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ABSTRACT

Establishing a theoretical analysis that explains why deep learning can outperform
shallow learning such as kernel methods is one of the biggest issues in the deep
learning literature. Towards answering this question, we evaluate excess risk of
a deep learning estimator trained by a noisy gradient descent with ridge regular-
ization on a mildly overparameterized neural network, and discuss its superiority
to a class of linear estimators that includes neural tangent kernel approach, ran-
dom feature model, other kernel methods, k-NN estimator and so on. We consider
a teacher-student regression model, and eventually show that any linear estimator
can be outperformed by deep learning in a sense of the minimax optimal rate espe-
cially for a high dimension setting. The obtained excess bounds are so-called fast
learning rate which is faster than O(1/

√
n) that is obtained by usual Rademacher

complexity analysis. This discrepancy is induced by the non-convex geometry of
the model and the noisy gradient descent used for neural network training provably
reaches a near global optimal solution even though the loss landscape is highly
non-convex. Although the noisy gradient descent does not employ any explicit
or implicit sparsity inducing regularization, it shows a preferable generalization
performance that dominates linear estimators.

1 INTRODUCTION

In the deep learning theory literature, clarifying the mechanism by which deep learning can out-
perform shallow approaches has been gathering most attention for a long time. In particular, it is
quite important to show that a tractable algorithm for deep learning can provably achieve a better
generalization performance than shallow methods. Towards that goal, we study the rate of conver-
gence of excess risk of both deep and shallow methods in a setting of a nonparametric regression
problem. One of the difficulties to show generalization ability of deep learning with certain opti-
mization methods is that the solution is likely to be stacked in a bad local minimum, which prevents
us to show its preferable performances. Recent studies tackled this problem by considering opti-
mization on overparameterized networks as in neural tangent kernel (NTK) (Jacot et al., 2018; Du
et al., 2019a) and mean field analysis (Nitanda & Suzuki, 2017; Chizat & Bach, 2018; Rotskoff &
Vanden-Eijnden, 2018; 2019; Mei et al., 2018; 2019), or analyzing the noisy gradient descent such
as stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011; Raginsky et al., 2017;
Erdogdu et al., 2018).

The NTK analysis deals with a relatively large scale initialization so that the model is well approxi-
mated by the tangent space at the initial solution, and eventually, all analyses can be reduced to those
of kernel methods (Jacot et al., 2018; Du et al., 2019b; Allen-Zhu et al., 2019; Du et al., 2019a; Arora
et al., 2019; Cao & Gu, 2019; Zou et al., 2020). Although this regime is useful to show its global
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convergence, the obtained estimator looses large advantage of deep learning approaches because the
estimation ability is reduced to the corresponding kernel methods. To overcome this issue, there are
several “beyond-kernel” type analyses. For example, Allen-Zhu & Li (2019; 2020) showed benefit
of depth by analyzing ResNet type networks. Li et al. (2020) showed global optimality of gradient
descent by reducing the optimization problem to a tensor decomposition problem for a specific re-
gression problem, and showed the “ideal” estimator on a linear model has worse dependency on the
input dimensionality. Bai & Lee (2020) considered a second order Taylor expansion and showed
that the sample complexity of deep approaches has better dependency on the input dimensionality
than kernel methods. Chen et al. (2020) also derived a similar conclusion by considering a hierarchi-
cal representation. The analyses mentioned above actually show some superiority of deep learning,
but all of these bounds are essentially Ω(1/

√
n) where n is the sample size, which is not optimal

for regression problems with squared loss (Caponnetto & de Vito, 2007). The reason why only
such a sub-optimal rate is considered is that the target of their analyses is mostly the Rademacher
complexity of the set in which estimators exist for bounding the generalization gap. However, to
derive a tight excess risk bound instead of the generalization gap, we need to evaluate so called local
Rademacher complexity (Mendelson, 2002; Bartlett et al., 2005; Koltchinskii, 2006) (see Eq. (2)
for the definition of excess risk). Moreover, some of the existing analyses should change the target
function class as the sample size n increases, for example, the input dimensionality is increased
against the sample size, which makes it difficult to see how the rate of convergence is affected by
the choice of estimators.

Another promising approach is the mean field analysis. There are also some work that showed
superiority of deep learning against kernel methods. Ghorbani et al. (2019) showed that, when
the dimensionality d of input is polynomially increasing with respect to n, the kernel methods is
outperformed by neural network approaches. Although the situation of increasing d explains well
the modern high dimensional situations, this setting blurs the rate of convergence. Actually, we can
show the superiority of deep learning even in a fixed dimension setting.

There are several studies about approximation abilities of deep and shallow models. Ghorbani et al.
(2020) showed adaptivity of kernel methods to the intrinsic dimensionality in terms of approxi-
mation error and discuss difference between deep and kernel methods. Yehudai & Shamir (2019)
showed that the random feature method requires exponentially large number of nodes against the
input dimension to obtain a good approximation for a single neuron target function. These are only
for approximation errors and estimation errors are not compared.

Recently, the superiority of deep learning against kernel methods has been discussed also in the
nonparametric statistics literature where the minimax optimality of deep learning in terms of excess
risk is shown. Especially, it is shown that deep learning achieves better rate of convergence than
linear estimators in several settings (Schmidt-Hieber, 2020; Suzuki, 2019; Imaizumi & Fukumizu,
2019; Suzuki & Nitanda, 2019; Hayakawa & Suzuki, 2020). Here, the linear estimators are a general
class of estimators that includes kernel ridge regression, k-NN regression and Nadaraya-Watson
estimator. Although these analyses give clear statistical characterization on estimation ability of
deep learning, they are not compatible with tractable optimization algorithms.

In this paper, we give a theoretical analysis that unifies these analyses and shows the superiority of a
deep learning method trained by a tractable noisy gradient descent algorithm. We evaluate the excess
risks of the deep learning approach and linear estimators in a nonparametric regression setting, and
show that the minimax optimal convergence rate of the linear estimators can be dominated by the
noisy gradient descent on neural networks. In our analysis, the model is fixed and no explicit sparse
regularization is employed. Our contributions can be summarized as follows:

• A refined analysis of excess risks for a fixed model with a fixed input dimension is given to com-
pare deep and shallow estimators. Although several studies pointed out the curse of dimensionality
is a key factor that separates shallow and deep approaches, we point out that such a separation ap-
pears in a rather low dimensional setting, and more importantly, the non-convexity of the model
essentially makes the two regimes different.

• A lower bound of the excess risk which is valid for any linear estimator is derived. The analysis is
considerably general because the class of linear estimators includes kernel ridge regression with
any kernel and thus it also includes estimators in the NTK regime.

• All derived convergence rate is a fast learning rate that is faster than O(1/
√
n). We show that

simple noisy gradient descent on a sufficiently wide two-layer neural network achieves a fast
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learning rate by using a fact that the solution converges to a Bayes estimator with a Gaussian
process prior, and the derived convergence rate can be faster than that of linear estimators. This
is much different from such existing work that compared only coefficients with the same rate of
convergence with respect to the sample size n.

Other related work Bach (2017) analyzed the model capacity of neural networks and its corre-
sponding reproducing kernel Hilbert space (RKHS), and showed that the RKHS is much larger than
the neural network model. However, separation of the estimation abilities between shallow and deep
is not proven. Moreover, the analyzed algorithm is basically the Frank-Wolfe type method which is
not typically used in practical deep learning. The same technique is also employed by Barron (1993).
The Frank-Wolfe algorithm is a kind of sparsity inducing algorithm that is effective for estimating
a function in a model with an L1-norm constraint. It has been shown that explicit or implicit sparse
regularization such as L1-regularization is beneficial to obtain better performances of deep learning
under certain situations (Chizat & Bach, 2020; Chizat, 2019; Gunasekar et al., 2018; Woodworth
et al., 2020; Klusowski & Barron, 2016). For example, E et al. (2019b;a) showed that the approxi-
mation error of a linear model suffers from the curse of dimensionality in a setting where the target
function is in the Barron class (Barron, 1993), and showed anL1-type regularization avoids the curse
of dimensionality. However, our analysis goes in a different direction where a sparse regularization
is not required.

2 PROBLEM SETTING AND MODEL

In this section, we give the problem setting and notations that will be used in the theoretical analy-
sis. We consider the standard nonparametric regression problem where data are generated from the
following model for an unknown true function fo : Rd → R:

yi = fo(xi) + εi (i = 1, . . . , n), (1)

where xi is independently identically distributed from PX whose support is included in Ω = [0, 1]d,
and εi is an observation noise that is independent of xi and satisfies E[εi] = 0 and εi ∈ [−U,U ]
almost surely. The n i.i.d. observations are denoted by Dn = (xi, yi)

n
i=1. We want to estimate the

true function fo through the training data Dn. To achieve this purpose, we employ the squared loss
`(y, f(x)) = (y − f(x))2 and accordingly we define the expected and empirical risks as L(f) :=

EY,X [`(Y, f(X))] and L̂(f) := 1
n

∑n
i=1 `(yi, f(xi)) respectively. Throughout this paper, we are

interested in the excess (expected) risk of an estimator f̂ defined by

(Excess risk) L(f̂)− inf
f :measurable

L(f). (2)

Since the loss function ` is the squared loss, the infimum of inff :measurable L(f) is achieved by
fo: inff :measurable L(f) = L(fo). The population L2(PX)-norm is denoted by ‖f‖L2(PX) :=√

EX∼PX [f(X)2] and the sup-norm on the support of PX is denoted by ‖f‖∞ :=

supx∈supp(PX) |f(x)|. We can easily check that for an estimator f̂ , the L2-distance ‖f̂ − fo‖2L2(PX)

between the estimator f̂ and the true function fo is identical to the excess risk: L(f̂) − L(fo) =

‖f̂ − fo‖2L2(PX). Note that the excess risk is different from the generalization gap L(f̂) − L̂(f̂).
Indeed, the generalization gap typically converges with the rate of O(1/

√
n) which is optimal in a

typical setting (Mohri et al., 2012). On the other hand, the excess risk can be faster than O(1/
√
n),

which is known as a fast learning rate (Mendelson, 2002; Bartlett et al., 2005; Koltchinskii, 2006;
Giné & Koltchinskii, 2006).

2.1 MODEL OF TRUE FUNCTIONS

To analyze the excess risk, we need to specify a function class (in other words, model) in which
the true function fo is included. In this paper, we only consider a two layer neural network model,
whereas the techniques adapted in this paper can be directly extended to deeper neural network
models. We consider a teacher-student setting, that is, the true function fo can be represented by
a neural network defined as follows. For w ∈ R, let w̄ be a “clipping” of w defined as w̄ :=
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R × tanh(w/R) where R ≥ 1 is a fixed constant, and let [x; 1] := [x>, 1]> for x ∈ Rd. Then, the
teacher network is given by

fW (x) =
∑∞
m=1 amw̄2,mσm(w>1,m[x; 1]),

where w1,m ∈ Rd+1 and w2,m ∈ R (m ∈ N) are the trainable parameters (where W =
(w1,m, w2,m)∞m=1), am ∈ R (m ∈ N) is a fixed scaling parameter, and σm : R→ R is an activation
function for the m-th node. The reason why we applied the clipping operation to the parameter of
the second layer is just for a technical reason to ensure convergence of Langevin dynamics. The dy-
namics is bounded in high probability in practical situations and the boundedness condition would
be removed if further theoretical development of infinite dimensional Langevin dynamics would be
achieved.

Let H be a set of parameters W such that its squared norm is bounded: H := {W =
(w1,m, w2,m)∞m=1 |

∑∞
m=1(‖w1,m‖2 + w2

2,m) < ∞}. Define ‖W‖H := [
∑∞
m=1(‖w1,m‖2 +

w2
2,m)]1/2 for W ∈ H. Let (µm)∞m=1 be a regularization parameter such that µm ↘ 0. Accordingly

we defineHγ := {W ∈ H | ‖W‖Hγ <∞} where ‖W‖Hγ := [
∑∞
m=1 µ

−γ
m (‖w1,m‖2 + w2

2,m)]1/2

for a given 0 < γ. Throughout this paper, we analyze an estimation problem in which the true
function is included in the following model:

Fγ = {fW |W ∈ Hγ , ‖W‖Hγ ≤ 1}.

This is basically two layer neural network with infinite width. As assumed later, am is assumed
to decrease as m → ∞. Its decreasing rate controls the capacity of the model. If the first layer
parameters (w1,m)m are fixed, this model can be regarded as a variant of the unit ball of some
reproducing kernel Hilbert space (RKHS) with basis functions amσm(w>1,m[x; 1]). However, since
the first layer (w1,m) is also trainable, there appears significant difference between deep and kernel
approaches. The Barron class (Barron, 1993; E et al., 2019b) is relevant to this function class.
Indeed, it is defined as the convex hull of w2σ(w>1 [x; 1]) with norm constraints on (w1, w2) where
σ is an activation function. On the other hand, we will put an explicit decay rate on am and the
parameter W has an L2-norm constraint, which makes the model Fγ smaller than the Barron class.

3 ESTIMATORS

We consider two classes of estimators and discuss their differences: linear estimators and deep
learning estimator with noisy gradient descent (NGD).

Linear estimator A class of linear estimators, which we consider as a representative of “shallow”
learning approach, consists of all estimators that have the following form:

f̂(x) =
∑n
i=1 yiϕi(x1, . . . , xn, x).

Here, (ϕi)
n
i=1 can be any measurable function (and L2(PX)-integrable so that the excess risk can

be defined). Thus, they could be selected as the “optimal” one so that the corresponding linear esti-
mator minimizes the worst case excess risk. Even if we chose such an optimal one, the worst case
excess risk should be lower bounded by our lower bound given in Theorem 1. It should be noted that
the linear estimator does not necessarily imply “linear model.” The most relevant linear estimator
in the machine learning literature is the kernel ridge regression: f̂(x) = Y >(KX + λI)−1k(x)
where KX = (k(xi, xj))

n
i,j=1 ∈ Rn×n, k(x) = [k(x, x1), . . . , k(x, xn)]> ∈ Rn and Y =

[y1, . . . , yn]> ∈ Rn for a kernel function k : Rd × Rd → R. Therefore, the ridge regression
estimator in the NTK regime or the random feature model is also included in the class of linear
estimators. The solution obtained in the early stopping criteria instead of regularization in the NTK
regime under the squared loss is also included in the linear estimators. Other examples include the
k-NN estimator and the Nadaraya-Watson estimator. All of them do not train the basis function in a
nonlinear way, which makes difference from the deep learning approach. In the nonparametric statis-
tics literature, linear estimators have been studied for estimating a wavelet series model. Donoho
et al. (1990; 1996) have shown that a wavelet shrinkage estimator can outperform any linear estima-
tor by showing suboptimality of linear estimators. Suzuki (2019) utilized such an argument to show
superiority of deep learning but did not present any tractable optimization algorithm.
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Noisy Gradient Descent with regularization As for the neural network approach, we consider a
noisy gradient descent algorithm. Basically, we minimize the following regularized empirical risk:

L̂(fW ) + λ
2 ‖W‖

2
H1
.

Here, we employ H1-norm as the regularizer. We note that the constant γ controls the
relative complexity of the true function fo compared to the typical solution obtained un-
der the regularization. Here, we define a linear operator A as λ‖W‖H1

= W>AW , that
is, AW = (λµ−1

m w1,m, λµ
−1
m w2,m)∞m=1. The regularized empirical risk can be minimized

by noisy gradient descent as Wk+1 = Wk − η∇(L̂(fWk
) + λ

2 ‖Wk‖2H1
) +

√
2η
β ξk, where

η > 0 is a step size and ξk = (ξk,(1,m), ξk,(2,m))
∞
m=1 is an infinite-dimensional Gaus-

sian noise, i.e., ξk,(1,m) and ξk,(2,m) are independently identically distributed from the stan-
dard normal distribution (Da Prato & Zabczyk, 1996). Here, ∇L̂(fW ) = 1

n

∑n
i=1 2(fW (xi) −

yi)(w̄2,mam[xi; 1]σ′m(w>1,m[xi; 1]), am tanh′(w2,m/R)σm(w>1,m[xi; 1]))∞m=1. However, since
∇‖Wk−1‖2H1

is unbounded which makes it difficult to show convergence, we employ the semi-
implicit Euler scheme defined by

Wk+1 =Wk−η∇L̂(fWk
)−ηAWk+1+

√
2η
β ξk ⇔Wk+1 =Sη

(
Wk−η∇L̂(fWk

)+
√

2η
β ξk

)
, (3)

where Sη := (I+ηA)−1. It is easy to check that this is equivalent to the following update rule: Wk =

Wk−1 − η
(
∇L̂(fWk−1

) + SηAWk−1 +
√

2η
β ξk−1

)
. Therefore, the implicit Euler scheme can be

seen as a naive noisy gradient descent for minimizing the empirical risk with a slightly modified
ridge regularization. This can be interpreted as a discrete time approximation of the following
infinite dimensional Langevin dynamics:

dWt = −∇(L̂(fWt
) + λ

2 ‖Wt‖2H1
)dt+

√
2/βdξt, (4)

where (ξt)t≥0 is the so-called cylindrical Brownian motion (see Da Prato & Zabczyk (1996) for
the details). Its application and analysis for machine learning problems with non-convex objectives
have been recently studied by, for example, Muzellec et al. (2020); Suzuki (2020).

The above mentioned algorithm is executed on an infinite dimensional parameter space. In practice,
we should deal with a finite width network. To do so, we approximate the solution by a finite
dimensional one: W (M) = (w1,m, w2,m)Mm=1 where M corresponds to the width of the network.
We identify W (M) to the “zero-padded” infinite dimensional one, W = (w1,m, w2,m)∞m=1 with
w1,m = 0 and w2,m = 0 for all m > M . Accordingly, we use the same notation fW (M) to indicate
fW with zero padded vector W . Then, the finite dimensional version of the update rule is given by

W
(M)
k+1 = S

(M)
η

(
W

(M)
k − η∇L̂(f

W
(M)
k

) +
√

2η
β ξ

(M)
k

)
, where ξ(M)

k is the Gaussian noise vector

obtained by projecting ξk to the first M components and S(M)
η is also obtained in a similar way.

4 CONVERGENCE RATE OF ESTIMATORS

In this section, we present the excess risk bounds for linear estimators and the deep learning estima-
tor. As for the linear estimators, we give its lower bound while we give an upper bound for the deep
learning approach. To obtain the result, we setup some assumptions on the model.
Assumption 1.

(i) There exists a constant cµ such that µm ≤ cµm−2 (m ∈ N).

(ii) There exists α1 > 1/2 such that am ≤ µα1
m (m ∈ N).

(iii) The activation functions (σm)m is bounded as ‖σm‖∞ ≤ 1. Moreover, they are three times
differentiable and their derivatives upto third order differentiation are uniformly bounded:
∃Cσ such that ‖σm‖1,3 := max{‖σ′m‖∞, ‖σ′′m‖∞, ‖σ′′′m‖∞} ≤ Cσ (∀m ∈ N).

The first assumption (i) controls the strength of the regularization, and combined with the second
assumption (ii) and definition of the model Fγ , complexity of the model is controlled. If α1 and γ
are large, the model is less complicated. Indeed, the convergence rate of the excess risk becomes
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faster if these parameters are large as seen later. The decay rate µm ≤ cµm−2 can be generalized as
m−p with p > 1 but we employ this setting just for a technical simplicity for ensuring convergence
of the Langevin dynamics. The third assumption (iii) can be satisfied by several activation functions
such as the sigmoid function and the hyperbolic tangent. The assumption ‖σm‖∞ ≤ 1 could be
replaced by another one like ‖σm‖∞ ≤ C, but we fix this scaling for simple presentation.

4.1 MINIMAX LOWER BOUND FOR LINEAR ESTIMATORS

Here, we analyze a lower bound of excess risk of linear estimators, and eventually we show that
any linear estimator suffers from curse of dimensionality. To rigorously show that, we consider the
following minimax excess risk over the class of linear estimators:

Rlin(Fγ) := inf
f̂ :linear

sup
fo∈Fγ

EDn [‖f̂ − fo‖2L2(PX)],

where inf is taken over all linear estimators and EDn [·] is taken with respect to the training data Dn.
This expresses the best achievable worst case error over the class of linear estimators to estimate a
function in Fγ . To evaluate it, we additionally assume the following condition.

Assumption 2. We assume that µm = m−2 and am = µα1
m (m ∈ N) (and hence cµ = 1). There

exists a monotonically decreasing sequence (bm)∞m=1 and s ≥ 3 such that bm = µα2
m (∀m) with

α2 > γ/2 and σm(u) = bsmσ(b−1
m u) (u ∈ R) where σ is the sigmoid function: σ(u) = 1/(1+e−u).

Intuitively, the parameter s controls the “resolution” of each basis function σm, and the relation
between parameter α1 and α2 controls the magnitude of coefficient for each basis σm. Note that the
condition s ≥ 3 ensures ‖σm‖1,3 is uniformly bounded and 0 < bm ≤ 1 ensures ‖σm‖∞ ≤ 1. Our
main strategy to obtain the lower bound is to make use of the so-called convex-hull argument. That
is, it is known that, for a function class F , the minimax risk R(F) over a class of linear estimators
is identical to that for the convex hull of F (Hayakawa & Suzuki, 2020; Donoho et al., 1990):

Rlin(F) = Rlin(conv(F)),

where conv(F) = {
∑N
i=1 λifi | fi ∈ F ,

∑N
i=1 λi = 1, λi ≥ 0, N ∈ N} and conv(·) is the

closure of conv(·) with respect to L2(PX)-norm. Intuitively, since the linear estimator is linear to
the observations (yi)

n
i=1 of outputs, a simple application of Jensen’s inequality yields that its worst

case error on the convex hull of the function class F does not increase compared with that on the
original one F (see Hayakawa & Suzuki (2020) for the details). This indicates that the linear es-
timators cannot distinguish the original hypothesis class F and its convex hull. Therefore, if the
class F is highly non-convex, then the linear estimators suffer from much slower convergence rate
because its convex hull conv(F) becomes much “fatter” than the original one F . To make use of
this argument, for each sample size n, we pick up appropriate mn and consider a subset generated
by the basis function σmn , i.e., F (n)

γ := {amnw̄2,mnσm(w>1,mn [x; 1]) ∈ Fγ}. By applying the con-

vex hull argument to this set, we obtain the relation Rlin(Fγ) ≥ Rlin(F (n)
γ ) = Rlin(conv(F (n)

γ )).
Since F (n)

γ is highly non-convex, its convex hull conv(F (n)
γ ) is much larger than the original set

F (n)
γ and thus the minimax risk over the linear estimators would be much larger than that over all

estimators including deep learning. More intuitively, linear estimators do not adaptively select the
basis functions and thus they should prepare redundantly large class of basis functions to approx-
imate functions in the target function class. The following theorem gives the lower bound of the
minimax optimal excess risk over the class of linear estimators.
Theorem 1. Suppose that Var(ε) > 0, PX is the uniform distribution on [0, 1]d, and Assumption 2
is satisfied. Let β̃ = α1+(s+1)α2

α2−γ/2 . Then for arbitrary small κ′ > 0, we have that

Rlin(Fγ) & n
− 2β̃+d

2β̃+2dn−κ
′
. (5)

The proof is in Appendix A. We utilized the Irie-Miyake integral representation (Irie & Miyake,
1988; Hornik et al., 1990) to show there exists a “complicated” function in the convex hull, and
then we adopted the technique of Zhang et al. (2002) to show the lower bound. The lower bound is
characterized by the decaying rate (α1) of am relative to that (α2) of the scaling factor bm. Indeed,
the faster am decays with increasing m, the faster the rate of the minimax lower bound becomes.
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We can see that the minimax rate of linear estimators is quite sensitive to the dimension d. Actually,
for relatively high dimensional settings, this lower bound becomes close to a slow rate Ω(1/

√
n),

which corresponds to the curse of dimensionality.

It has been pointed out that the sample complexity of kernel methods suffers from the curse of
dimensionality while deep learning can avoid that by a tractable algorithms (e.g., Ghorbani et al.
(2019); Bach (2017)). Among them, Ghorbani et al. (2019) showed that if the dimensionality d is
polynomial against n, then the excess risk of kernel methods is bounded away from 0 for all n. On
the other hand, our analysis can be applied to any linear estimator including kernel methods, and
it shows that even if the dimensionality d is fixed, the convergence rate of their excess risk suffers
from the curse of dimensionality. This can be accomplished thanks to a careful analysis of the rate
of convergence. Bach (2017) derived an upper bound of the Rademacher complexity of the unit ball
of the RKHS corresponding to a neural network model. However, it is just an upper bound and there
is still a large gap from excess risk estimates. Allen-Zhu & Li (2019; 2020); Bai & Lee (2020); Chen
et al. (2020) also analyzed a lower bound of sample complexity of kernel methods. However, their
lower bound is not for the excess risk of the squared loss. Eventually, the sample complexities of all
methods including deep learning take a form of O(C/

√
n) and dependency of coefficient C to the

dimensionality or other factors such as magnitude of residual components is compared. On the other
hand, our lower bound properly involves the properties of squared loss such as strong convexity and
smoothness and the bound shows the curse of dimensionality occurs even in the rate of convergence
instead of just the coefficient. Finally, we would like to point out that several existing work (e.g.,
Ghorbani et al. (2019); Allen-Zhu & Li (2019)) considered a situation where the target function
class changes as the sample size n increases. However, our analysis reveals that separation between
deep and shallow occurs even if the target function class Fγ is fixed.

4.2 UPPER BOUND FOR DEEP LEARNING

Here, we analyze the excess risk of deep learning trained by NGD and its algorithmic convergence
rate. Our analysis heavily relies on the weak convergence of the discrete time gradient Langevin dy-
namics to the stationary distribution of the continuous time one (Eq. (4)). Under some assumptions,
the continuous time dynamics has a stationary distribution (Da Prato & Zabczyk, 1992; Maslowski,
1989; Sowers, 1992; Jacquot & Royer, 1995; Shardlow, 1999; Hairer, 2002). If we denote the prob-
ability measure onH corresponding to the stationary distribution by π∞, then it is given by

dπ∞
dνβ

(W ) ∝ exp(−βL̂(fW )),

where νβ is the Gaussian measure in H with mean 0 and covariance (βA)−1 (see Da Prato &
Zabczyk (1996) for the rigorous definition of the Gaussian measure on a Hilbert space). Remarkably,
this can be seen as the Bayes posterior for a prior distribution νβ and a “log-likelihood” function
exp(−βL̂(W )). Through this view point, we can obtain an excess risk bound of the solution Wk.
The proofs of all theorems in this section are in Appendix B.

Under Assumption 1, the distribution ofWk derived by the discrete time gradient Langevin synamics
satisfies the following weak convergence property to the stationary distribution π∞. This conver-
gence rate analysis depends on the techniques by Bréhier & Kopec (2016); Muzellec et al. (2020).
Proposition 1. Assume Assumption 1 holds and β > η. Then, there exist spectral gaps Λ∗η and
Λ∗0 (defined in Eq. (10) of Appendix B.1) and a constant C0 such that, for any 0 < a < 1/4, the
following convergence bound holds for almost sure observation Dn:

|EWk
[L(fWk

)|Dn]− EW∼π∞ [L(fW )|Dn]| ≤ C0 exp(−Λ∗ηηk) + C1

√
β

Λ∗0
η1/2−a =: Ξk, (6)

where C1 is a constant depending only on cµ, R, α1, Cσ, U, a (independent of η, k, β, λ, n).

This proposition indicates that the expected risk of Wk can be almost identical to that of the “Bayes
posterior solution” obeying π∞ after sufficiently large iterations k with sufficiently small step size
η even though L̂(fW ) is not convex. The definition of Λ∗η can be found in Eq. (10). We should
note that its dependency on β is exponential. Thus, if we take β = Ω(n), then the computational
cost until a sufficiently small error could be exponential with respect to the sample size n. The same
convergence holds also for finite dimensional oneW (M)

k with a modified stationary distribution. The
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constants appearing in the bound are independent of the model size M (see the proof of Proposition
1 in Appendix B). In particular, the convergence can be guaranteed even ifW is infinite dimensional.
This is quite different from usual finite dimensional analyses (Raginsky et al., 2017; Erdogdu et al.,
2018; Xu et al., 2018) which requires exponential dependency on the dimension, but thanks to the
regularization term, we can obtain the model size independent convergence rate. Xu et al. (2018)
also analyzed a finite dimensional gradient Langevin dynamics and obtained a similar bound where
O(η) appears in place of the second term η1/2−a which corresponds to time discretization error. In
our setting the regularization term is ‖W‖2H1

=
∑
m(‖w1,m‖2 + w2

2,m)/µm with µm . m−2, but

if we employ ‖W‖2Hp/2 =
∑
m(‖w1,m‖2 + w2

2,m)/µ
p/2
m for p > 1, then the time discretization

error term would be modified to η(p−1)/p−a (Andersson et al., 2016). We can interpret the finite
dimensional setting as the limit of p → ∞ which leads to η(p−1)/p → η that recovers the finite
dimensional result (O(η)) as shown by Xu et al. (2018).

In addition to the above algorithmic convergence, we also have the following convergence rate for
the excess risk bound of the finite dimensional solution W (M)

k .

Theorem 2. Assume Assumption 1 holds, assume η < β ≤ min{n/(2U2), n}, and 0 < γ <
1/2 + α1. Then, if the width satisfies M ≥ min

{
λ1/4γ(α1+1)β1/2γ , λ−1/2(α1+1), n1/2γ

}
, the

expected excess risk of Wk is bounded as

EDn
[
E
W

(M)
k

[‖f
W

(M)
k

−fo‖2L2(PX)|Dn]
]
≤C max

{
(λβ)

1/γ
1+1/2γ n−

1
1+1/2γ, λ

− 1
2(α1+1) β−1, λ

γ
1+α1

}
+Ξk,

where C is a constant independent of n, β, λ, η, k. In particular, if we set β = min{n/(2U2), n}
and λ = β−1, then for M ≥ n1/2(α1+1), we obtain

EDn
[
E
W

(M)
k

[‖f
W

(M)
k

− fo‖2L2(PX)|Dn]
]
. n−

γ
α1+1 + Ξk.

In addition to this theorem, if we further assume Assumption 2, we obtain a refined bound as follows.
Corollary 1. Assume Assumptions 1 and 2 hold and η < β, and let β = min{n/(2U2), n} and
λ = β−1. Suppose that there exists 0 ≤ q ≤ s − 3 such that 0 < γ < 1/2 + α1 + qα2. Then, the
excess risk bound of W (M)

k for M ≥ n1/2(α1+qα2+1) can be refined as

EDn
[
E
W

(M)
k

[‖f
W

(M)
k

− fo‖2L2(PX)|Dn]
]
. n−

γ
α1+qα2+1 + Ξk. (7)

These theorem and corollary shows that the tractable NGD algorithm achieves a fast convergence
rate of the excess risk bound. Indeed, if q is chosen so that γ > (α1+qα2+1)/2, then the excess risk
bound converges faster thanO(1/

√
n). Remarkably, the convergence rate is not affected by the input

dimension d, which makes discrepancy from linear estimators. The bound of Theorem 2 is tightest
when γ is close to 1/2 + α1 (γ ≈ 1/2 + α1 + 3α2 for Corollary 1), and a smaller γ yields looser
bound. This relation between γ and α1 reflects misspecification of the “prior” distribution. When
γ is small, the regularization λ‖W‖2H1

is not strong enough so that the variance of the posterior
distribution becomes unnecessarily large for estimating the true function fo ∈ Fγ . Therefore, the
best achievable bound can be obtained when the regularization is correctly specified. The analysis
of fast rate is in contrast to some existing work (Allen-Zhu & Li, 2019; 2020; Li et al., 2020; Bai
& Lee, 2020) that basically evaluated the Rademacher complexity. This is because we essentially
evaluated a local Rademacher complexity instead.

4.3 COMPARISON BETWEEN LINEAR ESTIMATORS AND DEEP LEARNING

Here, we compare the convergence rate of excess risks between the linear estimators and the neural
network method trained by NGD using the bounds obtained in Theorem 1 and Corollary 1 respec-
tively. We write the lower bound (5) of the minimax excess risk of linear estimators as R∗lin and the
excess risk of the neural network approach (7) asR∗NN. To make the discussion concise, we consider
a specific situation where s = 3, α1 = γ = 1

4α2. In this case, β̃ = 17/3 ≈ 5.667, which gives

R∗lin & n
−
(

1+
d

2β̃+d

)−1

n−κ
′ ≈ n

−
(

1+
d

11.3+d

)−1

n−κ
′
.

8
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On the other hand, by setting q = 0, we have

R∗NN . n−
α1
α1+1 = n

−
(

1+
1
α1

)−1

.

Thus, as long as α1 > 11.3/d+ 1 ≈ 2β̃/d+ 1, we have that

R∗lin & R∗NN, and limn→∞
R∗NN

R∗lin
= 0.

In particular, as d gets larger, R∗lin approaches to Ω(n−1/2) while R∗NN is not affected by d and it
gets close to O(n−1) as α1 gets larger. Moreover, the inequality α1 > 11.3/d + 1 can be satis-
fied by a relatively low dimensional setting; for example, d = 10 is sufficient when α1 = 3. As
α1 becomes large, the model becomes “simpler” because (am)∞m=1 decays faster. However, the
linear estimators cannot take advantage of this information whereas deep learning can. From the
convex hull argument, this discrepancy stems from the non-convexity of the model. We also note
that the superiority of deep learning is shown without sparse regularization while several existing
work showed favorable estimation property of deep learning though sparsity inducing regularization
(Bach, 2017; Chizat, 2019; Hayakawa & Suzuki, 2020). However, our analysis indicates that sparse
regularization is not necessarily as long as the model has non-convex geometry, i.e., sparsity is just
one sufficient condition for non-convexity but not a necessarily condition. The parameter setting
above is just a sufficient condition and the lower bound R∗lin would not be tight. The superiority of
deep learning would hold in much wider situations.

5 CONCLUSION

In this paper, we studied excess risks of linear estimators, as a representative of shallow methods,
and a neural network estimator trained by a noisy gradient descent where the model is fixed and no
sparsity inducing regularization is imposed. Our analysis revealed that deep learning can outperform
any linear estimator even for a relatively low dimensional setting. Essentially, non-convexity of the
model induces this difference and the curse of dimensionality for linear estimators is a consequence
of a fact that the geometry of the model becomes more “non-convex” as the dimension of input
gets higher. All derived bounds are fast rate because the analyses are about the excess risk with the
squared loss, which made it possible to compare the rate of convergence. The fast learning rate of
the deep learning approach is derived through the fact that the noisy gradient descent behaves like a
Bayes estimator with model size independent convergence rate.
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A PROOF OF THEOREM 1

We basically combine the “convex hull argument” and the minimax optimal rate analysis for linear
estimators developed by Zhang et al. (2002).

Zhang et al. (2002) essentially showed the following statement in their Theorem 1.
Proposition 2 (Theorem 1 of Zhang et al. (2002)). Let µ be the Lebesgue measure. Suppose that
the space Ω has even partition A such that |A| = 2K for an integer K ∈ N, each A has equivalent
measure µ(A) = 2−K for all A ∈ A, andA is indeed a partition of Ω, i.e., ∪A∈A = Ω, A∩A′ = ∅
for A,A′ ∈ Ω and A 6= A′. Then, if K is chosen as n−γ1 ≤ 2−K ≤ n−γ2 for constants γ1, γ2 > 0
that are independent of n, then there exists an event E such that, for a constant C ′ > 0,

P (E) ≥ 1 + o(1) and |{xi | xi ∈ A (i ∈ {1, . . . , n})}| ≤ C ′n/2K (∀A ∈ A).

Moreover, suppose that, for a class F◦ of functions on Ω, there exists ∆ > 0 that satisfies the
following conditions:

1. There exists F > 0 such that, for any A ∈ A, there exists g ∈ F◦ that satisfies g(x) ≥
1
2∆F for all x ∈ A,

2. There exists K ′ and C ′′ > 0 such that 1
n

∑n
i=1 g(xi)

2 ≤ C ′′∆22−K
′

for any g ∈ F◦ on
the event E .

Then, there exists a constant F1 such that at least one of the following inequalities holds:

F 2

4F1C ′′
2K
′

n
≤ Rlin(F◦), (8a)

F 3

32
∆22−K ≤ Rlin(F◦), (8b)

for sufficiently large n.

Before we show the main assertion, we prepare some additional lemmas. For a sigmoid function σ,
let F̃ (σ)

C,τ := {x ∈ Rd 7→ aσ(τ(w>x+ b))) | |a| ≤ 2C, ‖w‖ ≤ 1, |b| ≤ 2 (a, b ∈ R, w ∈ Rd)} for
C > 0, τ > 0.
Lemma 1. Let ψ(x) = 1

2 (σ(x + 1) − σ(x − 1)) and ψ̂ be its Fourier transform: ψ̂(ω) :=

(2π)−1
∫
e−iωxψ(x)dx. Let h > 0 and Dw > 0. Then, by setting τ = h−1(2

√
d + 1)Dw and

C = (2
√
d+1)Dw

πh|ψ̂(1)|
, the Gaussian RBF kernel can be approximated by

inf
ǧ∈conv(F̃(σ)

C,τ )

sup
x∈[0,1]d

∣∣∣∣ǧ(x)− exp

(
−‖x− c‖

2

2h2

)∣∣∣∣
≤ 4

|2πψ̂(1)|

[
CdD

2(d−2)
w exp(−D2

w/2) + exp(−Dw)
]

for any c ∈ [0, 1]d, where Cd is a constant depending only on d. In particular, the right hand side is
O(exp(−nκ)) if Dw = nκ.

Proof of Lemma 1. Let ψh(x) = ψ(h−1x). Suppose that, for f ∈ L1(Rd), its Fourier transform
f̂(ω) = (2π)−d

∫
e−iω>xf(x)dx (ω ∈ Rd) gives∫

Rd
exp(iw>x)f̂(w)dw = f(x),

for every x ∈ Rd1. Then the Irie-Miyake itegral representation (Irie & Miyake (1988); see also the
proof of Theorem 3.1 in Hornik et al. (1990)) gives

f(x) =

∫
a∈Rd

∫
b∈R

ψ(a>x+ b)dν(a, b) (a.e.),

1If f̂ is integrable, this inversion formula holds for almost every x ∈ Rd (Rudin, 1987). However, we
assume a stronger condition that it holds for every x ∈ Rd.
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where dν(a, b) is given by

dν(a, b) = Re

(
|ω|de−iwb

2πψ̂(ω)

)
f̂(wa)dadb

for any ω 6= 0. Since the characteristic function of the multivariate normal distribution gives that∫
Rd

exp(iw>(x− c))

√
h2d

(2π)d
exp

(
−h

2‖w‖2

2

)
︸ ︷︷ ︸

=f̂(w)

dw = exp

(
−‖x− c‖

2

2h2

)
=: f(x) (∀x ∈ Rd),

we have that

exp

(
−‖x− c‖

2

2h2

)
=

∫
a∈Rd

∫
b∈R

ψh(a>(x− c) + b)Re

(
e−iwb

2πψ̂h(ω)

)√
|ωh|2d
(2π)d

exp

(
− (ωh)2‖a‖2

2

)
dadb,

for all x ∈ Rd. Since ψh(·) = ψ(h−1·) and ψ̂h(·) = hψ̂(h·) by its definition, the right hand side is
equivalent to∫

a∈Rd

∫
b∈R

ψ(h−1[a>(x− c) + b])Re

(
e−iwb

2πhψ̂(hω)

)√
|ωh|2d
(2π)d

exp

(
− (ωh)2‖a‖2

2

)
dadb.

Here, we set ω = h−1. Let Nσ2 be the probability measure corresponding to the multivariate
normal with mean 0 and covariance σ2I, and let AD := {w ∈ Rd | ‖w‖ ≤ D}. Let Da > 0 and
Db = Da(

√
2d+ 1), and define

fDa(x) :=
1

2DbN1(ADa)

∫
‖a‖≤Da,|b|≤Db

ψ(h−1[a>(x− c) + b])Re

(
e−ib/h

2πhψ̂(1)

)
×√

1

(2π)d
exp

(
−‖a‖

2

2

)
dadb.

Then, we can see that, for any x ∈ [0, 1]d, it holds that∣∣∣∣ 1

2DbN1(ADa)
f(x)− fDa(x)

∣∣∣∣
≤ 1

2DbN1(ADa)|2πhψ̂(1)|

[
N1(AcDa)

∫
2 exp(−h−1|x|)dx+

∫
|b|>Db

2 exp(−[h−1(|b| − 2
√
dDa)])db

]

≤ 1

2DbN1(ADa)|2πhψ̂(1)|
[
4hN1(AcDa) + 4h exp(−Da)

]
=

4h

2DbN1(ADa)|2πhψ̂(1)|

[
CdD

2(d−2)
a exp(−D2

a/2) + exp(−Da)
]
,

where Cd > 0 is a constant depending on only d, and we used |a>(x − c) + b| ≥ |b| − |a>(x −
c)| ≥ |b| − 2

√
dDa and ψ(x) ≤ 2 exp(−|x|). Note that if Da = nκ, then the right hand side is

O(h exp(−nκ)). Therefore, since N1(ADa) ≤ 1, by setting τ = h−1Db, C = Db
πh|ψ̂(1)|

, we have
that

inf
ǧ∈conv(F̃(σ)

C,τ )

sup
x∈[0,1]d

∣∣∣∣ǧ(x)− exp

(
−‖x− c‖

2

2h2

)∣∣∣∣
≤ 4

|2πψ̂(1)|

[
CdD

2(d−2)
a exp(−D2

a/2) + exp(−Da)
]
.

Hence, by rewriting Dw ← Da, we obtain the assertion. As noted above, the right hand is
O(exp(−nκ)) if Da = nκ.
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Proof of Theorem 1. For a sample size n, we fix mn which will be determined later and use
Proposition 2 with F◦ = F (n)

γ . If w2,mn = b
√
µγmn/2 with |b| ≤ 1 and w1,m =

µ
γ/2
mn [u;−u>c]/(

√
2(d+ 1)) for u ∈ Rd such that ‖u‖ ≤ 1 and c ∈ [0, 1]d, then

‖(w1,mn , w2,mn)‖2 ≤ µγmn(1/2 + (1 + |u>c|2)/2(d + 1)) ≤ µγmn . Therefore, ϕ̃u,c(x) =

amnw̄2,mnσmn(w>1,mn [x; 1]) = µα1
mn(bµ

γ/2
mn /
√

2)µsα2
mn σ

(
µ
−α2+γ/2
mn u>(x− c)/

√
2(d+ 1)

)
∈

F (n)
γ ⊂ Fγ for all b ∈ R with |b| ≤ 1, u ∈ Rd with ‖u‖ ≤ 1, and c ∈ [0, 1]d. In other words,

µ
α1+γ/2+sα2
mn (2C)−1F (σ)

C,τ ⊂ F
(n)
γ for any C > 0 and τ = 1√

2(d+1)
µ
−α2+γ/2
mn .

Therefore, by setting C = (
√

2d + 1)Dw/(πh|ψ̂(1)|) for Dw > 0, Lemma 1 yields that for any
c ∈ [0, 1]d and given h > 0, there exists g ∈ conv(F (n)

γ ) such that∥∥∥∥∥∥µα1+γ/2+sα2
mn

(
2(
√

2d+ 1)Dw

πh|ψ̂(1)|

)−1

exp

(
−‖ · −c‖

2

2h2

)
− g

∥∥∥∥∥∥
∞

≤ µα1+γ/2+sα2
mn

(
2(
√

2d+ 1)Dw

πh|ψ̂(1)|

)−1
4

|2πψ̂(1)|

[
CdD

2(d−2)
w exp(−D2

w/2) + exp(−Dw)
]

= µα1+γ/2+sα2
mn

h

(
√

2d+ 1)Dw

[
CdD

2(d−2)
a exp(−D2

w/2) + exp(−Dw)
]
.

We let Dw = nκ for any κ > 0 and choose µmn as τ ' µ
−α2+γ/2
mn = Dwh

−1 = h−1nκ. We write

∆ := µ
α1+γ/2+sα2
mn (2C)−1 ' h

α1+sα2+γ/2

α2−γ/2
+1
n
−κ(

α1+sα2+γ/2

α2−γ/2
+1). Then, it holds that∥∥∥∥∆ exp

(
−‖ · −c‖

2

2h2

)
− g
∥∥∥∥
∞

. ∆ exp(−nκ). (9)

Here, we set h as h = 2−k with a positive integer k. Accordingly, we define a partition A of Ω so
that any A ∈ A can be represented as A = [2−kj1, 2

−k(j1 + 1)] × · · · × [2−kjd, 2
−k(jd + 1)] by

non-negative integers 0 ≤ ji ≤ 2k − 1 (i = 1, . . . , d). Note that |A| = 2dk = h−d.

For each A ∈ A, we define cA as cA = (2−k(j1 + 1/2), . . . , 2−k(jd + 1/2))> where (j1, . . . , jd)
is a set of indexes that satisfies A = [2−kj1, 2

−k(j1 + 1)] × · · · × [2−kjd, 2
−k(jd + 1)]. For each

A ∈ A, we define gA ∈ conv(F (n)
γ ) as a function that satisfies Eq. (9) for c = cA.

Now, we apply Proposition 2 with F◦ = conv(F (n)
γ ) and K = K ′ = dk. Let R∗ :=

Rlin(conv(F (n)
γ )). First, we can see that there exits a constant F > 0 such that

gA(x) ≥ F∆ (∀x ∈ A),

where we used exp(−nκ)� 1.

Second, in the event E introduced in the statement of Proposition 2, there exists C such that |{i ∈
{1, . . . , n} | xi ∈ A′}| ≤ Cn/2−dk for all A′ ∈ A. In this case, we can check that

1

n

n∑
i=1

[
∆ exp

(
−‖xi − cA‖

2

2h2

)]2

. ∆2hd = ∆22−kd,

by the uniform continuity of the Gaussian RBF. Therefore, we also have

1

n

n∑
i=1

gA(xi)
2 ≤ 2

n

n∑
i=1

[
∆ exp

(
−‖xi − cA‖

2

2h2

)]2

+ c∆2 exp(−2nκ)

. ∆2(hd + exp(−2nκ)),

where c > 0 is a constant. Thus, as long as h is polynomial to n like h = Θ(n−a), the right hand
side is O(∆2hd).
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Now, if we write

β̃ =
α1 + sα2 + γ/2

α2 − γ/2
+ 1 =

α1 + (s+ 1)α2

α2 − γ/2
,

then we have ∆ ' hβ̃n−κβ̃ by its definition.

Here, we choose k as a maximum integer that satisfies F 3

32 ∆22−dk > R∗. In this situation, it holds
that

h2β̃+dn−2κβ̃ ' R∗.
Since Eq. (8b) is not satisfied, Eq. (8a) must hold, and hence we have

n−1h−d . R∗ ' h2β̃+dn−2κβ̃

⇒ h ' n−
1−2κβ̃

2β̃+2d .

Therefore, we obtain that

R∗ & n
− 2β̃+d

2β̃+2dn
− 2κdβ̃

2β̃+2d

≥ n−
2β̃+d

2β̃+2dn−κ
′
,

by setting κ′ = κ 2dβ̃

2β̃+2d
. This gives the assertion.

B PROOFS OF PROPOSITION 1, THEOREM 2 AND COROLLARY 1

Proposition 1, Theorem 2 and Corollary 1 can be shown by using Propositions 3 and 4 given in
Appendix B.1 shown below.

Let TαW = (µαmw1,m, µ
α
mw2,m)∞m=1 for W = (w1,m, w2,m)∞m=1 for α > 0, and let us consider a

model hW := fT−α/2W . Then, the training error can be rewritten as

L̂(fW ) = L̂(hTα/2W ).

For notational simplicity, we let L̂(W ) := L̂(fW ).

Let H(M) be {W (M) = (w1,m, w2,m)Mm=1 | w1,m ∈ Rd+1, w2,m ∈ R, 1 ≤ m ≤ M} and
ι : H(M) → H be the zero padding of W (M), that is, ι(W (M)) = (w′1,m, w

′
2,m)∞m=1 ∈ H satisfies

w′1,m = w1,m, w
′
2,m = w2,m (m ≤ M) and w′1,m = 0, w′2,m = 0 (m > M). Moreover, we

define ι∗ : H → H(M) as the map that extracts first M components. By abuse of notation, we write
fW (M) for W (M) ∈ H(M) to indicate fι(W (M)). Finally, let A(M) : H(M) → H(M) be a linear
operator such that A(M)W (M) = ι∗(Aι(W (M))), which is just a truncation of A. Similarly, let
T aMW

(M) for W (M) ∈ H(M) be the operator corresponding to T aW for W ∈ H, i.e., T aMW
(M) =

ι∗(T aι(W (M))).

B.1 AUXILIARY LEMMAS

First, we show some key propositions to show the main results. To do so, we utilize the result by
Muzellec et al. (2020) and Suzuki (2020).

Assumption 3.

(i) There exists a constant cµ such that µm ≤ cµm−2.

(ii) There exist B,U > 0 such that the following two inequalities hold for some a ∈ (1/4, 1)
almost surely:

‖∇L̂(W )‖H ≤ B (∀W ∈ H),

‖∇L̂(W )−∇L̂(W ′)‖H ≤ L‖W −W ′‖H−a (∀W,W ′ ∈ H).
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(iii) For any dataDn, L̂ is three times differentiable. Let∇3L̂(W ) be the third-order derivative
of L̂(W ). This can be identified with a third-order linear form and∇3L̂(W )·(h, k) denotes
the Riesz representor of l ∈ H 7→ ∇3L̂(W ) · (h, k, l). There exists α′ ∈ [0, 1), Cα′ ∈
(0,∞) such that ∀W,h, k ∈ H, ‖∇3L̂(W ) · (h, k)‖H−α′ ≤ Cα′‖h‖H‖k‖H, ‖∇

3L̂(W ) ·
(h, k)‖H ≤ Cα′‖h‖Hα′‖k‖H (a.s.).

Remark 1. In the analysis of Bréhier & Kopec (2016); Muzellec et al. (2020); Suzuki (2020),
Assumption 3-(iii) is imposed for any finite dimensional projectionL(W (M)) as a function onH(M))
for all M ≥ 1 instead of L(W ) as a function of H. However, the condition on L(W ) gives a
sufficient condition for any finite dimensional projection in our setting. Thus, we employed the
current version.

Assumption 4. For the loss function `(y, f(x)) = (y − f(x))2, the following conditions holds:

(i) There exists C > 0 such that for any fW (W ∈ H), it holds that

EX,Y [(`(Y, fW (X))− `(Y, f∗(X)))2] ≤ C(L(fW )− L(f∗)).

(ii) β > 0 is chosen so that, for any h : Rd → R and x ∈ supp(PX), it holds that

EY |X=x

[
exp

(
− β

n (`(Y, h(x))− `(Y, f∗(x)))
)]
≤ 1.

(iii) There exists Lh > 0 such that ‖∇W `(Y, hW (X)) − ∇W `(Y, hW ′(X))‖H ≤ Lh‖W −
W ′‖H (∀W,W ′ ∈ H) almost surely.

(iv) There exists Ch such that ‖hW − hW ′‖∞ ≤ Ch‖W −W ′‖H (W,W ′ ∈ H).

Proposition 3. Assume Assumption 3 holds and β > η. Suppose that ∃R̄ > 0, 0 ≤ `(Y, fW (X)) ≤
R̄ for any W ∈ H (a.s.). Let ρ = 1

1+λη/µ1
and b = µ1

λ B +
cµ
βλ . Accordingly, let b̄ = max{b, 1},

κ = b̄+ 1 and V̄ = 4b̄/(
√

(1+ρ1/η)/2−ρ1/η). Then, the spectral gap of the dynamics is given by

Λ∗η =
min

(
λ

2µ1
, 1

2

)
4 log(κ(V̄ + 1)/(1− δ))

δ (10)

where 0 < δ < 1 is a real number satisfying δ = Ω(exp(−Θ(poly(λ−1)β))). We define Λ∗0 =
limη→0 Λ∗η (i.e., V̄ is replaced by 4b̄/(

√
(1+exp(− λ

µ1
))/2−exp(− λ

µ1
))). We also define CW0 = κ[V̄ +

1] +
√

2(R̄+b)√
δ

. Then, for any 0 < a < 1/4, the following convergence bound holds for almost sure

observation Dn: for either L = L or L = L̂,

|EWk
[L(Wk)|Dn]− EW∼π∞ [L(W )|Dn]| (11)

≤ C1

[
CW0

exp(−Λ∗ηηk) +

√
β

Λ∗0
η1/2−a

]
= Ξ′k, (12)

where C1 is a constant depending only on cµ, B, L,Cα′ , a, R̄ (independent of η, k, β, λ).

Proposition 4. Assume that Assumptions 3 and 4 hold. Let α̃ := 1/{2(α + 1)} for a given
α > 0 and θ be an arbitrary real number satisfying 0 < θ < 1 − α̃. Assume that the
true function fo can be represented by hW∗ = fo for W ∗ ∈ Hθ(α+1). Then, if M ≥
min

{
λα̃/2[θ(α+1)]β1/2[θ(α+1)], λ−1/2(α+1), n1/2[θ(α+1)]

}
, the expected excess risk is bounded by

EDn
[
E
W

(M)
k

[L(h
T
α/2
M W

(M)
k

)|Dn]− L(fo)
]

≤ C max
{

(λβ)
2α̃/θ

1+α̃/θ n−
1

1+α̃/θ , λ−α̃β−1, λθ, 1/n
}

+ Ξ′k, (13)

where C is a constant independent of n, β, λ, η, k.

Proof. Repeating the same argument in Proposition 1 and using the same notation, Proposition 3
gives

|E
W

(M)
k

[L(W
(M)
k )|Dn]− E

W∼π(M)
∞

[L(W )|Dn]| ≤ Ξ′k,
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for any 1 ≤ M ≤ ∞. Therefore, we just need to bound the following quantity:∣∣∣EDn [EW (M)∼π(M)
∞

[L(h
T
α/2
M W (M))|Dn]

]
− L(fo)

∣∣∣.
We define ‖W (M)‖H(M) := ‖ι∗(W (M))‖H for W (M) ∈ H(M). For a > 0, we define H(M)

a be
the projection of Ha to the first M components, H(M)

a = {ι(W ) | W ∈ Ha}, and we define
‖W (M)‖H(M)

a
:= ‖ι∗(W (M))‖Ha (note that since H(M)

a is a finite dimensional linear space, it is

same as H as a set). Let ν(M)
β be the Gaussian measure on H(M) with mean 0 and covariance

(βA(M))−1, and ν̃(M)
β be the Gaussian measure corresponding to the random variable Tα/2M W (M)

with W (M) ∼ ν(M)
β . Let the concentration function be

φ
(M)
β,λ (ε) := inf

W∈H(M)
α+1:

L(hW )−L(fo)≤ε2

βλ‖W‖2
H(M)
α+1

− log ν̃
(M)
β ({W ∈ H(M) : ‖W‖H(M) ≤ ε}) + log(2),

where, if there does not exist W ∈ H(M)
α+1 that satisfies the condition inf , then we define φ(M)

β,λ (ε) =
∞, then Let ε∗ > 0 be

ε∗ := max{inf{ε > 0 | φβ,λ(ε) ≤ βε2}, 1/n}.

Then, Suzuki (2020) showed the following bound:∣∣∣∣EDn [EW (M)∼π(M)
∞

[L(h
T
α/2

(M)
W (M))|Dn]− L(fo)

]∣∣∣∣
≤ C max

{
ε∗2,

(
β
nε
∗2 + n−

1
1+α̃/θ (λβ)

2α̃/θ
1+α̃/θ

)
,

1

n

}
. (14)

They also showed that, for M =∞, it holds that

ε∗2 . max
{

(λβ)−α̃β−(1−α̃), λθ, n−1
}

= max
{
λ−α̃β−1, λθ, n−1

}
.

Substituting this bound of ε∗ to Eq. (14), we obtain Eq. (13) for M =∞. Moreover, in their proof,
if M ≥ (ε∗)−1/[θ(α+1)], then

inf
W∈H(M)

α+1:

L(hW )−L(fo)≤ε2

βλ‖W‖2
H(M)
α+1

. β(ε∗)2.

Finally, since ν̃(M)
β is a marginal distribution of ν̃(∞)

β , it holds that

− log ν̃
(M)
β ({W ∈ H(M) : ‖W‖H(M) ≤ ε}) ≤ − log ν̃

(∞)
β ({W ∈ H : ‖W‖H ≤ ε}).

Therefore, as long as M ≥ (ε∗)−1/[θ(α+1)], the rate of ε∗ is not deteriorated from M = ∞. In
other words, if M ≥ min

{
λα̃/2[θ(α+1)]β1/2[θ(α+1)], λ−θ/2[θ(α+1)], n1/2[θ(α+1)]

}
, the bound (13)

holds.

Remark 2. Suzuki (2020) showed Proposition 4 under a condition α > 1/2. However, this is used
only to ensure Assumption 3. In our setting, we can show Assumption 3 holds directly and thus we
may omit the condition α > 1/2.

B.2 PROOFS OF PROPOSITION 1, THEOREM 2 AND COROLLARY 1

Here, we give the proofs of Proposition 1 and Theorem 2 simultaneously.

Proof of Proposition 1 and Theorem 2. Let R̄ = (2
∑∞
m=1 amR + U)2. Then, we can easily check

that (yi − fW (xi))
2 ≤ R̄. As stated above, we use Propositions 3 and 4 to show the statements.

First, we show Proposition 1 for the dynamics of W (M)
k for any 1 ≤ M ≤ ∞. However, it suffices

to show the statement only for M = ∞ because the finite dimensional version can be seen as a

18



Published as a conference paper at ICLR 2021

specific case of the infinite dimensional one. Actually, the dynamics of W (M)
k is same as that of

ι(W̃k) where W̃k ∈ H obeys the following dynamics:

W̃k+1 = Sη

(
W̃k − η∇L̂(fι(W̃k)) +

√
2η

β
ξk

)
.

This is because fι(W̃k) is determined by only the first M components ι(W̃k), ι(∇L̂(fι(W̃k))) =

∇W (M)L̂(fW (M))|W (M)=ι(W̃k) and Sη is a diagonal operator. Since the components of W̃k with
indexes higher than M does not affect the objective, smoothness of the objective is not lost. The
stationary distribution π(M)

∞ of the continuous dynamics corresponding to W (M) is a probability
measure onH(M) that satisfies

dπ
(M)
∞

dν
(M)
β

(W (M)) ∝ exp(−βL̂(fW (M))),

where ν(M)
β is the Gaussian measure on RM×(d+2) with mean 0 and covariance (βA(M))−1. We

can notice that this is the marginal distribution of the stationary distribution of the continuous time
counterpart of W̃k: dπ̃∞(W̃ ) ∝ exp(−βL̂(fι(W̃ )))dνβ . Therefore, we just need to consider an
infinite dimensional one. For this reasoning, we show the convergence for the original infinite
dimensional dynamics (Wk)∞k=1. The convergence of the finite dimensional one (W

(M)
k )∞k=1 can be

shown by the same manner using the argument above.

To show Proposition 1, we use Propositions 3. To do so, we need to check validity of Assumptions
3. First, we check Assumption 3. Assumption 3-(i) is ensured by Assumption 1. Next, we check
Assumption 3-(ii). The boundedness of the gradient can be shown as follows:

‖∇L̂(fW )‖2H

=

∞∑
m=1

(∥∥∥ 1

n

n∑
i=1

2(fW (xi)− yi)w̄2,mam[xi; 1]σ′m(w>1,m[xi; 1])
∥∥∥2

+
∣∣∣ 1
n

n∑
i=1

2(fW (xi)− yi)am tanh′(w2,m/R)σm(w>1,m[xi; 1]))∞m=1

∣∣∣2)
≤
∞∑
m=1

4R̄R2a2
m(d+ 1)C2

σ + 4R̄a2
m

(∵ |fW (xi)− yi| ≤ R̄, ‖σ′m‖∞ ≤ Cσ, ‖ tanh′ ‖∞ ≤ 1)

≤4R̄[R2C2
σ(d+ 1) + 1]

∞∑
m=1

a2
m <∞.

Similarly, we can show the Lipschitz continuity of the gradient as

‖∇L̂(fW )−∇L̂(fW ′)‖2H

≤
∞∑
m=1

µ−2α1
m µ2α1

m

{
4R̄a2

m(d+ 1)C2
σ[(w2,m − w′2,m)2 +R2‖w1,m − w′1,m‖2]

+ 4R̄a2
m[(w2,m − w′2,m)2/R2 + C2

σ(d+ 1)‖w1,m − w′1,m‖2]
}

(∵ ‖ tanh′′ ‖∞ ≤ 1)

≤ 4R̄[(d+ 1)C2
σ(1 +R2) + 1/R2 + C2

σ(d+ 1)] max
m∈N
{µ−2α1

m a2
m}

×
∞∑
m=1

µ2α1
m [(w2,m − w′2,m)2 + ‖w1,m − w′1,m‖2]

. ‖W −W ′‖2H−α1
.

We can also verify Assumption 3-(iii) in a similar way. Then, we have verified Assumption 3.
Therefore, we may apply Proposition 3, and then we obtain Proposition 1.
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Next, we show Theorem 2 by using Proposition 4. For that purpose, we need to we verify Assump-
tion 4. The first condition can be verified as

EX,Y [((Y − fW (X))2 − (Y − fo(X))2)2]

= EX,ε[((f
o(X) + ε− fW (X))2 − ε2)2]

= EX [((fo(X)− fW (X))2 + 2ε(fo(X)− fW (X)))2]

= EX [(fo(X)− fW (X))4 + 2ε(fo(X)− fW (X))(fo(X)− fW (X))2 + ε2(fo(X)− fW (X))2]

= ‖fo − fW ‖2∞EX [(fo(X)− fW (X))2] + U2EX [(fo(X)− fW (X))2]

≤ R̄EX [(fo(X)− fW (X))2] = R̄(L(fW )− L(fo)).

The second condition can be checked as follows. Note that

EY |X=x

(
exp

{
−β
n

[(Y − fW (x))2 − (Y − fo(x))2]

})
= Eε

(
exp

[
−β
n

(fo(x)− fW (x))2 − 2ε(fW (x)− fo(x))]

})
= exp

[
−β
n

(fo(x)− fW (x))2

]
Eε

{
exp

[
2β

n
ε(fW (x)− fo(x))

]}
≤ exp

[
−β
n

(fo(x)− fW (x))2

]
exp

[
1

8

4β2

n2
4U2(fW (x)− fo(x))2

]
.

Thus, under the condition β ≤ n/(2U2), the right hand side can be upper bounded by

exp

[
−β
n

(
1− 2

U2β

n

)
(fW (x)− fo(x))2

]
≤ 1.

Next, we check the third and fourth conditions. Noting that

∇WhW (X)

=
(
am(µ

−α/2
m w2,m)µ−α/2m [xi; 1]σ′m(µ−α/2m w>1,m[xi; 1]),

amµ
−α/2
m tanh′(µ−α/2m w2,m/R)σm(µ−α/2m w>1,m[xi; 1]))∞m=1

)∞
m=1

,

we have that

‖∇WhW (X)‖2H

≤
∞∑
m=1

a2
mµ
−α
m [(d+ 1)R2C2

σ + 1]

≤ [(d+ 1)R2C2
σ + 1]

∞∑
m=1

µ−α+2α1
m

≤ [(d+ 1)R2C2
σ + 1]c−α+2α1

µ

∞∑
m=1

m−2(−α+2α1) =: C1 <∞

(∵ −α+ 2α1 = α1 > 1/2),

and

‖∇WhW (X)−∇WhW ′(X)‖2H

≤
∞∑
m=1

a2
mµ
−α
m (d+ 1)[µ−αm (w2,m − w′2,m)2 +R2µ−αm ‖w1,m − w′1,m‖2]

+ a2
mµ
−α
m [µ−αm (w2,m − w′2,m)2/R2 + C2

σ(d+ 1)µ−αm ‖w1,m − w′1,m‖2]

≤
∞∑
m=1

a2
mµ
−2α
m [(d+ 1)(1 +R2) + 1/R2 + C2

σ(d+ 1)][‖w1,m − w′1,m‖2 + (w2,m − w′2,m)2]
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≤ c2α1
µ max

m
{µ2(α1−α)

m }[(d+ 1)(1 +R2) + 1/R2 + C2
σ(d+ 1)]‖W −W ′‖2H =: C2‖W −W ′‖2H,

for a constant 0 < C2 <∞. Therefore, it holds that

|hW (X)− hW ′(X)|2 ≤ C1‖W −W ′‖2H,

which yields the forth condition, and we also have

‖∇W `(Y, hW (X))−∇W `(Y, hW ′(X))‖2H
=‖2(hW (X)− Y )∇WhW (X)− 2(hW ′(X)− Y )∇WhW ′(X)‖2H
≤2‖2(hW (X)− Y )(∇WhW (X)−∇WhW (X))‖2H

+ 2‖2(hW (X)− hW ′(X))∇WhW ′(X)‖2H
≤ 8R̄C2‖W −W ′‖2H + 8C2

1‖W −W ′‖2H . ‖W −W ′‖2H,

which yields the third condition.

Since fo ∈ Fγ , there exists W ∗ ∈ Hγ such that fo = fW∗ . Therefore, applying Proposition 4 with
α = α1 (α̃ = 1/[2(α1 + 1)]) and θ = γ/(1 + α1) (since γ < 1/2 + α1, the condition θ < 1 − α̃
is satisfied), we obtain that for M ≥ min

{
λ1/4γ(α1+1)β1/2γ , λ−1/2(α1+1), n1/2γ

}
, the following

excess risk bound holds:

EDn
[
E
W

(M)
k

[L(W
(M)
k )|Dn]− L(f∗)

]
. max

{
(λβ)

2α̃/θ
1+α̃/θ n−

1
1+α̃/θ , λ−α̃β−1, λθ, 1/n

}
+ Ξk.

Finally, by noting L(W
(M)
k )− L(f∗) = ‖f

W
(M)
k

− f∗‖2L2(PX), we obtain the assertion.

Finally, we give the proof of Corollary 1.

Proof of Corollary 1. Note that

fW (x)

=

∞∑
m=1

amw̄2,mσm(w>1,m[x; 1])

=

∞∑
m=1

µα1
m w̄2,mµ

qα2
m µ−qα2

m µsα2
m σ(µ−α2

m w>1,m[x; 1]) (∵ am = µα1
m , bm = µα2

m )

=

∞∑
m=1

µα1+qα2
m w̄2,mµ

−(s−q)α2
m σ(µ−α2

m w>1,m[x; 1]).

Therefore, we may redefine α′1 ← α1 +qα2 and s′ ← s−q so that we obtain another representation
of the model Fγ :

Fγ =

{
fW (x) =

∞∑
m=1

µ
α′1
m w̄2,mσ̌m(w>1,m[x; 1])

∣∣∣W ∈ Hγ , ‖W‖Hγ ≤ 1

}
,

where σ̌m(·) = µ−s
′α2

m σ(µ−α2
m ·). Note that the condition 0 ≤ q ≤ s−3 gives s− q ≥ 3. Therefore,

Assumptions 3 and 4 are valid even for the redefined parameters α′1, s′ and σ̌m instead of α1, s and
σm. Therefore, we can apply Theorem 2 by simply replacing α1 by α′1 = α1 + qα2.
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