
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHESSFORMER: A UNIFIED ARCHITECTURE FOR
CHESS MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chess has played a uniquely important historical role as a testbed domain for
artificial intelligence. Applying new architectures to improve absolute chess per-
formance, and more recently to predict human moves at specified skill levels, has
therefore garnered attention in the machine learning literature. Current approaches
to these problems employ transformer models with widely varying architectural
designs, and use unintuitive tokenization schemes that are not amenable to inter-
pretability techniques, which hinders their applicability for teaching and human-
AI interaction. We introduce Chessformer, a novel chess transformer model de-
sign that consists of an encoder-only model which processes chessboard squares
as input tokens, instead of moves or the entire position; a dynamic positional
encoding scheme that allows the model to flexibly adapt to the unique geome-
tries present in chess; and an attention-based policy output design. We show that
Chessformer advances the state of the art in all three major chess modeling goals:
it significantly improves the chess-playing performance of a state-of-the-art chess
engine, it surpasses the previous best human move-matching prediction perfor-
mance with a much smaller model, and it enables substantial interpretability ben-
efits. Our unified approach constitutes a broad advance across several important
tasks in chess AI, and also demonstrates the benefits of carefully adapting trans-
formers’ tokenization systems, output systems, and positional encodings to reflect
the structure of a domain of interest.

1 INTRODUCTION

A central goal of artificial intelligence (AI) is to build systems that are simultaneously high-
performing and human-compatible. Capable yet intelligible models not only solve tasks but can also
collaborate with and teach human users by understanding their strengths, weaknesses, and learning
trajectories. Chess provides a particularly well-suited model system for this dual goal: while mod-
ern engines are decisively superhuman, their behavior is often opaque even to experts, leaving a
persistent gap on the human side of the problem.

The current literature on developing strong chess engines and accurate human move prediction is dis-
jointed and at times unprincipled. Prior systems for human emulation span convolutional stacks over
board images (McIlroy-Young et al., 2020), skill-aware attention atop convolutional features (Tang
et al., 2024), and language modeling over move histories (Zhang et al., 2025); other efforts distill
strong oracles (Ruoss et al., 2024) with one-dimensional position representations that are potentially
misaligned with the underlying action space, complicating both efficiency and analysis.

We introduce Chessformer, a unified architecture that advances the state of the art on three fronts
at once: it produces substantial gains over prior methods in raw chess engine ability, it achieves
state of the art human move-matching performance, and it admits downstream interpretability much
more naturally than previous models. Concretely, Chessformer is an encoder-only transformer that
treats the 64 board squares as tokens, pairs this square-token body with an attention-based “source-
destination” policy head, and equips the trunk with Geometric Attention Bias (GAB), a novel dy-
namic positional-bias generator that adapts attention to the geometry of a position. It has also been
adopted in a leading open-source engine (anonymized as Apollo) in configurations that defeated
Stockfish, a perennial world champion, in computer-chess competitions.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Empirically, we find that GAB is a key driver of these gains. Ablations show consistent improve-
ments over absolute and relative position encodings across Elo, puzzle accuracy, and policy and
value accuracy, with sizable performance-per-compute advantages. These results reinforce a broader
lesson: adapting tokenization, output heads, and positional encodings to the domain’s structure al-
lows transformer models to more flexibly adapt to both task mastery and human-compatibility. In
chess, this yields a single model family that pushes engine strength, advances human move match-
ing, and makes square-level attributions and attention pattern interpretability straightforward, all
while being over an order of magnitude more parameter and compute efficient than prior art. That
Chessformer achieves these simultaneously is surprising, both because chess is a very well-studied
problem which is considered a gold standard for AI, and because past approaches have focused on
only one of these at a time. In short, Chessformer demonstrates that principled, domain-conforming
architectural choices can deliver state-of-the-art chess performance and human emulation, while
also enabling interpretability analyses that can power downstream human-compatible applications,
offering a template for other structured decision-making domains. We open-source our full pipeline,
including all code and training data, at (link removed for anonymity).

2 RELATED WORK

Traditionally, computational approaches to chess have focused on maximizing absolute playing
strength by developing hand-crafted search heuristics and position evaluations. This approach gave
rise to Deep Blue (Campbell et al., 2002), which in 1997 became the first computer to defeat a
reigning human World Chess Champion under official tournament conditions, and Stockfish (Rom-
stad et al., 2023), which is widely considered the strongest engine available today. AlphaZero (Silver
et al., 2018) introduced a different recipe based on Monte Carlo Tree Search (MCTS) and reinforce-
ment learning, training neural networks through self-play to predict state values and policy distri-
butions over subsequent actions. Its open-source re-implementation Leela Chess Zero (Pascutto &
Linscott, 2019) refined this approach with new neural network architectures and search strategies
and often ranks as a close runner-up to Stockfish in computer chess competitions. Even without
search, transformer-based agents can achieve grandmaster-level strength when strong oracles are
distilled into them (Ruoss et al., 2024).

A more recent line of work aims to develop chess systems that are not only strong but also human-
compatible, in the sense that they understand and are attuned to the behavior of humans, by modeling
human play across skill levels. This was first explored by MAIA (McIlroy-Young et al., 2020), which
employed a set of convolutional neural networks, each trained to model players at a specific rating
range. Jacob et al. (2022) augmented these with search to better replicate strong play. MAIA-2
(Tang et al., 2024) simplified MAIA’s approach with a unified model, introducing a skill-aware self-
attention layer that tokenized the channels of the output of a stack of convolution layers. ALLIE
(Zhang et al., 2025) viewed this behavior replication task through the lens of language modeling,
training a decoder-only transformer model on a move-based representation of the game trajectory to
achieve state-of-the-art human move matching. These human emulation methods were exploited by
Hamade et al. (2024) to investigate human-AI cooperation in chess. Modeling individual behavior,
McIlroy-Young et al. (2021) demonstrated that human players can be reliably identified from just
a few of their games, while McIlroy-Young et al. (2022) improved move-matching performance on
individual players by finetuning on their games.

Chess has also served as a model system for broader problems. Farebrother et al. (2024) used chess
to demonstrate that classifying rather than regressing improves scalability in deep reinforcement
learning, while Feng et al. (2025) investigated creative generative AI in the testbed of chess puzzles.
In mechanistic interpretability, which studies the mechanisms underlying the behavior of AI models,
McGrath et al. (2022) used linear probes to identify concepts learned by AlphaZero, while Jenner
et al. (2024) found evidence of learned planning in a transformer model trained by the Leela Chess
Zero project.

3 METHODOLOGY

Here we describe our Chessformer architecture and general training setup. Fundamentally, Chess-
former is an encoder-only transformer that processes the 64 chessboard squares as tokens and aug-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Chessformer attention mechanism. Chessformer adopts the natural visual representation
of the chessboard, processing the 64 board squares as tokens. It augments the dot-product attention
mechanism with the Geometric Attention Bias (GAB), a novel position encoding that generates
biases for attention logits from a compressed representation of the board state. A consistent theme
of Chessformer models is harmonious collaboration between the semantic dot-product attention
component and the positional GAB component. In the example shown, white’s rook on c1 is the
querying square, highlighted in red. Higher attention scores are colored yellow, while lower attention
scores are colored purple. The dot-product logits highlight important pieces, while the GAB biases
focus on squares that are a rook’s move away. Together, they point white’s rook to the pinned black
knight on c5.

ments self-attention layers with a novel dynamic position encoding called the Geometric Attention
Bias. We evaluate this architecture on two chess modeling tasks: emulating human play and maxi-
mizing raw playing strength as the distillation target of a strong engine. More concretely, for both
tasks, we assemble a dataset of chess games and train Chessformer models in a supervised fash-
ion to take in board states from those games and predict both game outcomes and played moves
(or for engine distillation, distributions over moves corresponding to playouts chosen during engine
self-play).

3.1 BOARD REPRESENTATION: SQUARES AS TOKENS

Existing transformer-based methods in chess use a variety of tokenization schemes: ALLIE repre-
sents a position through the trajectory of past moves, MAIA-2 tokenizes the channels of the output
of a stack of convolution blocks, and Ruoss et al. (2024) applies rotary position embeddings (Su
et al., 2024) on top of a tokenized representation of the 64 board squares and Forsyth-Edwards No-
tation (FEN) (Edwards, 1994) representation of the position. We argue in Appendix D that these
formulations are misaligned with the underlying domain and may therefore hinder performance.
Our Chessformer architecture instead adopts the natural visual representation that treats individual
chessboard squares as tokens, allowing model representations to correspond to more uniform units
and fixing the relative positions of tokens in two dimensions to enable more effective position en-
codings. It also allows tokens to specialize to their corresponding squares rather than represent the
entire board state, which greatly reduces the load on parameters.

Concretely, positions are represented as a sequence of 64 one-hot or zero vectors of dimension 12
indicating which of the 12 pieces are present on that square, and the board is flipped with the side to
move. To obtain the input for a given board state, we concatenate representations of the current and
past n positions, where n is a non-negative integer controlling the amount of history information
conditioned upon, and repeat the earliest position if some or all of these past positions are not
available. Unless otherwise stated, n = 7. For the engine distillation setup, we also concatenate
auxiliary information that was necessary for compatibility with the Apollo engine infrastructure,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

though this did not noticeably affect performance in initial experiments; see Appendix A.2. The
final board representation consists of 64 tokens, one for each square.

Our setup is most similar to that of Ruoss et al. (2024), which tokenized the 64 board squares
in addition to other information about the position, for a total of 77 tokens. However, that work
adopted rotary position embeddings (Su et al., 2024) on a linearized representation of the board
squares, enforcing a one-dimensional structure on the board that is not grounded in the domain.
This is especially deleterious given the central role that position plays in chess. For example, among
relationships between squares, their architecture maximally decays the attention strength between
opposite corners, even though those corners lie on a main diagonal that is critical for checkmate
patterns. We propose a novel position encoding called GAB that rectifies this by allowing self-
attention to dynamically and flexibly model piece movement in two dimensions.

3.2 GEOMETRIC ATTENTION BIAS (GAB)

Self-attention in Transformer architectures is permutation-invariant, so positional information must
be introduced to the model through some kind of position encoding. In language and vision settings,
simple Euclidean distance is arguably the predominant notion of position, and thus static position
encoding schemes, like rotary position embeddings and absolute and relative biases (refer to Ap-
pendix C for details), power state-of-the-art models in these domains. However, chess follows its
own special geometry, in which the six piece types move in particular ways. In addition, positional
relationships can vary heavily with the board state. As a simple example, relationships correspond-
ing to the movement of a particular piece are only sensible if that piece is present on the board. But
chess is rife with more complex interactions; for example, connections between distant squares are
weaker in locked positions. A more versatile positional encoding is necessary.

To capture the variable geometry of chess, we propose an adaptive position encoding called Geo-
metric Attention Bias (GAB). GAB uses a compressed representation of the board state to generate
biases for each attention head from a set of “templates”. To compress the board state, tokens first
undergo a linear projection of dimension d1 and are flattened, followed by a linear projection of
dimension d2 with GELU activation and layer normalization. To generate the attention biases, we
apply another linear projection of depth hd3 followed by activation and normalization, and reshape
to h× d3. We apply a final linear projection, shared by the whole model to reduce parameter count,
to form biases h × 4096 which are reshaped to h × 64 × 64 and added to the dot-product logits
before softmax. This final projection can be viewed as dynamically mixing a set of d3 attention bias
templates. Pseudocode for generating GAB biases can be found in Figure 3.

Our approach has a number of benefits. First, it models positional information globally rather than
through individual tokens. This aligns well with our later finding that Chessformer models mainly
adapt the GAB component of the self-attention computation to global positional features like the
game stage (opening, middlegame, endgame), rather than local features like the locations of indi-
vidual pieces. Second, representing attention logits as the sum of a semantic component generated
by dot-product attention and a positional component generated through GAB allows self-attention
layers to assign relevant aspects of the attention computation to each part. The choice of a dynamic
position encoding enables attention heads to be repurposed based on the board state, a behavior
we explore in Section 6. Finally, formulating the interaction additively allows us to use existing
memory-efficient attention kernels (Dao et al., 2022) during training and inference.

3.3 OUTPUT HEADS

All models we train have two output heads: a value head that predicts the game outcome (win, draw,
and loss), and a policy head that predicts the move (or in the case of oracle self-play games, the distri-
bution of moves corresponding to playouts) chosen during the game. To generate the game outcome
prediction, we apply mean pooling to the encoder body’s output, followed by a layer normalization
layer. We then apply a linear projection to dimension 128, followed by a ReLU nonlinearity, fol-
lowed by a linear projection of dimension 3 whose output is taken as the logits for the game outcome
prediction target.

Prior work has modeled move distributions in a variety of ways. ALLIE autoregressively predicted
Universal Chess Interface (UCI) tokens corresponding to each of the 1968 possible moves in UCI

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Main results for human move-matching accuracy. The ZEUS family of models achieves
new state-of-the-art performance with a fraction of the parameter count.

Agent Accuracy (%) Parameters History Search
ZEUS-79M 57.1± 0.1 79M ✓ ✗
ZEUS-23M 56.6± 0.1 23M ✓ ✗
ZEUS-5M 55.4± 0.1 5M ✓ ✗

ALLIE-ADAPTIVE-SEARCH 55.9± 0.1 355M ✓ ✓
ALLIE-POLICY 55.7± 0.1 355M ✓ ✗

MAIA-2 52.0± 0.1 23M ✗ ✗
MAIA⋆ 51.6± 0.1 92M ✗ ✗

GPT-3.5 53.7± 0.1 175B ✓ ✗

notation, while MAIA-2 used an MLP layer. We propose a policy head based on self-attention
that reflects the “from-to” structure of the underlying action space, encoding moves by the starting
square and destination square of the moved piece. Given the 64 tokens returned by the encoder
body, we generate via linear projection a set of query vectors corresponding to the starting square
and a set of key vectors corresponding to the destination square, both with depth equal to the depth
of the encoder body. Logits for moves are calculated via scaled dot-product, resulting in a 64x64
matrix representing all possible traversals from one chessboard square to another. In effect, logits
are computed as a bilinear function of the processed tokens. This is sufficient to represent all moves
except castling and promotions, implementation details for which are reported in Appendix A.3.

Though we did not observe a large performance benefit from this policy head formulation, we found
it to substantially improve the interpretability of MLP activations, which we attribute to its alignment
with the domain; see Section 6. We hope that this design choice will help position our proposed
architecture as a useful test case for future mechanistic interpretability research.

4 PREDICTING HUMAN PLAY

4.1 DATASET

We construct a training dataset consisting of blitz games played on the online chess platform Lichess
from January 2023 to July 2025. As the bulk of these games are from the middle of the skill
distribution, we re-sample the games during training so that all skill levels are equally represented.
The standard evaluation metric for human emulation is move-matching accuracy, which is the rate
at which, given a board position encountered in a real game, a model correctly predicts the move
played by a human player. For our main analysis, we adopt the dataset of 884,049 positions curated
by Zhang et al. (2025), which we call the ALLIE test set. These were formed by sampling Lichess
blitz games from 2022 and removing the first 10 moves from each game, as these can be easily
memorized, as well as positions which occur after the first time a player has less than 30 seconds on
the clock, which tend to be more noisy due to time pressure. During training, we retain the first 10
moves but discard moves made under time pressure in the same way. We describe the processing of
training data in more detail in A.1.

4.2 TRAINING METHODOLOGY

We perform three main training runs at scales of 5 million, 23 million, and 79 million parameters,
calling the largest of these ZEUS. We ablate the position encoding at the smallest scale, comparing to
the absolute and relative biases described in Appendix C. We also train a smaller 3 million parameter
ablation to show that GAB enables significantly smaller models to outperform these. For GAB
models at the 5M and 3M scale, we replace the first linear projection and flattening layer of GAB
with average pooling as it is parameter-intensive at small scales. Initial experiments showed this
to have only a minor effect on performance, decreasing move-matching accuracy by approximately
0.2%.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Position encoding ablations for human emulation.

Representation Loss Accuracy (%) FLOPS Params
Policy Value Policy Value

Absolute 1.4176 0.7538 54.7± 0.1 62.6± 0.1 268M 4.58M
Relative bias 1.4200 0.7538 54.6± 0.1 62.6± 0.1 268M 4.58M
ZEUS-5M 1.3873 0.7361 55.4± 0.1 62.8± 0.1 276M 4.91M
ZEUS-3M 1.4192 0.7390 54.8± 0.1 62.6± 0.1 164M 2.98M

Skill in chess is modeled with the Elo system, where Elo ratings vary roughly from 0 for weak
players to 3000 for the strongest human players. We condition human-emulating models on the skill
levels of both players by prepending two “soft embeddings” of dimension 128, corresponding to the
Elo ratings of the players, to each of the 64 tokens. Following ALLIE, we compute an embedding ek
for an Elo rating k as a linear interpolation between two learnable embeddings: a weak embedding
(eweak) corresponding to 0 Elo and a strong engine-level embedding (estrong) corresponding to 5000
Elo. Formally, we set ek = γeweak + (1 − γ)estrong, where γ = 5000−k

5000 . Representing the Elo
ratings as scalar inputs would achieve the same representational capacity, but this design enables
the flexibility to, for example, model individual behavior stylometry. There are several Elo rating
systems currently in use that are generally incomparable. Ratings on Lichess, from which we source
our training data, tend to be slightly inflated compared to the more standard FIDE ratings.

The final input for our human emulation models consists of 64 tokens, a concatenation of represen-
tations of the current and n past board states and two strength embeddings of dimension 128. This
comes out to a depth of 12× (1 + n) + 2× 128, which is 352 for the n = 7 hyperparameter choice
used in our main training and ablations runs. Despite the dimensions of this input being dominated
by these embedding vectors, we did not find the choice of embedding dimension 128 to impact per-
formance. Detailed information on our training setup and model hyperparameters can be found in
Appendix A.1.

4.3 BOARD HISTORY

History-less representations of chess have a “Markov Property” in that future board states are in-
dependent of previous states given the current state, with the (typically negligible) caveat of the
threefold repetition rule that a game shall end in a draw when a position repeats three times. Though
optimal play in a given position is almost always independent of previous moves, it is not clear that
this should extend to human play. Humans often form long-term plans or exhibit consistent weak-
nesses that may be discernible from their previous actions, which may make this information useful
when replicating their play. Prior human emulation work varies in its use of history information,
with move-token methods like ALLIE conditioning on the full game history, and square-based meth-
ods like MAIA and MAIA-2 omitting history information entirely. To determine the usefulness of
history information in modeling human chess play, we condition models on the current and past n
board states for varying values of n. Ablation details can be found in Appendix E

4.4 RESULTS

Table 1 reports overall move-matching accuracies of ZEUS models on the ALLIE test set, demon-
strating a marked improvement in move-matching performance and parameter efficiency. Figure 5
shows that these gains hold across a wide range of skill levels, with the improvement increasing
in the game rating. Impressively, our 79M-parameter and 23M-parameter models achieve respec-
tive move-matching accuracies of 57.1% and 56.6%, outperforming the state-of-the-art 355-million-
parameter searchless (55.7%) and search-enabled (55.9%) ALLIE methods at significantly smaller
scales. Our 5M-parameter model reaches a move-matching accuracy of 55.4%, achieving results
comparable to the state of the art at 70 times fewer parameters. The MAIA-2 paper trained two
models, one on rapid games and one on blitz games, and we evaluate the latter for a fair comparison.
Results for MAIA⋆ and GPT-3.5 are taken from Zhang et al. (2025). MAIA⋆ was formed by choos-
ing the MAIA model with Elo rating closest to the active player’s Elo rating, and GPT-3.5, which
outperformed more recent models like GPT-4, operates on a move-based board representation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We plot the move-matching accuracies of ZEUS by the Elo ratings of the active and opponent players
in Figure 4. Interestingly, stronger players appear easier to predict when paired against weaker
players, possibly because winning paths are clear in the decisively winning positions that tend to
occur in these uneven match-ups. Results for ablating the position encoding are presented in Table 2,
while results for ablating the number of history positions n are reported in Table 8. The baseline
ZEUS-5M model significantly outperforms ablations equipped with absolute and relative biases,
while ZEUS-3M matches their performance at 30% fewer parameters and 40% fewer FLOPS. In
other words, GAB enables a Pareto improvement across model scale, computation, and policy and
value metrics.

5 OPTIMIZING PLAYING STRENGTH

We now test our Chessformer architecture—a 64-token encoder transformer with GAB biases and at-
tention policy—on the task of optimizing raw searchless chess playing strength. To do so, we distill
the Apollo (name changed for anonymity) engine into Chessformer models, and perform ablations
on the position representations to assess their impact. We then analyze a 191-million parameter
Chessformer model trained by that project, which we call Apollo-CF, comparing agents constructed
from that model to prior work on searchless playing strength. Finally, we demonstrate that these
gains in searchless playing strength can be extended to engine strength— first by performing a tour-
nament between configurations of Apollo equipped with either the Apollo-CF Chessformer or the
Apollo-CNN convolutional model previously used in tournaments— and then by describing sev-
eral prominent computer chess tournaments in which Chessformer-equipped Apollo configurations
defeated pools of engines that included Stockfish.

5.1 TRAINING METHODOLOGY

Table 3: Results for raw playing strength.
Chessformer results in significant gains in
both Elo and puzzle solving rate, using fewer
FLOPS than competing models.

Agent Elo Puzzles (%) FLOPS
Apollo-CF-policy 2374± 37 93.5± 0.5 7.6B
Apollo-CF-value 2466± 36 97.2± 0.3 152B

AC-9M 2044± 42 86.2± 0.7 14.2B
AC-136M 2257± 36 92.7± 0.5 215B
AC-270M 2299± 36 94.2± 0.5 427B

Apollo-CNN-policy 2096± 40 82.1± 0.8 12.5B
Apollo-CNN-value 2168± 36 92.5± 0.5 249B

Apollo is an open-source recreation of AlphaZero,
which iteratively teaches a randomly initialized neu-
ral network to interact with a domain by generat-
ing self-play games between MCTS-augmented ver-
sions of that neural network. This neural network
outputs a policy distribution that predicts the distri-
bution of moves chosen by the MCTS algorithm and
a value that predicts the outcome of the game. In
effect, a model continually generates strong search-
enabled oracles whose play is then distilled back into
that model.

The most expensive component of the AlphaZero
process by far is the generation of training games,
which typically requires hundreds of model evalua-
tions per position. We skip this step by fixing a dataset of self-play games from an April 2024 Apollo
reinforcement learning run, keeping only those games that occurred once the model’s strength had
leveled off. That run used a transformer model of roughly 100 million parameters at 600 nodes per
move with a square-based token representation and our GAB biases and attention policy. In this
way, we move to the supervised setting, distilling a search-augmented version of one model into
another.

We motivate our design choices under this setup, ablating the position encoding of a 4-million-
parameter model with those described in Appendix C. We also train a Chessformer model with 2.5
million parameters to determine the extent to which our techniques can replace the need for model
size. Our oracle distillation setup is described in more detail in Appendix A.2.

5.2 EVALUATION METHODOLOGY

We include in our analysis two types of agents: those that function based on policy information by
picking the highest-ranked move in the policy distribution predicted by the model, and those that
function based on value information, emulating a depth-1 search by evaluating the model for each
legal move and selecting the move that maximizes the resulting evaluation. The policy strategy

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

requires a single model evaluation, while the value maximization strategy requires an evaluation
for each legal move. To estimate the floating point operations per evaluation (FLOPS) used by an
agent of the value maximization type, we multiply the model FLOPS by 20, which is a conservative
estimate of the average number of legal moves available in a position.

We construct agents from the 191-million parameter model using both strategies, denoting an agent
by its model name followed by the strategy it uses (e.g., Apollo-CF-policy and Apollo-CF-value).
We also construct agents from both strategies using a 195-million-parameter convolutional neural
network trained by the Apollo project, which we call Apollo-CNN. Our analysis also includes mod-
els from Ruoss et al. (2024) that use the value maximization approach. We use the final checkpoints
of their main runs having parameter counts of 9 million, 136 million, and 270 million, referring to
these as AC-9M, AC-136M, and AC-270M, respectively.

Our evaluation setup is adapted almost exactly from Ruoss et al. (2024). We compare agents on both
tournament strength and puzzle solving ability. To measure the former, we play 200 games between
each pair of agents and calculate relative Elo ratings using BayesElo (Coulom, 2008). We perform
separate tournaments for the main and ablation runs, anchoring the Elo value of the absolute position
encoding to 0 and the Elo value of the AC-270M to the value reported by Ruoss et al. To measure
puzzle solving ability, we report the accuracy of these models on a test set of 10 thousand puzzles
curated by that work. For our ablation runs, we also report accuracy and loss metrics on the value
and policy heads. These were calculated on 1,403,999 test positions, also sourced from the Apollo
reinforcement learning run, that did not intersect the training set.

5.3 RESULTS

As shown in Table 3, the Chessformer policy agent Apollo-CF-policy matches or outperforms all
other agents we consider in both tournament strength and puzzle-solving ability despite having the
lowest computational cost. We also see performance on the puzzle set approaching saturation, sug-
gesting that new metrics for evaluation might be needed.

Our ablation results, reported in Table 6, show a monotonic improvement in performance from ab-
solute to relative bias to GAB encodings. GAB outperforms the baseline absolute position encoding
by 1.96% on move-matching accuracy, 0.34% on game outcome prediction accuracy, 3.37% on
puzzle-solving accuracy, and 80 Elo rating points in tournament strength. We note that the max-
imum possible policy and value accuracies are well under 100%, both because Apollo’s self-play
methodology is inherently stochastic and because there are positions with a variety of best moves.
Impressively, GAB enables a model to perform on-par with the absolute position ablation at nearly
half the parameters and computation.

5.4 ENGINE STRENGTH

To demonstrate that our Chessformer models have the capacity to push engine strength, we perform
a tournament between configurations of the Apollo chess engine paired with either the Apollo-CNN
model, a 195-million-parameter convolution-based model previously used by Apollo at tournaments,
or Apollo-CF, a 191-million parameter Chessformer. We play 2000 games between these configu-
rations at three time controls, described in further detail in Appendix B. As shown in Table 7, the
Apollo-CF Chessformer model consistently increases the playing strength of Apollo by over 100
Elo. To contextualize these gains, the difference in playing strength between Stockfish versions 16
and 17, corresponding to 14 months of continuous development progress, was measured at around
46 Elo with a similar testing setup (Stockfish Team, 2024). This is especially notable due to the
difficulty of improving top engines; the Stockfish project continually employs thousands of CPU
cores to test over 10,000 potential improvements per year (Stockfish Team, 2022).

Configurations of Apollo equipped with Chessformer models defeated Stockfish, a perennial
champion, at several online computer chess tournaments hosted by (name removed to preserve
anonymity). These victories included a single-elimination Cup tournament1, where 32 engines faced
off in brackets, and two Swiss-system tournaments2, each of which had around 40 contestants. In
the cup-style event, Apollo used an 82M-parameter Chessformer model, and beat Stockfish in the

1See https://en.wikipedia.org/wiki/Single-elimination_tournament.
2See https://en.wikipedia.org/wiki/Swiss-system_tournament.

8

https://en.wikipedia.org/wiki/Single-elimination_tournament
https://en.wikipedia.org/wiki/Swiss-system_tournament


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

final round. In the Swiss events, Apollo scored first place both times, once one point ahead of the
field and once on tiebreak.

6 INTERPRETABILITY

A recent line of work has used chess as a testbed for mechanistic interpretability, which aims to
identify the mechanisms by which an AI model computes its outputs. Our domain-grounded archi-
tectural choice eases this process by allowing square-specific attribution of activations and attention
patterns. As a preliminary investigation of the interpretability benefits of our approach we present
an overview of the mechanisms by which GAB and dot-product attention cooperate.

6.1 GAB MAPS

We inspect the attention heads of both ZEUS and Apollo-CF, finding that they tend to represent
semantic information with the dot-product attention logits and positional information with the GAB
biases. In general, we observe that GAB represents different movement types and measures of
proximity on the chessboard. In contrast, the dot-product attention (DPA) maps appear to focus
more on global semantic information such as important enemy pieces.

To quantitatively evaluate this observation, we measure how much the rows of the GAB and DPA
attention maps vary both between positions and within a single position. For the between-position
variability, we randomly sample 30,000 positions from Lichess blitz games played in June 2019.
For each query square, we extract the corresponding row-centered, L2-normalized GAB attention
rows across all positions and compute the average cosine distance between them (i.e., GAB–GAB
similarity for that square). We repeat the same procedure for the DPA maps (DPA–DPA similarity),
and then average over all query squares, as well as all heads and layers.

For within-position variability, we fix a position and compute the average cosine distance among all
pairs of row-centered, L2-normalized GAB maps across different query squares for a given head and
layer in that position (i.e., GAB–GAB similarity within the same position). We then average over all
heads and layers. We do the same for DPA. In both cases, we compare GAB–GAB and DPA–DPA
statistics; we do not measure the similarity between GAB and DPA directly.

We find, consistent with our hypothesis, that the query square’s GAB bias exhibits substantial vari-
ation across positions, unlike a fixed positional encoding. This suggests that GAB adapts mean-
ingfully to the position context. However, this variation is much smaller than that of dot-product
attention, indicating that GAB is still relatively stable between positions (see Figure 4). At the same
time, GAB is more variable across query squares than dot-product attention, meaning it is more
square-specific within positions (see Figure 4). Taken together, these findings suggest that GAB pri-
marily captures specific information relevant to the query square, whereas dot-product attention is
less tied to specific squares and instead reflects semantic information about the position as a whole.

Following this intuition, there are several examples in our models of GAB biases adapting to global
features of the board state, like the game stage. Figure 2 shows an example of this where the GAB
component of the attention computation transitions from modeling general piece movement (left) to
modeling king movement (right) (More in Appendix F.2).

6.2 IDENTIFYING INTERPRETABLE FEATURES

A prominent approach to transformer interpretability consists of training Sparse Autoencoders
(SAEs) or transcoders on a model’s MLP activations, then interpreting their basis vectors by ex-
amining the inputs which activate them the most to identify interpretable features and circuits within
the model Lindsey et al. (2024). Much previous work applies mechanistic interpretability to the
testbed of chess Karvonen et al. (2024).

Our architecture enables a much finer interpretation based on transcoder features. Instead of merely
examining the positions which maximally activate an MLP feature, one can identify the squares at
which a feature is maximally activated. To explore this useful property of our architecture, we train a
cross-layer transcoder on ZEUS (training details in Section A.4). We find that our resulting features
are interpretable at a high rate and rich in the space of concepts they cover. For example, many

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

features correspond to core tactical concepts like forks and pins, whose top activated squares are
those involved in the tactical dynamics. More importantly, we find features that would be otherwise
uninterpretable from only their top activated positions, but whose top activated squares exhibit a
clear pattern. Space constraints preclude us from including all 8192 transcoder features, but we
visualize and annotate the top activated positions of the first 20 features of both transcoder layers in
Figure 7 (since feature order is arbitrary, these are essentially randomly selected). Interested readers
can also explore all features and their top activated positions at URL redacted for anonymity. The
abundance of interpretable features in ZEUS and the usefulness of square-level activation attribution
in parsing their meanings establish our architecture as a significant step forward towards the goal of
interpretable chess modeling.

Figure 2: GAB bias maps in L14H11 of Apollo-
CF in the early and late game. The GAB bias
for this head transitions from modeling a wide
range of movement in the early game to king
movement in the late game.

Table 4: Cosine distance of attention rows
within and between positions for Geometric At-
tention Bias (GAB) and dot-product attention
(DPA). GAB exhibits higher variability within
positions than DPA, but lower variability be-
tween positions.

Cosine distance GAB DPA
Between positions 0.230 0.770
Within positions 0.995 0.184

7 DISCUSSION

Our central contribution is Chessformer, an architecture for chess modeling that jointly advances
the state of the art for raw engine strength and human-move prediction, while doing so in a natu-
rally interpretable way. A Chessformer variant was integrated into a strong open-source engine and
contributed to match wins over Stockfish in multiple computer-chess tournaments.

For human emulation, ZEUS reaches 57.1% move-matching accuracy and surpasses prior search-
less (55.7%) and search-enabled (55.9%) Allie methods with fewer than one-fourth the parameters,
indicating a significant improvement in architecture design. Ablations show a monotonic improve-
ment from absolute to relative to GAB position representation, with GAB delivering +1.96% policy
accuracy, +0.34% value accuracy, +3.37% puzzle-solving accuracy, and +80 Elo, and matching an
absolute-encoding baseline at roughly half the compute. Together, these results establish that our
methodology is doing substantive work, yielding performance-per-compute advantages and better
Pareto points across Elo, puzzles, and policy and value accuracies.

Beyond chess, the general lesson is that it may be possible to make progress on both raw task
performance and human-compatibility goals by allowing models to better conform to the domain at
hand. In our case, this alignment closes the gap between modeling form and action space, enabling
simultaneous gains in mastery (engine Elo; oracle/puzzle metrics) and human-compatibility (move-
matching across skill levels) while allowing for interpretability testing that could enable progress on
further downstream tasks.

Our methods have limitations that suggest concrete next steps. GAB is currently chess-specific,
and its benefits may rely on domains where geometric relations are central. Extending this tem-
plate to other structured decision problems invites exploration of further geometric modeling.
The interpretability benefits—square-level maps, complementary roles of GAB versus dot-product
attention—are promising but require deeper exploration.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Murray Campbell, A. Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelligence, 134
(1):57–83, January 2002. ISSN 0004-3702.

Rémi Coulom. Whole-history rating: A bayesian rating system for players of time-varying strength.
In Computers and Games, 2008.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: fast and
memory-efficient exact attention with io-awareness. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

Steven J. Edwards. Standard: Portable game notation specification and implemen-
tation guide, 1994. URL https://ia802908.us.archive.org/26/items/
pgn-standard-1994-03-12/PGN_standard_1994-03-12.txt.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=dVpFKfqF3R.

Xidong Feng, Vivek Veeriah, Marcus Chiam, Michael D Dennis, Federico Barbero, Johan Obando-
Ceron, Jiaxin Shi, Satinder Singh, Shaobo Hou, Nenad Tomasev, and Tom Zahavy. Generating
creative chess puzzles. In The Thirty-ninth Annual Conference on Neural Information Processing
Systems, 2025. URL https://openreview.net/forum?id=TNZse5q2Tr.

Andrew Grant. Openbench. https://github.com/AndyGrant/OpenBench. Accessed:
2025-11-22.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. Finding neurons in a haystack: Case studies with sparse probing. arXiv preprint
arXiv:2305.01610, 2023. URL https://arxiv.org/abs/2305.01610.

Karim Hamade, Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. De-
signing skill-compatible AI: Methodologies and frameworks in chess. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=79rfgv3jw4.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7132–7141, 2018. doi: 10.1109/CVPR.2018.
00745.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. In Ricardo Silva, Amir
Globerson, and Amir Globerson (eds.), 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp.
876–885. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

Athul Paul Jacob, David J Wu, Gabriele Farina, Adam Lerer, Hengyuan Hu, Anton Bakhtin, Ja-
cob Andreas, and Noam Brown. Modeling strong and human-like gameplay with kl-regularized
search. In Proceedings of the 39th International Conference on Machine Learning, volume 162,
pp. 9695–9728. PMLR, July 2022.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.
Evidence of learned look-ahead in a chess-playing neural network. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 31410–31437. Curran Associates, Inc., 2024. doi: 10.52202/
079017-0987. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/37d9f19150fce07bced2a81fc87d47a6-Paper-Conference.pdf.

11

https://ia802908.us.archive.org/26/items/pgn-standard-1994-03-12/PGN_standard_1994-03-12.txt
https://ia802908.us.archive.org/26/items/pgn-standard-1994-03-12/PGN_standard_1994-03-12.txt
https://openreview.net/forum?id=dVpFKfqF3R
https://openreview.net/forum?id=dVpFKfqF3R
https://openreview.net/forum?id=TNZse5q2Tr
https://github.com/AndyGrant/OpenBench
https://arxiv.org/abs/2305.01610
https://openreview.net/forum?id=79rfgv3jw4
https://openreview.net/forum?id=79rfgv3jw4
https://proceedings.neurips.cc/paper_files/paper/2024/file/37d9f19150fce07bced2a81fc87d47a6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/37d9f19150fce07bced2a81fc87d47a6-Paper-Conference.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adam Karvonen. Emergent world models and latent variable estimation in chess-playing language
models. In First Conference on Language Modeling, August 2024.

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith,
Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictio-
nary learning for language model interpretability with board game models. arXiv preprint
arXiv:2408.00113, 2024. doi: 10.48550/arXiv.2408.00113. URL https://arxiv.org/
abs/2408.00113.

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
Olah. Sparse crosscoders for cross-layer features and model diffing. Transformer Circuits Thread,
2024. URL https://transformer-circuits.pub/2024/crosscoders/index.
html. Preprint / technical note.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg, Demis
Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in
alphazero. Proceedings of the National Academy of Sciences, 119(47):e2206625119, 2022.

Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhuman
ai with human behavior: Chess as a model system. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1677–1687, August 2020.
ISBN 978-1-4503-7998-4.

Reid McIlroy-Young, Yu Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Detecting in-
dividual decision-making style: Exploring behavioral stylometry in chess. In Advances in Neural
Information Processing Systems, volume 34, pp. 24482–24497, 2021.

Reid McIlroy-Young, Russell Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Learn-
ing models of individual behavior in chess. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 1253–1263, 2022.

Aaron Mei. Understanding how chess-playing language models compute linear board represen-
tations. In ICML 2025 Workshop on Methods and Opportunities at Small Scale, 2025. URL
https://openreview.net/forum?id=Z9OV9NygER.

Gian-Carlo Pascutto and Gary Linscott. Leela chess zero, March 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Tord Romstad, Marco Costalba, Joona Kiiski, and et al. Stockfish. https://
stockfishchess.org, 2023. Accessed: 2025-11-29.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, El-
liot Catt, John Reid, Cannada A. Lewis, Joel Veness, and Tim Genewein. Amortized planning
with large-scale transformers: A case study on chess. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Pro-
cessing Systems, volume 37, pp. 65765–65790. Curran Associates, Inc., 2024. doi: 10.52202/
079017-2102. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/78f0db30c39c850de728c769f42fc903-Paper-Conference.pdf.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Stockfish Team. Stockfish testing framework. https://tests.stockfishchess.org/
tests. Accessed: 2025-11-22.

Stockfish Team. Stockfish 15. https://stockfishchess.org/blog/2022/
stockfish-15/, September 2022. Accessed: 2025-11-19.

Stockfish Team. Stockfish 17. https://stockfishchess.org/blog/2024/
stockfish-17/, September 2024. Accessed: 2025-11-19.

12

https://arxiv.org/abs/2408.00113
https://arxiv.org/abs/2408.00113
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://openreview.net/forum?id=Z9OV9NygER
https://stockfishchess.org
https://stockfishchess.org
https://proceedings.neurips.cc/paper_files/paper/2024/file/78f0db30c39c850de728c769f42fc903-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/78f0db30c39c850de728c769f42fc903-Paper-Conference.pdf
https://tests.stockfishchess.org/tests
https://tests.stockfishchess.org/tests
https://stockfishchess.org/blog/2022/stockfish-15/
https://stockfishchess.org/blog/2022/stockfish-15/
https://stockfishchess.org/blog/2024/stockfish-17/
https://stockfishchess.org/blog/2024/stockfish-17/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomput., 568(C), mar 2024. ISSN
0925-2312. doi: 10.1016/j.neucom.2023.127063. URL https://doi.org/10.1016/j.
neucom.2023.127063.

Zhenwei Tang, Difan Jiao, Reid McIlroy-Young, Jon Kleinberg, Siddhartha Sen, and Ashton An-
derson. Maia-2: A unified model for human-ai alignment in chess. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 20919–20944. Curran Associates, Inc., 2024. doi: 10.52202/
079017-0659. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/250190819ff1dda47cd23cecc0c5a69b-Paper-Conference.pdf.

Yiming Zhang, Athul Jacob, Vivian Lai, Daniel Fried, and Daphne Ippolito. Human-
aligned chess with a bit of search. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
(eds.), International Conference on Representation Learning, volume 2025, pp. 4815–4836,
2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
0ef1afa0daa888d695dcd5e9513bafa3-Paper-Conference.pdf.

13

https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://proceedings.neurips.cc/paper_files/paper/2024/file/250190819ff1dda47cd23cecc0c5a69b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/250190819ff1dda47cd23cecc0c5a69b-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/0ef1afa0daa888d695dcd5e9513bafa3-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/0ef1afa0daa888d695dcd5e9513bafa3-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 HUMAN EMULATION

All human-mimicking models were trained with the AdamW optimizer on the dataset described in
Section 4. During training, we sample 32 positions per game at random, or take all of them if 32
positions are not available. All runs have 8 layers, head dimension 32, and an MLP expansion factor
of 2. Our 3M, 5M, 23M, and 79M models have embedding dimensions of 192, 256, 512, and 1024,
respectively. GAB is configured with d1 = 32 and d2 = d3 = 128 for the 23M and 79M models
and average pooling and d2 = d3 = 64 for the 5M model and all its ablations. All runs were trained
for 1 million steps with a cyclic cosine annealed learning rate schedule. The 23M and 79M main
runs were performed on 8 A100 GPUs, taking a few days and a week respectively, and all other runs
were trained on 2 A100 GPUs for around a week.

Because low-rated games are overrepresented in our training dataset, we downsample this dataset
during training to ensure that skill levels are equally represented. In particular, the rating spectrum
is divided into 22 bins: 20 bins uniformly spanning 600 to 2600 Elo with 100-point intervals, plus
two bins for players rated below 600 or above 2600. For each game, we compute the average Elo of
the two players and assign the game to the corresponding bin. We organize the raw game data into
chunks of 20,000 games. For each chunk, we iterate through games sequentially and distribute them
into bins until each bin accumulates 10 games. The process terminates when either all games in the
chunk are consumed or all bins reach 10 games. This encourages equal representation across skill
levels, removing the bias toward low-rated games. We then uniformly at random select 32 positions
per game, or take every position if that many are not available.

The ALLIE test set is suitable to measure overall performance, and all overall performance metrics
we report on the human emulation task employ it. However, it lacks positions at very high and low
skill levels therefore cannot be used to form statistically significant conclusions at these skill levels.
For example, it has only 205 positions rated above 2850, which would result in a margin of error of
over 7%. To rectify this, we augment the ALLIE test set with very highly and lowly rated Lichess
blitz games from August and September 2025 to form the ALLIE-AUGMENTED dataset, which we
use to compare modeling performance across skill levels— it is used in Figure 4, Figure 5, and
Figure 6, and nowhere else.

To obtain the ALLIE-AUGMENTED test set from the ALLIE test set, we first take rating intervals of
length 100 between 550 and 2950 in which ALLIE contains less than 20 thousand positions. These
intervals are so chosen so that they correspond to the bins in Figure 5 and Figure 6, which round
the game rating. We initialize empty buckets for each such interval and iterate through September
and August 2025 Lichess blitz games, adding the game to the corresponding bucket so long as it has
less than a thousand games. These games are added on top of the ALLIE test set to form the final
ALLIE-AUGMENTED set of 1,087,778 positions.

A.2 PLAYING STRENGTH

As described in Section 5, we train in the supervised setting on games generated from a past rein-
forcement learning run of the Apollo project. This strategy works well in practice and was used to
train Apollo-CF, which surpassed the model that generated its training data, as well as each of the
models used in the victories against Stockfish described in Section 5. Initial experiments showed
that Chessformer models trained on self-play games produced by convolutional neural networks and
other Chessformer models reach virtually identical playing strengths, suggesting that the strength of
the oracle is far more important than the model underlying its search process.

To maximize compatibility with the Apollo infrastructure, we follow their input scheme as closely
as possible. We form 64 tokens of depth 96 for the current and past 7 board states, following
Section 3.1. We also concatenate indicators of whether each of the current and past 7 board states
was a repetition, whether each of the 4 castling options are available, whether black is to move, and
the number of plies since the last capture or pawn move, divided by 100. Finally, we concatenate
a 0 and 1, which are relics that were originally intended to allow convolutional models to detect
edges. This information is concatenated to each token, giving 64 pre-embedding tokens of depth
(96+8+4+1+1+2) = 112. Initial experiments did not show this additional information to alter
modeling performance.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Human Move-Matching Training Configuration for Reproducibility

Parameter Value
Training Setup

batch size train 128
batch size val 16
gradient accumulation steps 4
num workers 8

Optimization
lr 0.00005
min lr 0.00001
wd (weight decay) 0.000001
grad clip norm 3.5
warmup steps 1,000
cosine cycles 50,000
refresh lr scheduler true

Mixed Precision
use amp true
amp init scale 256
amp max scale 8,192
amp growth factor 1.5
amp growth interval 2,000
amp backoff factor 0.5

Loss Weights
value coefficient 0.1

All Chessformer models trained for this task used the Nadam optimizer with β1 = 0.9, β = 0.98,
ϵ = 10−7, and gradient clipping 10. Following Apollo’s setup, checkpoints were calculated using
Stochastic Weights Averaging (Izmailov et al., 2018), which incrementally boosted performance.

The 191-million parameter Apollo-CF model has hidden dimension 1024, MLP dimension 1536, a
head size of 32, and 15 layers, and GAB is configured d2 = d3 = 256, and the first linear project
and flattening layers are replaced with average pooling, which initial experiments showed greatly
improves parameter efficiency at small scales at the cost of a slight performance degradation. It was
trained for 6 million steps, with the learning rate initialized to 2× 10−3 and dropped to 3× 10−4 at
4.49 million steps and 3× 10−5 at 5.47 million steps. The 195-million parameter Apollo-CNN is a
squeeze-excitation ResNet (Hu et al., 2018) (He et al., 2016) with 512 filters and depth 40.

Table 6: Ablation results for raw playing strength. Accuracies and Elo values are reported with 95%
confidence intervals

Representation Loss Accuracy (%) Puzzles Elo FLOPS Params
Policy Value Policy Value (%)

Absolute 0.363 0.567 56.6 ± 0.1 88.7 ± 0.1 61.0 ± 1.0 0 ± 18 210M 3.67M
Relative bias 0.346 0.565 57.5 ± 0.1 88.8 ± 0.1 63.2 ± 1.0 40 ± 18 210M 3.67M
GAB-4M 0.330 0.562 58.5 ± 0.1 89.0 ± 0.1 64.2 ± 1.0 83 ± 18 228M 4.01M
GAB-2.5M 0.360 0.567 57.0 ± 0.1 88.7 ± 0.1 61.5 ± 1.0 −4 ± 18 131M 2.51M

We train ablations with the three position representations described in Section 3 with 8 layers, em-
bedding dimension 256, head dimension 32, and MLP dimension 256. GAB is configured with
d1 = 8 and d2 = d3 = 32. The smaller model has embedding dimension and MLP dimension 192,
with all else held constant. Each was trained for 1.4 million steps on a single A100 GPU with a
batch size of 2048 in approximately four days. The learning rate was held constant at 5 ∗ 10−4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 SPECIAL MOVES

A source and destination square are sufficient to represent all moves that can occur within the rules
of chess, with some exceptions. When a pawn advances to the last rank of the board, it must
be promoted to a knight, bishop, rook, or queen. To represent these special moves, we apply a
linear projection to the key vectors for squares in the last rank, generating an additive bias for each
possible promotion piece. This bias is then applied to the logits representing all possible traversals
between the penultimate rank and the promotion rank to generate additional logits for each possible
promotion. Following the standard in computer chess, en passant captures are encoded as diagonal
moves, and castling is encoded as the king moving two spaces horizontally.

def sm_bias(x: torch.Tensor) -> torch.Tensor:
B = x.shape[0]
y = sm1(x) # (B, 64, d_1)
y = y.reshape(B, -1) # (B, 64d_1)
y = sm_act(sm2(y)) # (B, d_2)
y = ln1(y)
y = sm_act(sm3(y)) # (B, H*d_3)
y = ln2(y).view(B, num_heads, gen_size) # (B, H, gen_size)
b = torch.einsum("bhi,oi->bho", y, self.posenc_weight)
return b.view(B, self.num_heads, 64, 64)

Figure 3: Torch-like pseudocode for GAB.

A.4 TRANSCODER TRAINING

For interpretability purposes, we train a cross-layer transcoder on MLP activations collected from
layers 3 and 4 (in other words, the 4th and 5th layers) of an earlier checkpoint of ZEUS. The
transcoder consists of encoders for each layer and decoders going between the two layers (including
between each layer and itself), trained on reconstruction and sparsity loss. We train only on layers
3 and 4 because of a) compute constraints and b) our preliminary investigations finding that these
layers tended to contain the most interpretable representations. It is common practice to train sparse
autoencoders and transcoders on medium-depth layers of models, as these layers are often where the
most interpretable representations are found Gurnee et al. (2023).

Let the base transformer have Lbase layers, and let S = {ℓ0 < ℓ1 < · · · < ℓK−1} be a subset of
K layers on which we train the transcoder (for example, S = {3, 4} when training only between
layers 3 and 4). For each ℓk ∈ S we denote by Rpre

ℓk
∈ RB×T×D the pre-MLP residual stream and

by Mℓk ∈ RB×T×D the corresponding MLP output. After per-layer standardization over batch and
tokens, we write

Xk ∈ RB×T×D, Yk ∈ RB×T×D, k = 0, . . . ,K − 1,

for the normalized inputs and targets. The transcoder operates on the index set {0, . . . ,K−1}, with
indices i, j referring to layers ℓi, ℓj ∈ S.

Encoder: Zi = Xi W
(e)
i + b

(e)
i ∈ RB×T×M , (1)

Ai = ReLU(Zi − τi) ∈ RB×T×M , (2)

where W
(e)
i ∈ RD×M , b(e)

i ∈ RM , and τi ∈ RM is a learned threshold broadcast over batch and
tokens.

Decoders (for all 0 ≤ i ≤ j < K): Ŷi→j = Ai W
(d)
i→j + b

(d)
i→j ∈ RB×T×D, (3)

Ŷj =

j∑
i=0

Ŷi→j , (4)

where W
(d)
i→j ∈ RM×D and b

(d)
i→j ∈ RD.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Reconstruction loss: ℓMSE
j =

1

BTD

∥∥∥Ŷj −Yj

∥∥∥2
2
, (5)

Lrecon =
1

K

K−1∑
j=0

ℓMSE
j . (6)

Decoder-weighted sparsity penalty: πi,f =
1

K − i

K−1∑
j=i

∥∥W(d)
i→j [:, f ]

∥∥
2
, f = 1, . . . ,M, (7)

si =
1

BTM

B∑
b=1

T∑
t=1

M∑
f=1

tanh
(
c πi,f (Ai)b,t,f

)
, (8)

Lsparse = λ ·

(
1

K

K−1∑
i=0

si

)
, (9)

where λ > 0 and c > 0 are scalar hyperparameters.

Total loss: Ltotal = Lrecon + Lsparse. (10)

We use a batch size of 22 games, a learning rate of 5e-5, and an expansion factor of 8. For training
data, we use blitz games from lichess played during July 2019, filtered in the exact same way as in
our base model training pipeline. We use the same data to sample the top activating tokens for each
feature. At the end of training, our transcoder achieves a reconstruction MSE of 1.6% and a sparsity
(ρ0) of .90

B IMPLEMENTATION DETAILS FOR APOLLO TOURNAMENT

Table 7: Tournament performance of Apollo-CF Chessformer against Apollo-CNN convolution
model. The time control is chosen so that N is roughly the number of playouts the Apollo-CNN
model performs during each game. Elo values are reported with 95% confidence intervals.

N Elo Gain Wins Losses Draws
160k 112± 7 846 223 931
320k 111± 7 806 186 1008
640k 105± 7 779 190 1031

To gauge the impact of Chessformer on raw engine strength, we perform a tournament between
versions of the Apollo chess engine configured with either the Apollo-CNN model, a 195-million-
parameter convolution-based model previously used by Apollo at tournaments, or Apollo-CF, a 191-
million parameter Chessformer. Because of the high computational load of long engine analyses,
we use the distributed testing framework OpenBench (Grant) to run 2000 games between these
configurations, so that each of 8 RTX 4090 and 4 A100 GPUs runs a single game at a time with
engines alternating use of the hardware. Games are played in pairs starting from positions sampled
from UHO Lichess 4852 v1.epd, a book of 2.6 million unbalanced human openings curated by the
Stockfish project.

To calculate the base time control T for each GPU, we benchmark the speed of Apollo-CNN and set
T to an estimate of the amount of time the GPU would take to perform N MCTS playouts, varying
the value of N to determine the effect of thinking time on the performance difference. The increment
is set to T/100, and Apollo was free to use its time according to its time management algorithm.
In other words, N is an estimate of the total amount of playouts the Apollo-CNN configuration
performs over the game. On average, the speed of Apollo-CNN on these GPUs is approximately
20,000 playouts per second, so T ≈ N/20000 seconds. Calculating the time control dynamically
for each worker to adjust for variations in processing power is standard in modern distributed engine
testing frameworks like Stockfish’s Fishtest (Stockfish Team).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C POSITIONAL ENCODING BASELINES

Absolute Position Embeddings Perhaps the simplest choice of position encoding is the absolute
position embedding, which consists of adding a learned embedding to each token and was notably
used by GPT-2 (Radford et al., 2019). Formally, given a sequence of token embeddings x1, . . .xn,
one applies

xi 7→ xi + ci (11)

prior to the transformer sublayers.

Relative Position Biases Unlike absolute position embeddings, relative position encodings
model positional information based on the relative displacement between tokens. One simple variant
introduces relative biases fk which are added to the attention logits:

eij =
(xiW

Q)(xjW
K)T√

d
+fi−j (12)

We consider the two-dimensional analog of this technique, where a square on the chessboard is
assigned coordinates (i, j), with i and j ranging from 0 to 7. The bias for querying square (i1, j1)
and key square (i2, j2) is thus f(i2−i1,j2−j1), where fa,b is defined for −7 ≤ a, b ≤ 7. This adds
15× 15 parameters per attention head.

D TOKENIZATION

A number of tokenization schemes have been proposed for chess. We review some of these and
attempt to give insight into why our recipe, a square-based representation with a strong position
encoding, significantly outperforms them.

The MAIA-2 architecture consists of a series of convolution blocks operating on a square-based vi-
sual board representation, followed by self-attention layers that process the depth-64 output channels
as tokens. Though an interesting design choice, this does not align with the standard, well-tested
recipe of transformers in domains like vision and language, which tokenizes inputs by partitioning
them in space rather than through internal model representations.

Move-token formulations like ALLIE, on the other hand, rely on the established methodology of
language modeling but lack another vital property: specialization. Processing inputs in parallel
should allow a model to “divide and conquer”, so that the overall computation is split into units
that are processed with the same parameters. However, there is emerging evidence that move-token
models do not specialize effectively and instead simply reconstruct the board state at each token
(Mei, 2025), (Karvonen, 2024). It is also not intuitively clear why a trajectory-based representation
should be natural in the Markovian domain of chess.

E ADDITIONAL ANALYSIS FOR HUMAN EMULATION

Here we provide additional analysis on our human emulation results. We first ablate n, the number
of past positions concatenated to the current one to form the input, at the 5M scale. Interestingly,
as shown in Table 8, there is a large increase in performance between n = 0 and n = 7, but no
significant difference between n = 7 and n = 31. The improvement is concentrated at low game
ratings and decreases steadily up to high ratings. This contrasts with the effect of model size on
move-matching performance, shown in Figure 5 and Figure 6. The impact of scale on modeling
performance is several times higher for strong play as it is for weak play.

To ensure that positions in which no or little history information is available remain in-distribution,
we mask out during training a uniformly random amount of history information with probability
5%. In initial experiments, this was found to negligibly affect performance (< 0.05% reduction in
move-matching accuracy) relative to always retaining all n past board states.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Despite marked improvements in parameter and compute efficiency, ZEUS-79M improves on the
state-of-the-art move-matching accuracy by only 1.2%. We postulate that despite Chessformer’s
modeling capability, it runs into a performance ceiling at low and intermediate skill levels. Play
at these skill levels is unsophisticated and easy to model, but inconsistent and stochastic enough
that the accuracy appears to saturate at around 50%. ZEUS-79M shines however at modeling highly
skilled play, advancing the searchless state of the art by up to 5% for very strong play. Prior work has
struggled to emulate strong play, often relying on search to shore up weak human-aligned models.
That ZEUS not only outperforms even search-enabled methods but achieves its largest gains at these
very high skill levels suggests that our methodology jointly enables both human alignment and
mastery.

Table 8: Move-matching accuracy by history length for human emulation. The value reported is n,
the number of past positions excluding the current one fed inputted into the model.

History Accuracy (%)
0 54.0± 0.1
7 55.4± 0.1
31 55.4± 0.1

To understand why this is the case, we decompose the error for human emulation into aleatoric
uncertainty, the amount of uncertainty that is inherent to the task, and epistemic uncertainty, the
amount of uncertainty that can be reduced through stronger models. Low-rated play tends to be
unsophisticated, reducing the amount of improvement available from better modeling approaches,
but stochastic and inconsistent, reducing the ceiling on predictability. In other words, it has high
aleatoric uncertainty, explaining the low accuracies for these players but low epistemic uncertainty,
explaining the minor gains provided by scale. In contrast, highly skilled play is more accurate and
thus more consistent, but more difficult to predict due its sophistication; it has low aleatoric uncer-
tainty but high epistemic uncertainty, giving plenty of room for improvement. History information
likely improves move-matching performance by providing information about the player and reduc-
ing the aleatoric uncertainty of the task, particularly for low-rated play where it is higher.

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

Active Player's Skill Level

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Op
po

ne
nt

 P
la

ye
r's

 S
ki

ll 
Le

ve
l

44.7 47.6

44.7 49.2 52.8 51.6

51.1 52.8 52.9 53.8

42.3 51.8 54.2 55.4 58.1

47.2 54.9 55.8 56.0 56.1

53.3 55.2 56.4 57.4 59.7

50.3 56.0 57.7 58.5 62.4

56.3 56.4 58.6 60.7 61.4

56.5 59.3 59.9 61.4 64.9

59.4 60.1 61.1 61.2

59.0 60.5 61.4 60.6

60.1 60.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Figure 4: Move-matching accuracies of ZEUS for pairs of skill levels. Interestingly, players are
more predictable when they are paired against weaker opponents. This figure uses the ALLIE-
AUGMENTED test set, described in Appendix A.1

With this in mind, we believe that future human emulation work should focus on highly skilled play,
where the performance ceiling appears to be much higher. One interesting question is maximum
accuracy on this task increases monotonically with the game rating, aligning with our intuition
about the consistency of strong players, or drop off for ratings above 2600 in line with our observed
performance.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Game rating

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

M
ov

e-
m

at
ch

in
g 

ac
cu

ra
cy

 (
%

) n = 7
n = 0

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Game rating

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

M
ov

e-
m

at
ch

in
g 

ac
cu

ra
cy

 (
%

) 5M (base)
3M
Relative
Absolute

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Game rating

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

M
ov

e-
m

at
ch

in
g 

ac
cu

ra
cy

 (
%

)

79M
23M
5M
3M
Allie-Policy

Figure 5: Human move-matching accuracies on the ALLIE-AUGMENTED test set by number of
history positions n (left), position encoding (middle), and scale (right). History information helps
most for weaker play, while scale and effective position encodings have a large effect for stronger
play. We omit results for n = 31 history positions as they are virtually identical to those for n = 7,
and also omit ALLIE-ADAPTIVE-SEARCH due to compute constraints. For all game ratings other
than 2900, the margin of error is less than a percent.

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Game rating

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
rp

le
xi

ty

n = 7
n = 0

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Game rating

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
rp

le
xi

ty

5M (base)
3M
Relative
Absolute

60
0

80
0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Game rating

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
rp

le
xi

ty

79M
23M
5M
3M

Figure 6: Human move-matching perplexity on the ALLIE-AUGMENTED test set by number of
history positions n (left), position encoding (middle), and scale (right). We omit results for n = 31
history positions as they are virtually identical to those for n = 7.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F ADDITIONAL RESULTS

F.1 TOP ACTIVATED TOKENS FOR TRANSCODER

Figure 7: Annotations for features 0-9 of layer 3. L3F0000: Square that the active player can
advance a pawn to in order to attack an enemy bishop. L3F0001: Active player’s knight, usually
under attack. L3F0002: Square on the side of the board that is controlled by the active player’s rook
or queen. L3F0003: Vacant square adjacent to a rook in the corner. L3F0004: An enemy pawn in
the corner, in front of the active player’s pawn, sheltering the opponent’s king. L3F0005: Either
a rook in the corner or a center pawn movement option. L3F0006: Not interpretable. L3F0007:
A square diagonally adjacent to the opponent’s king that is controlled by the active player’s pawn.
L3F0008: A square contested by both friendly and enemy pawns. L3F0009: Enemy minor piece on
the edge of the board pinned to an enemy rook.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 7: Annotations for features 10-19 of layer 3 of ZEUS: L3F0010: Queenside activation
square for active player’s knight in Queen’s gambit structures. L3F0011: Square on b3, b6, f3, or
f6 in the opening that have been weakened by the lack of a supporting pawn. L3F0012: Square that
the active player’s knight can move to to give check. L3F0013: Enemy rook checking the active
player’s king. L3F0014: Active player’s king on the starting position, or an adjacent square if the
king has castled. L3F0015: Enemy king in danger of being checkmated on the back rank. L3F0016:
Square controlled by both friendly and enemy pawns. L3F0017: Enemy knight developed on the
side of the board. L30018: Enemy knight attacked by active player’s bishop and defended by enemy
bishop. L30019: Not interpretable.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 8: Annotations for features 0-9 of layer 4 of ZEUS: L4F0000: Not interpretable L4F0001:
Active player’s bishop on a strong diagonal, often paired up with a queen. L4F0002: Enemy center
pawn targeted for capture in the opening. L4F0003: Square deep in opponent’s territory attacked
either by two rooks or a rook and a queen. L4F0004: Either long castling or tension between
active player’s f6 pawn and opponent’s g7 pawn. L4F0005: Enemy knight pinned by the active
player’s bishop. L4F0006: Usually a square controlled by the active player’s bishop. L4F0007: Not
interpretable.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 8: Annotations for features 10-19 of layer 4 of ZEUS: L4F0010: Not interpretable.
L4F0011: Enemy pawn attacking or threatening to attack an active player’s minor piece L4F0012:
Not fully interpretable; miscellaneous key squares in endgames. L4F0013: Active player’s vulner-
able king in the corner.L4F0014: Square that is or will be controlled by enemy pawn, especially if
it is close to promotion. L4F0015: Not interpretable. L4F0016: Square deep in opponent’s territory
controlled by active player’s bishop. L4F0017: Active player’s centralized piece in the middlegame.
L4F0018: Key target square for enemy pawn push. L4F0019: Blockading square for enemy pawn.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2 ADDITIONAL GAB AND ATTENTION HEAD HEAT MAPS

Figure 9: Layer 4 head 4 ZEUS GAB and DPA maps, left and right respectively

Figure 10: Layer 4 head 5 ZEUS GAB and DPA maps, left and right respectively

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Additional Apollo GAB maps from layer 3

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 12: Additional Apollo DPA maps from layer 3

27


	Introduction
	Related Work
	Methodology
	Board Representation: Squares as Tokens
	Geometric Attention Bias (GAB)
	Output Heads

	Predicting Human Play
	Dataset
	Training Methodology
	Board History
	Results

	Optimizing Playing Strength
	Training Methodology
	Evaluation Methodology
	Results
	Engine Strength

	Interpretability
	GAB Maps
	Identifying Interpretable Features

	Discussion
	Implementation Details
	Human Emulation
	Playing Strength
	Special Moves
	Transcoder Training

	Implementation Details for Apollo Tournament
	Positional Encoding Baselines
	Tokenization
	Additional Analysis for Human Emulation
	Additional Results
	Top Activated Tokens for Transcoder
	Additional GAB and Attention Head Heat Maps


