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Abstract

Imitation from observation (IfO) is a learning paradigm that consists of training
autonomous agents in a Markov Decision Process (MDP) by observing expert
demonstrations without access to its actions. These demonstrations could be
sequences of environment states or raw visual observations of the environment.
Recent work in IfO has focused on this problem in the case of observations of
low-dimensional environment states, however, access to these highly-specific
observations is unlikely in practice. In this paper, we adopt a challenging, but more
realistic problem formulation, learning control policies that operate on a learned
latent space with access only to visual demonstrations of an expert completing a
task. We present BootIfOL, an IfO algorithm that aims to learn a reward function
that takes an agent trajectory and compares it to an expert, providing rewards based
on similarity to agent behavior and implicit goal. We consider this reward function
to be a distance metric between trajectories of agent behavior and learn it via
contrastive learning. The contrastive learning objective aims to closely represent
expert trajectories and to distance them from non-expert trajectories. The set of
non-expert trajectories used in contrastive learning is made progressively more
complex by bootstrapping from roll-outs of the agent learned through RL using the
current reward function. We evaluate our approach on a variety of control tasks
showing that we can train effective policies using a limited number of demonstrative
trajectories, greatly improving on prior approaches that consider raw observations.

1 Introduction

Imitation from Observation (IfO) [24; 17] involves learning a policy function for an agent to solve a
task using a set of demonstrations of an expert performing the same task. Distinct from Imitation
Learning (IL) [12; 20; 18; 2], in IfO, the demonstrations are only sequences of observations of
the environment by the expert. Depending on the environment and the information available to
the agent, an observation can be a description of the environment at a given time (joint angles,
distance between objects, direction vector coordinates, velocity, etc.) provided in the form of a
low-dimensional state vector of the environment, or a raw visual of the environment subject to
further analysis and processing. The advantage of the IfO formalization is that it allows more natural
agent learning scenarios, where difficult-to-acquire precise action data is not available. Furthermore,
it more accurately approximates the way in which humans imitate experts during learning. The
two main methods in the literature that have been used to train IfO problem agents are adversarial
methods and reward learning methods [27]. The adversarial methods [25; 26] adapt ideas from
inverse reinforcement learning [10], proposing a GAN-like architecture [6] where the agent is a
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Figure 1: Illustration of our method. An encoder that takes visual demonstrations of agent trajectories
and embeds them in a "behavioral space" that is trained using contrastive learning. This contrastive
objective encourages successful trajectories to be near each other in latent space. We use this to
encode N expert trajectories in a region of the behavioral space depicted in blue. The reward function
corresponds to the distance of the agent’s trajectory to the set of expert trajectories. As the agent
progresses, its current trajectories are incorporated as "negative" examples for contrast indicated in
red.

trajectory generator associated with a discriminator function that evaluates how similar the state
transitions produced are to that of an expert.

These methods have proven their effectiveness in the case of low-dimensional state observations.
When dealing with high-dimensional visuals, [25] uses a small stack (of size 3) of successive
images to evaluate fake and real data. However, when using high-dimensional visual observations
instead of low-dimensional state sequences, each video transcribes the variations of the system states
without clearly designating the main and critical features that describe the environment. The fact of
reducing the problem to a classification of small sequences limits the capacity of the discriminator to
analyze and identifies these features describing optimal actions. Being able to correctly understand
and represent the system state using environment images is essential to evaluate state transitions.
Moreover, this approach limits the understanding of specific behaviors planning their actions over
long horizons. On the other hand, reward learning methods [14; 17; 3] are based on the training of a
reward function that will be subsequently used to reward an agent while applying a traditional RL
algorithm. The main interest of such an approach is to learn a reward function that measures the
efficiency of the agent actions based on the expert demonstrations. The different reward learning
methods exploit a precise self-supervised learning objective, such as context variation between many
executions [17], which allows the model to converge to a meaningful and efficient reward function
for training the imitating agent.

In this paper, we present BootIfOL, a novel reward learning IfO algorithm that relies on the rep-
resentation of agent behaviors in a latent space using raw pixel-based demonstrations, illustrated
in Figure 1. Unlike adversarial approaches, we use the entire observation sequences with a Long
Short-Term Memory (LSTM) neural network [11] to keep track of the agent’s actions and to represent
the induced behavior of the agent at each sequence timestep. This method directly exploits a limited
set of visual demonstrations from an expert to train an imitating agent, without having access to the
expert policy or actions. Inspired by Berseth et al. [1], we also train the reward function progressively
with new visual trajectories generated by the agent. In contrast to [1], our method trains the trajectory
encoding function on a set of failure trajectories before the agent training starts. This helps to
ensure the consistency of the reward function from the beginning of the agent training. We also use
Contrastive Multiview Coding [23] and Dense Predictive Coding [8] methods for self-supervised
learning of trajectories. Like [17; 1], a reward function is trained by interacting with the environment
to encourage the imitating agent’s behavior to be similar to the behavior of the expert. The motivation
behind this approach is: (1) To learn and estimate, at each timestep, the system state using the agent’s
visual observations (knowing that the real system state is not accessible); (2) To identify the behavior
induced by the agent over a certain period of task execution and make sure that this behavior serves
the same purpose as the expert. Our method also demonstrates the interest in a first-round training
of the trajectory encoding function in order to provide meaningful rewards to the agent from the
beginning of its training, contrary to other similar reward learning methods that bypass this step. Our
method successfully solves a range of tasks in the Deepmind Control Suite [22] and the Meta-world
environment [30], approaching episodic rewards of task experts.
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Figure 2: Training architecture of the imitation functions. For each episode, the video is decomposed
in the Lab color space, constituting the L and ab views. Each frame is encoded by gθ and decoded by
qγ . The resulting state sequence s0, ..., st is encoded using the LSTM fω to provide the sequence
encoding zt. zt is then processed by dϕ and fω to predict future image encodings.

2 Method
Agent training We aim to train an agent to perform a task only using a set of videosDe of an expert
performing the same task many times. Our proposal is based on the trajectory matching objective,
which consists of training the agent to have a trajectory similar to that of the expert. In other words,
the only information we seek to extract from the expert’s videos is its behavior. Our algorithm is
divided into two phases, an Alignment Phase and an Interactive Phase. During the Alignment Phase,
we learn a sequence encoding function fω , which encodes sequence of frames of an agent trajectory,
and an associated distance metric between two sequences of two agent trajectories. We also jointly
train an image encoding function gθ. Note that this image encoding function gθ can also be replaced
by a pre-trained encoder. We discuss the impact of this replacement in Section 3. In the Alignment
Phase, we only use trajectories coming from two distributions: the distribution of expert’s trajectories
O ∼ p(De), and a distribution of trajectories O ∼ p(Da) generated by a randomly defined policy
function. During the Interactive Phase, we learn the agent policy π using a standard Reinforcement
Learning (RL) algorithm [21]. To obtain the reward we use the learned distance (trained during the
Alignment Phase) between sequence encodings of the expert and the current agent. Critically, we
fine-tune the image and sequence encoding functions with additional visual observations from our
online interactions with the environment. In this work, we use DrQ-v2 [29] RL algorithm to train
the agent policy, π, and its associated q-value function, Q, though our method is agnostic to the
choice of the RL algorithm. Specifically, in the Interactive Phase at each new episode of the agent,
we sample an expert episode Oe ∼ p(De) that acts as a reference expert policy. At each agent step, t,
we evaluate the distance between o0:t, the agent’s trajectory until the step t, and oe,0:t the expert’s
trajectory until t by d(o0:t, oe,0:t) = ||fω(gθ(o0:t)) − fω(gθ(oe,0:t))||. The reward assigned to the
agent at this step is finally rt = −d(o0:t, oe,0:t). The function fω from the Alignment Phase is trained
only on expert trajectories and random trajectories, thus as the policy of the agent improves, the
distribution of agent trajectories will change, making the distances produced inconsistent due to the
shift of the trajectory distribution. In order to fix this in the Interactive Phase, we continue to update
fω and gθ on the new trajectories generated by the agent during the training of π. In Paragraph 3, we
discuss the necessity of the Alignment Phase before training the agent. The full training process is
detailed in Algorithm 1.

Image encoding We aim to encode videos (observation trajectories) and thus we need to find
encodings of individual frames. Although a pre-trained image model may be used, a suitable one is
not always available or appropriate (e.g. too expensive for the task). Thus we propose and evaluate
learning the image encodings along with the sequence encodings. The image level objective contains
three terms: (1) Ltriplet which enforces image encodings similarity of adjacent frames, (2) Lae which
permits the encoding to be decoded back to an image, and finally (3) we learn a contrastive multiview
encoding following [23] based on a Lab color space [4] image representation. The first term Ltriplet

compares the distance between an anchor image o, a positive image op temporally close to the anchor,
and a negative image on distant from the anchor image in the sequence:

Ltriplet(θ) = ||s− sp||2 +max(ρ− ||s− sn||2, 0) (1)
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Algorithm 1: Imitation from observation with bootstrapped contrastive learning

De = {Oi
e}1≤i≤N = {(oie,0, oie,1, ..., oie,T )}1≤i≤N

Initialize fω, gθ, qγ , dϕ
// Alignment Phase: Training f, g

while k ≤ Npretrain do
{Oi

e}1≤i≤n ← sample(De)
{Oi}1≤i≤n ← πrandom(env)
Eval. L(θ, γ, ω, ϕ) with ({Oi

e}, {Oi})
Optimize θ, γ, ω, ϕ

end
// Interactive Phase: Training π, Q, f, g

Initialize Da = {}
Initialize D = {}, Q, π // Replay buffer, Q-value function, policy
while step ≤ Nπ do

Oe ← sample(De)
o0 ← env.reset()
for t ∈ 0, .., T − 1 do

at ← π(ot)
ot+1 ← env.step(at)
rt+1 ← −||f(o0:t+1)− f(oe,0:t+1)||
Save (ot, at, ot+1, rt+1) into D
(o, a, o′, r)← sample(D)
Using DrQ-v2 update Q,π with (o, a, o′, r)

end
if (step ≤ Ntrain) and
(step mod Nupdate = 0) then

Save O = {o0:t+1} into Da

{Oi
e}1≤i≤n ← sample(De)

{Oi}1≤i≤n ← sample(Da)
Eval. L(θ, γ, ω, ϕ) with ({Oi

e}, {Oi})
Optimize θ, γ, ω, ϕ

end
end

where s = gθ(o), sp = gθ(op). The training objective of the auto-encoder is then to minimize
the loss function Lae(θ, γ) = ||o − qγ(gθ(o))||2. Finally, we incorporate contrastive multiview
coding to enrich the visual representations following [23]. Specifically we consider the color space
transformation {R,G,B} → {L, ab} where: (1) the component L is the view v1, processed by the
CNN gθ1 , (2) the component ab is the view v2 processed by gθ2 . The final encoding s of an image o
is given by s = gθ(o) = [gθ1(v1), gθ2(v2)]. Following the formulation [23], we align the different
views using a contrastive learning loss denoted LS . This process is illustrated in Figure 2. Overall,
the objective function to be minimized for the training of the image encoding function is:

Lframe(θ, γ) = LS(θ) + Ltriplet(θ) + Lae(θ, γ) (2)

Sequence encoding In order to allow us to construct a reward function, we learn to represent
a sequence of frames [7; 8] with a semantically meaningful distance between them. We use two
losses: (1) LZ a standard video representation learning approach Dense Predictive Coding (DPC) [8];
(2) and LO bootstrapped expert behavior loss, which encourages separation between expert and
non-expert trajectories. The loss, LO, lies at the heart of our method and allows the sequence
representation to gradually improve as non-expert trajectories improve. DPC is a self-supervised
learning method based on the surrogate task of predicting the next frame using the sequence of
previous frames as input. Let us consider a dataset of videos D = {Oi}1≤i≤N = {oi0:T }1≤i≤N .
Denote, dϕ, which from an encoding zt of a sequence of states s0:t, predicts the next state ŝt+1 of the
sequence. Following [8] we can use this for spatio-temporal representation learning. We first predict
the next state ŝt+1 = dϕ(fω(s1, . . . , st)) and subsequently use this to predict additional K-1 states
ŝt+k = dϕ(fω(s1, . . . , st, ŝt+1, · · · , ŝt+k−1)). We then apply the learning objective to minimize the
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loss function LZ given by:

LZ(θ, ω, ϕ) = − E
o0:T

 1

K

∑
1≤k≤K

Lt+k

 (3)

Lt = log
h(ŝt, st)

h(ŝt, st) +
∑
t′ ̸=t

h(ŝt, st′)
(4)

where h(a, b) = exp( aT b
τ∥a∥∥b∥ ) and τ is the temperature parameter. Indeed, the loss function is also a

contrastive loss function where the positive pairs are (ŝt, st) and the negative pairs are (ŝt, st′)t ̸=t′

in the same demonstration. To bring sequences from the same distribution closer together, we use
another contrastive loss that applies to the sequence encoding vectors z returned by fω. Thus, for a
sequence O belonging to one of the two trajectory distributions, we consider a positive sequence Op

of the same distribution and k negative {On,i}1≤i≤k of different distributions. The objective function
to be minimized is LO:

LO(θ, ω) = − E
(O,Op,{On,i})

log h(z, zp)
h(z, zp) +

∑
i

h(z, zn,i)

 (5)

z = fω(gθ(o0), . . . , gθ(oT )) (6)
The objective function that we seek to minimize to train the sequence encoding function is
Lseq(θ, ω, ϕ) = LZ(θ, ω, ϕ) + LO(θ, ω). Finally, for a triplet (O,Op, {On,i}1≤i≤k), the frames
used to evaluate Lframe come from the sequences of the sample, allowing us to compute the objective
loss function L(θ, γ, ω, ϕ) = Lframe(θ, γ) + Lseq(θ, ω, ϕ).

3 Experiments
We evaluate our method using a diverse set of continuous control tasks including 4 tasks (Reacher
Hard, Finger Turn Easy, Hopper Stand, and Walker Run) from the DM Control Suite [22] and 3 tasks
(Button Press, Plate Slide, Drawer Close) from the Meta-world environment [30]. The DM Control
tasks require our agent to learn to coordinate multiple torque-controlled actuators. The Meta-world
end-effector is controlled in a 3DOF task space with a 1DOF parallel jaw gripper modeled on a
Sawyer Robot Arm. This environment setting requires our agent to learn to manipulate external
objects with complex physical interactions with the world. In these manipulation tasks, we now have
to model the robot and object-object interactions, such as in the case of Button Press and Drawer
Close where the constrained object joint must be activated along a single axis. Below we describe the
network architecture, details of our training procedures, and the results on these two datasets. All
episode trajectories begin from randomized starting states of the robot and interactive objects (when
applicable).

Network architectures Our image encoder function gθ consists of a pair of convolutional neural
networks gθ1 and gθ2 . These models are of similar architectures, but the number of input channels
is 1 for gθ1 and 2 for gθ2 . We re-use the encoder architecture proposed by [17]. The architecture is
a succession of four 5 × 5 stride-2 convolutional layers with 64, 128, 256, and 512 filters. These
convolutional layers are followed by two 1× 1 convolutional layers of 512 and 128 filters. All layers
before the last are followed by BatchNorm [13] and a Leaky ReLU [9] activation function (leak = 2).
The image decoding function qγ has an inverse architecture to the encoder, except that transposed
convolutional layers are employed for the last 4 layers. Additional network details are presented in
Tables 3 and 4 in Appendix A. The sequence encoder function, fω, is a 2-layer LSTM with 128 as
input and output sizes. The output sequence is followed by a fully connected layer with input and
output size of 128. The next-state predictor is a sequence of two 128× 128 fully connected layers
with Leaky ReLU activation between the two layers. We employ an image encoding function, gθ,
to learn a latent representation from high-dimensional observations. This function is trained with a
self-supervised method that combines different surrogate objectives. However, much modern research
[5; 28; 19] has shown the benefit of using pre-trained or foundation models trained on a large corpus
for downstream tasks. We illustrate the opportunity of using this strategy with our setup by employing
EfficientNet [23], a convolutional model trained on ImageNet, as a backbone image encoder. In this
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Expert
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(b) Drawer Close

Figure 3: Comparison of the actions taken between an expert (top row) policy and imitation agent
(bottom) learned using our proposal. We show learned agents in Hopper Stand and Drawer Close with
the same initial conditions. Observe that for Hopper Stand the agent behavior of our learned agent
is very similar to that of an expert. For Drawer Close although the learned agent takes a different
trajectory than the expert(e.g. keeping the gripper wider open) it is able to solve the task.

setting, the function gθ is composed of the backbone model with the weights frozen followed by a
3-layer multilayer perceptron (MLP) of size 1280× 512× 128 with trainable parameters. Though
we utilize EfficientNet-B0 as a backbone, there are many reasonable choices for pre-trained encoders.

Training: Alignment Phase For each task, we build a dataset of expert episodic trajectories
with colored image observations at each timestep by running a trained RL agent and rendering
visual images of the environment as needed. We also build a second dataset of trajectories with a
randomly defined policy using the same process. In this work, we employ DrQ-v2 agents as our
experts for imitation, though any reasonable expert (image-based RL, planning agents, human, or
animal experts) could be used since we do not need access to the state of the agent. In the case,
where we train an image encoder from scratch (BootIfOL), the demonstration datasets De and Da,
of size 5000 × 51 × 64 × 64 (trajectory × timestep × height × width), are used as input. In Eff-
BootIfOL, where we leverage large-scale pre-training, we utilize smaller datasets of demonstrations
for finetuning: 1500× 61× 224× 224 (trajectory × timestep × height × width).

Training: Interactive Phase The parameters of the encoding functions are updated during Ntrain =
375K training steps of the Interactive Phase. After these training steps, the parameters of the encoding
functions are frozen. Our RL agent training is performed over Nπ = 1550K training steps. We
employ DrQ-v2 [29], an image-based RL agent based off of the DDPG [16] architecture, as our RL
policy learner with default hyperparameters. Additional hyperparameters are available in Table 7.

General results We perform the training on the Reacher Hard, Finger Turn Easy, Hopper Stand,
and Walker Run tasks from the Deepmind Control Suite [22]. We compare our algorithm to the
Context Translation (CT) [17] method for IfO by varying the number n of expert trajectory samples
used at each training episode to predict the CT agent trajectory. We also baseline against ViRL [1]
and GAIfO [25]. Demonstrated across 4 tasks in DM Control, our method shows strong performance
in learning to complete tasks given visual demonstrations as shown in Table 1, where GAIfO showed
poor performance on all tasks. To facilitate the comparison, we have scaled the average returns
between 0 and 1 in Table 1. The expert has the highest average return, one, and the average return of
the random agent is zero. We present the non-scaled absolute values in Appendix B. We also show
promising results in complex visual scenes by employing a pre-trained backbone on Meta-world
environments as shown in Table 2. Average episodic returns over RL training in the Interactive Phase
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Table 1: Evaluation of the average return over 500-step episodes of agents trained with the Context
translation (CT) [17] and ViRL [1] algorithms. We evaluate the agents on the Reacher Hard, Finger
Turn Easy, Hopper Stand, and Walker Run tasks. For 3 of the environments our approach exceeds the
existing methods by a wide margin. For Reacher Hard we are able to achieve rewards on par with the
Expert policy, while our comparison methods completely fail to learn good policies. Though this is
a fairly simple control problem (a visual version of inverse kinematics), the distribution of starting
states and goals is fairly large compared to other tasks we look at. Our technique of training with
failure demonstrations is particularly advantageous in this setting as we see more of the state space.
Returns in this table are scaled so that the average expert return is one and the average random return
is zero.

Agent Avg. return
Reacher Hard Finger turn easy Hopper Stand Walker Run

BootIfOL (ours) 0.99 0.13 0.74 0.06
ViRL 0.0 0.08 0.58 0.0
CT (n=10) 0.10 0.18 0.0 0.0
CT (n=1) 0.04 0.13 0.0 0.03
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Figure 4: Average returns throughout agent training in Interactive Phase compared to CT and ViRL
agents on Reacher Hard and Hopper Stand tasks. We observe that agent progresses quickly in both
cases as compared to other baselines. Although ViRL is able to do well in Hopper Stand, it is unable
to tackle all environments (e.g. Reacher Hard).

are presented in Figure 4. We show visual examples of our agents acting in Hopper Stand and Drawer
Close tasks in Figure 3. We present the examples for other tasks in Figure 9 and describe them in
Appendix E. We observe that in tasks such as Walker Run, where a great degree of coordination
between joints is necessary to control the robot, IfO agents struggle to reach even 10% of the expert’s
reward (see Table 1).

Table 2: Evaluation of the average return over 500-step episodes of our agent (BootIfOL) where the
encoder was trained from scratch and an agent which exploited EfficientNet-B0 [19] as a backbone
model (Eff-BootIfOL). We evaluate these agents on the manipulation tasks: Button Press, Plate Slide,
and Drawer Close in the Meta-world simulator [30]. The returns are scaled so that the average expert
return is one and the average random return is zero. We observe that on this challenging visual
environment a pre-trained image representation is needed to obtain maximum performance. We note
other baselines are unable to tackle this environment, while our method is able to obtain close to
expert performance in some tasks (Button Press and Drawer Close) and non-trivial performance in
others (Plate Slide). We present the non-scaled absolute values in Table 6 in Appendix B.

Agent Avg. return
Button Press Plate Slide Drawer Close

Eff-BootIfOL (ours) 0.70 0.25 0.91
BootIfOL (ours) 0.0 0.25 0.53
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Figure 5: Ablating the effect of the encoding functions’ training in the Alignment Phase (described
in Section 2) on the final performance of the agent on the Reacher Hard task. alignment is our
initial model with the Alignment Phase executed; no-alignment and no-alignment-1550K-step are
the models without execution of the Alignment Phase. In no-alignment-1550K-step, the encoding
functions are updated continuously until the end of the agent’s training.

Results of Evaluation on Meta-World Considering the Meta-world environment [30], we study
precisely the importance of a pre-trained convolutional network as a feature extraction model. The
visual complexity offered by Meta-world tasks allows us to evaluate the relevance of an accurate
image encoder during the training of the encoding functions. We evaluate our new agent, trained
with a learned distance metric using a pre-trained image encoding, as described in the Network
Architectures section ( 3), on the tasks Button Press, Drawer Close, and Plate Slide of the Meta-world
environment. In Table 2, we compare the average return of this agent with our initial agent. The
results in Table 2 demonstrate the importance of the image encoding function for the effectiveness of
the learned distance metric. In particular, these results show that the success of the reward function
learning depends on the level of accuracy in the interpretation of each frame. We observe a particularly
weak result concerning the Plate Slide task. We hypothesize that this failure is due to a difficulty
related to the sequence encoding function, which has a different role. Despite the accuracy of the
feature extractor, the task remains difficult to imitate by our agent.

Ablating the Alignment Phase In our algorithm, we integrate the Alignment Phase, described in
Section 2, allowing us to bootstrap the encoding functions f and g on two trajectory distributions: (1)
Expert’s trajectories, (2) random trajectories. This particularity is not present in most methods such
as GAN-like approaches. We hypothesize that providing, from the beginning of the agent’s training,
significant and consistent rewards offers an important gain on the search for the optimal imitation
policy. We evaluate the importance of this step by removing the Alignment Phase in two ways: (1)
the encoding functions are trained during 375K total training steps (standard case) in the Interactive
Phase; (2) the encoding functions are trained during all the agent’s training in the Interactive Phase
(similarly to ViRL and GAIfO). We present the results of this experiment in Figure 5. We observe
that the use of the alignment phase leads to drastically better performance, highlighting this as a
critical phase. Although training these for the full interactive phase can lead to some progress, it is
not nearly as efficient as the bootstrapped approach that includes the Alignment Phase.

Ablating the use of a Learned Image-Encoder for RL To date, in our experiments, the RL agent
is learned through a dissociate policy function π and q-value function Q as proposed [29]. In this
architecture, the policy function π is composed of a CNN E that internally encodes the observation
images, followed by an MLP that feeds the image encodings to return actions. E is shared between
the policy pi and the associated q value function Q, which feeds encoding-action pairs to return
q-values. A natural question is whether we can directly link our learned image encoding function gθ
to pi and Q by dropping the CNN E. The interest of this approach is to transfer the learning of the g
to the agent in order to learn directly the extracted features. We know that in modern RL approaches,
using low-dimensional state vectors generally improves agent performance and efficiency, because of
higher precision in the description of the state. We are interested in learning if our learned observation
feature descriptions - optimized with a pixel-based reconstruction loss - provide enough information
about the state to enable an RL policy to learn efficient and quality control policies without needing
access to either the true simulator state or raw pixels. Specifically, we replace E with an MLP shared
between π and Q. The image encodings returned by g are the input data of the MLP E. Note in this
experiment we freeze the parameters of gθ with respect to the RL update and call this ablation the
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(a) Evaluation of the Encoding-Based Agent
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(b) Evaluation of the encoder training duration

Figure 6: Ablation studies. We show the average return of the agent on the Reacher Hard task over
5 episodes of 60 steps. On the left in 6a We evaluate whether we can re-use the image encoding
CNN from our imitation function for policy learning (encoding-based) or whether the RL agent
should optimize a new image encoding network (image-based). We observe that attempting to use
the encodings from BootIfOL directly in the policy network (encoding-based) degrades performance.
On the right 6b we evaluate the agent with respect to the training duration of the encoding functions.
If they are not trained after the Alignment Phase (0-step), the rewards are non-informative. Similarly,
if we continue to train them as the agent begins to converge to a strong policy, they can degrade the
reward signal.

encoding-based agent. We present in Figure 6a the average return of the original image-based agent
and the encoding-based agent on the Reacher Hard task over training. This leads us to believe that
the image encodings returned by g present biases that limit the understanding of the environment
by the policy, thus preventing this policy from achieving performance similar to agents with access
to image-based states directly. We suppose that this bias is because g and f are trained jointly with
learning objectives that are not optimized for the policy function.

Effect of Encoder Training Length in Interactive Phase In the Interactive Phase, we train
the trajectory and image encodings for Ntrain steps before switching to only using a standard RL
algorithm. We now study how the length of this phase affects the final reward reached by the
agent. We evaluated our algorithm with Ntrain set to a period of 0, 100K, 375K, and 1550K total
training steps. Updates to encoder parameters happen every Nupdate = 50 steps. The results of
these experiments on the Reacher Hard task are presented in Figure 6b. We observe that when the
encoding functions are not updated during the Interactive Phase, learning does not proceed, as the
rewards provided by the Alignment Phase are not sufficient. Increasing the number of Ntrain steps
initially has a positive effect on average returns per episode, reaching close to the expert return per
episode in the case of Ntrain = 375K steps. However, when the encoding functions are not frozen
training during the Interactive Phase, the learned reward function becomes brittle due to changing
state encoding. Thus we observe that Ntrain = 1550K steps eventually led to a collapse in the policy.

4 Conclusion
We present a new method of Imitation from Observation that relies on the encoding of agent behavior
using exemplar demonstrations from visual observations. This method uses self-supervised learning of
states and sequences to progressively train a reward function for use by a reinforcement learning agent.
We demonstrate the strength of this method on a set of 7 simulated robotic tasks which have access to
a limited set of expert demonstrations. We note that our adopted problem framework: imitation from
image observations, though important for its potential practical applications, is challenging from both
the computational and observational perspectives for tasks that require precise control. In this paper,
we explore this challenge by training our agents with access to information from task-specific and
pre-trained image encoders and show that the fidelity of the encoding function is critically important
for downstream control tasks. Our approach to increase the performance of the learned representation
is to keep the data generated by the agent during the Interactive Phase. In future work, we see
expanding the sequence optimization functions so that they evaluate not just the two agent trajectory
distributions we have now (expert and non-expert), but distributions of many performance levels
which are generated as the agent trains.
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A Neural network architectures

Table 3: Architecture of convolutional neural networks gθ1 and gtheta2
. C is the number of channels

of the output matrix at each layer. K is the size of the convolution kernel at each layer. S is the stride
of the convolution operation. P is the padding added initially to the input matrix.

Encoder network

Layer C K S P

Image (64× 64) 1,2 - - -
Conv + BNorm + LReLU 64 5 2 0
Conv + BNorm + LReLU 128 5 2 0
Conv + BNorm + LReLU 256 5 2 0
Conv + BNorm + LReLU 512 5 2 0
Conv + BNorm + LReLU 512 1 1 0

Conv 128 1 1 0

Table 4: Architecture of the image decoding function qγ based on transposed convolution operations.
C is the number of channels of the output matrix at each layer. K is the size of the convolution kernel
at each layer. S is the stride of the convolution operation. OP is the padding added to the output
matrix. The padding added to the input matrix is always 0.

Decoder network

Layer C K S OP

Image encoding (1× 1) 128 - -
Conv + LReLU 512 1 1 0

Conv + BNorm + LReLU 512 1 1 0
TConv + BNorm + LReLU 256 5 2 0
TConv + BNorm + LReLU 128 5 2 0
TConv + BNorm + LReLU 64 5 2 1

TConv 3 5 2 1

B Estimation of our models and baselines with absolute average episodic
return

We detail in Tables 5 and 6 the non-scaled average episodic returns of our models and baselines on
each of the 7 tasks of the experiments.

C Encoding function losses

During the alignment phase, we evaluate the intermediary loss terms LZ , Lseq , Lae and Ltriplet, on
the expert trajectories and random trajectories. These different functions are used to bootstrap the
encoding functions for the next phase and each have a well-defined learning objective as explained in
Section 2. We detail the evolution of these loss terms during the alignment phase in Figure 8. In the
interactive phase, during the training of the imitation agent, the encoding functions are progressively
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Table 5: Evaluation of the average return over 500-step episodes of agents trained with the Context
translation (CT) [17] and ViRL [1] algorithms. We evaluate the agents on the Reacher Hard, Finger
Turn Easy, Hopper Stand, and Walker Run tasks.

Agent Avg. return
Reacher Hard Finger turn easy Hopper Stand Walker Run

Expert 850.52± 315.70 893.44± 219.75 880.93± 76.89 789.77± 17.25

BootIfOL (ours) 843.16 ± 274.84 199.76± 399.02 651.33 ± 362.95 79.50 ± 1.25
ViRL 0.44± 1.27 160.2± 366.52 516.27± 417.21 29.31± 24.72
CT (n=10) 97.84± 254.52 238.92 ± 422.07 1.42± 3.22 25.15± 18.71
CT (n=1) 38.04± 127.53 199.48± 396.99 1.01± 1.71 52.42± 34.28
Random 6.64± 16.94 92.6± 202.68 2.44± 5.19 29.93± 4.52

Table 6: Evaluation of the average return over 500-step episodes of our agent (BootIfOL) where the
encoder was trained from scratch and an agent which exploited EfficientNet-B [19]0 as a backbone
model (Eff-BootIfOL). We evaluate these agents on the manipulation tasks: Button Press, Plate Slide,
and Drawer Close in the Meta-world simulator [30].

Agent Avg. return
Button Press Plate Slide Drawer Close

Expert 556.06± 6.46 734.56± 172.51 4223.65± 21.14

Eff-BootIfOL (ours) 434.39 ± 139.74 340.45± 46.56 3949.90 ± 681.42
BootIfOL (ours) 146.56± 17.71 342.40 ± 93.08 2847.10± 1679.56
Random 153.29± 51.68 209.12± 87.38 409.07± 1288.89
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Figure 7: Loss term Lseq throughout the Interactive Phase during which the agent is trained as
described in Section 2. The effect of the RL agent learning in the environment is seen in this plot.

trained on the new trajectories of the agent and on the initial expert trajectories. We present in the
Figure 7, the evolution of Lseq loss function. We can see a slight tendency for Lseq to increase. This
effect is due to the sequence encoding function, which is increasingly unable to distinguish expert
sequences from agent sequences.

D Hyperparameters

Hyperparameters of our method and the default values are presented in Table 7.

E Demonstrations

We present in Figure 9, examples of the execution of each of the tasks by the expert and the agent,
under the same initial conditions.
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(a) Evaluation of LZ
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(b) Evaluation of Lseq
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(c) Evaluation of Lae
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(d) Evaluation of Ltriplet

Figure 8: Evolution of the loss terms LZ , Lseq , Lae and Ltriplet during the training of the encoding
functions gθ and fω in the Alignment Phase.

Table 7: Hyperparameters

Parameter Value

Number of expert trajectories (BootIfOL) (N ) 5000
Number of expert trajectories (Eff-BootIfOL) (N ) 1500
Number of frames in each trajectory (BootIfOL) (T ) 61
Number of frames in each trajectory (Eff-BootIfOL) (T ) 51
Size of images (BootIfOL) 64× 64
Size of images (Eff-BootIfOL) 224× 224
Number epochs during the Alignment Phase (Npretrain) 8000
Number of videos per batch (n) 16× 2 (pairs)
Total number of training steps during which encoders are trained (Ntrain) 375K
Periodicity of encoder parameter update (in training step) (Nupdate) 50
Total number of agent training steps (Nπ) 1.55 M
Learning rate 1× 10−4

Optimizer Adam [15]
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(a) Reacher Hard

(b) Finger Turn

(c) Walker Run

(d) Button Press

Figure 9: Comparison of the actions between expert and agent in each task and in the same initial
conditions.
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