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Abstract

Contextual multinomial logit (MNL) bandits capture many real-world assortment
recommendation problems such as online retailing/advertising. However, prior
work has only considered (generalized) linear value functions, which greatly lim-
its its applicability. Motivated by this fact, in this work, we consider contextual
MNL bandits with a general value function class that contains the ground truth,
borrowing ideas from a recent trend of studies on contextual bandits. Specifically,
we consider both the stochastic and the adversarial settings, and propose a suite of
algorithms, each with different computation-regret trade-off. When applied to the
linear case, our results not only are the first ones with no dependence on a certain
problem-dependent constant that can be exponentially large, but also enjoy other
advantages such as computational efficiency, dimension-free regret bounds, or the
ability to handle completely adversarial contexts and rewards.

1 Introduction

As assortment recommendation becomes ubiquitous in real-world applications such as online retail-
ing and advertising, the multinomial (MNL) bandit model has attracted great interest in the past
decade since it was proposed by Rusmevichientong et al. [24]. It involves a learner and a customer
interacting for T rounds. At each round, knowing the reward/profit for each of the N available items,
the learner selects a subset/assortment of size at most K and recommend it to the customer, who then
purchases one of these K items or none of them according to a multinomial logit model specified by
the customer’s valuation over the items. The goal of the learner is to learn these unknown valuations
over time and select the assortments with high reward.

To better capture practical applications where there is rich contextual information about the items and
customers, a sequence of recent works study a contextual MNL bandit model where the customer’s
valuation is determined by the context via an unknown (generalized) linear function [8, 21, 7, 19, 20,
23, 2]. However, there are no studies on general value functions, despite many recent breakthroughs
for classic contextual multi-armed bandits using a general value function class with much stronger
representation power that enables fruitful results in both theory and practice [1, 10, 27, 11, 25].

Contributions. Motivated by this gap, we propose a contextual MNL bandit model with a general
value function class that contains the ground truth (a standard realizability assumption), and develop
a suite of algorithms for different settings and with different computation-regret trade-off.

More specifically, in Section 3, we first consider a stochastic setting where the context-reward pairs
are i.i.d. samples of an unknown distribution. Following the work by Simchi-Levi and Xu [25] for
contextual bandits, we reduce the problem to an easier offline log loss regression problem and pro-
pose two strategies using an offline regression oracle: one with simple and efficient uniform explo-
ration, and another with more adaptive exploration (and hence improved regret) induced by a novel
log-barrier regularized strategy. Our results rely on several new technical findings, including a fast
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Table 1: Comparisons of results for contextual MNL bandits with T rounds, N items, size-K as-
sortments, and a d-dimensional linear value function class with norm bounded by B. All previous
results depend on a problem-dependent constant κ that is exp(2B) in the worst case, while ours (in
gray) do not. The notation Õ(·) hides logarithmic dependency on all parameters. In the last column,
✓ means polynomial runtime in all parameters; ✓–means polynomial only when K is a constant;
and 7 means not polynomial even for a small K.

Context xt & reward rt Regret Efficient?

Stochastic (xt, rt)
Õ((dBNK)1/3T 2/3) (Corollary 3.5) ✓
Õ(K2

√
dBNT ) (Corollary 3.8) ✓–

Adversarial xt, rt ≡ 1 Õ(dK
√
T/κ+ d2K4κ) [23] 7

Stochastic xt

Adversarial rt

Õ(d
√
T + d2K2κ4) [7] ✓–

Õ(κ
√
dT + κ4) [20] 7

Õ(d
√
κT + κ2) [20] ✓

Ω(max{
√
dT , d

√
T/K}) [7] N/A

Adversarial (xt, rt)

O((NKB)1/3T 5/6) (Corollary 4.4) ✓
O(K2

√
NBT 3/4) (Corollary 4.7) ✓–

Õ(K2
√
dNT ) (Corollary 4.8) 7

rate regression result (Lemma 3.1), a “reverse Lipschitzness” for the MNL model (Lemma 3.3), and
a certain “low-regret-high-dispersion” property of the log-barrier regularized strategy (Lemma 3.6).

Next, in Section 4, we switch to the more challenging adversarial setting where the context-reward
pairs can be arbitrarily chosen. We start by following the idea of [10, 11] for contextual bandits and
reducing our problem to online log loss regression, and show that it suffices to find a strategy with
a small Decision-Estimation Coefficient (DEC) [10, 14]. We then show that, somewhat surprisingly,
the same log-barrier regularized strategy we developed for the stochastic setting leads to a small
DEC, despite the fact that it is not the exact DEC minimizer (unlike its counterpart for contextual
bandits [13]). We prove this by using the same aforementioned low-regret-high-dispersion prop-
erty, which to our knowledge is a new way to bound DEC and reveals why log-barrier regularized
strategies work in different settings and for different problems. Finally, we also extend the idea of
Feel-Good Thompson Sampling [30] and propose a variant for our problem that leads to the best
regret bounds in some cases, despite its lack of computational efficiency.

Throughout the paper, we use two running examples to illustrate the concrete regret bounds our
different algorithms achieve: the finite class and the linear class. In particular, for the linear class,
this leads to five new results, summarized in Table 1 together with previous results. These results all
have their own advantages and disadvantages, but we highlight the following:

• While all previous regret bounds depend on a problem-dependent constant κ that can be exponen-
tially large in the norm of the weight vector B, none of our results depends on κ. In fact, our best
results (Corollary 4.8) even has only logarithmic dependence on B, a potential doubly-exponential
improvement compared to prior works.1

• The regret bounds of our two algorithms that make use of an online regression oracle are
dimension-free, despite not having the optimal

√
T -dependence (Corollary 4.4 and Corollary 4.7).

• Our results are the first to handle completely adversarial context-reward pairs.2

1One caveat is that, following [5, 9, 18], we assume that no-purchase is the most likely outcome by normal-
izing the range of the values to [0, 1], making it only a subclass of the one considered in [19, 7, 20]. However,
we emphasize that the bounds presented in Table 1 have been translated accordingly to fit our setting. Also note
that the κ dependence in [23] is in the form of

√
T/κ+κ (so not necessarily increasing in κ), but it only holds

for uniform rewards.
2Agrawal et al. [2] also considered adversarial contexts and rewards, but there is a technical issue in their

analysis as pointed out by the authors. Even if corrected, their results still depend on κ while ours do not.
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Related works. The (non-contextual) MNL model was initially studied in [24], followed by a line
of improvements [3, 4, 6, 5, 22]. Specifically, Agrawal et al. [3, 5] introduced a UCB-type algorithm
achieving Õ(

√
NT ) regret and proved a lower bound of Ω(

√
NT/K). Subsequently, Chen and

Wang [6] enhanced the lower bound to Ω(
√
NT ), matching the upper bound up to log factors.

Cheung and Simchi-Levi [8] first extended MNL bandits to its contextual version and designed
a Thompson sampling based algorithm. Follow-up works consider this problem under different
settings, including stochastic context [7, 19, 20], adversarial context [21, 2], and uniform reward over
items [23]. However, as mentioned, all these works consider (generalized) linear value functions,
and our work is the first to consider contextual MNL bandits under a general value function class.

Our work is also closely related to the recent trend of designing contextual bandits algorithms for a
general function class. Due to space limit, we defer the discussion to Appendix A.

2 Notations and Preliminary

Notations. Throughout this paper, we denote the set {1, 2, . . . , N} for some positive integer N
by [N ] and {0, 1, 2, . . . , N} by [N ]0. For a vector u ∈ RN , we use ui to denote its i-th coordinate,
and for a matrix W ∈ RN×M , we use Wj to denote its j-th column. For a set S , we denote by
∆(S) the set of distributions over S , and by conv(S) the convex hull of S . Finally, for a distribution
µ ∈ ∆([N ]0) and an outcome i ∈ [N ]0, the corresponding log loss is ℓlog(µ, i) = − log µi.

We consider the following contextual MNL bandit problem that proceeds for T rounds. At each
round t, the learner receives a context xt ∈ X for some arbitrary context space X and a reward
vector rt ∈ [0, 1]N which specifics the reward of N items. Then, out of these N items, the learner
needs to recommend a subset St ⊆ S to a customer, where S ⊆ 2[N ] is the collection of all subsets
of [N ] with cardinality at least 1 and at most K for some K ≤ N . Finally, the learner observes the
customer purchase decision it ∈ St ∪ {0}, where 0 denotes the no-purchase option, and receives
reward rt,it , where for notational convenience we define rt,0 = 0 for all t (no reward if no purchase).
The customer decision it is assumed to follow an MNL model:

Pr[it = i | St, xt] =


f⋆
i (xt)

1+
∑

j∈St
f⋆
j (xt)

if i ∈ St,
1

1+
∑

j∈St
f⋆
j (xt)

if i = 0,

0 otherwise,

(1)

where f⋆ : X → [0, 1]N is an unknown value function, specifying the costumer’s value for each
item under the given context. The MNL model above implicitly assumes a value of 1 for the no-
purchase option, making it the most likely outcome. This is a standard assumption that holds in
many realistic settings [5, 9, 18].

To simplify notation, we define µ : S × [0, 1]N → ∆([N ]0) such that µi(S, v) ∝ vi1[i ∈ S ∪
{0}] with the convention v0 = 1. The purchase decision it is thus sampled from the distribution
µ(St, f

⋆(xt)). In addition, given a reward vector r ∈ [0, 1]N (again, with convention r0 = 0), we
further define the expected reward of choosing subset S ∈ S under context x ∈ X as

R(S, v, r) = Ei∼µ(S,v) [ri] =
∑
i∈S

µi(S, v)ri =

∑
i∈S rivi

1 +
∑

i∈S vi
.

The goal of the learner is then to minimize her regret, defined as the expected gap between her total
reward and that of the optimal strategy with the knowledge of f⋆:

RegMNL = E

[
T∑

t=1

max
S∈S

R(S, f⋆(xt), rt)−
T∑

t=1

R(St, f
⋆(xt), rt)

]
.

To ensure that no-regret is possible, we make the following assumption, which is standard in the
literature of contextual bandits.

Assumption 1 The learner is given a function class F = {f : X → [0, 1]N} which contains f⋆.

Our hope is thus to design algorithms whose regret is sublinear in T and polynomial in N and
some standard complexity measure of the function class F . So far, we have not specified how the
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Algorithm 1 Contextual MNL Algorithms with an Offline Regression Oracle
Input: an offline regression oracle Algoff satisfying Assumption 2
Define: epoch schedule τ0 = 0 and τm = 2m−1 − 1 for all m = 1, 2, . . ..
for epoch m = 1, 2, . . . do

Feed {xt, St, it}τmt=τm−1+1 to Algoff and obtain fm.
Define a stochastic policy qm : X × [0, 1]N → ∆(S) via either Eq. (4) or Eq. (5).
for t = τm + 1, · · · , τm+1 do

Observe context xt ∈ X and reward vector rt ∈ [0, 1]N .
Sample St ∼ qm(xt, rt) and recommend it to the customer.
Observe customer’s purchase decision it ∈ St ∪ {0}, drawn according to Eq. (1).

context xt and the reward xt are chosen. In the next two sections, we will discuss both the easier
stochastic case where (xt, rt) is jointly drawn from some fixed and unknown distribution, and the
harder adversarial case where (xt, rt) can be arbitrarily chosen by an adversary.

3 Contextual MNL Bandits with Stochastic Contexts and Rewards

In this section, we consider contextual MNL bandits with stochastic contexts and rewards, where at
each round t ∈ [T ], xt and rt are jointly drawn from a fixed and unknown distribution D. Following
the literature of contextual bandits, we aim to reduce the problem to an easier and better-studied
offline regression problem and only access the function class F through some offline regression
oracle. Specifically, an offline regression oracle Algoff takes as input a set of i.i.d. context-subset-
purchase tuples and outputs a predictor from F with low generalization error in terms of log loss,
formally defined as follows.

Assumption 2 Given n samples D = {(xk, Sk, ik)}nk=1 where each (xk, Sk, ik) ∈ X × S × [N ]0
is an i.i.d. sample of some unknown distribution H and the conditional distribution of ik is
µ(Sk, f

⋆(xk)), with probability at least 1 − δ the offline regression oracle Algoff outputs a func-
tion f̂D ∈ F such that:

E(x,S,i)∼H

[
ℓlog(µ(S, f̂D(x)), i)− ℓlog(µ(S, f

⋆(x)), i)
]
≤ Errlog(n, δ,F), (2)

for some function Errlog(n, δ,F) that is non-increasing in n.

Given the similarity between MNL and multi-class logistic regression, assuming such a log loss
regression oracle is more than natural. Indeed, in the following lemma, we prove that for both the
finite class and a certain linear function class, the empirical risk minimizer (ERM) not only satisfies
this assumption, but also enjoys a fast 1/n rate. The proof is based on the observation that our loss
function ℓlog(µ(S, f(x)), i), when seen as a function of f , satisfies the so-called strong 1-central
condition [17, Definition 7], which might be of independent interest; see Appendix B.1 for details.

Lemma 3.1 The ERM strategy f̂D = argminf∈F
∑

(x,S,i)∈D ℓlog(µ(S, f(x)), i) satisfies Assump-
tion 2 for the following two cases:

• (Finite class) F is a finite class of functions with image [β, 1]N for some β ∈ (0, 1) and

Errlog(n, δ,F) = O
(

logK/β log |F|/δ
n

)
.

• (Linear class) X ⊆ {x ∈ Rd×N | ‖xi‖2 ≤ 1, ∀i ∈ [N ]}, F = {fθ,i(x) = eθ
⊤xi−B | ‖θ‖2 ≤ B},

and Errlog(n, δ,F) = O
(dB logK log(Bn) log 1

δ

n

)
, for some B > 0.3

3We call this a linear class (even though it is technically log-linear) because, when combined with the MNL
model Eq. (1), it becomes the standard softmax model with linear policies. Also note that the bias term −B
in the exponent makes sure fθ(x) ∈ [0, 1]N . Following [23], we assume ∥θ∥2 ≤ B instead of ∥θ∥2 ≤ 1 to
ensure the representation power of the function class, since we already normalize the contexts and restrict them
to be within the unit ball.
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Due to space limit, we only use these two simple function classes as running examples throughout
the paper, but we emphasize that our results can be applied to any class as long as regression is
feasible. For additional examples, see Appendix D.

Given Algoff , we now outline a natural algorithm framework that proceeds in epochs with exponen-
tially increasing length (see Algorithm 1): At the beginning of each epoch m, the algorithm feeds
all the context-subset-purchase tuples from the last epoch to the offline regression oracle Algoff and
obtains a value predictor fm. Then, it decides in some way using fm a stochastic policy qm, which
maps a context x and a reward vector r ∈ [0, 1]N to a distribution over S . With such a policy in
hand, for every round t within this epoch, the algorithm simply samples a subset St according to
qm(xt, rt) and recommend it to the customer.

We will specify two concrete stochastic policies qm in the next two subsections. Before doing so,
we highlight some key parts of the analysis that shed light on how to design a “good” qm. The first
step is an adaptation of Simchi-Levi and Xu [25, Lemma 7], which quantifies the expected reward
difference of any policy under the ground-truth value function f⋆ versus the estimated value function
fm. Specifically, for a deterministic policy π : X × [0, 1]N → S mapping from a context-reward
pair to a subset, we define its true expected reward and its expected reward under fm respectively as
(overloading the notation R):

R(π) = E(x,r)∼D [R(π(x, r), f⋆(x), r)] , Rm(π) = E(x,r)∼D [R(π(x, r), fm(x), r)] . (3)

Moreover, for any ρ ∈ ∆(S), define w(ρ) ∈ [0, 1]N such that wi(ρ) =
∑

S∈S:i∈S ρ(S) is the prob-
ability of item i being selected under distribution ρ, and for any stochastic policy q, further define a
dispersion measure for a deterministic policy π as V (q, π) = E(x,r)∼D

[∑
i∈π(x,r)

1
wi(q(x,r))

]
(the

smaller V (q, π) is, the more disperse the distribution induced by q is). Using the Lipschitzness (in
v) of the reward function R(S, v, r) (Lemma B.1), we prove the following.

Lemma 3.2 For any deterministic policy π : X × [0, 1]N → S and any epoch m ≥ 2, we have

|Rm(π)−R(π)| ≤
√
V (qm−1, π) ·

√√√√E(x,r)∼D,S∼qm−1(x,r)

[∑
i∈S

(fm,i(x)− f⋆
i (x))

2

]
.

If the learner could observe the true value of each item in the selected subset (or its noisy version),
then doing squared loss regression on these values would make the squared loss term in Lemma 3.2
small; this is essentially the case in the contextual bandit problem studied by Simchi-Levi and Xu
[25]. However, in our problem, only the purchase decisions are observed but not the true values
that define the MNL model. Nevertheless, one of our key technical contributions is to show that the
offline log-loss regression, which only relies on observing the purchase decisions, in fact also makes
sure that the squared loss above is small.

Lemma 3.3 For any S ∈ S and v, v⋆ ∈ [0, 1]N , we have

1
2(K+1)4

∑
i∈S

(vi − v⋆i )
2 ≤ ‖µ(S, v)− µ(S, v⋆)‖22 ≤ 2Ei∼µ(S,v⋆) [ℓlog(µ(S, v), i)− ℓlog(µ(S, v

⋆), i)] .

The first equality establishes certain “reverse Lipschitzness” of µ and is proven by providing a
universal lower bound on the minimum singular value of its Jacobian matrix, which is new to our
knowledge. It implies that if two value vectors induce a pair of close distributions, then they must
be reasonably close as well. The second equality, proven using known facts, further states that to
control the distance between two distributions, it suffices to control their log loss difference, which
is exactly the job of the offline regression oracle.

Therefore, combining Lemma 3.2 and Lemma 3.3, we see that to design a good algorithm, it suf-
fices to find a stochastic policy that “mostly” follows argmaxS R(S, fm(xt), rt), the best decision
according to the oracle’s prediction, and at the same time ensures high dispersion for all π such
that the oracle’s predicted reward for any policy is close to its true reward. The design of our two
algorithms in the remaining of this section follows exactly this principle.
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3.1 A Simple and Efficient Algorithm via Uniform Exploration

As a warm-up, we first introduce a simple but efficient ε-greedy-type algorithm that ensures reason-
able dispersion by uniformly exploring all the singleton sets. Specifically, at epoch m, given the
value predictor fm from Algoff , qm(x, r) ∈ ∆(S) is defined as follows for some εm > 0:

qm(S|x, r) = (1− εm)1

[
S = argmax

S⋆∈S
R(S⋆, fm(x), r)

]
+

εm
N

N∑
i=1

1 [S = {i}] . (4)

In other words, with probability 1 − ε, the learner picks the subset achieving the maximum reward
based on the reward vector r and the predicted value fm(x); with the remaining ε probability, the
learner selects a uniformly random item i ∈ [N ] and recommend only this item, which clearly
ensures V (qm, π) ≤ KN

εm
for any π. Based on our previous analysis, it is straightforward to prove

the following regret guarantee.

Theorem 3.4 Under Assumption 1 and Assumption 2, Algorithm 1 with qm defined in Eq. (4) and
the optimal choice of εm ensures RegMNL =

∑⌈log2 T⌉
m=1 O

(
2m(NKErrlog(2

m−1, 1/T 2,F))
1
3

)
.

To better interpret this regret bound, we consider the finite class and the linear class discussed in
Lemma 3.1. Combining it with Theorem 3.4, we immediately obtain the following corollary:

Corollary 3.5 Under Assumption 1, Algorithm 1 with qm defined in Eq. (4), the optimal choice of
εm, and ERM as Algoff ensures RegMNL = O

(
(NK log K

β log(|F|T )) 1
3T

2
3

)
for finite class and

RegMNL = O
(
(dBNK logK)

1
3T

2
3 log(BT ) log T

)
for linear class (see Lemma 3.1 for defini-

tions).

While these Õ(T 2/3) regret bounds are suboptimal, Theorem 3.4 provides the first computationally
efficient algorithms for contextual MNL bandits with an offline regression oracle for a general func-
tion class. Indeed, computing argmaxS⋆∈S R(S⋆, fm(x), r) can be efficiently done in O(N2) time
according to [24, Section 2.1]. Moreover, for the linear case, the ERM oracle can indeed be effi-
ciently (and approximately) implemented because it is a convex optimization problem over a simple
ball constraint. Importantly, previous regret bounds for the linear case all depend on a problem-
dependent constant κ = max∥θ∥≤B,S∈S,i∈S,t∈[T ]

1
µi(S,fθ(xt))µ0(S,fθ(xt))

, which is exp(2B) in the
worst case [7, 20, 23], but ours only has polynomial dependence on B.

3.2 Better Exploration Leads to Better Regret

Next, we show that a more sophisticated construction of qm in Algorithm 1 leads to better explo-
ration and consequently improved regret bounds. Specifically, qm is defined as (for some γm > 0):

qm(x, r) = argmax
ρ∈∆(S)

ES∼ρ [R(S, fm(x), r)]− (K + 1)4

γm

N∑
i=1

log
1

wi(ρ)
. (5)

The first term of the optimization objective above is the expected reward when one picks a subset
according to ρ and the value function is fm, while the second term is a certain log-barrier regularizer
applied to ρ, penalizing it for putting too little mass on any single item. This specific form of
regularization ensures that qm enjoys a low-regret-high-dispersion guarantee, as shown below.

Lemma 3.6 For any x ∈ X and r ∈ [0, 1]N , the distribution qm(x, r) defined in Eq. (5) satisfies:

max
S⋆∈S

R(S⋆, fm(x), r)− ES∼qm(x,r) [R(S, fm(x), r)] ≤ N(K + 1)4

γm
, (6)

∀S ∈ S,
∑
i∈S

1

wi(qm(x, r))
≤ N +

γm
(K + 1)4

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)
. (7)

Eq. (6) states that following qm(x, r) does not incur too much regret compared to the best subset
predicted by the oracle, and Eq. (7) states that the dispersion of qm(x, r) on any subset is controlled
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by how bad this subset is compared to the best one in terms of their predicted reward — a good
subset has a large dispersion while a bad one can have a smaller dispersion since we do not care
about estimating its true reward very accurately. Such a refined dispersion guarantee intuitively
provides a much more adaptive exploration scheme compared to uniform exploration.

This kind of low-regret-high-dispersion guarantees is in fact very similar to the ideas of Simchi-Levi
and Xu [25] for contextual bandits (which itself is similar to an earlier work by Agarwal et al. [1]).
While Simchi-Levi and Xu [25] were able to provide a closed-form strategy with such a guarantee
for contextual bandits, we do not find a similar closed-form for MNL bandits and instead provide
the strategy as the solution of an optimization problem Eq. (5). Unfortunately, we are not aware
of an efficient way to solve Eq. (5) with polynomial time complexity, but one can clearly solve it
in poly(|S|) = poly(NK) time since it is a concave problem over ∆(S). Thus, the algorithm is
efficient when K is small, which we believe is the case for most real-world applications.

Combining Lemma 3.2 and Lemma 3.6, we prove the following regret guarantee, which improves
the Err

1/3
log term in Theorem 3.4 to Err

1/2
log (proofs deferred to Appendix B).

Theorem 3.7 Under Assumption 1 and Assumption 2, Algorithm 1 with qm defined in Eq. (5) and
the optimal choice of γm ensures RegMNL = O

(∑⌈log2 T⌉
m=1 2mK2

√
NErrlog(2m−1, 1/T 2,F)

)
.

Similar to Section 3.1, we instantiate Theorem 3.7 using the following two concrete classes:

Corollary 3.8 Under Assumption 1, Algorithm 1 with qm defined in Eq. (5), the optimal choice of
γm, and ERM as Algoff ensures RegMNL = O

(
K2
√
T log K

β log(|F|T )
)

for the finite class and

RegMNL = O
(
K2
√

dBNT log(BT ) log T
)

for the linear class (see Lemma 3.1 for definitions).

The dependence on T in these O(
√
T ) regret bounds is known to be optimal [6, 7]. Once again, in

the linear case, we have no exponential dependence on B, unlike previous results.

4 Contextual MNL Bandits with Adversarial Contexts and Rewards

In this section, we move on to consider the more challenging case where the context xt and the
reward vector rt can both be arbitrarily chosen by an adversary. We propose two different approaches
leading to three different algorithms, each with its own pros and cons.

4.1 First Approach: Reduction to Online Regression

In the first approach, we follow a recent trend of studies that reduces contextual bandits to online
regression and only accesses F through an online regression oracle [10, 11, 15, 31, 29]. More
specifically, we assume access to an online regression oracle Algon that follows the protocol below:
at each round t ∈ [T ], Algon outputs a value predictor ft ∈ conv(F); then, it receives a context
xt, a subset St, and a purchase decision it ∈ St ∪ {0}, all chosen arbitrarily, and suffers log loss
ℓlog(µ(St, ft(xt)), it).4 The oracle is assumed to enjoy the following regret guarantee.

Assumption 3 The predictions made by the online regression oracle Algon ensure:

E

[
T∑

t=1

ℓlog(µ(St, ft(xt)), it)−
T∑

t=1

ℓlog(µ(St, f
⋆(xt)), it)

]
≤ Reglog(T,F),

for any f⋆ ∈ F and some regret bound Reglog(T,F) that is non-decreasing in T .

While most previous works on contextual bandits assume a squared loss online oracle, log loss is
more than natural for our MNL model (it was also used by Foster and Krishnamurthy [11] to achieve
first-order regret guarantees for contextual bandits). The following lemma shows that Assumption 3
again holds for the finite class and the linear class.

4In fact, for our purpose, it is always sampled from µ(St, f
⋆(xt)), instead of being chosen arbitrarily, but

the concrete oracle examples we provide in Lemma 4.1 indeed work for arbitrary it.
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Lemma 4.1 For the finite class and the linear class discussed in Lemma 3.1, the following concrete
oracles satisfy Assumption 3:

• (Finite class) Hedge [16] with Reglog(T,F) = O(
√

T log |F| log K
β );

• (Linear class) Online Gradient Descent [32] with Reglog(T,F) = O(B
√
T ).

Unfortunately, unlike the offline oracle, we are not able to provide a “fast rate” (that is, Õ(1) re-
gret) for these two cases, because our loss function does not appear to satisfy the standard Vovk’s
mixability condition or any other sufficient conditions discussed in Van Erven et al. [26]. This is in
sharp contrast to the standard multi-class logistic loss [12], despite the similarity between these two
models. We leave as an open problem whether fast rates exist for these two classes, which would
have immediate consequences to our final MNL regret bounds below.

With this online regression oracle, a natural algorithm framework works as follows: at each round t,
the learner first obtains a value predictor ft ∈ conv(F) from the regression oracle Algon; then, upon
seeing context xt and reward vector rt, the learner decides in some way a distribution qt ∈ ∆(S)
based on ft(xt) and rt, and samples St from qt; finally, the learner observes the purchase decision
it and feeds the tuple (xt, St, it) to the oracle Algon (see Algorithm 2 in Appendix C). To shed light
on how to design a good sampling distribution qt, we show a general lemma that holds for any qt.

Lemma 4.2 Under Assumption 1 and Assumption 3, Algorithm 2 (with any qt) ensures

RegMNL ≤ E

[
T∑

t=1

decγ(qt; ft(xt), rt)

]
+ 2γReglog(T,F)

for any γ > 0, where decγ(q; v, r) is the Decision-Estimation Coefficient (DEC) defined as

max
v⋆∈[0,1]N

max
S⋆∈S

{
R(S⋆, v⋆, r)− ES∼q [R(S, v⋆, r)]− γES∼q

[
‖µ(S, v)− µ(S, v⋆)‖22

]}
. (8)

Our DEC adopts the idea of Foster et al. [14] for general decision making problems: the term
R(S⋆, v⋆, r) − ES∼q [R(S, v⋆, r)] represents the instantaneous regret of strategy q against the
best subset S⋆ with respect to reward vector r and the worst-case value vector v⋆, and the term
ES∼q[‖µ(S, v)− µ(S, v⋆)‖22] is the expected squared distance between two distributions induced
by v and v⋆, which, in light of the second inequality of Lemma 3.3, lower bounds the instantaneous
log loss regret of the online oracle. Therefore, a small DEC makes sure that the learner’s MNL regret
is somewhat close to the oracle’s log loss regret Reglog, formally quantified by Lemma 4.2. With
the goal of ensuring a small DEC, we again propose two strategies similar to Section 3.

Uniform Exploration. We start with a simple uniform exploration approach similar to Eq. (4):

qt(S) = (1− ε)1

[
S = argmax

S⋆∈S
R(S⋆, ft(xt), rt)

]
+

ε

N

N∑
i=1

1 [S = {i}] . (9)

where ε > 0 is a parameter specifying the probability of uniformly exploring the singleton sets. We
prove the following results for this simple algorithm.

Theorem 4.3 The strategy defined in Eq. (9) guarantees decγ(qt; ft(xt), rt) = O(NK
γε + ε). Con-

sequently, under Assumption 1 and Assumption 3, Algorithm 2 with qt calculated via Eq. (9) and the
optimal choice of ε and γ ensures RegMNL = O

(
(NKReglog(T,F))

1
3T

2
3

)
.

Combining this with Lemma 4.1, we immediately obtain the following corollary.

Corollary 4.4 Under Assumption 1, Algorithm 2 with qt defined in Eq. (9) and the optimal choice
of ε and γ ensures RegMNL = O

(
(NK log K

β )
1
3T

5
6

)
for the finite class (with Hedge as Algon) and

RegMNL = O
(
(NKB)

1
3T

5
6

)
for the linear class (with Online Gradient Descent as Algon).

While these regret bounds have a large dependence on T , the advantage of this algorithm is its
computational efficiency as discussed before.
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Better Exploration. Can we improve the algorithm via a strategy with an even smaller DEC? In
particular, what happens if we take the extreme and let qt be the minimizer of decγ(q; ft(xt), rt)?
Indeed, this is exactly the approach in several prior works that adopt the DEC framework [13, 29],
where the exact minimizer for DEC is characterized and shown to achieve a small DEC value.

On the other hand, for our problem, it appears quite difficult to analyze the exact DEC minimizer.
Somewhat surprisingly, however, we show that the same construction in Eq. (5) for the stochastic
environment in fact also achieves a reasonably small DEC for the adversarial case:

Theorem 4.5 The following distribution satisfies decγ(qt, ft(xt), rt) ≤ O
(

NK4

γ

)
:

qt = argmax
q∈∆(S)

ES∼q [R(S, ft(xt), rt)]−
(K + 1)4

γ

N∑
i=1

log
1

wi(q)
. (10)

A couple of remarks are in order. First, while for some cases such as the contextual bandit problem
studied by Foster et al. [13], this kind of log-barrier regularized strategies is known to be the exact
DEC minimizer, one can verify that this is not the case for our DEC. Second, the fact that the same
strategy works for both the stochastic and the adversarial environments is similar to the case for
contextual bandits where the same inverse gap weighting strategy works for both cases [10, 25], but
to our knowledge, the connection between these two cases is unclear since their analysis is quite
different. Finally, our proof (in Appendix C) in fact relies on the same low-regret-high-dispersion
property of Lemma 3.6, which is a new way to bound DEC as far as we know. More importantly, this
to some extent demystifies the last two points: the reason that such log-barrier regularized strategies
work regardless whether they are the exact minimizer or not and regardless whether the environment
is stochastic or adversarial is all due to their inherent low-regret-high-dispersion property.

Combining Theorem 4.5 with Lemma 4.2, we obtain the following improved regret.

Theorem 4.6 Under Assumption 1 and Assumption 3, Algorithm 2 with qt calculated via Eq. (10)
and the optimal choice of γ ensures RegMNL = O

(
K2
√

NTReglog(T,F)
)

.

Corollary 4.7 Under Assumption 1, Algorithm 2 with qt defined in Eq. (10) and the optimal choice
of γ ensures RegMNL = O

(
K2
√
N log K

β T
3
4 (log |F|) 1

4

)
for the finite class (with Hedge as Algon)

and RegMNL = O
(
K2

√
NBT

3
4

)
for the linear class (with Online Gradient Descent as Algon).

We remark that if the “fast rate” discussed after Lemma 4.1 exists, we would have obtained the
optimal

√
T -regret here. Despite having worse dependence on T , however, our result for the linear

case enjoys three advantages compared to prior work [7, 20, 23]: 1) no exponential dependence on
B (as in all our other results), 2) no dependence at all on the dimension d, and 3) valid even when
contexts and rewards are adversarial. We refer the reader to Table 1 again for detailed comparisons.

4.2 Second Approach: Feel-Good Thompson Sampling

The second approach we take is to extend the idea of the Feel-Good Thompson Sampling algorithm
of Zhang [30] for contextual bandits. Due to space limit, we defer the algorithm and its analysis to
Appendix E, and only state its regret bounds for the finite class and the linear class (a corollary of a
more general regret bound in Theorem E.1).

Corollary 4.8 Under Assumption 1, Algorithm 3 wensures RegMNL = O
(
K2
√

NT log |F|
)

for
the finite class and RegMNL = O

(
K2
√

dNT log(BTK)
)

for the linear class.

In terms of the dependence on T , Algorithm 3 achieves the best (and in fact optimal) regret bounds
among all our results. For the linear case, it even has only logarithmic dependence on B, a potential
doubly-exponential improvement compared to prior works. The caveat is that there is no efficient
way to implement the algorithm even for the linear case and even when K is a constant (unlike
all our other algorithms). We leave the question of whether there exists a computationally efficient
algorithm (even only for small K) with a

√
T -regret bound that has no exponential dependence on

B as a key future direction.

9



5 Conclusion and Future Directions

In this work, we consider contextual MNL bandits with a general value function class under a re-
alizability assumption. For both the stochastic and the adversarial settings, we propose a suite of
algorithms with different computational-regret trade-off. Notably, none of our regret bounds suffers
from the exponentially large dependence on some problem dependent constant in the case with lin-
ear value functions. One interesting future direction is to improve the poly(K,N) dependence in
our regret upper bounds, which seems to require new techniques.
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A Additional Related Works

As mentioned, our work is closely related to the recent trend of designing contextual bandits algo-
rithms for a general function class. Specifically, under stochastic context, Xu and Zeevi [27], Simchi-
Levi and Xu [25] designed algorithms based on an offline squared loss regression oracle and
achieved optimal regret guarantees. Under adversarial context, there are two lines of works. The
first one reduces the contextual bandit problem to online regression [10, 11, 14, 31, 29], while the
second one is based on the ability to sample from a certain distribution over the function class using
Markov chain Monte Carlo methods [30, 28]. We follow and greatly extend the ideas of all these
approaches to design algorithms for contextual MNL bandits.

B Omitted Details in Section 3

B.1 Offline Regression Oracle

We start by proving Lemma 3.1, which shows that ERM strategy satisfies Assumption 2 for the
finite class and the linear function class.

Proof [of Lemma 3.1] We first show that our log loss function ℓlog(µ(S, f(x)), i) satisfies the so-
called strong 1-central condition (Definition 7 of Grünwald and Mehta [17]), which states that there
exists f0 ∈ F , such that for any f ∈ F ,

E(x,S,i)∼H [exp(−(ℓlog(µ(S, f(x)), i)− ℓlog(µ(S, f0(x)), i)))] ≤ 1.

Indeed, by picking f0 = f⋆, we know that

E(x,S,i)∼H [exp(−(ℓlog(µ(S, f(x), i))− ℓlog(S, f
⋆(x), i)))]

= E(x,S)Ei∼µ(S,f⋆(x))

[
µi(S, f)

µi(S, f⋆)

]

= E(x,S)

 ∑
i∈S∪{0}

µi(S, f)

 = 1,

certifying the strong 1-central condition.

Now, we first consider the case where F is finite. Since fi(x) ≥ β for all x ∈ X and i ∈ [N ], we
know that for any i ∈ [N ]0, we have (defining f0(x) = 1)

ℓlog(µ(S, f(x)), i) = log
1 +

∑
j∈S fj(x)

fi(x)
≤ log

K + 1

β
.

Therefore, according to Theorem 7.6 of [26], we know that given n i.i.d samples D =

{(xk, Sk, ik)}k∈[n], ERM predictor f̂D guarantees that with probability 1− δ:

E(x,S,i)∼D

[
ℓlog(µ(S, f̂D(x)), i)

]
≤ E(x,S,i)∼D [ℓlog(µ(S, f

⋆(x)), i)] +O

(
log K

β log |F|
δ

n

)
.

Next, we consider the linear function class. In this case, we know that x⊤
i θ − B ∈ [−2B, 0] for all

xi. Therefore, ℓlog(µ(S, f(x)), i) is bounded by 2B + 2 lnN for all x ∈ X , f ∈ F , S ∈ S and
i ∈ [N ] since

ℓlog(µ(S, f(x)), i) = log
1 +

∑
j∈S exp(x⊤

j θ −B)

exp(x⊤
i θ −B)

≤ log
1 +K

e−2B
≤ 2B + 2 logK,

and the same bound clearly holds as well for i = 0. Moreover, since∥∥∥∥∥∇θ log
1 +

∑
j∈S exp(x⊤

j θ −B)

exp(x⊤
i θ −B)

∥∥∥∥∥
2

=

∥∥∥∥∥
∑

j∈S exp(θ⊤xj −B)xj

1 +
∑

j∈S exp(θ⊤xj −B)
− xi

∥∥∥∥∥
2

≤ 2,
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we know that the ε-covering number of ℓlog◦F ≜ {ℓflog : f ∈ F} is bounded by
(
16B
ε

)d
, where with

an abuse of notation, we define Z ≜ (x, S, i) and denote ℓlog(µ(S, f(x)), i) by ℓflog(Z). Therefore,
according to Theorem 7.7 of [26], we know that given n i.i.d samples D = {(xk, Sk, ik)}k∈[n],
ERM predictor f̂D guarantees that with probability 1− δ:

E(x,S,i)∼D

[
ℓlog(µ(S, f̂D(x)), i)

]
≤ E(x,S,i)∼D [ℓlog(µ(S, f

⋆(x)), i)] +O
(
dB logK log(Bn) log 1

δ

n

)
.

□

B.2 Analysis of Algorithm 1

We first prove the following lemma, which shows that the expected reward function R(S, v, r) is
1-Lipschitz in the value vector v.

Lemma B.1 Given r ∈ [0, 1]N and S ⊆ [N ], function R(S, v, r) =
∑

i∈S rivi
1+

∑
i∈S vi

satisfies that for any

v′, v ∈ [0,∞)N , |R(S, v, r)−R(S, v′, r)| ≤
∑

i∈S |vi − v′i|.

Proof Taking derivative with respect to vj for j ∈ S, we know that∣∣∇vjR(S, v, r)
∣∣ = ∣∣∣∣rj(1 +

∑
i∈S vi)−

∑
j∈S rjvj

(1 +
∑

i∈S vi)2

∣∣∣∣ ≤ max

{
rj

1 +
∑

i∈S vi
,

∑
i∈S vi

(1 +
∑

i∈S vi)2

}
≤ 1,

where both inequalities are because rj ∈ [0, 1]. This finishes the proof. □
Next, we restate and prove Lemma 3.2.

Lemma B.2 For any deterministic policy π : X × [0, 1]N → S and any epoch m ≥ 2, we have

|Rm(π)−R(π)| ≤
√
V (qm−1, π) ·

√√√√E(x,r)∼D,S∼qm−1(x,r)

[∑
i∈S

(fm,i(x)− f⋆
i (x))

2

]
.

Proof We proceed as:

|Rm(π)−R(π)|
=
∣∣E(x,r)∼D [R(π(x, r), fm(x), r)−R(π(x, r), f⋆(x), r)]

∣∣
≤ E(x,r)∼D

[
N∑
i=1

1{i ∈ π(x, r)}|fm,i(x)− f⋆
i (x)|

]
(11)

≤ E(x,r)∼D


√√√√ N∑

i=1

1{i ∈ π(x, r)}
wi(qm−1|x, r)

N∑
i=1

wi(qm−1|x, r) (fm,i(x)− f⋆
i (x))

2


(CauchySchwarz inequality)

≤

√√√√E(x,r)∼D

[
N∑
i=1

1{i ∈ π(x, r)}
wi(qm−1|x, r)

]
·

√√√√E(x,r)∼D

[
N∑
i=1

wi(qm−1|x, r) (fm,i(x)− f⋆
i (x))

2

]
(CauchySchwarz inequality)

=
√

V (qm−1, π) ·

√√√√E(x,r)∼D

[
N∑
i=1

wi(qm−1|x, r) (fm,i(x)− f⋆
i (x))

2

]

=
√
V (qm−1, π) ·

√√√√E(x,r)∼D,S∼qm−1(x,r)

[∑
i∈S

(fm,i(x)− f⋆
i (x))

2

]
, (12)

where the first inequality uses the convexity of the absolute value function and Lemma B.1. □
Next, to prove Lemma 3.3, we first prove the following key technical lemma (where 1 denotes the
all-one vector).

13



Lemma B.3 Let h(a) = a
1+1⊤a

for a ∈ [0, 1]d. Then, for any a, b ∈ [0, 1]d, we have

1

2(d+ 1)4
‖a− b‖22 ≤ ‖h(a)− h(b)‖22.

Proof The Jacobian matrix of h is

H(a) =
1

1 + 1⊤a
I− 1a⊤

(1 + 1⊤a)2
.

Therefore, there exists z ∈ conv({a, b}) such that ‖h(a) − h(b)‖2 = ‖H(z)(a − b)‖2. It thus
remains to figure out the minimum singular value of H(z), which is equal to the reciprocal of the
spectral norm of H(z)−1. By Sherman-Morrison formula, we know that

H(z)−1 = (1 + 1⊤z)(I+ 1z⊤).

Therefore, we have

H(z)−1H(z)−⊤ = (1 + 1⊤z)2(I+ 1z⊤)(I+ 1z⊤)⊤

= (1 + 1⊤z)2(I+ 1z⊤ + z1⊤ + z⊤z11⊤).

Note that for any u that is perpendicular to the subspace spanned by {z,1}, we have
H(z)−1H(z)−⊤u = (1+ 1⊤z)2u. Therefore, there are d− 2 identical eigenvalues 1 for the matrix

1
(1+1⊤z)2

H(z)−1H(z)−⊤. Let the remaining two eigenvalues of 1
(1+1⊤z)2

H(z)−1H(z)−⊤ be λ1

and λ2. Note that

λ1λ2 = det
(
(I+ 1z⊤)(I+ z1⊤)

)
= (1 + 1⊤z)2,

λ1 + λ2 = Trace(I+ 1z⊤ + z1⊤ + z⊤z11⊤)− (d− 2)

= 2 + 21⊤z + z⊤z1⊤1

= 2 + 21⊤z + d · z⊤z
≤ 2 + 2d+ d2.

Therefore, we know that max{λ1, λ2} ≤ λ1 + λ2 ≤ 2 + 2d+ d2, meaning that

‖H(z)−1H(z)−⊤‖2 ≤ 2(1 + 1⊤z)2(1 + d+ d2) ≤ 2(1 + d)2(d2 + d+ 1) ≤ 2(d+ 1)4.

This further means that the minimum singular value of H(z) is at least 1√
2(d+1)2

. Therefore, we can
conclude that

‖h(a)− h(b)‖2 ≥ 1√
2(d+ 1)2

‖a− b‖2,

leading to

‖h(a)− h(b)‖22 ≥ 1

2(d+ 1)4
‖a− b‖22.

□ Next, we restate and prove Lemma 3.3.

Lemma B.4 For any S ∈ S and v, v⋆ ∈ [0, 1]N , we have

1
2(K+1)4

∑
i∈S

(vi − v⋆i )
2 ≤ ‖µ(S, v)− µ(S, v⋆)‖22 ≤ 2Ei∼µ(S,v⋆) [ℓlog(µ(S, v), i)− ℓlog(µ(S, v

⋆), i)] .

Proof The first inequality follows directly from Lemma B.3 using the fact that |S| ≤ K for all
S ∈ S . Consider the second inequality. For any µ, µ′ ∈ ∆([K]), by definition of ℓlog(µ, i), we
know that

Ei∼µ [ℓlog(µ
′, i)− ℓlog(µ, i)] = Ei∼µ

[
log

µi

µ′
i

]
= KL(µ, µ′) ≥ 1

2
‖µ− µ′‖21 ≥ 1

2
‖µ− µ′‖22,

where the first inequality is due to Pinsker’s inequality. □
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B.3 Omitted Details in Section 3.1

In this section, we show omitted details in Section 3.1. For ease of presentation, we assume that the
distribution over context-reward pair D has finite support. All our results can be directly generalized
to the case with infinite support following a similar argument in Appendix A.7 of [25]. Define
Ψ : X × [0, 1]N 7→ S as the set of all deterministic policy. Following Lemma 3 in [25], we know that
for any context x ∈ X and reward vector r ∈ [0, 1]N , and any stochastic policy q : X × [0, 1]N 7→
∆(S), there exists an equivalent randomized policy Q ∈ ∆(Ψ) such that for all S ∈ S , x ∈ X , and
r ∈ [0, 1]N ,

q(S|x, r) =
∑
π∈Ψ

1{π(x, r) = S}Q(π).

Let Qm be the randomized policy induced by qm. Define Reg(π) and Regm(π) as:

Reg(π) = R(πf⋆)−R(π), Regm(π) = Rm(πfm)−Rm(π), (13)

where R(π) and Rm(π) are defined in Eq. (3) and πf is the policy that maps each (x, r) to the
one-hot distribution supported on argmaxS∈S R(S, f(x), r).

Following the analysis in [25], we show that to analyze our algorithms expected regret, we only need
to analyze the induced randomized policies implicit regret.

Lemma B.5 Fix any epoch m. For any round t in this epoch, we have

E(xt,rt)∼D,St∼qm(xt,rt) [R(πf⋆(xt, rt), f
⋆(x), rt)−R(St, f

⋆(x), rt)] =
∑
π∈Ψ

Qm(π)Reg(π).

Proof Direct calculation shows that

E(xt,rt)∼D,St∼qm(xt,rt) [R(πf⋆(xt, rt), f
⋆(x), rt)−R(St, f

⋆(x), rt)]

= E(xt,rt)∼D

[
R(πf⋆(xt, rt), f

⋆(x), rt)−
∑
S∈S

qm(S|xt, rt)R(S, f⋆(x), rt)

]

= E(xt,rt)∼D

[
R(πf⋆(xt, rt), f

⋆(x), rt)−
∑
S∈S

∑
π∈Ψ

1{π(xt, rt) = S}Qm(π)R(S, f⋆(x), rt)

]

= E(x,r)∼D

[∑
S∈S

∑
π∈Ψ

1{π(x, r) = S}Qm(π) (R(πf∗(x, r), f⋆(x), r)−R(S, f⋆(x), r))

]

= E(x,r)∼D

[∑
π∈Ψ

Qm(π) (R(πf∗(x, r), f⋆(x), r)−R(π(x, r), f⋆(x), r))

]
=
∑
π∈Ψ

Qm(π)E(x,r)∼D [R(πf∗(x, r), f⋆(x), r)−R(π(x, r), f⋆(x), r)]

=
∑
π∈Ψ

Qm(π)Reg(π),

which finishes the proof. □
To prove our main results for Algorithm 1, we define the following good event:

Event 1 For all epoch m ≥ 2, fm satisfies

E(x,r)∼D,S∼qm−1(x,r),i∼µ(S,f⋆(x)) [ℓlog(µ(S, fm(x)), i)− ℓlog(µ(S, f
⋆(x)), i)]

≤ Errlog(τm − τm−1, 1/T
2,F).

According to Assumption 2, Event 1 happens with probability at least 1− 1
T since there are at most

T epochs.

Although now we have all ingredients to analyze our ε-greedy-type algorithm defined Eq. (4), to
get the exact result in Theorem 3.4, we will in fact need a refined version of Lemma 3.2, which
eventually provides a tighter regret guarantee.
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Lemma B.6 Suppose that Event 1 holds. Algorithm 1 with qt defined in Eq. (4) satisfies that for any
deterministic policy π ∈ Ψ and any epoch m ≥ 2, we have

|Rm(π)−R(π)| ≤ 8

√
NK

εm−1
·
√
Errlog(2m−2, 1/T 2,F).

Proof Following Eq. (11) in the proof of Lemma 3.2, we know that

|Rm(π)−R(π)|

≤ E(x,r)∼D

[
N∑
i=1

1{i ∈ π(x, r)}|fm,i(x)− f⋆
i (x)|

]

≤ E(x,r)∼D


√√√√ N∑

i=1

N1{i ∈ π(x, r)}
εm−1

N∑
i=1

εm−1

N
(fm,i(x)− f⋆

i (x))
2


(CauchySchwarz inequality)

≤

√√√√E(x,r)∼D

[
N∑
i=1

N1{i ∈ π(x, r)}
εm−1

]
·

√√√√E(x,r)∼D

[
N∑
i=1

εm−1

N
(fm,i(x)− f⋆

i (x))
2

]
(CauchySchwarz inequality)

≤

√
NK

εm−1
·

√√√√E(x,r)∼D

[
N∑
i=1

εm−1

N
(fm,i(x)− f⋆

i (x))
2

]
. (14)

Since fm is the output of Algoff with i.i.d tuples {(xt, St, it)}τmt=τm−1+1, according to Lemma 3.3
and Event 1, we know that

64Errlog(τm − τm−1, 1/T
2,F)

≥ 32E(x,r)∼D,S∼qm−1(x,r)

[
‖µ(S, fm(x))− µ(S, f⋆(x))‖22

]
(Lemma 3.3)

≥ 32εm−1

N

N∑
i=1

E(x,r)∼D
[
‖µ({i}, fm(x))− µ({i}, f⋆(x))‖22

]
(according to Eq. (4))

≥ εm−1

N

N∑
i=1

E(x,r)∼D

[
N∑
i=1

(fm,i(x)− f⋆
i (x))

2

]
. (using Lemma B.3 with d = 1)

Plugging the above inequality back to Eq. (14) and noticing that τm = 2m−1 − 1, we know that

|Rm(π)−R(π)| ≤ 8

√
NK

εm−1
·Errlog(2m−2, 1/T 2,F).

□
Now we are ready to prove Theorem 3.4

Theorem 3.4 Under Assumption 1 and Assumption 2, Algorithm 1 with qm defined in Eq. (4) and
the optimal choice of εm ensures RegMNL =

∑⌈log2 T⌉
m=1 O

(
2m(NKErrlog(2

m−1, 1/T 2,F))
1
3

)
.

Proof Consider the regret within epoch m ≥ 2. Under Event 1, we know that for any π ∈ Ψ,

Reg(π) = R(πf⋆)−R(π)

= (R(πf⋆)−Rm(πfm))− (Rm(π)−Rm(πfm)) + (Rm(π)−R(π))

≤ (R(πf⋆)−Rm(πf⋆)) + (Rm(πfm)−Rm(π)) + (Rm(π)−R(π))

≤ (Rm(πfm)−Rm(π)) + 16

√
NK

εm−1
·Errlog(2m−2, 1/T 2,F), (15)
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where the first inequality is because Rm(πfm) ≥ Rm(πf⋆) by definition and the second in-
equality is due to Lemma B.6. Taking summation over all rounds within epoch m and picking
εm = (NK)

1
3Err

1
3

log(2
m−2, 1/T 2,F), we know that

E

[
τm+1∑

t=τm+1

(
max
S∈S

R(S, xt, f
⋆(xt))−R(St, xt, f

⋆(xt))

)]

= (τm+1 − τm)E

[∑
π∈Ψ

Qm(π)Reg(π)

]
(Lemma B.5)

(i)

≤ 2m−1 · E [((1− εm)Reg(πfm) + εm)]

(ii)

≤ 2m−1

T
+ 2m−1E

[
((1− εm)Reg(πfm) + εm)

∣∣∣∣∣ Event 1 holds

]
(iii)

≤ 2m−1

T
+ 2m−1

(
εm + 16

√
NK

εm−1
·Errlog(2m−2, 1/T 2,F)

)
(iv)
=

2m−1

T
+O

(
2m−1

(
NKErrlog(2

m−2, 1/T 2,F)
) 1

3

)
,

where (i) is due to τm = 2m−1 − 1 and the construction of qm(x, r) defined in Eq. (4); (ii) is
because Event 1 holds with probability at least 1 − 1

T ; (iii) uses Eq. (15); and (iv) is due to the
choice of εm. Taking summation over all m = 2, 3, . . . dlog2 T e+ 1 epochs, we can obtain that

RegMNL =

⌈log2 T⌉∑
m=1

O
(
2m
(
NKErrlog(2

m−1, 1/T 2,F)
) 1

3

)
.

□

B.4 Omitted Details in Section 3.2

First, we restate and prove Lemma 3.6, which shows that qm defined in Eq. (5) enjoys a low-regret-
high-dispersion guarantee.

Lemma B.7 For any x ∈ X and r ∈ [0, 1]N , the distribution qm(x, r) defined in Eq. (5) satisfies:

max
S⋆∈S

R(S⋆, fm(x), r)− ES∼qm(x,r) [R(S, fm(x), r)] ≤ N(K + 1)4

γm
, (6)

∀S ∈ S,
∑
i∈S

1

wi(qm(x, r))
≤ N +

γm
(K + 1)4

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)
. (7)

Proof It is direct to see that solving Eq. (5) is equivalent to solving the following optimization
problem:

argmin
ρ∈∆(S)

ES∼ρ

[
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

]
+

(K + 1)4

γm

N∑
i=1

log
1

wi(ρ)
. (16)

Moreover, relaxing the constraint ρ from ∆(S) to
{
ρ ∈ [0, 1]S :

∑
S∈S ρ(S) ≤ 1

}
in Eq. (16) does

not change the solution, since for any ρ ∈ [0, 1]S such that
∑

S∈S ρ(S) < 1, putting the remaining
1 −

∑
S∈S ρ(S) probability mass on argmaxS⋆∈S R(S⋆, fm(x), r) can only make the objective

smaller.

Now, consider the Lagrangian form of Eq. (16) over this relaxed constraint and set the derivative
with respect to ρ(S) to zero. We obtain

max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)− (K + 1)4

γm

∑
i:i∈S

1

wi(ρ)
− λ(S) + λ = 0, (17)
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where λ ≥ 0 and λ(S) ≥ 0, S ∈ S are the Lagrangian multipliers. Let ρ⋆ ∈ ∆(S) be the optimal
solution of Eq. (16). Replacing ρ by ρ⋆ in Eq. (17), multiplying Eq. (17) by ρ⋆(S) for each S ∈ S ,
and taking the summation over S ∈ S , we know that∑

S∈S
ρ⋆(S)

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)
− (K + 1)4

γm

∑
S∈S

ρ⋆(S)
∑
i:i∈S

1

wi(ρ⋆)
−
∑
S∈S

ρ⋆(S)λ(S) + λ = 0.

Rearranging the terms, we know that∑
S∈S

ρ⋆(S)

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)
=

(K + 1)4

γm

∑
S∈S

ρ⋆(S)
∑
i: i∈S

1

wi(ρ⋆)
+
∑
S∈S

ρ⋆(S)λ(S)− λ

=
(K + 1)4

γm

N∑
i=1

1

wi(ρ⋆)

∑
S∈S: i∈S

ρ⋆(S)− λ (complementary slackness)

=
N(K + 1)4

γm
− λ ≤ N(K + 1)4

γm
,

proving Eq. (6). The above also implies that λ ≤ N(K+1)4

γm
since∑

S∈S
ρ⋆(S)

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)
≥ 0.

Therefore, Eq. (17) implies that for any S ∈ S ,∑
i: i∈S

1

wi(ρ⋆)
=

γm
(K + 1)4

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)− λS + λ

)
≤ γm

(K + 1)4

(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)
+N,

where the last inequality uses the fact that λ ≤ N(K+1)4

γm
and λS ≥ 0. This proves Eq. (7). □

Now, to prove Theorem 3.7, we first prove the following lemma, which shows that the regret with
respect to the true value function f⋆ and the one respect to the value predictor fm is within a factor
of 2 plus an additional term of order N(K+1)4

γm
.

Lemma B.8 Suppose that Event 1 holds. For all epochs m ≥ 2, all rounds t in this epoch, and all

policies π ∈ Ψ, with γm = max
{
1,
√

N(K+1)4

Errlog(2m−2,1/T 2,F)

}
and λ = 33, we have

Reg(π) ≤ 2 · Regm(π) +
λN(K + 1)4

γm
,

Regm(π) ≤ 2 · Reg(π) + λN(K + 1)4

γm
.

Proof We prove this by induction. The base case holds trivially. Suppose that this holds for all
epochs with index less than m. Consider epoch m. We first show that Reg(π) ≤ 2Regm(π) +
λN(K+1)4

γm
for all deterministic policy π ∈ Ψ. This holds trivially if

√
N(K+1)4

Errlog(2m−2,1/T 2,F) ≤ 1

since Reg(π) ≤ 1. Consider the case in which γm =
√

N(K+1)4

Errlog(2m−2,1/T 2,F) . Specifically, we have

Reg(π)− Regm(π)

= (R(πf⋆)−R(π))− (Rm(πfm)−Rm(π))
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(i)

≤ (R(πf⋆)−R(π))− (Rm(πf⋆)−Rm(π))

≤ |Rm(πf⋆)−R(πf⋆)|+ |Rm(π)−R(π)|

(ii)

≤

√√√√V (qm−1, πf⋆) · E(x,r)∼D, S∼qm−1(x,r)

[∑
i∈S

(fm,i(x)− f⋆
i (x))

2

]

+

√√√√V (qm−1, π) · E(x,r)∼D, S∼qm−1(x,r)

[∑
i∈S

(fm,i(x)− f⋆
i (x))

2

]
, (18)

where (i) is because Rm(πfm) ≥ Rm(πf⋆) by definition and (ii) follows Lemma 3.2. Next, using
Lemma 3.3 and Lemma B.3, since Event 1 holds, we know that

4(K + 1)4Errlog(2
m−2, 1/T 2,F)

≥ 2(K + 1)4E(x,r)∼D, S∼qm−1(x,r)

[
‖µ(S, fm(x))− µ(S, f⋆(x))‖22

]
(Lemma 3.3)

≥ E(x,r)∼D, S∼qm−1(x,r)

[∑
i∈S

(fm,i(x)− f⋆
i (x))

2

]
. (Lemma B.3)

Plugging the above back to Eq. (18), we obtain that

Reg(π)− Regm(π) (19)

≤ 2(K + 1)2
√
V (qm−1, πf⋆)Errlog(2m−2, 1/T 2,F)

+ 2(K + 1)2
√

V (qm−1, π)Errlog(2m−2, 1/T 2,F)

≤ (K + 1)4V (qm−1, πf⋆)

8γm
+

(K + 1)4V (qm−1, π)

8γm
+ 16γmErrlog(2

m−2, 1/T 2,F)

(AM-GM inequality)

=
(K + 1)4V (qm−1, πf⋆)

8γm
+

(K + 1)4V (qm−1, π)

8γm
+

16N(K + 1)4

γm
, (20)

where the last equality is because γm =
√

N(K+1)4

Errlog(2m−2,1/T 2,F) . According to Lemma 3.6, we know
that for all π ∈ Ψ,

V (qm−1, π) = E(x,r)∼D

 ∑
i∈π(x,r)

1

wi(qm−1|x, r)


≤ E(x,r)∼D

[
N +

γm−1

(K + 1)4

(
max
S⋆∈S

R(S⋆, r, fm−1(x))−R(S, r, fm−1(x))

)]
= N +

γm−1

(K + 1)4
Regm−1(π). (21)

Using Eq. (21), we bound the first and the second term in Eq. (20) as follows

(K + 1)4V (qm−1, π)

8γm
≤ N(K + 1)4

8γm
+

γm−1Regm−1(π)

8γm

≤ N(K + 1)4

8γm
+

γm−1

(
2Reg(π) + λN(K+1)4

γm−1

)
8γm

≤ 1

4
Reg(π) +

λ+ 1

8γm
·N(K + 1)4, (since γm−1 ≤ γm)

(K + 1)4V (qm−1, πf⋆)

8γm
≤ N(K + 1)4

8γm
+

γm−1Regm−1(πf⋆)

8γm

≤ N(K + 1)4

8γm
+

γm−1

(
2Reg(πf⋆) + λN(K+1)4

γm−1

)
8γm
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≤ λ+ 1

8γm
·N(K + 1)4. (since Reg(πf⋆) = 0 and γm−1 ≤ γm)

Plugging back to Eq. (20), we know that

Reg(π)− Regm(π) ≤ 1

4
Reg(π) +

16N(K + 1)4

γm
+

λ+ 1

4γm
N(K + 1)4.

Rearranging the terms, we know that

Reg(π) ≤ 4

3
Regm(π) +

12N(K + 1)4

γm
+

λ+ 1

3γm
N(K + 1)4

≤ 2Regm(π) +
λN(K + 1)4

γm
, (22)

where the last inequality uses λ = 33.

For the other direction, similar to Eq. (20), we know that

Regm(π)− Reg(π)

= (Rm(πfm)−Rm(π))− (R(πf⋆)−R(π))

≤ (R(πfm)−R(π))− (R(πfm)−R(π))

≤ |Rm(πfm)−R(πfm)|+ |Rm(π)−R(π)|

≤ 2(K + 1)2
√

V (qm−1, πfm)Errlog(2m−2, 1/T 2,F)

+ 2(K + 1)2
√
V (qm−1, π)Errlog(2m−2, 1/T 2,F)

≤ (K + 1)4V (qm−1, πfm)

8γm
+

(K + 1)4V (qm−1, π)

8γm
+ 16γmErrlog(2

m−2, 1/T 2,F)

(AM-GM inequality)

(i)
=

(K + 1)4V (qm−1, πfm)

8γm
+

(K + 1)4V (qm−1, π)

8γm
+

16N(K + 1)4

γm
, (23)

where (i) is again because γm =
√

N(K+1)4

Errlog(2m−2,1/T 2,F) . Applying Eq. (21) to the first term in
Eq. (23), we know that

(K + 1)4V (qm−1, πfm)

8γm

≤ N(K + 1)4

8γm
+

γm−1Regm−1(πfm)

8γm

≤ N(K + 1)4

8γm
+

γm−1

(
2Reg(πfm) + λN(K+1)4

γm−1

)
8γm

(i)

≤ λ+ 1

8γm
·N(K + 1)4 +

1

4

(
2Regm(πfm) +

λN(K + 1)4

γm

)
(ii)
=

1 + 3λ

8γm
N(K + 1)4,

where (i) is because γm−1 ≤ γm and Eq. (22), and (ii) is due to Regm(πfm) = 0. Plugging the
above back to Eq. (23), we obtain that

Regm(π) ≤ Reg(π) +
2 + 4λ

8γm
N(K + 1)4 +

1

4
Reg(π) +

16N(K + 1)4

γm

≤ 2Reg(π) +
λN(K + 1)4

γm
, (since λ = 33)

which finishes the proof. □ Now we are ready to prove Theorem 3.7.
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Algorithm 2 Contextual MNL Algorithms via an Online Regression Oracle
Input: an online regression oracle Algon satisfying Assumption 3.
for t = 1, 2, . . . , T do

Obtain value predictor ft from oracle Algon.
Receive context xt ∈ X and reward vector rt ∈ [0, 1]N .
Calculate qt ∈ ∆(S) based on f(xt) and rt, via either Eq. (9) or Eq. (10).
Sample St ∼ qt and receive purchase decision it ∈ St ∪ {0} drawn according Eq. (1).
Feed the tuple (xt, St, it) to the oracle Algon.

Theorem 3.7 Under Assumption 1 and Assumption 2, Algorithm 1 with qm defined in Eq. (5) and
the optimal choice of γm ensures RegMNL = O

(∑⌈log2 T⌉
m=1 2mK2

√
NErrlog(2m−1, 1/T 2,F)

)
.

Proof Choose γm = max
{
1,
√

N(K+1)4

Errlog(2m−2,1/T 2,F)

}
for all m ≥ 2. Consider the regret within

epoch m ≥ 2. We first show that
∑

π∈Ψ Qm(π)Regm(π) ≤ N(K+1)4

γm
. Concretely, according

to Lemma 3.6 and Lemma B.5, we know that∑
π∈Ψ

Qm(π)Regm(π)

= E(x,r)∼D

[∑
S∈S

qm(S|x, r)
(
max
S⋆∈S

R(S⋆, fm(x), r)−R(S, fm(x), r)

)]
≤ N(K + 1)4

γm
. (24)

Now consider the regret within epoch m. Since Event 1 holds with probability at least 1 − 1
T , we

know that

E

[
τm+1∑

t=τm+1

(
max
S∈S

R(S, xt, f
⋆(xt))−R(St, xt, f

⋆(xt))

)]

= (τm+1 − τm)E

[∑
π∈Ψ

Qm(π)Reg(π)

]

≤ τm+1 − τm
T

+ (τm+1 − τm)E

[∑
π∈Ψ

Qm(π)Reg(π)

∣∣∣∣∣ Event 1 holds

]
(since Event 1 holds with probability at least 1− 1

T )

(i)

≤ τm+1 − τm
T

+ (τm+1 − τm)E

[∑
π∈Ψ

Qm(π)

(
2Regm(π) +

33N(K + 1)4

γm

) ∣∣∣∣∣ Event 1 holds

]

≤ τm+1 − τm
T

+ (τm+1 − τm) · 35N(K + 1)4

γm
(using Eq. (24))

= O
(
τm+1 − τm

T
+ 2m−1K2

√
NErrlog(2m−2, 1/T 2,F)

)
,

where (i) uses Lemma B.8. Taking summation over m = 2, 3, . . . , dlog2 T + 1e, we conclude that

RegMNL = O

⌈log2 T⌉∑
m=1

2mK2
√
NErrlog(2m−1, 1/T 2,F)

 .

□

C Omitted Details in Section 4.1

In this section, we show omitted details in Section 4.1.
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C.1 Online Regression Oracle

We first show that there exists efficient online regression oracle for the finite class and the linear
class.

Lemma C.1 For the finite class and the linear class discussed in Lemma 3.1, the following concrete
oracles satisfy Assumption 3:

• (Finite class) Hedge [16] with Reglog(T,F) = O(
√

T log |F| log K
β );

• (Linear class) Online Gradient Descent [32] with Reglog(T,F) = O(B
√
T ).

Proof We first consider the finite function class. Since for any S ∈ S , i ∈ S ∪ {0}, and x ∈ X , we
have fi(x) ≥ β, we know that ℓlog(µ(S, f(x)), i) ≤ log K+1

β . Therefore, Hedge [16] guarantees

that Reglog(T,F) = O
(
log K

β

√
T log |F|

)
.

For the linear class, we first prove that given S ∈ S , i ∈ S ∪ {0} and x ∈ Rd×N , for any fθ ∈ F ,
ℓlog(µ(S, fθ(x)), i) is convex in θ. Specifically, for u ∈ Rd, h(u) = log(

∑d
i=1 e

ui) is convex in u
since for any α ∈ Rd,

α⊤∇2
uh(u)α = α⊤

(
1

1⊤u
diag(u)− 1

(1⊤u)2
uu⊤

)
α

=
(
∑d

k=1 ukα
2
k)(
∑d

k=1 uk)− (
∑d

k=1 ukαk)
2

(1⊤u)2
≥ 0,

where the last inequality is due to Cauchy-Schwarz inequality. Define x0 = 0 ∈
Rd to be the d-dimensional all-zero vector. Then, we know that ℓlog(µ(S, fθ(x), i)) =

log
(
eθ

⊤x0 +
∑

j∈S eθ
⊤xj−B

)
− (θ⊤xi − B) · 1{i 6= 0} is convex in θ. Moreover, direct cal-

culation shows that

‖∇θℓlog(µ(S, fθ(x)), i)‖2 =

∥∥∥∥∥
∑

j∈S eθ
⊤xj−B · xj

1 +
∑

j∈S eθ
⊤xj−B

− xi · 1{i 6= 0}

∥∥∥∥∥
2

≤ 2.

Therefore, Online Gradient Descent [32] guarantees that Reglog(T,F) = O(B
√
T ), since ‖θ‖2 ≤

B. □
For completeness, we restate and prove Lemma 4.2, which is extended from the analysis in [14, 15].

Lemma C.2 Under Assumption 1 and Assumption 3, Algorithm 2 (with any qt) ensures

RegMNL ≤ E

[
T∑

t=1

decγ(qt; ft(xt), rt)

]
+ 2γReglog(T,F)

for any γ > 0, where decγ(q; v, r) is the Decision-Estimation Coefficient (DEC) defined as

max
v⋆∈[0,1]N

max
S⋆∈S

{
R(S⋆, v⋆, r)− ES∼q [R(S, v⋆, r)]− γES∼q

[
‖µ(S, v)− µ(S, v⋆)‖22

]}
. (8)

Proof Following the regret decomposition in [14, 15], we decompose RegMNL as follows:

RegMNL

= E

[
T∑

t=1

max
S⋆∈S

R(S, f⋆(xt), rt)−
T∑

t=1

qt(S)R(S, f⋆(xt), rt)

]

= E

[
T∑

t=1

max
S⋆∈S

R(S⋆, f⋆(xt), rt)−
T∑

t=1

qt(S)R(S, f⋆(xt), rt)

−γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, f⋆(xt))‖22

]

22



+ γE

[∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, f⋆(xt))‖22

]

≤ E

[
T∑

t=1

max
S⋆∈S,v⋆∈[0,1]N

{
R(S⋆, v⋆, rt)−

T∑
t=1

qt(S)R(S, v⋆, rt)−

γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, v⋆)‖22

}]

+ γ · E

[
T∑

t=1

‖µ(St, ft(xt))− µ(St, f
⋆(xt))‖22

]

= E

[
T∑

t=1

decγ(qt; ft(xt), rt)

]
+ γ · E

[
T∑

t=1

‖µ(St, ft(xt))− µ(St, f
⋆(xt))‖22

]
, (25)

where the last equality is by the definition of decγ(qt; ft(xt), rt). According to Lemma 3.3, we
know that

E

[
T∑

t=1

‖µ(St, ft(xt))− µ(St, f
⋆(xt))‖22

]

≤ 2E

[
T∑

t=1

ℓlog(µ(St, ft(xt)), it)−
T∑

t=1

ℓlog(µ(St, f
⋆(xt)), it)

]
≤ 2Reglog(T,F). (26)

Combining Eq. (25) and Eq. (26) finishes the proof. □

C.2 Proof of Theorem 4.3

Next, we prove Theorem 4.3, which shows that similar to the stochastic environment, a simple but
efficient ε-greedy strategy achieves O

(
T 2/3(NKReglog(T,F))1/3

)
expected regret.

Theorem 4.3 The strategy defined in Eq. (9) guarantees decγ(qt; ft(xt), rt) = O(NK
γε + ε). Con-

sequently, under Assumption 1 and Assumption 3, Algorithm 2 with qt calculated via Eq. (9) and the
optimal choice of ε and γ ensures RegMNL = O

(
(NKReglog(T,F))

1
3T

2
3

)
.

Proof We first prove that qt defined in Eq. (9) guarantees decγ(qt; ft(xt), rt) ≤ O
(

NK
γε + ε

)
.

Specifically, for any S⋆ ∈ S and v⋆ ∈ [0, 1]N , we know that

R(S⋆, v⋆, rt)−
∑
S∈S

qt(S)R(S, v⋆, rt)− γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, f⋆(xt))‖22

(i)

≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
∑
S∈S

qt(S)
∑
i∈S

|µi(S, v
⋆
i )− µi(S, ft(xt))|

+R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S)R(S, ft(xt), rt)− γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, v⋆)‖22

(ii)

≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
2K

γ

+R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S)R(S, ft(xt), rt)−
γ

2

∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, v⋆)‖22

(iii)

≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
2K

γ
+ ε+R(S⋆, ft(xt), rt)−max

S∈S
R(S, ft(xt), rt)

− γε

2N

N∑
i=1

‖µ({i}, ft(xt))− µ({i}, v⋆)‖22

23



(iv)

≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
2K

γ
+ ε+R(S⋆, ft(xt), rt)−max

S∈S
R(S, ft(xt), rt)

− γε

64N

N∑
i=1

(ft,i(xt)− v⋆i )
2

(v)

≤ 16NK

γε
+

2K

γ
+ ε

≤ O
(
NK

γε
+ ε

)
,

where (i) uses Lemma B.1, (ii) is due to AM-GM inequality and |S| ≤ K, (iii) is according to the
construction of qt and R(S, v, r) ∈ [0, 1], (iv) uses Lemma B.3 with d = 1, and (v) is uses AM-GM
inequality and the fact that |S⋆| ≤ K. Taking maximum over all S⋆ ∈ S and v⋆ ∈ [0, 1]N proves
that decγ(qt; ft(xt), rt) ≤ O

(
NK
γε + ε

)
.

Combining the above result with Lemma 4.2, we know that

RegMNL = O
(
NKT

γε
+ εT + γReglog(T,F)

)
.

Picking γ and ε optimally finishes the proof. □

C.3 Proof of Theorem 4.5 and Theorem 4.6

In this section, we restate and prove Theorem 4.5, which proves that qt calculated via Eq. (10)
guarantees that decγ(qt; ft(xt), rt) ≤ O

(
NK4

γ

)
.

Theorem 4.5 The following distribution satisfies decγ(qt, ft(xt), rt) ≤ O
(

NK4

γ

)
:

qt = argmax
q∈∆(S)

ES∼q [R(S, ft(xt), rt)]−
(K + 1)4

γ

N∑
i=1

log
1

wi(q)
. (10)

Proof Since the construction of qt is the same as Eq. (5) with fm replaced by ft and γm replaced
by γ, according to Lemma 3.6, we know that qt satisfies that

max
S⋆∈S

R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S) ·R(S, ft(xt), rt) ≤
N(K + 1)4

γ
, (27)

∀S ∈ S,
∑
i∈S

1

wi(q)
≤ N +

γ

(K + 1)4

(
max
S⋆∈S

R(S⋆, ft(xt), rt)−R(S, ft(xt), rt)

)
. (28)

Using Eq. (27) and Eq. (28), we know that for any S⋆ ∈ S and v⋆ ∈ [0, 1]N ,

R(S⋆, v⋆, rt)−
∑
S∈S

qt(S)R(S, v⋆, rt)− γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, f⋆(xt))‖22

≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
∑
S∈S

qt(S)
∑
i∈S

|v⋆i − ft,i(xt)| (according to Lemma B.1)

+R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S)R(S, ft(xt), rt)− γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, v⋆)‖22

≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
N∑
i=1

wi(qt) · |v⋆i − ft,i(xt)| (by definition of wi(q))

+R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S)R(S, ft(xt), rt)− γ
∑
S∈S

qt(S)‖µ(S, ft(xt))− µ(S, v⋆)‖22.
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≤
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
N∑
i=1

wi(qt) · |v⋆i − ft,i(xt)|

+R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S)R(S, ft(xt), rt)−
γ

2(K + 1)4

∑
S∈S

qt(S)
∑
i∈S

(v⋆i − ft,i(xt))
2

(according to Lemma 3.3)

=
∑
i∈S⋆

|v⋆i − ft,i(xt)|+
N∑
i=1

wi(qt) · |v⋆i − ft,i(xt)|

+R(S⋆, ft(xt), rt)−
∑
S∈S

qt(S)R(S, ft(xt), rt)−
γ

2(K + 1)4

N∑
i=1

wi(qt)(v
⋆
i − ft,i(xt))

2

≤ N(K + 1)4

γ
+
∑
i∈S⋆

(K + 1)4

γwi(qt)
+R(S⋆, ft(xt), rt)−

∑
S∈S

qt(S)R(S, ft(xt), rt)

(AM-GM inequality)

=
N(K + 1)4

γ
+
∑
i∈S⋆

(K + 1)4

γwi(qt)
−
(
max
S0∈S

R(S0, ft(xt), rt)−R(S⋆, ft(xt), rt)

)
+ max

S0∈S
R(S0, ft(xt), rt)−

∑
S∈S

qt(S)R(S, ft(xt), rt)

≤ N(K + 1)4

γ
+

(K + 1)4

γ

(
N +

γ

(K + 1)4

(
max
S0∈S

R(S0, ft(xt), rt)−R(S⋆, ft(xt), rt)

))
−
(
max
S0∈S

R(S0, ft(xt), rt)−R(S⋆, ft(xt), rt)

)
+

N(K + 1)4

γ
(according to Eq. (27) and Eq. (28))

=
3N(K + 1)4

γ
.

Taking maximum over all S⋆ ∈ S and v⋆ ∈ [0, 1]N finishes the proof. □
Combining Lemma 4.2 and Theorem 4.5, we are able to prove Theorem 4.6.

Theorem 4.6 Under Assumption 1 and Assumption 3, Algorithm 2 with qt calculated via Eq. (10)
and the optimal choice of γ ensures RegMNL = O

(
K2
√

NTReglog(T,F)
)

.

Proof Combining Lemma 4.2 and Theorem 4.5, we know that Algorithm 2 with qt calculated via
Eq. (10) satisfies that RegMNL = O

(
NK4

γ + γReglog(T,F)
)
. Picking γ = K2

√
NT

Reglog(T,F)

finishes the proof. □

D Regression Oracle for More Function Classes

In this section, we provide examples on regression oracles for a broader Lipschitz function class
satisfying Assumption 2 and Assumption 3.

Lemma D.1 Suppose that F is a 1-Lipschitz function class defined as F = {fθ,i(x) ∈ [β, 1] | θ ∈
[0, 1]d} where β > 0 and ‖fθ1,i − fθ2,i‖∞ ≤ ‖θ1 − θ2‖∞ for all θ1, θ2 ∈ [0, 1]d and i ∈ [N ].
Then, ERM strategy f̂D = argminf∈F

∑
(x,S,i)∈D ℓlog(µ(S, f(x)), i) satisfies Assumption 2 with

Errlog(n, δ,F) = O
(

d log K
β log n

β log 1
δ

n

)
. Moreover, there exists an algorithm satisfying Assump-

tion 3 with Reglog(T,F) = O
(√

dT log(T/β) log(K/β)
)

.

Proof We first consider the ERM strategy. For notational convenience, let Z ≜ (x, S, i) and with
an abuse of notation, we denote ℓlog(µ(S, f(x)), i) by ℓflog(Z). According to Theorem 7.7 in [26],
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we know that for any F = {f : X 7→ [β, 1]N} such that the ε-covering number of {ℓflog : f ∈ F}
is N (ε), ERM predictor f̂D guarantees that with probability 1− δ:

EZ∼D

[
ℓf̂Dlog(Z)

]
≤ EZ∼D

[
ℓf

⋆

log(Z)
]
+O

(
log K

β log(N ( 1
n2 )) log

1
δ

n

)
. (29)

Now we show that for the 1-Lipschitz function class, N (ε) ≤
(
1 + 2

βε

)d
. Specifically, define the

βε
2 -grid of [0, 1]d as C(ε) = {θ ∈ [0, 1]d : θi ∈ {0, βε

2 , βε, . . . , 1}, i ∈ [N ]}. For any θ1 ∈ [0, 1]d,
let θ2 = argminθ∈C(ε) ‖θ − θ1‖∞. By definition, we know that ‖θ1 − θ2‖∞ ≤ βε

2 . Given any
Z = (x, S, i),∣∣∣ℓfθ1log (Z)− ℓ

fθ2
log (Z)

∣∣∣
= |ℓlog(µ(S, fθ1(x), i)− ℓlog(µ(S, fθ2(x), i)|

≤

∣∣∣∣∣log 1 +
∑

j∈S fθ1,j(x)

1 +
∑

j∈S fθ2,j(x)

∣∣∣∣∣+
∣∣∣∣log fθ1,i(x)

fθ2,i(x)
· 1{i 6= 0}

∣∣∣∣
= log

1 + max{
∑

j∈S fθ1,j(x),
∑

j∈S fθ2,j(x)}
1 + min{

∑
j∈S fθ1,j(x),

∑
j∈S fθ2,j(x)}

+ log
max{fθ1,i(x), fθ2,i(x)}
min{fθ1,i(x), fθ2,i(x)}

· 1{i 6= 0}

= log

1 +

∣∣∣∑j∈S fθ1,j(x)−
∑

j∈S fθ2,j(x)
∣∣∣

1 + min{
∑

j∈S fθ1,j(x),
∑

j∈S fθ2,j(x)}


+ log

(
1 +

|fθ1,i(x)− fθ2,i(x)|
min{fθ1,i(x), fθ2,i(x)}

)
· 1{i 6= 0}

≤
∑
j∈S

|fθ1,j(x)− fθ2,j(x)|
1 + min{

∑
j∈S fθ1,j(x),

∑
j∈S fθ2,j(x)}

+ 1{i 6= 0} |fθ1,i(x)− fθ2,i(x)|
min{fθ2,i(x), fθ1,i(x)}

≤ 1

2

|S|βε
1 + β|S|

+
βε

2β

≤ ε, (30)

where the second inequality is by log(1 + x) ≤ x for x ≥ 0 and the triangular inequality, and the
third inequality is due to the Lipschitz property and the lower bound β on all values. Therefore, we

know that N (ε) ≤ |C(ε)| ≤
(
1 + 2

βε

)d
. Plugging in this to Eq. (29) proves the claim.

Next, we consider the adversarial environment. Consider applying Hedge [16] on the discretized set
C(1/T ). Since ℓlog(µ(S, f(x)), i) ≤ log K+1

β for all context x, S ∈ S , and i ∈ S ∪ {0}, Hedge
guarantees that

E

[
T∑

t=1

ℓlog(µ(St, fθt(xt)), it)−
T∑

t=1

ℓlog(µ(St, fθ̂(xt)), it)

]

≤ O
(
log

K

β

√
T log |C(1/T )|

)
= O

(
log

K

β

√
dT log(T/β)

)
,

for all θ̂ ∈ C(1/T ). Picking θ̂ = argminθ∈C(1/T ) ‖θ− θ⋆‖∞ where f⋆ ≜ fθ⋆ and applying Eq. (30)
to θ̂ and θ⋆ finishes the proof. □

E Omitted Details in Section 4.2

In this section, we show omitted details in Section 4.2. We start by describing the algorithm: it
maintains a distribution pt over the value function class F , and at each round t, it samples ft from
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Algorithm 3 Feel-Good Thompson Sampling for Contextual MNL bandits
Input: a learning rate η > 0.
Initialize p1 ∈ ∆(F) to be the uniform distribution over F .
for t = 1, 2, . . . , T do

Sample a value function ft from pt.
Receive context xt and reward vector rt ∈ [0, 1]N .
Select St = argmaxS∈S R(S, ft(x), rt) and receive feedback it ∈ St ∪ {0}.
Define the loss estimator ℓ̂t,f for each f ∈ F as

ℓ̂t,f =
1

16η

∑
i∈St

(µi(St, f(xt))− 1[i = it])
2 −max

S∈S
R(S, f(xt), rt). (31)

Update pt+1,f ∝ pt,f · exp(−ηℓ̂t,f ).

pt and selects the subset St that maximizes the expected reward with respect to the value function
ft and the reward vector rt. After receiving the purchase decision it, the algorithm constructs a loss
estimator ℓ̂t,f for each f ∈ F as defined in Eq. (31), and updates the distribution pt using a standard
multiplicative update with learning rate η. See Algorithm 3.

The idea of the loss estimator Eq. (31) is as follows. The first term measures how accurate f is
via the squared distance between the multinomial distribution induced by f and the true outcome.
The second term, which is the highest expected reward one could get if the value function was f ,
is subtracted from the first term to serve as a form of optimism (the “feel-good” part), encouraging
exploration for those f ’s that promise a high reward.

We extend the analysis of Zhang [30] and combine it with our technical lemmas (such as Lemma 3.3
and Lemma B.1) to prove the following regret guarantee, where the term ZT should be interpreted
as a certain complexity measure for the class F .

Theorem E.1 Under Assumption 1, Algorithm 3 with learning rate η ≤ 1 ensures RegMNL ≤
32ηN(K + 1)4T + 4ηT + ZT

η , where ZT = −E[logEf∼p1
[exp(−η

∑T
t=1(ℓ̂t,f − ℓ̂t,f⋆))]].

Proof First, we decompose the regret as follows:

RegMNL = E

[
T∑

t=1

(max
S∈S

R(S, f⋆(xt), rt)−R(St, f
⋆(xt), rt))

]

= E

[
T∑

t=1

(R(St, ft(xt), rt)−R(St, f
⋆(xt), rt))

]

− E

[
T∑

t=1

(R(St, ft(xt), rt)−max
S∈S

R(S, f⋆(xt), rt))

]
(i)
= E

[
T∑

t=1

(R(St, ft(xt), rt)−R(St, f
⋆(xt), rt))

]

− E


T∑

t=1

(max
S∈S

R(S, ft(xt), rt)−max
S∈S

R(S, f⋆(xt), rt)︸ ︷︷ ︸
≜FGt

)


(ii)

≤ E

[
T∑

t=1

∑
i∈St

|ft,i(xt)− f⋆
i (xt)|

]
− E

[
T∑

t=1

FGt

]
. (32)

where (i) is because St = argmaxS∈S R(S, ft(xt), rt) according to Algorithm 3 and (ii) is using
Lemma B.1. Here, “Feel-Good” term FGt measures the difference between the expected reward of
the best subset given the value predictor ft and that of the true value predictor f⋆.
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Next, we analyze the first term
∑T

t=1

∑
i∈St

|ft,i(xt)− f⋆
i (xt)|. Given any context x ∈ X , reward

vector rt ∈ [0, 1]N , and a value predictor f ∈ F , let S(f(x), r) = argmaxS∈S R(S, f(x), r).
According to Algorithm 3, we have St = S(θt, xt). With a slight abuse of notation, for distribution
pt over F , let wt,i = Ef∼pt

[1{i ∈ S(f(xt), rt)}] be the probability that item i is included in the
selected set at round t. Let qt ∈ ∆(S) be the distribution over S induced by pt, meaning that
qt(S) = Ef∼pt

[1{S(f(xt), rt) = S}]. Then, for each i ∈ [N ], for any µ > 0,
Ef∼pt

[|fi(xt)− f⋆
i (xt)| · 1{i ∈ S(f(xt), rt)}]

≤ Ef∼pt

[
1{i ∈ S(f(xt), rt)}

4µwt,i
+ wt,i(fi(xt)− f⋆

i (xt))
2

]
(AM-GM inequality)

=
1

4µ
+ µwt,iEf∼pt

[
(fi(xt)− f⋆

i (xt))
2
]
. (33)

Taking a summation over all i ∈ [N ], we know that for any µ > 0,

E

[∑
i∈St

|ft,i(xt)− f⋆
i (xt)|

]

= E

[
N∑
i=1

|ft,i(xt)− f⋆
i (xt)| · 1{i ∈ S(ft(xt), rt)}

]

= E

[
N∑
i=1

Ef∼pt [|fi(xt)− f⋆
i (xt)| · 1{i ∈ S(f(xt), rt)}]

]
(i)

≤ N

4µ
+ µE

[
wt,iEf∼pt

[
N∑
i=1

(fi(xt)− f⋆
i (xt))

2

]]
(ii)
=

N

4µ
+ µESt∼qtEf∼pt

[∑
i∈St

(fi(xt)− f⋆
i (xt))

2

]
, (34)

where (i) uses Eq. (33) and (ii) is by definition of wt,i and qt.

Let LSt =
∑

i∈St
(fi(xt) − f⋆

i (xt))
2 (“Least Squares”). Combining Eq. (32) with Eq. (34), we

know that

RegMNL ≤ NT

4µ
+ µE

[
T∑

t=1

ESt∼qtEf∼pt
[LSt]

]
− E

[
T∑

t=1

FGt

]
. (35)

To bound the last two terms in Eq. (35), using Lemma B.3 and the fact that it is a drawn from the
distribution µ(St, f

⋆(xt), rt) and, we show in Lemma E.2 that
1

128η(K + 1)4
Ef∼pt [LSt]− Eft∼qt [FGt] ≤ −1

η
logEit|xt,St

Ef∼pt

[
exp(−η(ℓ̂t,f − ℓ̂t,f⋆))

]
+ 4η.

(36)

Therefore, picking µ = 1
128η(K+1)4 and combining Eq. (35) and Eq. (36), we know that

RegMNL

≤ 32ηN(K + 1)4T + 4ηT − 1

η
E

[
T∑

t=1

logEit|xt,St
Ef∼pt

[
exp

(
−η
(
ℓ̂t,f − ℓ̂t,f⋆

))]]
(37)

To bound the last term in Eq. (37), we use the exponential weight update dynamic of pt. Following
a classic analysis of exponential weight update, we show in Lemma E.3 that

−E
[
logEit|xt,St

Ef∼pt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗))

]]
≤ Zt − Zt−1, (38)

where Zt ≜ −E
[
logEf∼p1

[
exp

(
−η
∑t

τ=1

(
ℓ̂t,f − ℓ̂t,f∗

))]]
. Combining Eq. (37) and Eq. (38),

we arrive at

RegMNL ≤ 32ηN(K + 1)4T + 4ηT +
1

η

T∑
t=1

(Zt − Zt−1)
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≤ 32ηN(K + 1)4T + 4ηT +
ZT

η
,

where the last inequality uses the fact that Z0 = 0. □

Lemma E.2 Suppose that η ≤ 1. For any distribution pt over F , we have

1

128η(K + 1)4
Ef∼pt [LSt]− Eft∼qt [FGt] ≤ −1

η
logEit|xt,St

Ef∼pt

[
exp(−η(ℓ̂t,f − ℓ̂t,f⋆))

]
+ 4η,

where LSt and FGt are defined in the proof of Theorem E.1, and ℓ̂t,f is defined in Eq. (31).

Proof For notational convenience, define ct,i = 1{i = it} for all i ∈ [N ]. Let εt,i = ct,i −
µi(St, f

⋆(xt)) for all i ∈ St and εt ∈ RN+1 is the corresponding vector. Consider the term
−η
(
ℓ̂t,f − ℓ̂t,f⋆

)
for an arbitrary f ∈ F .

− η
(
ℓ̂t,f − ℓ̂t,f⋆

)
= − 1

16

∑
i∈St

(µi(St, f(xt))− ct,i)
2 +

1

8K

∑
i∈St

(µi(St, f
⋆(xt))− ct,i)

2

+ η ·max
S∈S

R(S, f(xt), rt)− η ·max
S∈S

R(S, f⋆(xt), rt)

= − 1

16

∑
i∈St

(µi(St, f(xt))− µi(St, f
⋆(xt)))(2ct,i − µi(St, f(xt))− µi(St, f

⋆(xt)))

+ η ·max
S∈S

R(S, f(xt), rt)− η ·max
S∈S

R(S, f⋆(xt), rt)

= − 1

16

∑
i∈St

(µi(St, f(xt))− µi(St, f
⋆(xt)))(µi(St, f

⋆(xt))− µi(St, f(xt)) + 2εt,i)︸ ︷︷ ︸
L̂St

+ ηFGt(f),

where we define the first term as L̂St, which we will show later how this term is related to LSt,
and the second term FGt(f) = maxS∈S R(S, f(xt), rt) − maxS∈S R(S, f⋆(xt), rt) (so FGt =
FGt(ft)). Consider the log of the expectation of the exponent on both sides.

logEf∼ptEct|xt,St

[
exp

(
−η
(
ℓ̂t,f − ℓ̂t,f⋆

))]
= logEf∼pt

Ect|xt,St

[
exp

(
− 1

16
L̂St + ηFGt(f)

)]
≤ 1

2
logEf∼pt

(
Ect|xt,St

[
exp

(
− 1

16
L̂St

)]2)
+

1

2
logEf∼pt [exp (2ηFGt(f))]

≤ 1

2
logEf∼pt

(
Ect|xt,St

[
exp

(
−1

8
L̂St

)])
+

1

2
logEf∼pt

[exp (2ηFGt(f))] , (39)

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is because
E[x]2 ≤ E[x2]. Next, we consider bounding each of the two terms. For the first term, since∣∣∣∣∣14 ∑

i∈St

(µi(St, f(xt))− µi(St, f
⋆(xt)))εt,i)

∣∣∣∣∣ ≤ ‖µ(St, f(xt))− µ(St, f
⋆(xt))‖2

2
√
2

≤ 1

2
,

we know that − 1
4 (µ(St, f

⋆(xt) − µ(St, f(xt)))
⊤εt is a zero-mean, 1

8‖µ(St, f(xt)) −
µ(St, f

⋆(xt))‖22-sub-Gaussian random variable given xt and St, meaning that

Ect|xt,St

[
exp

(
−1

4
(µ(St, f

⋆(xt)− µ(St, f(xt)))
⊤εt

)]
≤ exp

(
1

16
‖µ(St, f(xt))− µ(St, f

⋆(xt))‖22
)
.
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Therefore, we know that

Ect|xt,St

[
exp

(
−1

8
L̂St

)]
= exp

(
−1

8
‖µ(St, f(xt))− µ(St, f

⋆(xt))‖22
)
Ect|xt,St

[
exp

(
−1

4
(µ(St, f

⋆(xt)− µ(St, f(xt)))
⊤εt

)]
≤ exp

(
− 1

16
‖µ(St, f(xt))− µ(St, f

⋆(xt))‖22
)
.

Then, since 1
16‖µ(St, f(xt)) − µ(St, f

⋆(xt))‖22 ≤ 1
8 , using the fact that exp(x) ≤ 1 + x

2 for
x ∈ [−1, 0], we know that

Ect|xt,St

[
exp

(
−1

8
L̂St

)]
≤ 1− 1

32
‖µ(St, f(xt))− µ(St, f

⋆(xt))‖22

≤ 1− 1

64(K + 1)4

∑
i∈St

(fi(xt)− f⋆
i (xt))

2

= 1− 1

64(K + 1)4
LSt,

where the second inequality is because Lemma B.3. Further using the fact that log(1 + x) ≤ x for
all x ≥ −1, we have

1

2
logEf∼pt

(
Ect|xt,St

[
exp

(
−1

8
L̂St

)])
≤ − 1

128(K + 1)4
LSt. (40)

Consider the second term in Eq. (39). Since η ≤ 1 and |FGt(f)| ≤ 1, using ex ≤ 1 + x + 2x2 for
x ≤ 1, we know that

1

2
logEf∼qt [exp(2ηFGt(f))] ≤

1

2
log
(
1 + 2ηEf∼qt [FGt(f)] + 2(2η)2

)
≤ ηEf∼qt [FGt(f)] + 4η2 (log(1 + x) ≤ x)

= ηEft∼qt [FGt] + 4η2. (ft is drawn from qt)

Plugging the last bound and Eq. (40) into Eq. (39) and rearranging finishes the proof. □
The next lemma follows the classic analysis of multiplicative weight update algorithm.

Lemma E.3 Algorithm 3 guarantees that for each t ∈ [T ],

−E
[
ESt∼qt logEct|xt,St

Ef∼pt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗))

]]
≤ Zt − Zt−1,

where Zt = −E
[
logEf∼p1

[
exp

(
−η
∑t

τ=1

(
ℓ̂t,f − ℓ̂t,f∗

))]]
and qt ∈ ∆(S) satisfies that

qt(S) = Ef∼pt
[1{S = argmaxS′∈S R(S′, f(xt), rt)}].

Proof Let Gt,f ≜ exp
(
−η
∑t

τ=1

(
ℓ̂t,f − ℓ̂t,f∗

))
. According to Algorithm 3, we know that

pt,f =
exp

(
−η
∑t−1

τ=1 ℓ̂τ,f

)
∫
f ′∈F exp

(
−η
∑t−1

τ=1 ℓ̂τ,f ′

)
df ′

=
Gt−1,f∫

f ′∈F Gt−1,f ′df ′ .

Then, according to the definition of Zt, we have

Zt−1 − Zt

= E

[
log

∫
f∈F Gt,fdf∫

f∈F Gt−1,fdf

]
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= E

[
log

∫
f∈F Gt−1,f exp(−η(ℓ̂t,f − ℓ̂t,f∗))df∫

f∈F Gt−1,fdf

]
= E

[
logEf∼pt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗)

]]
≤ E

[
ESt∼qt logEct|xt,St

Ef∼pt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗)

]]
,

where the last inequality is due to Jensen’s inequality. Rearranging the terms finishes the proof. □
Next, we restate and prove Corollary 4.8.

Corollary E.4 Under Assumption 1, Algorithm 3 wensures RegMNL = O
(
K2
√

NT log |F|
)

for
the finite class and RegMNL = O

(
K2
√

dNT log(BTK)
)

for the linear class.

Proof For a finite function class F , since q1 is uniform, we have

ZT = −E

log∑
f∈F

1

|F|
exp

(
−η

T∑
t=1

(
ℓ̂t,f − ℓ̂t,f⋆

))
≤ −E

[
log

1

|F|
exp

(
−η

T∑
t=1

(
ℓ̂t,f⋆ − ℓ̂t,f⋆

))]
= log |F|.

Combining with Theorem E.1 and picking η = 1
K2

√
N log |F|

T , we prove the first conclusion.

To prove our results for the linear class, we first show a more general results for parametrized Lips-
chitz function class. Suppose that F is a d-dimensional parametrized function class defined as:

F = {fθ : X 7→ [0, 1]N , ‖θ‖2 ≤ B, fθ,i is α-Lipschitz with respect to ‖ · ‖2 for all i ∈ [N ]}.
(41)

Direct calculation shows that the linear function class we consider is an instance of Eq. (41) with
α = 1. For function class satisfying Eq. (41), we aim to show that ZT = O(Kη + d log(αBT )).
Specifically, we consider a small ℓ2-ball around the true parameter θ⋆: ΩT = {θ : ‖θ − θ∗‖2 ≤

1
αTK }. Since F is α-Lipschitz with respect to ‖ · ‖2, we know that for any x ∈ X , and any i ∈ [N ],

|fθ,i(x)− fθ⋆,i(x)| ≤
1

TK
. (42)

Therefore, for any θ ∈ ΩT ,

− η(ℓ̂t,fθ − ℓ̂t,fθ⋆ )

= − 1

16

∑
i∈St

(fθ,i(xt)− ct,i)
2 +

1

16

∑
i∈St

(fθ,i(xt)− ct,i)
2

+ η ·max
S∈S

R(S, fθ(xt), rt)− η ·max
S∈S

R(S, fθ⋆(xt), rt)

≥ −1

8

∑
i∈St

|fθ,i(xt)− fθ⋆,i(xt)|+ η ·max
S∈S

R(S, fθ(xt), rt)− η ·max
S∈S

R(S, fθ⋆(xt), rt). (43)

Let S(fθ⋆(xt), rt) = argmaxS∈S R(S, fθ⋆(xt), rt). Then, we can further lower bound Eq. (43) as
follows:

− η(ℓ̂t,fθ − ℓ̂t,fθ⋆ )

≥ −1

8

∑
i∈St

|fθ,i(xt)− fθ⋆,i(xt)|+ ηR(S(fθ⋆(xt), rt), fθ(xt), rt)− η ·max
S∈S

R(S, fθ⋆(xt), rt)

(i)

≥ −1

8

∑
i∈St

|fθ,i(xt)− fθ⋆,i(xt)| − η
∑

i∈S(fθ⋆ (xt),rt)

|fθ,i(xt)− fθ⋆,i(xt)|

(ii)

≥ − 1

8T
− η

T
,

31



where (i) is because Lemma B.1 and (ii) uses Eq. (42). This means that

ZT = −E

[
logEf∼q1 exp

(
−η

T∑
t=1

(
ℓ̂t,fθ − ℓ̂t,fθ⋆

))]

≤ −E

[
log(αBT )−d inf

θ∈ΩT

exp

(
−η

T∑
t=1

(
ℓ̂t,fθ − ℓ̂t,fθ⋆

))]

≤ d log(αBT ) +
1

8
+ η = O(Kη + d log(αBKT )).

With the optimal choice of η = 1
K2

√
Nd log(αBTK)

T , Theorem E.1 shows that Algorithm 3 guaran-
tees that for linear function class

RegMNL = O
(
K2
√

dNT log(BTK)
)
.

□
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Assumption 1, Assumption 2, Assumption 3, and the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics. The research con-
ducted in this paper conforms with it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is mostly theoretical, and we do not foresee any negative ethical or
societal outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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