ω´1C
ω´1CJ 0

˙J ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

` 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J ˆ

I ´ω´1C
ω´1CJ I

˙ ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

“ p1 ´ γωq
2k

ˆ

xr
0

yr
0

˙J ˆ

I ` ω´2C2 0
0 I ` ω´2C2

˙ ˆ

xr
0

yr
0

˙

`

ˆ

xr
0

yr
0

˙J ˆ

ω´2C2 0
0 ω´2C2

˙ ˆ

xr
0

yr
0

˙

` 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J „

I `

ˆ

0 ´ω´1C
ω´1CJ 0

˙ȷ ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

“ p1 ´ γωq
2k

ˆ

xr
0

yr
0

˙J ˆ

I 0
0 I

˙ ˆ

xr
0

yr
0

˙

`

´

p1 ´ γq
2k

` 1
¯

ˆ

xr
0

yr
0

˙J ˆ

ω´2C2 0
0 ω´2C2

˙ ˆ

xr
0

yr
0

˙

` 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J „

I `

ˆ

0 ´ω´1C
ω´1CJ 0

˙ȷ ˆ

0 ´ω´1C
ω´1CJ 0

˙ ˆ

xr
0

yr
0

˙

ď p1 ´ γωq
2k

}zr0}
2

`

´

p1 ´ γωq
2k

` 1
¯

ˆ

xr
0

yr
0

˙J ˆ

ω´2C2 0
0 ω´2C2

˙ ˆ

xr
0

yr
0

˙

` 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J ˆ

0 ´ω´1C
ω´1CJ 0

˙

l jh n

ϕ

ˆ

xr
0

yr
0

˙

´ 2p1 ´ γωq
k

ˆ

xr
0

yr
0

˙J ˆ

ω´2C2 0
0 ω´2C2

˙ ˆ

xr
0

yr
0

˙

Matrix ϕ is an anti-symmetric matrix and zJϕz “ 0, assuming ϕ is an anti-symmetric matrix. So we
have,
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}zrk}
2

ď p1 ´ γωq2k }zr0}
2

`
`

p1 ´ γωq2k ´ 2p1 ´ γωqk ` 1
˘

ˆ

xr
0

yr
0

˙J ˆ

ω´2C2 0
0 ω´2C2

˙ ˆ

xr
0

yr
0

˙

“ p1 ´ γωq2k }zr0}
2

`
`

p1 ´ γωqk ´ 1
˘2

ˆ

xr
0

yr
0

˙J ˆ

ω´2C2 0
0 ω´2C2

˙ ˆ

xr
0

yr
0

˙

ď p1 ´ γωq2k }zr0}
2

`
`

p1 ´ γωqk ´ 1
˘2

ω´2λ2
maxpCq }zr0}

2

ď

´

p1 ´ γωq2k `
`

p1 ´ γωqk ´ 1
˘2

ω´2λ2
maxpCq

¯

}zr0}
2

Where we used Lemma 12 for the third inequality.
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