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ABSTRACT

Deep Convolutional Neural Networks (CNNs) have recently demonstrated impres-
sive results in electroencephalogram (EEG) decoding for several Brain-Computer
Interface (BCI) paradigms, including Motor-Imagery (MI). However, neurophysio-
logical processes underpinning EEG signals vary across subjects causing covariate
shifts in data distributions and hence hindering the generalization of deep models
across subjects. In this paper, we aim to address the challenge of inter-subject vari-
ability in MI. To this end, we employ causal reasoning to characterize all possible
distribution shifts in the MI task and propose a dynamic convolution framework to
account for shifts caused by the inter-subject variability. Using publicly available
MI datasets, we demonstrate improved generalization performance across subjects
in various MI tasks for four well-established deep architectures.

1 INTRODUCTION

Brain-Computer Interface (BCI) technology primarily aspires to provide neural communication and
control between a user and a machine bypassing the normal neuromuscular pathways. This is feasible
by analyzing brainwaves captured by electroencephalogram (EEG) signal recordings using signal
processing and Machine Learning (ML) techniques. One of the first and most popular BCI paradigm
is Motor-Imagery (MI). MI-BCIs are based on a neural process, by which a subject mentally simulates
a motor action, for example the movement of a hand or foot, without actually executing it (Decety &
Ingvar (1990)). Developing MI-BCI systems mainly relies on robust decoding of a subject’s motor
intentions from the recorded EEG signals, under the prior assumption that these signals encode that
relevant information, and are mainly used for movement rehabilitation purposes (e.g. Mane et al.
(2020), Robinson et al. (2021), Sebastián-Romagosa et al. (2020)).

In recent years, Deep Learning (DL) techniques - and most specifically Convolutional Neural
Networks (CNNs) - have largely alleviated the need for manual feature extraction, achieving state-
of-the-art performance in various areas, most notably computer vision (Chai et al. (2021)). Due to
their massive progress, CNN-based feature extractors have been introduced in various paradigms
in the field of BCIs (e.g. Antoniades et al. (2016), Rezaeitabar & Halici (2017), Längkvist et al.
(2012), Wulsin et al. (2011)), in an effort to become generic EEG signal processing tools compared
to classical feature extraction techniques (McFarland et al. (2006), Blankertz et al. (2008), Ang et al.
(2008)), in which the exact design of the spatio-temporal filtering pipeline is accomplished in a
principled manner so as to ensure the reliability of the subsequent brain activity decoding. One of the
core challenges that a BCI - or more generally the decoding of EEG signals - faces is to cope with
changes in data distributions across different subjects. Each individual has a unique brain anatomy
and functionality that makes the discovery and exploitation of shared invariant features extremely
difficult. Therefore, modern DL-based BCIs tend to fail to generalize well in unseen subjects due to
this type of data distribution shift (Saha & Baumert (2020)).

Causal reasoning provides tools to breakdown and analyze important aspects of a BCI task, iden-
tify and possibly resolve some of these challenges by employing appropriate ML strategies. The
methodical breakdown of a BCI task and the identification of the causal relationships between the
various variables of interest take into account the expert’s knowledge of the involved biological and
neurophysiological processes and can be of vital importance when designing and building ML-based
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models in the field of BCIs. In this work, we focus mainly on MI-BCI systems, and inspired by the
work of Schölkopf et al. (2021), we analyze the task of MI EEG signal classification through the lens
of causal reasoning. Motivated by this causal analysis, we introduce a framework based on dynamic
convolutions that provably tackles the identified problem of data distribution shift across subjects.

Our contributions can be summarized as follows:

1. We employ causal reasoning to breakdown and analyze important challenges / distribution
shifts in the task of MI brainwave decoding

2. We propose a subject attention network based on learnable Gabor wavelets that can accurately
identify the different available subjects

3. Inspired by Chen et al. (2020), we propose a framework based on dynamic convolutions that
utilizes our proposed subject attention network and with zero calibration provably tackles
the issue of inter-subject variability in the task of MI brainwave decoding according to our
proposed causal breakdown. More specifically, our causal analysis allows us to design an
evaluation setup which keeps all the identified distribution shifts intact but the inter-subject
variability. Therefore, unlike other works in the area which claim improved cross-subject
performance and often utilize a mixture of techniques like data augmentation (which can
affect also other causal variables of interest), our work is theoretically proven to target the
problem of inter-subject variability through this specifically crafted evaluation setup.

2 BACKGROUND

2.1 DEEP LEARNING IN MI

DeepConvNet and ShallowConvNet (Schirrmeister et al. (2017)) are among the first deep learning ar-
chitectures employed in MI-BCIs and are inspired by common spatial pattern (CSP) filters (Blankertz
et al. (2008)) since they include convolutions across time followed by convolutions across EEG
channels. EEGNet (Lawhern et al. (2018)) is a lightweight BCI architecture which consists of a
compound of temporal and spatial filtering inspired by the filter bank common spatial pattern (FBCSP)
technique (Ang et al. (2008)). EEG-Inception (Santamarı́a-Vázquez et al. (2020)) shares the exact
same fundamentals with EEGNet and has strong performance results across different benchmarks.
Although it is similar to EEGNet, it includes several Inception branches, originally introduced in
Szegedy et al. (2015). These branches consist of trainable convolutional temporal filters of different
scales, capturing several temporal modulations of the EEG signals.

2.2 INTER-SUBJECT VARIABILITY AND TRANSFER LEARNING

Although these deep learning architectures are inspired by classical EEG feature extraction techniques
and achieve impressive performance in MI classification tasks, they usually fail to tackle the problem
of inter-subject variability, preventing the successful deployment of a previously trained MI classifier
to new unseen subjects. In fact, these differences are so distinct that previous works have shown
that the identification of a specific subject out-of-many is actually feasible (e.g Marcel & R. Millan
(2007), Valsaraj et al. (2020), Yang et al. (2021)). For many years, normalization techniques (e.g
Barachant et al. (2012), Kang et al. (2009)) - data scaling using a mean and standard deviation -
in conjunction with classical machine learning techniques have been considered the gold standard
to solve the problem of inter-subject variability. With the advent of deep learning, methods like
transfer learning have emerged in an effort to provide a solution (e.g Zhao et al. (2019), Olesen et al.
(2020), Zhang et al. (2021a), Zhang et al. (2021b)). In most of these methods, a small calibration set
from the unseen subject is utilized to fine-tune parts of the pre-trained deep network architecture. In
Zhang et al. (2021b) only the last fully-connected layers are fine-tuned while the previous layers are
frozen. While in Zhao et al. (2019) some identified layers are fine-tuned to maximize knowledge
transfer for MI classification. Although transfer learning has been proven to perform well, it still
requires a calibration session in order to generalize well to unseen subjects. In the direction of
zero-calibration networks, Özdenizci et al. (2020) proposes an adversarial inference framework
that learns subject invariant features. In this work, we aspire to provide an alternative solution to
the problem of inter-subject variability and enhance the above mentioned BCI deep architectures
dynamically without the need of a calibration session.
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3 CHARACTERIZING DISTRIBUTION SHIFTS IN MOTOR-IMAGERY (MI)
DECODING USING CAUSAL REASONING

The main goal of this paper is to propose a framework that tackles the issue of inter-subject variability
in CNN-based BCI models. To achieve this, we will first investigate the problem of MI brainwave
decoding through the lens of causal reasoning. As it has been demonstrated in Schölkopf et al.
(2021), causal models encode naturally more information which can be vital in the machine learning
design process and if appropriately used can lead to models which are more robust to certain types
of distribution shifts. But why is this causal analysis important in this work and for the proposed
framework? By performing this causal breakdown, we can identify most of the possible distribution
shifts that can be met in the task of MI classification. By associating the inter-subject variability to a
distribution shift in one of the core variables of interest, we can design an evaluation setup which
keeps all the identified challenges intact but the inter-subject variability. Therefore, we can certainly
claim that our framework specifically contributes in solving the targeted problem.

3.1 PRELIMINARIES

Causal reasoning is the analysis of a task / problem in terms of cause-effect relationships between
the different variables of interest: if a variable A is a direct cause of variable B, we express it
as A → B (A causes B or B is the effect of A). When designing a machine learning algorithm,
it is crucial to understand all the involved factors as well as their causal relationships. A causal
breakdown of a system can be represented as a directed acyclic graph (DAG) where the nodes are the
variables of interests and the edges represent direct causal relationships. These diagrams can capture
vital information for the involved variables of interests such as conditional dependencies as well as
independencies.

3.2 CAUSALITY IN MOTOR-IMAGERY DECODING

In a MI classification problem, we want to accurately predict the mentally performed task from a
recorded EEG signal. Mathematically, given an input EEG signal X , we train a statistical model to
predict the correct MI task Y , which can be the imagery movement e.g. of a hand or foot. In essence,
this statistical model tries to estimate the conditional probability P (Y |X) using an appropriate
objective function.

In machine learning tasks, given the input X and the prediction target Y , we can establish that the
task to estimate P (Y |X) can be either (Castro et al. (2020)):

• Causal: when X → Y , predict effect from cause

• Anti-causal: when Y → X , predict cause from effect

Using the above basis, we can define an MI EEG classification task as an anti-causal problem, since
the true MI intention (observed with the MI label Y ) can be considered the cause of the recorded
EEG signal X . Additionally, inspired by Castro et al. (2020), we can consider X as a sequence of
imperfect observed measurements (in sensor-space) of the true unobserved brain activity Z within,
mainly, the cortical areas responsible for the sensorimotor rhythms, i.e. Z → X . Therefore, using a
causal diagram, an MI EEG classification task can be described as:

X ← Z ← Y (1)

As a consequence of the above anti-causal definition and causal diagram, we can explore the problem
of MI EEG classification through the following causal factorization:

P (X,Y, Z) = P (X|Z)P (Z|Y )P (Y ) (2)

Through this causal breakdown, we can categorize the major challenges associated with Motor-
Imagery (MI) EEG classification tasks into three main categories. Challenges related with the:
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1. Training EEG signals - X . One of the renowned challenges in motor-imagery classification
problem - as in any medical-related machine learning problem - is the scarcity of labelled
data due to the lengthy acquisition process. Subjects are required to spend hours in a
laboratory facility performing successive motor-imagery tasks. This process has been
reported to cause fatigue and discomfort, even when devices with dry electrodes are utilized.
To make things worse, due to the wide variety of available EEG recorders in the market, the
data acquisition can be undertaken with various devices (acquisition shift P (X|Z))which
have completely different specifications (e.g. number of electrodes, sampling frequency to
name just a few), making the combination of publically available EEG datasets extremely
difficult.

2. Anatomical differences of subjects - P (Z|Y ). Each subject has a unique brain anatomy
and functionality that results in polymorphous neural activity patterns when appeared in the
surface observed EEG signal. When designing a generic ML-based MI-BCI, researchers
need to take this inter-subject variability (data distribution shift across subjects) into account.

3. Class Imbalance - P (Y ). Class imbalances can arise between the training and the deploy-
ment set of a MI-BCI. It is necessary for the training set to be as closely balanced to the
deployment set as possible when training machine learning models.

Figure 1: Key challenges in machine learning for a MI EEG classification task. X represents input
EEG signals, Y the associated MI labels. Big circles and crosses represent EEG signals of different
labels. Dots represent data points of any label and their color represent different EEG acquisition
devices.

4 PROPOSED FRAMEWORK

In this work, we mainly focus on the challenge of subject distribution shift (or inter-subject variability).
Using the causal breakdown described in Section 3, we will use two publicly available MI datasets -
which contain a large number of different subjects, are class balanced, have relatively enough trials
per subject and all trials come from a single EEG recorder (within each dataset) - essentially solving
all the above identified challenges but the subject distribution shift. In terms of the causal factorization
(2), the problem of inter-subject variability can be seen as a distribution shift S where:

P (X,Y, Z) = P (X|Z)PS(Z|Y )P (Y ) (3)

Our framework can be applied to any established CNN-based MI-BCI architecture, resulting in a
statistically significant performance increase. Inspired by Chen et al. (2020), we utilize dynamic
convolutions in the domain of MI brainwave decoding. Instead of having a BCI architecture that tries
to discover a common latent space for all k subjects in the training set, we use k parallel trainable
convolutional kernels (corresponding to the k available training subjects) for each convolutional block
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Figure 2: Dynamic convolution framework for BCI architectures. X represents input EEG signals,
Y the associated MI labels. The K different subjects in the training set are represented by different
colors in the convolutional blocks. Colored rectangles and arrows (namely green, red and dark blue)
demonstrate the different blocks that are taken into account when computing the final convolutional
blocks for the MI classification task.

of a CNN-based BCI network. Using a subject attention network that learns to distinguish between
the available individuals, we decouple the subjects and essentially train simultaneously k parallel
personalized models of the same BCI architecture, as illustrated in Figure 2.

Our proposed framework is inspired by the work of Chen et al. (2020) in the field of computer vision,
but it includes various modifications to address challenges apparent in the EEG domain. Although
the complete framework will be detailedly described in the following Sections 4.1 and 4.2, these
differences can be summarized as follows:

• Instead of fully trainable attention mechanisms, it utilizes our novel subject attention network
(described in 4.1) which uses only trainable Gabor filters making it more lightweight
and explainable than a shallow fully trainable neural network and it achieves very high
performance in the subject identification task.

• Unlike Chen et al. (2020) where there is an attention mechanism for each convolutional
layer and these mechanisms are trained in an unsupervised manner, our framework uses
only one attention mechanism for all convolutional layers, and with supervised training, it
learns to distinguish between the available different subjects.

• The k number of parallel kernels in our proposed framework is not a tunable hyperparameter
(like in Chen et al. (2020)) but coincides with the number of available subjects in the training
set.

• Instead of using the output vector of the attention mechanism as Chen et al. (2020), our
framework utilizes the proposed “uniformly attended” vector A* (described in 4.2) in order
to be more robust to the low Signal-to-Noise Ratio (SNR) of the EEG signal.

4.1 ATTENTION NETWORK

The first layer of our subject attention network is the first order wavelet scalogram of the input EEG
signal X . Mathematically, let x(t) ∈ RT denote a one-dimensional input EEG signal, where T is the
number of initial EEG time points, and ψλ(t) be a wavelet. The 1st order scalogram is defined as
X(λ, t) = |x(t) ∗ ψλ(t)|. To perform this operation, the raw input signal from each EEG channel
is convolved with a wavelet kernel with size (1,W ) = (1, Fs

2 ) where Fs is the sampling frequency.
This wavelet kernel follows the real Gabor wavelet format:

ψλ(t) =
1√
2πσ

e−
t2

2σ2 cos(2πλt) (4)
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with t ∈ [−W
2 , ..., W

2 ] and 1
σ denotes the bandwidth and λ the normalized frequency of the Gabor

wavelet and these two properties are the only trainable parameters of this layer. During training,
λ is restricted (λ ∈ [0, 1

2 ]) to satisfy the Nyquist theorem. The first order wavelet scalogram
X(λ, t) ∈ RTxFxC (where F is the number of Gabor filters and C the number of EEG channels) is
followed by a global average pooling across time and frequency. Finally, the resulted vector is passed
through a fully-connected layer to compute the subject id π.

4.2 SUBJECT-ATTENDED DYNAMIC CONVOLUTIONS

The proposed framework takes the EEG signal X as input and tries to learn both the correct MI
task Y (estimate the conditional probability P (Y |X)) as well as the correct subject id π (estimate
the conditional probability P (π|X)). The subject attention network and the k parallel convolutional
kernels are trained simultaneously using the following loss function:

Loss = (1− acc) ∗ ℓAttention + acc ∗ ℓMI (5)

where acc is the training accuracy of the subject attention network and ℓ denotes the cross-entropy
function (ℓAttention for the subject attention network and ℓMI for the MI classification task). This loss
function effectively enforces first the training of the subject attention network and, as the attention’s
accuracy increases, it switches its focus to train the parallel convolutional kernels for the different
MI tasks. As also suggested in Chen et al. (2020), since softmax does not work well due to its near
one-hot output, we use a large temperature in the softmax of the attention network during training in
order to flatten the framework’s attention, allow a broader gradient backpropagation and effectively
assist in the subject attention network’s training in the early epochs.

During inference, when an input EEG signal from a new unseen subject Sx is processed, it passes
firstly through the attention network and the subject attention vector π is computed. We empirically
observed that this vector is quite sparse, and if it was used during inference, only a handful of parallel
convolutional kernels would be utilized during the kernel mixing. Instead, we would ideally like to
use knowledge from all k individuals and ”shift” the attention more to the most relevant subjects.
To accomplish that, we compute what we call the ”uniformly attended vector” A*. If there was no
attention network, the k parallel convolutional kernel would be mixed with a uniform factor Ai =

1
k .

To compute the ”uniformly attended vector”, the uniform attention vector A is combined with the
subject attention vector π and the result is passed through a softmax activation to flatten the attention
across all subjects - while maintaining the focus on the most relevant ones (we refer the reader to the
Appendix B for a performance comparison between using π and A* as attention). Mathematically,
this operation can be described as: A1

A2

...
Ak


︸ ︷︷ ︸

A

+

π1

π2

...
πk


︸ ︷︷ ︸

π

σ−→

A∗
1

A∗
2

...
A∗

k


︸ ︷︷ ︸

A*

(6)

where σ denotes the softmax operation, A the uniform attention vector with Ai =
1
k , π the subject

attention vector with
∑

i πi = 1 and A* the ”uniformly attended” vector where
∑

i A
∗
i = 1.

In other words, using the causal factorization (3), our proposed framework estimate the probability
PSx

(Z|Y ) of a new unseen subject Sx as the linear combination of k learned conditional probabilities.
More specifically:

PSx(Z|Y ) = A∗
1 × PS1(Z|Y ) +A∗

2 × PS2(Z|Y ) + ...+A∗
k × PSk

(Z|Y ) (7)

5 EXPERIMENTS

To validate our proposed framework based on our causal breakdown in Section 3, two publically
available MI datasets are used namely:
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1. PhysioNet (Goldberger et al. (2000)): The original Physionet dataset includes brain record-
ings from 109 healthy participants, registered via 64 EEG sensors with a sampling frequency
of 160 Hz, while performing a series of pseudorandomized cue-triggered MI tasks. In our
experiments, we first excluded data from 6 participants (subjects 88, 89, 92, 100, 104 and
106) due to differences in either the sampling frequency or duration of the performed tasks.
We extracted trials corresponding to MI hand or feet movements in the form of segments
starting with the visual cue and lasting for 4.1 seconds.

2. OpenBMI - MI (Kwon et al. (2020)): The original OpenBMI dataset consists of 3 BCI
paradigms: ERP-based speller, MI and SSVEP. The MI trials include brain recordings from
54 healthy participants, registered via 62 EEG sensors with a sampling frequency of 1000
Hz. In the MI part of the dataset, the participants performed a series of cue-triggered MI
tasks either with or without receiving feedback (cursor moved according to the prediction
of a trained classifier). For the purpose of this study, we kept only the MI-trials without
feedback, since the neurofeedback was not included as a factor in our initial causal analysis.
In particular, we extracted trials corresponding to MI hands in the form of segments starting
with the visual cue and lasting for 4 seconds. Furthermore, we applied a notch filter at 60Hz
- and its harmonics (120, 180, 240, 300, 360, 420, 480) - to remove powerline noise. We
also applied a notch filter at 460Hz due to a spurious artifact (consistent across all trials).

5.1 SUBJECT VERIFICATION

The subject attention mechanism is a vital part in our proposed framework. Therefore, we evaluated its
performance separately first in order to ensure its ability to distinguish between the various available
subjects in the two datasets. We performed 10-fold cross-validation to measure its performance.
Adam optimizer was used with learning rate of 0.01 for the first 30 epochs (to allow the Gabor filters
to quickly adapt to the data) and 0.001 for the remainder 20 epochs. As shown in Table 1, the subject
attention network performs sufficiently well in both datasets which makes it an ideal candidate for
the attention mechanism in our proposed dynamic framework.

Dataset CV Average Accuracy1

PhysioNet (103 Subjects) 98.5% ± 0.13%
OpenBMI - MI (54 Subjects) 90.3% ± 0.07%

Table 1: Performance of Subject Attention Network (trained and evaluated using 10-fold cross-
validation) in predicting the subject id in PhysioNet and OpenBMI - MI datasets. CV stands for
Cross-Validation

5.2 MI CLASSIFICATION

We tested our proposed framework in four well-established BCI architectures, namely DeepConvNet
(Schirrmeister et al. (2017)), ShallowConvNet (Schirrmeister et al. (2017)), EEGNet (Lawhern et al.
(2018)) and EEG-Inception (Santamarı́a-Vázquez et al. (2020)) in the following MI tasks: for the
publically available MI dataset Physionet (Goldberger et al. (2000)) one binary classification task
(MI Left vs Right Hand) and a 3-class classification problem (MI Left Hand / Right Hand / Feet)) and
for OpenBMI - MI (Kwon et al. (2020)) one MI binary classification task (MI Left vs Right Hand).

We trained the standard networks for 30 epochs with learning rate of 0.001 while their dynamic
versions for 30 epochs - in the first 20 epochs with learning rate of 0.01, to assist the attention’s Gabor
filters to quickly adapt to the data, and 10 epochs with learning rate of 0.001 and frozen attention, to
fine-tune to the MI task. In all cases, we used an Adam optimizer. Finally, a temperature of 30 was
used during training in the attention mechanism as described in the previous section.

We evaluated the performance of the standard networks and their equivalent dynamic networks in a
leave-one-subject-out fashion (Table 2).

1±% refers to the rounded standard deviation across 10 runs of 10-fold cross-validation experiments
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Dataset PhysioNet PhysioNet OpenBMI - MI
Task MI Left / Right MI Left / Right Hand / FeetHand MI Left / Right Hand

ShallowConvNet 80.6 ± 11.4% 66.3 ± 16.0% 66.3 ± 11.1%
Dynamic ShallowConvNet 83.3 ± 12.7% 69.0 ± 16.3% 70.3 ± 11.1%2

(102 / ≈0.0055 / 97.5) (102 / ≈0.0043 / 95.4) (53 / 50.68)

DeepConvNet 82.5 ± 11.5% 67.1 ± 14.6% 71.7 ± 12.0%
Dynamic DeepConvNet 83.5 ± 13.0% 71.3 ± 16.1% 73.1 ± 11.6%2

(102 / ≈0.13 / 100.8) (102 / ≈0.0000328 / 100.36) (53 / 52.47)

EEGNet 79.5 ± 12.4% 66.5 ± 13.2% 74.9 ± 11.0%
Dynamic EEGNet 80.2 ± 13.5% 67.5 ± 15.4% 71.9 ± 12.1%2

(102 / ≈0.26 / 79.8) (102 / ≈0.15 / 72.2) (53 / 41.42)

EEG-Inception 81.6 ± 11.8% 67.6 ± 15.1% 76.5 ± 10.8%
Dynamic EEG-Inception 83.9 ± 11.9% 71.4 ± 15.0% 77.4 ± 10.0%2

(102 / ≈0.0068 / 94.5) (102 / ≈0.00025 / 92.84) (53 / 49.20)

Table 2: Performance of generic (trained and evaluated in a leave-one-subject-out fashion) models for
DeepConvNet, ShallowConvNet, EEGNet, EEG-Inception and their Dynamic equivalent networks
(ours). The K parameter used in dynamic models is coloured with violet. The p-value of paired
t-tests between performance of standard and dynamic is coloured with gray. The ratio of trainable
parameters (Dynamic

Standard ) is coloured with blue.

In this work, we are not only interested in comparing the models trained with our framework versus
regularly trained CNN-based BCI architectures but also to compare our framework with other
transfer learning approaches in the EEG domain. Therefore, we evaluated the performance of the
standard networks and their equivalent dynamic networks in a leave-M-subjects-out fashion (Table
3). Furthermore, we compared our framework with two other commonly used transfer learning
EEG techniques: 1) an adversarial approach, namely Özdenizci et al. (2020), that (similarly to our
approach) does not use a calibration set and 2) Euclidean alignment (He & Wu (2020)) that projects
data into a domain-invariant space but it uses all the trials of a subject. We trained the Euclidean
alignment networks similar to their vanilla equivalent after performing the data projection for each
subject. And we trained the equivalent adversarial networks with early stopping and adversarial
regularization weight λ = 0.005 (hyperparameters taken from the original paper Özdenizci et al.
(2020)). As it can be seen from Table 3, our proposed method outperforms adversarial networks (a
similar zero-calibration method) while it achieves the same or higher performance when compared
with Euclidean alignment. It is worth mentioning though that Euclidean alignment uses all the trials
of an unseen subject while our framework is dynamically adapted for each trial during inference.

Model 5-Fold CV (K ≈ 83) 10-Fold CV (K ≈ 93) 20-Fold CV (K ≈ 98) Trials of Unseen Subject Used

Vanilla DeepConvNet 81.4 ± 1.3% 81.7 ± 2.9% 82.4 ± 5.5% -
DeepConvNet with Euclidean Alignment 82.7 ± 1.2% 83.03 ± 3.2% 83.2 ± 5.0% All Trials
Adversarial DeepConvNet (λ = 0.05)2 81.4 ± 1.35% 81.8 ± 3.7% 81.9 ± 4.6% -
Dynamic DeepConvNet (Ours) 82.8 ± 2.03% 83.14 ± 3.9% 83.2 ± 5.3% 1

Vanilla ShallowConvNet 79.7 ± 1.75% 80.4 ± 3.3% 80.95 ± 4.6% -
ShallowConvNet with Euclidean Alignment 79.8 ± 2.0% 80.3 ± 3.5% 81.1 ± 4.3% All Trials
Adversarial ShallowConvNet (λ = 0.05)2 81.0 ± 1.26% 81.3 ± 3.7% 82.35 ± 4.65% -
Dynamic ShallowConvNet (Ours) 81.0 ± 1.06% 82.32 ± 2.86% 83.10 ± 4.7% 1

Table 3: Performance of generic (trained and evaluated in a leave-M-subjects-out fashion) models
of MI-classification (Left / Right hand) tasks in Physionet. CV stands for Cross-Validation across
subjects

Finally, we evaluated the performance of the calibrated networks (using a small calibration set of the
unseen subjects to fine-tune the final classification layer). For a fair comparison, we also fine-tuned
the last layer of the equivalent dynamic networks using the same calibration sets. As it is shown in
Table 4, the calibrated dynamic models also outperform their equivalent vanilla calibrated networks.

2∗ early stopping has been applied to some folds during the fine-tuning phase since these particular subjects
presented signs of overfitting prior to the epoch’s hard boundary.
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Model 5-Fold CV (K ≈ 83) 10-Fold CV (K ≈ 93) 20-Fold CV (K ≈ 98)

Calibrated DeepConvNet 81.94 ± 1.95% 82.3 ± 3.0% 82.5 ± 5.26%
Calibrated Dynamic DeepConvNet 83.2 ± 1.5% 83.35 ± 3.35% 83.43 ± 4.8%

Calibrated ShallowConvNet 80.6 ± 1.2% 81.5 ± 3.5% 81.45± 4.6%
Calibrated Dynamic ShallowConvNet 82.65 ± 1.55% 83.9 ± 3.85 % 84.00 ± 5.2%

Table 4: Performance of generic (trained and evaluated in a leave-M-subjects-out fashion) models of
MI-classification (Left / Right hand) tasks in Physionet for Calibrated DeepConvNet and Shallow-
ConvNet and their Calibrated Dynamic equivalent networks. CV stands for Cross-Validation across
subjects

6 DISCUSSION

The proposed dynamic framework can be used in various CNN-based MI-BCI architectures to
increase the cross-subject performance and can take us one step closer in tackling the problem of
inter-subject variability as the experimental evaluation in the previous Section 5 illustrates. We expect
this framework, with certain modifications, to be able to generalize well and get adapted to various
BCI paradigms, not only MI. Investigating different BCI paradigms is beyond the scope of this paper
where the causal analysis of the MI task is a core factor in ensuring that our proposed framework
tackles the targeted problem and there are no misleading performance increases. Extending the
framework to different paradigms would require also a causal breakdown for these tasks.

One limitation of our work is the unavoidable increase in the number of trainable parameters (about
× K where K is the number of available subjects in the dataset). Although our subject attention
mechanism seems to identify well a large number of subject (e.g. 103 on PhysioNet), this increase
in the number of trainable parameters might be a limiting factor in some cases especially if these
models are deployed on real-life applications where devices have limited amount of memory storage.
Fortunately, this tremendous increase in number of parameters does not translate to execution time.
As it is shown in Appendix C, there is a less than × K increase in terms of inference time cost.
Inspired by related works (Wu et al. (2019)), we could investigate approaches to mitigate this increase
in a future work.

In contrast to other techniques that promise to tackle the issue of inter-subject variability, our
framework is dynamically adapted to a new subject during inference without the need of re-training or
calibration trials, commonly used in transfer learning methods. Furthermore, an inherent advantage of
our framework is the training of K parallel personalized models of the same BCI architecture. During
training, these models are not trained using only the samples of one specific subject but also samples
from ”similar” subjects since the attention mechanism is trained simultaneously. An interesting
future step would be to evaluate the performance of these inherent personalized models compared to
standard personalized models - trained using strictly the samples of one specific subject. Although the
BCI deep architectures used in Section 5 are considered state-of-the-art and achieve high performance
across different MI-BCI tasks, they are usually comprised of thousands of trainable parameters,
making the training of standard personalized models difficult with these publicly available datasets.
For that endeavour, we need first to design more lightweight BCI architectures and then perform
these comparisons.

7 CONCLUSION

In this work, we analyze the task of MI EEG classification through the lens of causal reasoning. To
the best of our knowledge, this is the first work that brings machine learning in conjunction with
causal reasoning to the domain of EEG. Through this analysis, we identify and analyze some of
the major challenges and we introduce a framework based on dynamic convolutions that tackles
the problem of subject distribution shift (inter-subject variability). Our proposed subject attention
mechanism achieves great performance in identifying subjects and the overall proposed dynamic
framework demonstrates increased performance when applied to different BCI architectures while at
the same time outperforming other similar methods. In future work, we plan to use it to tackle more,
if not all, challenges detailedly described in our causal analysis of MI brainwave decoding.
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A INVESTIGATION OF NEGATIVE TRANSFER LEARNING

Although our proposed framework showed increased cross-subject performance as experimentally
demonstrated in Section 5, we wanted to investigate if there are any signs of negative transfer
learning during the process. As it is shown in Figure 3, although there are limited cases of negative
transfer learning, the vast majority is either marginally or significantly better compared to the vanilla
architectures.

Figure 3: Per-fold comparison of the performance of vanilla architectures versus their equivalent
dynamic networks (ours)

B COMPARISON BETWEEN VECTORS π AND A∗

As described in Section 4, during inference when an input EEG signal from a new unseen subject
Sx is processed, it passes firstly through the attention network and the subject attention vector π
is computed. Through investigation, we observed that this vector is quite sparse. Although this is
something we would ideally like, the low SNR of the EEG signal makes our framework unstable
especially when used in our desired zero-calibration one-trial setup. In order to have a robust network
that dynamically adapts to the new trial from an unseen subject, we utilized the ”uniformly attended
vector” A* that uses knowledge from all k individuals and ”shift” the attention more to the most
relevant subjects. A comparison between using the vector π versus our proposed uniformly attended
vectorA∗ as attention in our proposed dynamic framework can be seen in the following Figure 4.
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C INFERENCE TIMINGS COMPARISONS

A significant drawback of our proposed framework is the unavoidable increase in the number of
trainable parameters (about × K where K is the number of available subjects in the dataset). This
factor can have limiting effects when these models are deployed on real-life applications where devices
have limited amount of memory storage. As it is shown in the following tables, the tremendous
increase in number of parameters does not translate to execution time which is less than × K increase
in terms of inference time cost.

Subject Standard (ms) Dynamic (ms)

Subject 1 561.9779 1146.8094
Subject 2 543.0056 1099.2773
Subject 3 563.3565 1139.8957
Subject 4 545.2918 898.6636
Subject 5 545.9808 881.258
Subject 6 550.0676 1141.3383
Subject 7 542.7533 1135.5232
Subject 8 538.7697 1114.9791
Subject 9 541.0152 887.6454
Subject 10 534.8294 1111.1364
Subject 11 544.8242 898.6418
Subject 12 545.5861 899.7143
Subject 13 543.9782 1137.1084
Subject 14 524.6781 880.7658
Subject 15 546.7437 892.9803
Subject 16 539.1946 881.5262
Subject 17 551.6413 876.1219
Subject 18 555.4468 895.4225
Subject 19 553.101 1142.7909
Subject 20 536.0449 1031.1428
Subject 21 535.9892 870.7953
Subject 22 548.059 1156.7307
Subject 23 535.9896 886.2561
Subject 24 552.912 911.1381
Subject 25 526.7927 1124.0788
Subject 26 551.9285 910.0632
Subject 27 536.4123 891.3182
Subject 28 539.1051 1117.4125
Subject 29 539.3462 905.8769
Subject 30 529.274 872.0497
Subject 31 542.4147 1116.2725
Subject 32 542.7398 894.614
Subject 33 543.7969 900.8855
Subject 34 546.0942 915.9275
Subject 35 522.5048 868.7032
Subject 36 553.5467 1147.1854
Subject 37 544.6818 1151.4641
Subject 38 533.6177 895.8355
Subject 39 548.0503 877.6697
Subject 40 544.3172 894.4753

Subject Standard (ms) Dynamic (ms)

Subject 41 544.4666 887.1042
Subject 42 530.282 876.1537
Subject 43 545.9131 890.2133
Subject 44 541.8491 893.9466
Subject 45 525.7591 1099.8516
Subject 46 546.3638 894.8608
Subject 47 544.9518 1131.7571
Subject 48 540.1192 901.2862
Subject 49 552.4357 903.1747
Subject 50 526.1646 1104.5922
Subject 51 572.2273 909.8803
Subject 52 543.0584 907.7985
Subject 53 543.0958 891.8089
Subject 54 539.5095 1073.8354
Subject 55 536.8121 1125.4846
Subject 56 540.3361 1102.8461
Subject 57 549.2922 894.1009
Subject 58 537.4204 1137.1086
Subject 59 546.1475 1134.5581
Subject 60 560.6594 1152.4353
Subject 61 548.8822 948.3445
Subject 62 540.4975 1119.9238
Subject 63 546.902 1152.3956
Subject 64 541.2633 1152.5192
Subject 65 545.0002 927.2082
Subject 66 544.3959 1130.6614
Subject 67 542.9522 1133.8398
Subject 68 551.0722 913.637
Subject 69 549.351 1136.2486
Subject 70 543.6982 1129.6688
Subject 71 541.5467 1118.4973
Subject 72 560.7404 1137.3549
Subject 73 538.0839 885.301
Subject 74 539.8588 901.1848
Subject 75 551.6779 1142.0281
Subject 76 535.3296 889.4693
Subject 77 545.8409 1137.8778
Subject 78 539.4993 905.6306
Subject 79 549.3963 1150.3135
Subject 80 537.3423 1010.6793

Table 5: Inference timings for 80 trained models of MI-classification (Left / Right hand and Left /
Right hand / Feet) from the leave-one-subject-out cross-validation for EEG-Inception in Physionet.
Measured with torch.autograd.profiler in 2.9 GHz 6-core CPU Intel Core i9.
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Subject Standard (ms) Dynamic (ms)

Subject 1 293.1013 592.0185
Subject 2 261.3001 567.4535
Subject 3 277.6414 762.4132
Subject 4 332.2469 714.878
Subject 5 307.2616 579.3735
Subject 6 323.8485 1040.4726
Subject 7 419.3959 817.5334
Subject 8 287.3716 792.4063
Subject 9 268.1497 770.9701

Subject 10 269.5422 814.7743
Subject 11 363.2819 877.2561
Subject 12 339.4558 924.5848
Subject 13 409.5779 932.7032
Subject 14 297.9082 583.1962
Subject 15 271.8576 851.6035
Subject 16 276.3279 917.3601
Subject 17 274.9757 617.1784
Subject 18 271.5192 666.8381
Subject 19 266.7319 817.1083
Subject 20 352.0864 939.2702
Subject 21 269.7336 567.0578
Subject 22 270.1747 587.6435
Subject 23 263.6932 812.134
Subject 24 325.0687 652.048
Subject 25 269.4698 621.5127
Subject 26 295.0868 634.1263
Subject 27 406.8556 1244.4247
Subject 28 526.1524 767.5288
Subject 29 346.6407 666.8721
Subject 30 267.8148 585.2428
Subject 31 274.5486 676.3858
Subject 32 277.2021 862.4104
Subject 33 266.4326 576.9763
Subject 34 370.4928 649.1246
Subject 35 376.0236 833.6711
Subject 36 320.1059 942.6238
Subject 37 409.8353 1095.825
Subject 38 269.5554 577.8968
Subject 39 262.9665 576.0119
Subject 40 266.718 632.9843
Subject 41 272.6256 582.0228
Subject 42 262.7292 565.8136
Subject 43 267.493 567.319
Subject 44 284.8254 621.0434
Subject 45 304.4975 843.2986
Subject 46 340.2609 653.5012
Subject 47 263.6114 572.389
Subject 48 268.7476 578.8455
Subject 49 272.6755 598.1583
Subject 50 264.9827 582.6363
Subject 51 290.8646 872.6904

Subject Standard (ms) Dynamic (ms)

Subject 52 309.326 678.8556
Subject 53 272.7245 861.544
Subject 54 303.32 597.5879
Subject 55 277.3168 630.2398
Subject 56 271.6752 991.2502
Subject 57 318.5117 972.6068
Subject 58 294.7329 1045.9693
Subject 59 275.9514 815.0113
Subject 60 349.2239 810.4091
Subject 61 263.9984 577.374
Subject 62 269.4928 569.9094
Subject 63 290.156 587.2844
Subject 64 268.5258 831.6206
Subject 65 270.2256 823.4725
Subject 66 335.8103 735.2804
Subject 67 265.9914 826.7936
Subject 68 271.2678 588.4226
Subject 69 269.1232 580.561
Subject 70 263.2801 568.7038
Subject 71 263.3383 567.7978
Subject 72 265.307 828.3046
Subject 73 264.4986 596.5381
Subject 74 262.5872 824.8643
Subject 75 352.4282 706.9853
Subject 76 319.8665 717.6244
Subject 77 267.0403 585.0451
Subject 78 268.896 822.8302
Subject 79 302.2626 702.9593
Subject 80 267.0334 585.4106
Subject 81 266.3547 586.8337
Subject 82 260.3958 587.4193
Subject 83 363.4541 773.0845
Subject 84 283.8774 773.0845
Subject 85 289.3468 610.5704
Subject 86 281.237 847.6461
Subject 87 274.8509 1019.282
Subject 90 315.6247 884.607
Subject 91 273.0971 616.6718
Subject 93 266.9891 821.2341
Subject 94 266.7666 579.734
Subject 95 267.361 588.8292
Subject 96 277.6225 688.1226
Subject 97 267.322 603.2024
Subject 98 272.2102 844.2862
Subject 99 444.3941 669.1419
Subject 101 288.218 720.4358
Subject 102 367.7827 957.0791
Subject 103 272.9728 618.8917
Subject 105 262.0691 799.0899
Subject 107 271.324 582.4897
Subject 108 351.929 579.6055
Subject 109 269.9653 591.113

Table 6: Inference timings for all trained models of MI-classification (Left / Right hand and Left
/ Right hand / Feet) from the leave-one-subject-out cross-validation for EEG-Net in Physionet.
Measured with torch.autograd.profiler in 2.9 GHz 6-core CPU Intel Core i9.
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