
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVED LOCALIZED MACHINE UNLEARNING
THROUGH THE LENS OF MEMORIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine unlearning refers to removing the influence of a specified subset of training
data from a machine learning model, efficiently, after it has already been trained.
This is important for key applications, including making the model more accurate by
removing outdated, mislabeled, or poisoned data. In this work, we study localized
unlearning, where the unlearning algorithm operates on a (small) identified subset
of parameters. Drawing inspiration from the memorization literature, we propose
an improved localization strategy that yields strong results when paired with
existing unlearning algorithms. We also propose a new unlearning algorithm,
Deletion by Example Localization (DEL), that resets the parameters deemed-to-be
most critical according to our localization strategy, and then finetunes them. Our
extensive experiments on different datasets, forget sets and metrics reveal that DEL
sets a new state-of-the-art for unlearning metrics, against both localized and full-
parameter methods, while modifying a small subset of parameters, and outperforms
the state-of-the-art localized unlearning in terms of test accuracy too.

1 INTRODUCTION

Machine unlearning, coined by Cao & Yang (2015), is the problem of removing from a trained
model (the influence of) a subset of its original training dataset. While unlearning is a young area of
research, it has recently attracted a lot of attention (Triantafillou et al., 2024). Example applications
of unlearning include keeping models up-to-date or improving their quality by deleting training data
that is identified post-training as being outdated, mislabeled or poisoned.

Unlearning is a challenging problem in deep neural networks since they are highly non-convex,
preventing us from easily quantifying the influence of different training examples on the trained
weights. As a straightforward solution to unlearning a given “forget set”, one can simply retrain the
model from scratch on an adjusted training dataset that excludes that set. This approach implements
exact unlearning, guaranteeing that the resulting model has no influence from the forget set. However,
this approach can be prohibitively computationally expensive. Instead, a burgeoning area of research
has emerged that designs methods to post-process the trained model to attempt to approximately erase
the influence of the forget set, efficiently. This post-processing introduces a challenging balancing act,
as imperfect attempts at removing some training examples after-the-fact may accidentally damage
the model and overly reduce its utility (e.g. accuracy on the remainder of the training data or
generalization ability). Therefore, designing successful approximate unlearning methods involves
navigating trade-offs between i) forgetting as well as possible, ii) utility, and iii) efficiency.

We hypothesize that localized unlearning, where the unlearning algorithm operates on only a (small)
subset of the parameters, is a promising avenue for striking a good balance in the above trade-offs.
Specifically, modifying a (appropriately chosen) small fraction of the weights may be intuitively less
likely to overly damage the network’s utility (e.g. generalization capabilities) and more likely to be
efficient, since fewer parameters are subject to modification. However, the success of such a localized
approach hinges on the ability to identify the right subset of parameters to perform unlearning on. In
this work, we take a deep dive into different localization strategies, drawing inspiration specifically
from hypotheses formulated about where in the network training data is “memorized” 1.

1We intend here a very restricted definition of “memorization” in the context of classification models, which
do not provide generative outputs. In this context, memorization relates to a data element contributing to the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Indeed, a closely-related research community has been studying memorization in neural networks.
Informally, a training example is memorized by a model if that model’s predictions on that example
would have been different had the example not been included in the training set (Feldman, 2020;
Pruthi et al., 2020). As we discuss later, this notion is closely tied to unlearning. In this work, we
investigate whether hypotheses for where memorization happens give rise to improved localized
unlearning, through informing which parts of the network we should act on in order to unlearn a
given set of examples. Our contributions can be summarized as follows:

• We leverage hypotheses for where memorization occurs to derive strategies that pinpoint a
minimal set of parameters that the unlearning algorithm should act on; and we investigate
their strengths and weaknesses. We find that data-agnostic strategies are a poor choice:
they either achieve good unlearning performance at the expense of utility, or the other way
around, but not both. We aim to improve on this via data-dependent approaches that target a
small fraction of the parameters chosen based on the particular forget set.

• Our insights from a thorough investigation led us to propose a practical localization strategy
inspired by the memorization localization algorithm of Maini et al. (2023) that is more
efficient than that algorithm and, when paired with various unlearning algorithms from the
literature, outperforms prior work in terms of unlearning and utility metrics.

• We propose a new localized unlearning algorithm, Deletion by Example Localization (DEL),
by pairing our localization strategy with the simple approach of resetting the deemed-to-be
critical parameters and then finetuning the newly reinitialized parameters.

• DEL outperforms the state-of-the-art localized and full-parameter methods on unlearning
efficacy, and all localized methods on utility too, on different forget sets and datasets. Unlike
other strategies, DEL can achieve strong results for several different parameter budgets.

2 BACKGROUND

We begin by introducing the notation we will use in this paper and defining key concepts.

Let Dtrain denote a training dataset and A a (possibly randomized) training algorithm. Then, we
denote by θo = A(Dtrain) the parameters obtained by training on Dtrain using A. We will refer to θo
as the “original model”, i.e. the model before any unlearning takes place. We will study algorithms
for “unlearning” a subset S ⊂ Dtrain, referred to as the forget set. We refer to Dtrain \ S , the remainder
of the training data, as the retain set. While different variations are possible, we assume for simplicity
that the unlearning algorithm U has access to both the forget set and the retain set.

2.1 UNLEARNING

In this section, we define unlearning intuitively in a way that faithfully reflects the standard metrics
used in the community that we also adopt for evaluation; see Section A.1 for an alternative definition.

Definition 2.1. Unlearning. For a given algorithm A and dataset Dtrain, an algorithm U is said
to unlearn a forget set S if the unlearned model U(θo,S,Dtrain \ S) and the “retrained model”
A(Dtrain \ S) have the same distribution of outputs on S.

The above compares the (distribution of) outputs of the models obtained by two different recipes.
The first is A(Dtrain \ S), retraining “from scratch” on only the retain set, which is prohibitively
expensive but ideal from the standpoint of eliminating the influence of S on the model. The second is
U(θo,S,Dtrain \ S), applying U to post-process the original model θo in order to unlearn S.

In the above, we refer to “distributions” of outputs since re-running either of the two recipes with a
different random seed, that controls the initialization or the order of mini-batches, for example, would
yield slightly different model weights, thus possibly slightly different outputs too. In our experiments
considering classification tasks, the “outputs” are the vector of softmax probabilities, and different
metrics consider different elements of that vector, e.g. the accuracy metric requires the “argmax” of
that vector, whereas more sophisticated metrics consider the correct class probability (“confidence”).

model’s ability to accurately label input data. Such models do not "contain" bit-wise or code-wise copies of their
training data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Pretrained model

Localization
strategy

Unlearning
algorithm

Retrain from
scratch

How close are the models?
Forget

set
Forget

set
Retain

set

Initialized model

Retain
setMasked model Unlearned model Gold standard

Figure 1: Localized unlearning consists of two parts: a localization strategy that identifies a set
of “critical parameters” (dashed line circles) and an unlearning algorithm that aims to remove the
influence of the forget set by modifying only the critical parameters (highlighted circles), keeping the
rest unchanged. Ideally, the unlearned model should “behave” like the model retrained from scratch,
i.e. the two should produce the same (distribution of) outputs; see Definition 2.1

We desire unlearning algorithms U that cause these two recipes to yield similar outputs, with the
second recipe being substantially more computationally-efficient compared to the first, in order to
justify paying the cost of approximate unlearning rather than simply using the first recipe directly.

Unlearning evaluation. Evaluating unlearning rigorously is an ongoing area of research; current
state-of-the-art evaluation methods (Hayes et al., 2024; Triantafillou et al., 2024) require training a
large number of models, which is very expensive. In this work, we leverage standard metrics in the
research community, building on top of the evaluation procedure of (Fan et al., 2023) that considers
two metrics for unlearning quality. The first is the accuracy of the unlearned model on the forget
set, with the goal of matching the accuracy of the retrained model on the forget set, in line with
Definition 2.1. The second is a Membership Inference Attack (MIA), that, given access to outputs
(“confidences”) of the unlearned model, aims to detect whether an example was used in training.
We adopt the MIAefficacy score of Fan et al. (2023) that measures the efficacy of defending such an
attack as the portion of forget set examples that the attacker thinks were unseen. An ideal unlearning
algorithm would have an MIAefficacy score matching that of the retrained-from-scratch model; see
Section A.3 for details. In addition, a comprehensive evaluation of unlearning also requires measuring
utility, which we measure via test accuracy (and retain accuracy, in Section A.8), and efficiency.

Localized unlearning. In this work, we focus on “localized unlearning” algorithms U that modify
only a (preferably small) subset of the parameters of θo, leaving the rest unchanged (see Figure 1).
We view localized unlearning as a promising direction as we hypothesize that it can yield better
trade-offs between unlearning efficacy, utility and efficiency, due to modifying fewer parameters.

A localized unlearning algorithm has two components. The first is a localization strategy L that
produces a mask m determining which subset of the parameters should be modified to carry out the
unlearning request: m = L(θo,S) where m is a binary vector specifying whether each parameter
will be updated. The second component is a unlearning strategy. This, in principle, can be any
unlearning algorithm that, in this case, will operate on only the subset of the parameters indexed by
m. Overall, a localized unlearning algorithm is instantiated by selecting a particular (L,U) pair.

2.2 MEMORIZATION

An intriguing phenomenon is that, despite models exhibiting strong generalization properties, they
still tend to “memorize” some of their training data (Arpit et al., 2017; Zhang et al., 2021). In fact,
recent theories argue that some forms of memorization are in fact necessary for optimal generalization
(Feldman, 2020; Brown et al., 2021; Attias et al., 2024). In the below, we first present a definition of
memorization borrowed from (Feldman, 2020), and then discuss the connections with unlearning.
Definition 2.2. Label memorization. Assume a dataset Dtrain = {(xi, yi)}Ni=1, where xi and yi
denote the input and label for the i’th training example, and assume a training algorithm A and a
model f(x; θ) parameterized by θ mapping inputs to labels. Then, the memorization score for an
example (xi, yi) ∈ Dtrain (with respect to Dtrain, A and f) is

Pr
θ∼A(Dtrain)

[f(xi; θ) = yi] − Pr
θ∼A(Dtrain\(xi,yi))

[f(xi; θ) = yi]. (1)

Intuitively, an example is highly memorized by a model if the model can only predict its label correctly
when that example is in the training set. This will be primarily the case for atypical, ambiguous or
mislabeled examples that would not be otherwise correctly predicted (Feldman & Zhang, 2020).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Connections with unlearning. Some forms of memorization and unlearning are intimately con-
nected: at the extreme where an example isn’t memorized at all, it can be thought of as being trivially
“unlearned” according to some unlearning metrics of interest, because the model’s predictions on
that example aren’t different from what they would have been had that example not been included in
the training set (“retrain from scratch”). Empirically, considering varying degrees of memorization,
Zhao et al. (2024) showed that most approximate unlearning methods are more successful on forget
sets which include examples that have lower memorization scores compared to those with higher
memorization scores. Relatedly, Jagielski et al. (2022) study catastrophic forgetting during training;
a phenomenon that can be characterized as reduced memorization of an example in later stages of
training, that can be interpreted as a passive form of unlearning. They find that, when training on
large datasets, examples that were only seen early in training may be less memorized, which they
quantify via the failure rates of privacy attacks aiming to extract examples or infer whether they were
used for training. Toneva et al. (2018) find that examples with noisy labels witness a larger number
of “forgetting events” during training, defined as an event where an example that was previously
correctly predicted becomes incorrectly predicted later in training. Based on these insights on the
strong connection of memorization and unlearning, we ask: does knowledge (or assumptions) of
where in the network a forget set is memorized give rise to improved unlearning for that forget set?

Localizing memorization. Investigating the above question is a challenging undertaking, as pin-
pointing where memorization occurs is in and of itself a research problem. Baldock et al. (2021)
define the “prediction depth” for an example to be the earliest layer in the network after which the
example is correctly predicted. They find that mislabeled examples are only predicted correctly in the
final few layers of the model, and conclude that “early layers generalize while later layers memorize”.
Stephenson et al. (2021) draw the same conclusion through a study of manifold complexity and
shattering capability. However, Maini et al. (2023) found that the parameters that memorize specific
examples are actually scattered throughout the network and not concentrated in any individual layer.

3 RELATED WORK

Unlearning. Cao & Yang (2015) coined the term unlearning and proposed exact algorithms for
statistical query learning. Bourtoule et al. (2021); Yan et al. (2022) propose frameworks that
support exact unlearning in deep networks more efficiently by considering architectures with many
components, where one only needs to retrain the affected parts of the model for each unlearning
request. However, in the worst case, efficiency can be as poor as in naive retraining and, furthermore,
these specialized architectures may have lower accuracy compared to state-of-the-art ones. Instead, a
plethora of approximate unlearning methods (Ginart et al., 2019; Guo et al., 2019; Golatkar et al.,
2020a;b; Thudi et al., 2022) were developed that operate on an already-trained model to remove
the influence of the forget set. Simple commonly-used baselines include finetuning the model on
only the retain set (“Finetune”), or on only the forget set using the negated gradient (“NegGrad”),
or combining these two in a joint optimization “NegGrad+” (Kurmanji et al., 2024), performing
gradient descent on the retain set and ascent on the forget set, simultaneously. One could also apply a
joint optimization using gradient descent on both the retain and forget sets, after having first randomly
relabelled the examples in the forget set (“Random Label”) (Graves et al., 2021; Fan et al., 2023).
SCRUB (Kurmanji et al., 2024) builds on NegGrad+ by casting unlearning as a teacher-student
problem and using distillation. Liu et al. (2024) show that sparsity aids unlearning and that adding
an L1-penalty to the Finetune baseline improves its performance (“L1-sparse”). One could also
utilize influence function analysis (Koh & Liang, 2017) to mitigate the impact of the forget data by
estimating the importance of the model weights (“IU”) (Izzo et al., 2021).

Localized unlearning. Goel et al. (2022) propose baselines that perform unlearning on only the k
deepest (closest to the output) layers and either simply finetune them (“CF-k”) or reinitialize them
and then finetune them (“EU-k”). The contemporaneous work of Foster et al. (2024) (“SSD”) uses
the Fisher information matrix to identify parameters that are disproportionately important to the
forget set and apply unlearning on those. Fan et al. (2023) proposes Saliency Unlearning (“SalUn”),
which selects a subset of critical parameters by considering the gradients of the forget set and applies
unlearning (by default using Random Label) on the identified parameters. We will later compare
this state-of-the-art method to other strategies inspired by the memorization literature, and propose a
novel strategy that outperforms previous work. Related ideas have been proposed in the context of
unlearning in LLMs (Hase et al., 2024; Guo et al.), though we note that the problem formulation of
LLM unlearning as well as the architectures and algorithms used there are substantially different and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

out of the scope of this paper. We will later discuss how our findings relate and differ from theirs
(See Section 7).

4 DERIVING AND INVESTIGATING LOCALIZED UNLEARNING BASED ON
MEMORIZATION HYPOTHESES

In this section, we derive localization strategies from hypotheses in the memorization literature and
investigate their performance in the context of localized unlearning compared to existing approaches.
Based on the discussion in Section 2.2, we consider two hypotheses for where memorization occurs,
and we then turn each one of them into a localization strategy L(θo,S). The two hypotheses are: i)
memorization happens in the “deepest layers”, i.e. closest to the output, consistent with (Baldock
et al., 2021; Stephenson et al., 2021), and ii) memorization of an example is confined to a small set of
channels, scattered across the network, whose location depends on the example (Maini et al., 2023).

We compare the unlearning performance of four localization strategies: i) Deepest and ii) CritMem,
derived based on the above two hypotheses, iii) selecting the shallowest rather than deepest layers
(“Shallowest”), as a control experiment, and iv) the localization strategy of SalUn (Fan et al., 2023)
(“SalLoc”) that is not motivated through the lens of memorization but is regarded as state-of-the-art
in the unlearning literature. Note that we reserve the name “SalUn” for the pairing of SalLoc with the
Random Label unlearning algorithm, which is the choice that Fan et al. (2023) found worked best
(we mix-and-match localization strategies with unlearning algorithms in Section 5).

Deepest returns a mask that allows only the k deepest (closest to output) layers to be updated during
unlearning, based on the first hypothesis. If paired with an unlearning algorithm that resets the chosen
parameters and then finetunes them, this corresponds to the EU-k method of (Goel et al., 2022).

CritMem is based on the second hypothesis and implemented via the algorithm of Maini et al. (2023).
Given an example, it iteratively finds the deemed-to-be most critical channel, resets all its associated
parameters and repeats, until the prediction on that example flips to an incorrect one. The criterion
used to identify the next most critical channel at each iteration is obtained by multiplying the weights
by their respective gradients on that example, and choosing the channel for which the (sum, over
the channel parameters) of the magnitude of this quantity is the highest. We run this algorithm for
each example in S independently, record the critical channels identified for each and then consider
the union of those as the critical channels for S. The mask is then set to allow to only modify the
parameters involved in those critical channels.

Shallowest returns a mask that allows only the k shallowest (closest to the input) layers to be updated
during unlearning, as a control experiment for Deepest.

SalLoc sorts all parameters based on the magnitude of gradients over S , in descending order and then,
given a threshold α for the percentage of the parameters that might be updated during unlearning, it
returns a mask that turns on only the first α percent of elements of that sorted list (Fan et al., 2023).

The above strategies differ along several axes. Firstly, Deepest and Shallowest are data-agnostic
in that they do not use S to inform which parameters to choose, whereas CritMem and SalLoc are
data-dependent and tailor the mask to S. Secondly, there are differences in granularity: Deepest
and Shallowest consider a layer as the unit (i.e. each layer is either included or excluded as a
whole). CritMem’s unit is a channel while SalLoc has the finest granularity, considering each
individual parameter as a unit. Finally, out of the data-dependent ones, CritMem is substantially more
computationally expensive than SalLoc. This is because for each example in S , it applies an iterative
approach that resets the next most critical channel, one at a time, until the termination criterion.
On the other hand, SalLoc chooses the critical parameters in “one-shot” rather than iteratively and,
additionally, operates on batches of S. Both of these aspects make it significantly more efficient.

Experimental setup We conduct this investigation on CIFAR-10 using ResNet-18, and a forget set
comprised of 10% of the training samples, randomly selected from two classes (2 and 5). We use
a simple unlearning algorithm that resets the identified critical parameters (obtained based on each
localization strategy), and then finetunes only the identified critical parameters and the classifier
layer using only the retain set (“Reset + Finetune”). Since each of the above localization strategies
chooses a different set and number of parameters, to ensure fairness, we compare them to one another
for different “budgets” of how many parameters are updated. For example, for Deepest, we select the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Parameter budget

60

70

80

90

100

Te
st

 a
cc

ur
ac

y

Oracle Shallowest Deepest CritMem SalLoc Ours

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Parameter budget

60

70

80

90

100

Fo
rg

et
 a

cc
ur

ac
y

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Parameter budget

0

10

20

30

40

M
IA

 e
ffi

ca
cy

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Parameter budget

78
79
80
81
82
83
84
85

Te
st

 a
cc

ur
ac

y

Figure 2: Comparison of localization strategies combined with the Reset + Finetune (RFT) unlearning
algorithm. An ideal unlearning algorithm would match the “oracle” (“retrain-from-scratch”) on each
metric, with the smallest possible parameter budget, for increased efficiency. The strategy we will
propose later (“ours”) yields the best trade-off, with near-perfect unlearning for several budgets.

k deepest layers (for several different values of k), and we compute the number of parameters that
are selected each time to obtain the “budget”. We measure unlearning performance in terms of three
metrics: Forget accuracy and MIA efficacy for unlearning quality, and test accuracy for utility. For all
three metrics, the ideal behaviour is to match the performance of the retrain-from-scratch “oracle”
on that metric. We include all details in Sections A.2 including hyperparameters but we note that,
throughout the paper, we tune hyperparameters separately for each budget and localization strategy.

Findings From Figure 2 we observe the following. First, when updating (almost) all parameters,
Deepest achieves strong results on all metrics, which is expected since, at that end of the spectrum,
Deepest paired with Reset + Finetune amounts to retraining (almost) the entire model. However, for
smaller budgets, it performs very poorly in unlearning metrics as resetting only deeper layers does
not cause a sufficient accuracy drop on the forget set (though it at least preserves test accuracy). On
the other hand, Shallowest is much more effective at unlearning compared to Deepest, and in fact a
strong baseline, suggesting that research should consider this baseline alongside EU-k of Goel et al.
(2022). This is perhaps due to resetting earlier layers causing larger “disruption” to the information
flow in the network. Indeed, contrary to Deepest, this strategy leads to poor test accuracy for several
budgets, which is the main downside of this approach. CritMem is unable to reach good unlearning
quality in this setup. Note that we can only evaluate CritMem for small budgets, as the algorithm of
Maini et al. (2023) terminates once enough parameters are reset such that the prediction is flipped to
an incorrect one (so the max value of α we can consider is capped). We find that resetting only those
parameters is insufficient for achieving good unlearning results when paired with this unlearning
algorithm. SalLoc has a similar trend to Shallowest in terms of unlearning metrics but leads to higher
test accuracy. It performs similarly to CritMem in the range where we can compare them.

Overall, we observe that data-agnostic localization strategies yield poor performance: each of Deepest
and Shallowest can either achieve good forget accuracy / MIA efficacy at the expense of utility, or
the other way around, but not both. We hypothesize that a data-dependent approach with a finer-
grained control of which earlier and deeper parameters to update in a way that is informed by the
forget set, would yield better trade-offs, due to causing minimal and targeted “disruption” that
preserves utility. We have considered two such data-dependent strategies so far, CritMem and SalLoc.
CritMem, directly adapted from the memorization literature, results in updating only a small number
of parameters (based on its termination criterion) and is unable to achieve good forgetting quality
within that budget in the context of localized unlearning, while it is also computationally expensive, as
discussed above, due to its iterative nature. SalLoc, on the other hand, is more efficient and improves
a little over Shallowest in terms of causing less of a test accuracy drop.

5 IMPROVED LOCALIZED UNLEARNING

In this section, building on our previous observations, we take a deeper dive into key design choices
of CritMem and SalLoc, formulate hypotheses about their appropriateness and empirically investigate
the axes in which they differ, leading to an improved localized unlearning approach.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 EXAMINING KEY BUILDING BLOCKS OF LOCALIZATION ALGORITHMS

As discussed in Section 4, SalLoc has the finest granularity, making a decision for whether or not
to select individual parameters, whereas CritMem operates on the level of output channels, thus
deciding whether the mask should include or exclude all parameters associated with a channel, as
a unit. We hypothesize that, because attempts to locate where memorization occurs are based on
heuristics and are imperfect, the easier task of making coarser-grained decisions, as in CritMem,
is a more appropriate choice compared to the harder, and thus more error-prone, task of making
parameter-level assessments of criticality. Specifically, marking all parameters of a channel as critical,
if a subset of them are deemed to be critical, can be seen as useful “smoothing”, at the potential
expense of leading to resetting some more parameters than may have been strictly necessary.

Further, we also hypothesize that CritMem’s criticality criterion that uses weighted gradients rather
than simply considering the magnitude of gradients themselves (SalLoc) is also more appropriate: it
can be seen as a more conservative choice, which is more suitable in light of the heuristic nature of
determining criticality. Intuitively, a weight with a small value can be seen as less critical “overall”
(for the training set) which is an important signal to consider in addition the gradients on specific
forget set examples, as it may also serve as a useful “regularizer” when making heuristic assessments.

Table 1: Combining different granu-
larity and criticality criteria in a non-
iterative localization algorithm. The
top-left cell corresponds to the SalLoc,
while the bottom-right cell (shaded) rep-
resent our proposed approach.

Grads Weighted grads

Parameter
∆forget −7.58±8e−3 15.07±0.01
∆test 3.63±4e−3 11.55±6e−3
∆MIA 8.74±1.10 −16.32±1.39

Channel
∆forget −12.33±8e−3 1.58±0.01
∆test 1.55 ±2e−3 4.41±2e−3
∆MIA 15.53±1.10 3.33±1.28

Based on the above, we hypothesize that CritMem’s granu-
larity level and its criticality criterion are more suitable than
SalLoc’s for localized unlearning. However, CritMem’s
iterative nature makes it computationally expensive. Recall
that, for each given example, it determines the next most
critical channel one at a time, resets it and repeats to find
the next most critical one, until the label of the example
flips. To instead obtain a more efficient localization strat-
egy, we investigate incorporating CritMem’s granularity
and its criticality criterion into an algorithm that, akin to
SalLoc, estimates the critical parameters for each batch in
S in “one-shot”, leading to increased efficiency both due to
batching over examples in S as well as due to determining
criticality non-iteratively for each batch.

In Table 1, we investigate the effect of the granularity and
criticality criteria mentioned above, in the context of batched and non-iterative localization algorithms,
on the same experimental setup (dataset, forget set, etc) as in Section 4. We find that indeed the best
choice is given by using the channel-wise granularity and weighted gradients. We therefore build on
these decisions to devise our localization strategy in the next section.

5.2 INTRODUCING OUR LOCALIZATION STRATEGY

Given a forget set S and an original model θo with p parameters, for j ∈ {1, . . . , p}, let θoj and
gj(θ

o,S) represent the weight and gradient values on the forget set, respectively. We define the
criticality score sj of the jth parameter as the magnitude of the weighted gradient over the forget set:
sj = |θoj · gj(θo,S)|; this is the same criticality criterion used in CritMem, whereas SalLoc simply
considers the magnitude of the gradient for each parameter |gj(θo,S)| for assessing its criticality.

As discussed above, we choose to determine criticality in a coarser-grained way compared to individ-
ual parameters. To that end, for an output “channel” oi (or “neuron” more broadly, encompassing
non-convolutional architectures), we describe how to obtain its criticality score coi based on the
criticality score of its constituent parameters. Let s̃i be a list of the criticality scores for the parameters
belonging to neuron oi, sorted in descending order. We set the neuron criticality coi to be the average
of the top h scores of its associated parameters: coi = 1

hΣhj=1s̃i[j].

Finally, having obtained the neuron criticality scores, we put together the mask mα for parameter
budget α, represented as a binary vector of size p, where a 1 indicates the corresponding parameter
will be updated by the unlearning algorithm, whereas an entry of 0 indicates it will be kept unchanged.
To this end, we form another sorted list c̃, that sorts the neurons in descending order of their criticality
scores. We then pick the largest number of neurons from the start of the sorted list, such that the total

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ea
rli

es
t-0

.1
4

Cr
itM

em
-0

.1
6

Sa
lLo

c-
0.

2

Ou
rs

-0
.2

Ea
rli

es
t-0

.2
5

Sa
lLo

c-
0.

3

Ou
rs

-0
.3

200

400

600

800

Te
st

 a
cc

ur
ac

y

Oracle Random Label NegGrad+ Reset + Finetune

Sh
al

lo
we

st
-1

4%

Cr
itM

em
-1

6%

Sa
lLo

c-
20

%

Ou
rs

-2
0%

Sh
al

lo
we

st
-2

5%

Sa
lLo

c-
30

%

Ou
rs

-3
0%

50
55
60
65
70
75
80

Fo
rg

et
 a

cc
ur

ac
y

Sh
al

lo
we

st
-1

4%

Cr
itM

em
-1

6%

Sa
lLo

c-
20

%

Ou
rs

-2
0%

Sh
al

lo
we

st
-2

5%

Sa
lLo

c-
30

%

Ou
rs

-3
0%

15
20
25
30
35
40
45

M
IA

 e
ffi

ca
cy

Sh
al

lo
we

st
-1

4%

Cr
itM

em
-1

6%

Sa
lLo

c-
20

%

Ou
rs

-2
0%

Sh
al

lo
we

st
-2

5%

Sa
lLo

c-
30

%

Ou
rs

-3
0%

70
72
74
76
78
80
82
84

Te
st

 a
cc

ur
ac

y

Figure 3: Pairing localization strategies / budgets (e.g. Ours-30% denotes applying our localization
strategy to select 30% of parameters) with three unlearning algorithms, on CIFAR-10 / ResNet (the
ideal behaviour is to match the “Oracle”). Our method has the best unlearning efficacy, paired
with any unlearning algorithm, and its performance degrades much less than SalLoc’s when
the budget reduces from 30% to 20%; meanwhile it has no worse (or better) test accuracy.

selected parameters are within the budget. Then, we assign a 1 to all entries of mα for parameters
belonging to the chosen critical neurons and 0 to the rest. We provide pseudocode in Section A.5.

Our localization strategy can, in principle, be paired with any unlearning algorithm, but we find we
obtain strongest results by pairing it with the simple Reset + Finetune (RFT) algorithm. We refer to
the combination of our localization strategy with RFT as Deletion by Example Localization (DEL).

6 COMPARISON TO STATE-OF-THE-ART AND ANALYSES

In this section, we carry out comprehensive experiments on two datasets and architectures (CIFAR-10
with ResNet-18 and SVHN with ViT; see Section A.2 for details), to examine the performance of our
localization strategy paired with various unlearning algorithms, on different types of forget sets, as
well as various analyses to understand the factors behind the success of localized unlearning methods.

Pairing with different unlearning algorithms. In Figure 3, we compare different localization strate-
gies, for different values of the parameter budget, paired with three different unlearning algorithms.
We observe that i) our method pairs well with different unlearning algorithms, ii) in terms of forget
accuracy and MIA efficacy, our method yields the best results, coming very close to the ideal “oracle”
reference point by updating only 30% of the network’s parameters, iii) at the same time, test accuracy
is no worse (and sometimes better) using our method.

DEL is robust to the parameter budget. Figure 2 shows that DEL is more robust to the budget
compared to all other strategies considered, yielding strong results across several budgets. Figure
3 corroborates this finding in the context of different unlearning algorithms too, showing that our
localization method experiences much lower performance degradation compared to SalLoc, when the
budget is reduced: we significantly outperform SalLoc when the budget is 20%.

DEL outperforms the state-of-the-art for both datasets and forget set types. We compare DEL to
state-of-the-art methods for unlearning, including ones that update all parameters on two different
datasets. On CIFAR-10, we also consider two forget sets: an IID forget set comprised of 10% of
randomly-chosen training samples, and a non-IID forget set of the same size but choosing samples
belonging to a subset of the classes (see details in Section A.2). We present the results in Table 2
and Figure 4 (and Table 8 in the Appendix). For each localized unlearning strategy and on each
dataset, we report results using its best identified parameter budget and its best-paired unlearning
algorithm for that setting. We observe that, generally, localized unlearning methods outperform
their full-parameter counterparts in terms of unlearning metrics (∆forget and ∆MIA); on the former
(∆forget) because full-parameter methods end up causing the forget set accuracy of unlearning to
become significantly lower than the ideal reference point, yielding a negative ∆ (associated with
poor MIA efficacy, too). We hypothesize that localized unlearning, due to making a more targeted
update, can be more easily tuned to reach the desired reference point for the forget accuracy rather

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: DEL outperforms the state-of-the-art localized and full-parameter unlearning, on CIFAR-
10/ResNet-18 on two forget sets: the Non-IID forget set consists of 10% of the training samples,
randomly selected from two classes, whereas the IID one consists of 10% of the training samples,
randomly selected from all classes. We use three metrics, each represented as ∆, obtained by
subtracting the unlearning algorithm’s value for a given metric from the Oracle’s value for that
metric): forget accuracy (∆forget), MIA efficacy (∆MIA) and test accuracy (∆test). Note that SalLoc-
RL corresponds to “SalUn” which employs Random Label, regarded as state-of-the-art.

Non-IID Forget Set IID Forget Set

∆forget ∆MIA ∆test ∆forget ∆MIA ∆test

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning −5.60±0.89 6.07±1.10 −1.61±0.34 −1.98±1.10 1.96±1.11 −2.00±0.72
NegGrad+ −4.44±0.95 4.92±1.14 4.61±0.22 1.87±1.31 1.89±1.30 4.21±0.67
NegGrad −3.30±0.72 3.76±0.94 4.60±0.18 −15.04±0.40 15.39±0.39 −1.11±0.51

Random Label −1.64±0.98 2.07±1.15 4.33±0.19 1.69±0.46 1.69±0.47 4.93±0.47
L1-sparse −1.50±0.82 −1.01±1.03 2.07±0.51 1.80±1.20 −1.80±1.08 0.62±0.67

IU −5.00±0.88 5.04±0.91 4.18±0.19 −2.20±0.39 2.19±0.38 10.94±0.43

L
oc

al
iz

ed
U

nl
ea

rn
in

g SSD −11.16±6.28 11.18±6.29 2.68±1.18 1.60±1.99 1.59±1.98 11.58±1.03
CritMem-RL (α = 16%) −1.82±1.19 1.87±1.21 4.86±0.19 −2.03±0.45 2.05±0.45 4.36±0.37

Shallowest-RL (α = 25%) 1.29±1.62 −0.80±1.74 5.88±0.18 3.41±0.77 −3.43±0.78 6.43±0.52
SalLoc-RL (α = 30%) −2.8±1.45 3.30±1.54 4.63±0.27 −3.81±0.40 3.80±0.39 4.29±0.45

DEL (α = 30%) 0.43±1.06 0.64±1.23 2.23±0.25 0.97±0.42 −0.97±0.40 1.87±0.49

Table 3: Random-vs-standard masking using RFT unlearning, α=16%, on CIFAR-10 / ResNet-18.

Standard Masking Random Masking

CritMem SalLoc Ours CritMem SalLoc Ours

∆forget −13.25±1.53 −8.26±0.92 −2.86±1.09 −18.60±1.03 −13.26±0.80 −8.58±0.98
∆MIA 13.73±1.62 8.75±1.09 3.36±1.27 19.09±1.21 13.78±1.02 9.07±1.17
∆test 2.85±0.31 3.50±0.53 2.62±0.22 1.99±0.19 1.91±0.57 1.89±0.21

than “overshooting” it, amending the above issue. On the other hand, full-parameter methods lead to
(marginally) better test accuracy in some cases, especially for the IID forget set. Out of the considered
localized methods, that DEL outperforms the state-of-the-art on all metrics and across forget sets.

Localized unlearning succeeds due to selecting critical parameters. We design a control ex-
periment to investigate to what extent the success of localized unlearning is dependent on which
parameters are chosen (rather than simply how many). To this end, we compare the mask produced
by each localization strategy to a “random mask” that is constructed to follow the same structure and
distribution of the number of chosen parameters per layer as the corresponding non-random mask.
For example, to create the random mask that CritMem will be compared with, we randomly select a
number of channels for each layer equal (but randomly selected this time) to the number of channels
that CritMem selects for that layer. The results in Table 3 indicate that, beyond doubt, localized
unlearning algorithms succeed due to pinpointing critical parameters.

Is localized unlearning better due to tailoring to S? We design a set of experiments to investigate
this by changing the criticality criterion. Specifically, we choose two criteria that are not specific
to the forget set S: the first uses only the magnitude of the weights (“weights”), and the second
uses weighted gradients, but where the gradients this time are over all of Dtrain rather than just S
(“Weighted gradients (train set)”). Our rationale is that, if either of these forget-set-agnostic criteria
work equally well as our method’s criterion (“Weighted gradients (forget set)”), this would suggest
that the success of our method is not due to specialization to S but rather finding parameters that are
“generally critical” for the training data. We observe from Table 4 that, for the IID forget set, the above
two criteria that depend on Dtrain rather than S specifically, yield more similar results to our criterion.
This is reasonable since the forget and train follow the same distribution in the IID forget set case. On
the other hand, for the non-IID forget set, we do observe that tailoring the criticality criterion used in
the localization strategy to S yields better results in terms of the unlearning metrics. These findings
suggest that i) the success of different localization strategies is dependent on the distribution of the
forget set, ii) our method (shaded gray area in the table) is a top performer in all cases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Investigation of different granularity and criticality criteria in a non-iterative localization
algorithm (α=15%) on IID and Non-IID forget set. The shaded region corresponds to our method.

Non-IID forget set IID forget set

Granularity Gradients
(forget set) Weights

Weighted
gradients
(train set)

Weighted
gradients

(forget set)

Gradients
(forget set) Weights

Weighted
gradients
(train set)

Weighted
gradients

(forget set)

Individual
parameter

∆forget
∆test
∆MIA

−7.58±8e−3
3.63±4e−3
8.74±1.10

15.50±6e−3
10.80±5e−3
−14.73±0.97

14.03±0.01
10.60±6e−3
−13.89±1.29

15.07±0.01
11.55±6e−3
−16.32±1.39

−6.72±0.41
1.98±0.45
6.81±0.41

11.67±0.51
11.11±0.60
11.68±0.50

11.19±0.15
10.90±0.51
−11.21±0.52

11.15±0.48
11.05±0.54
−11.13±0.46

Output
channel

∆forget
∆test
∆MIA

−12.33±8e−3
1.55±2e−3
15.53±1.10

6.02±5e−3
5.64±2e−3
−1.02±0.93

−2.52±0.01
3.52±4e−3
6.73±1.12

1.58±0.01
4.41±2e−3
3.33±1.28

−5.18±0.40
1.26±0.54
5.16±0.39

1.33±0.41
2.86±0.45
−1.40±0.39

1.69±0.68
2.27±0.44
1.67±0.68

0.65±0.60
3.05±0.43
0.69±0.59

7 DISCUSSION AND CONCLUSION

2 4 6 8

forget

MIA

test

DEL (Ours-RFT)
SalLoc-RFT
Shallowest-RFT
Random Label
NegGrad+
L1-sparse
Oracle

Figure 4: On SVHN with ViT, DEL outper-
forms state-of-the-art full-parameter and local-
ized unlearning in terms of unlearning quality.
L1-sparse has better test accuracy than DEL but
has poor unlearning performance. These results
are for the non-IID forget set, and α = 30% for
localized methods; see Table 8 for full results.

To summarize, we have performed an investi-
gation on whether hypotheses for where mem-
orization happens in the network give rise to
improved localized unlearning. Our investiga-
tion led us to propose a new localization strat-
egy that is more practical and efficient compared
to the algorithm from the memorization litera-
ture that it builds upon, while outperforming
the state-of-the-art unlearning methods on sev-
eral metrics, when paired with different unlearn-
ing algorithms. Our proposed DEL method, ob-
tained by pairing our strategy with the simple
RFT unlearning algorithm, sets a new state-of-
the-art on forget sets of different distributions,
different datasets and architectures, and across
parameter budgets. We find that for non-IID for-
get sets, tailoring the parameter selection to the
specific forget set (rather than the training set
more broadly) is more important than it is for
IID forget sets. Our method outperforms others
in both cases but to different degrees, pointing
to important questions for future work regarding what other characteristics of forget sets affect the
behaviours and success rates of localized unlearning.

So, does memorization inform unlearning? Hase et al. (2024) find that, for model editing in LLMs,
the “causal tracing” method (Meng et al., 2022) for knowledge localization, surprisingly, does not
indicate which layer to modify in order to most successfully rewrite a stored fact with a new one.
That is, they find that success in editing tasks is generally unrelated to localization results based on
causal tracing. Guo et al. study whether mechanistic interpretability insights improve unlearning
of “factual associations” in LLMs. They also find that localization techniques based on preserving
outputs (such as causal tracing) yield performance that is no better, or even worse, than non-localized
unlearning. However, they come up with a mechanistic unlearning method that does outperform both
output-based localization and non-localized unlearning, showing that some form of localization is
useful. Our results, in the very different context of unlearning a subset of data in vision classifiers,
offer an important data point in this ongoing discussion. In line with Hase et al. (2024), we find that
directly translating memorization hypotheses into localization strategies does not help unlearning:
Deepest led to very poor unlearning results (demonstrating either its weakness as a memorization
locator, or the disconnect between memorization localization and unlearning performance), and
CritMem, while showing more promise, did not perform better than simple baselines, while being
significantly more expensive than them. However, insights from (Maini et al., 2023), in particular
regarding the granularity and criticality criterion used during localization led us to improve upon
the state-of-the-art localized and full-parameter unlearning methods, renewing hopes that, while
memorization localization and unlearning may be separate research questions, progress in the former
may guide progress in the latter.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at
memorization in deep networks. In International conference on machine learning, pp. 233–242.
PMLR, 2017.

Idan Attias, Gintare Karolina Dziugaite, Mahdi Haghifam, Roi Livni, and Daniel M Roy. Information
complexity of stochastic convex optimization: Applications to generalization and memorization.
arXiv preprint arXiv:2402.09327, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34:10876–10889, 2021.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization of
irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd annual
ACM SIGACT symposium on theory of computing, pp. 123–132, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 954–959, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891,
2020.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
through selective synaptic dampening. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 12043–12051, 2024.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam
Kumaraguru. Towards adversarial evaluations for inexact machine unlearning. arXiv preprint
arXiv:2201.06640, 2022.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16,
pp. 383–398. Springer, 2020b.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516–11524, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

Phillip Huang Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite.
Robust knowledge unlearning via mechanistic localizations. In ICML 2024 Next Generation of AI
Safety Workshop.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
Advances in Neural Information Processing Systems, 36, 2024.

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
unlearning needs more careful evaluations to avoid a false sense of privacy. arXiv preprint
arXiv:2403.01218, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statistics,
pp. 2008–2016. PMLR, 2021.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, et al. Measuring forgetting of
memorized training examples. arXiv preprint arXiv:2207.00099, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in neural information processing systems, 36, 2024.

Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, PRANAY SHARMA, Sijia Liu,
et al. Model sparsity can simplify machine unlearning. Advances in Neural Information Processing
Systems, 36, 2024.

Pratyush Maini, Michael C Mozer, Hanie Sedghi, Zachary C Lipton, J Zico Kolter, and Chiyuan
Zhang. Can neural network memorization be localized? In International Conference on Machine
Learning, 2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pp. 931–962. PMLR, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon Chung.
On the geometry of generalization and memorization in deep neural networks. arXiv preprint
arXiv:2105.14602, 2021.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
standing factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303–319. IEEE, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Eleni Triantafillou, Peter Kairouz, Fabian Pedregosa, Jamie Hayes, Meghdad Kurmanji, Kairan Zhao,
Vincent Dumoulin, Julio Jacques Junior, Ioannis Mitliagkas, Jun Wan, et al. Are we making
progress in unlearning? findings from the first neurips unlearning competition. arXiv preprint
arXiv:2406.09073, 2024.

Phil Wang. Vit for small datasets. https://github.com/lucidrains/vit-pytorch/
blob/main/vit_pytorch/vit_for_small_dataset.py, 2021.

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin. Arcane: An efficient
architecture for exact machine unlearning. In IJCAI, volume 6, pp. 19, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
antafillou. What makes unlearning hard and what to do about it. arXiv preprint arXiv:2406.01257,
2024.

13

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_for_small_dataset.py
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_for_small_dataset.py

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 UNLEARNING DEFINITION

In this section, we discuss an alternative formal definition of unlearning, proposed in in Ginart et al.
(2019); Neel et al. (2021), using a notion closely related to Differential Privacy (Dwork, 2006).

Definition A.1. Unlearning-2. For a training algorithm A, an algorithm U is an (ε, δ)-unlearner if,
for any training datasetDtrain and forget set S , the distributions ofA(Dtrain\S) and U(θo,S,Dtrain\S)
are (ε, δ)-close, where we say two distributions µ, ν are (ε, δ)-close if µ(B) ≤ eεν(B) + δ and
ν(B) ≤ eεµ(B) + δ for all measurable events B.

Intuitively, the above compares (the distribution of) models that are obtained by two different recipes
to one another:

• A(Dtrain \ S), retraining “from scratch” on only the retain set, which is prohibitively
expensive but ideal from the standpoint of eliminating the influence of S on the model, and

• U(θo,S,Dtrain \ S), applying U to post-process the original model θo in order to unlearn S .

We desire unlearning algorithms U that cause these two recipes to yield similar models, with the
second recipe being substantially more computationally-efficient compared to the first, in order to
justify paying the cost of approximate unlearning rather than simply using the first recipe directly.

Note that we refer to distributions here since re-running either of the two recipes with a different
random seed, that controls the initialization or the order of mini-batches, for example, would yield
slightly different model weights in each case. The above definition therefore measures unlearning
quality based on the notion of (ε, δ)-closeness between the two distributions. The smaller ε and δ are,
indicating increased closeness, the better the unlearning algorithm.

Relationship and differences to our definition This definition compares distributions in weight
space, whereas our Definition 2.1 compares distributions of outputs of models on the forget set. We
opted for the latter in the main paper as it more closely reflects the metrics we use for evaluation (which
are the standard metrics used in unlearning papers). Note that, even works that adopt definitions in
weight-space end up operationalizing them using outputs of models (Triantafillou et al., 2024) instead
of performing weight-space comparisons. This is for several reasons: comparing weights of models
directly may be inappropriate since neural networks are permutation-invariant. Weight space is also
much higher dimensional, posing challenges in creating the right metrics, and, finally, ultimately
what we may care about for various applications of interest is the “behaviours” (e.g. predictions) of
models, rather than their weights. Definition 2.1 captures this more directly.

A.2 EXPERIMENTAL SETUP

Datasets The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 50, 000 train and 10, 000 test
images of shape 32×32 from 10 classes. The SVHN dataset (Netzer et al., 2011) includes 73, 257
train and 26, 032 test samples. The samples are of shape 32×32 pixel, and from 10 classes.The
ImageNet-100 (Hugging Face version) dataset is a subset of ImageNet (Deng et al., 2009), containing
126, 689 train and 5, 000 test samples from 100 classes, randomly selected from the original ImageNet
classes. The resolution of the images on the shortest side is 160 pixels.

We perform no preprocessing or augmentation on the images of CIFAR-10 and SVHN, except
dividing the feature values by 255. For ImageNet-100, on the other hand, we randomly crop the
train images to size 128×128, and horizontally flip them. Moreover, we first resize the test images to
160×160, and then center-crop them to 128×128. We normalize the features of both train and test
images with the mean and variance of ImageNet.

For the unlearning experiments, we employ two different forget sets: (1) IID, where we uniformly
select approximately 10 percent of the images from the train set, and (2) NonIID, in which we
randomly select half of the samples from two classes (2 and 5 in CIFAR-10, and 3 and 6 in SVHN)
so that the size of the forget set is almost 10 percent of the train set. Note that in the former, the
distributions of the samples in the forget and retain sets are highly similar, whereas in the latter, the
sample distribution of the forget set is very different from that of the retain set.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Models We capitalize on the original implementation of ResNet-18 and ResNet-50 (He et al.,
2016) from PyTorch and the implementation of Vision Transformer (ViT) (Dosovitskiy, 2020) from
(Wang, 2021). ResNet-18 and ViT contain around 11 million parameters,whereas ResNet-50 has
approximately 25 million parameters. Due to the low-resolution nature of CIFAR-10, we replace the
first convolutional layer of ResNet-18 with a new convolutional layer with kernel size of 3×3, and
remove the max-pooling layer.

Note that the architectures of the considered models are very different from each other. ResNet-18/50
are convolutional (Conv) networks with an input Conv layer, multiple residual blocks, and a final
classifier layer. The normalization layer of ResNet-18/50 is batch normalization (Ioffe & Szegedy,
2015). In ResNet-18/50, the input images are downsampled multiple times so that deeper layers
operate on smaller input tensors. However, deeper layers have more filters (and thus, more trainable
parameters) than shallower layers.

The ViT architecture, on the other hand, employs linear (fully-connected) and multi-head attention
layers as its main building blocks. It first divides the input images into square patches (e.g. of shape
8×8) and give them as tokens (after some preprocessing including positional encoding) to the encoder
blocks. No downsampling is performed on the input tensors by the encoder blocks. Moreover, all
(i.e. both deeper and shallower) encoder blocks have identical number of trainable parameters. The
normalization layer of ViT architectures is layer normalization (Ba et al., 2016).

Training For the original (pretrained) models, we train ResNet-18 on CIFAR-10 and ViT on SVHN
(i.e. on the training set of the datasets) for 50 epochs using the SGD optimizer with momentum of
0.9, cross-entropy loss function, and batch size of 128. The base learning rate values are 0.1 and
0.05 for ResNet-18-CIFAR-10 and ViT-SVHN, respectively, which is gradually decayed by factor
of 0.01 using the Cosine Annealing scheduler. For the oracle model (gold standard), we train the
model from scratch only on the retain set, following the same procedure employed for the pretrained
model, except the number of epochs, which we set to 20, and learning rate, which is the half of that in
original training. We provide the hyper-parameter values for the approximate unlearning algorithms
in the tables below. We repeat each experiment three times and report the average values along with
95% confidence interval margins of the mean.

Table 5: Learning rate tuning.

Scheduler Parameters

Finetuning/ l1-sparse CosineAnnealingLR ηmin = 0.01 ∗ lrinit
Random Label CosineAnnealingLR ηmin = 0.5 ∗ lrinit
NegGrad+/NegGrad Constant -

Non-IID forget set IID Forget set

lrbest candidate values lrbest Candidate values

Finetuning 1.25 [0.5, 1.5] 1.25 [0.5, 1.5]
l1-sparse 0.5 [0.1, 1] 0.5 [0.1, 1]
Random Label 7e-3 [5e-3, 1e-2] 6e-3 [5e-3, 1e-2]
NegGrad+ 7e-4 [5e-4, 1e-3] 0.14 [0.1, 1]
NegGrad 7e-6 [5e-6, 1e-5] 4e-3 [1e-3, 5e-3]
CritMem-RL (α = 16%) 0.02 [0.01, 0.1] 0.02 [0.01, 0.1]
Shallowest-RL (α = 25%) 7e-3 [5e-3, 1e-2] 7e-3 [5e-3, 1e-2]
SalLoc-RL (α = 30%) 0.012 [5e-3, 1e-2] 0.012 [5e-3, 1e-2]
DEL (α = 30%) 0.015 [5e-3, 1e-2] 0.015 [5e-3, 1e-2]

A.3 METRICS

Following (Fan et al., 2023), we employ accuracy and membership inference attack (MIA) efficacy to
evaluate the effectiveness of different unlearning algorithms.

To compute MIA efficacy, a support vector classifier (SVC) is trained on top of outputs coming
from the unlearned model for the task of predicting whether an example was used in training or
not. This is performed through supervised learning where the test set is used as “unseen data” and a

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

subset of retain set (with the same size as and similar label distribution to the test set) as “seen data”.
Specifically, the SVC is trained on the “prediction” outputs (i.e. the integers representing the index
of the predicted class), aiming to distinguish predictions from seen versus unseen data. Then, the
trained classifier is utilized to predict if each sample in the forget set belongs to the seen or unseen
data on the unlearned model. Given that, MIA efficacy is computed as follows:

MIAefficacy =
TN

|S|
,

where TN is the number of true negatives, i.e. forget samples that the classifier recognizes as likely
unseen data for the unlearned model, and |S| is the size of the forget set.

Intuitively, a higher value of MIAefficacy means that the unlearned model has been more successful in
“fooling” the SVC classifier (i.e. the “membership inference attacker”) into thinking that the forget set
was not used in training. However, to interpret how high we expect MIAefficacy to be for an unlearned
model, we must consult the reference point of how high this quantity would be for a model retrained
from scratch without the forget set. Note that, even in that case of “ideal unlearning”, MIAefficacy is
not necessarily 100%, and in fact it can be much lower than this. This is because, some examples in
the forget set might be so “easy” that, even without ever seeing them, the retrained model can still be
equally accurate on those examples as it would have been if they were actually included in training.
This would lead to its MIAefficacy being lower, since some forget set examples would be classified as
“seen” by the SVC. For this reason, in our experiments, we use the reference point as the MIAefficacy
obtained from retrain-from-scratch as the optimal value for this metric. An ideal unlearning algorithm
would therefore match that value.

A.4 MIA EVALUATION

In this section, we present MIA evaluation results using various MIAs for each model-dataset
combination. We compare two MIAs that leverage the model’s (i) correctness (Table 7) and (ii)
confidence (Table 6). Specifically, we train an SVC to distinguish between the seen (train) and unseen
(test) data using either (i) the predictions (i.e. the integers representing the index of the predicted
class) of the unlearned model on retain and test examples or (ii) the confidences (i.e. the Softmax
values associated with these predicted labels) of the unlearned model on these examples. The results
for the first variant (correctness-based MIA) are already presented in Tables 2 and 8, with a summary
provided in Table 7 in this section. Here, we expand the MIA evaluations by incorporating the second
variant (confidence-based MIA).

According to Table 6 and 7, the absolute value of ∆MIA values are larger when using the confidence-
based MIA compared to the correctness-based MIA. Since the model’s confidence on retain and test
samples provides more information than its predictions on these samples, providing the SVC with
confidence values results in a stronger MIA than using the predictions.

Additionally, in the ResNet-18–CIFAR-10 setting, we observe that our localized unlearning algorithm
significantly outperforms the other comparison methods across all evaluated MIAs for both IID
and non-IID forget sets. Similarly, in the ViT-SVHN setting with non-IID forget sets, our method
outperforms the other methods in both correctness-based and confidence-based MIA evaluations.
However, when the forget set is IID in ViT-SVHN setting, for both MIA variants there exists
a full-parameter unlearning algorithm (sometimes multiple, depending on the type of MIA) that
outperforms all the localized unlearning algorithms, including our method, in terms of MIA evaluation.
For example, Fine-tuning yields a more effective confidence-based MIA, while Fine-tuning, Random
Label, and L1-sparse demonstrate enhanced performance in correctness-based MIA compared to the
localized unlearning algorithms. This is an interesting observation that we hope future work will
investigate further.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Confidence-based MIA evaluation (∆MIA)

ResNet-18 - CIFAR-10 ViT - SVHN

IID Non-IID IID Non-IID

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning 6.24±2.18 6.23±1.03 −1.97±0.32 13.85±0.90
NegGrad+ 3.69±1.34 11.27±1.19 −19.40±11.60 3.75±1.82
NegGrad 28.18±0.87 10.44±0.83 12.47±0.25 29.02±1.03

Random Label −31.55±1.30 −19.96±1.46 −15.56±2.45 −6.44±3.58
L1-sparse 4.35±0.88 10.49±2.17 −7.74±0.58 7.62±0.75

L
oc

al
iz

ed
U

nl
ea

rn
in

g

CritMem-RL (α = 16%, 1%) −31.56±1.04 −14.08±2.58 13.12±0.24 32.80±0.71

Shallowest-RL/RFT (α = 25%, 30%) −25.87±0.89 −18.39±1.45 −16.83±1.05 −2.5±8.54

SalLoc-RL/RFT (α = 30%) −24.24±0.89 −14.15±1.76 −17.77±0.42 1.67±0.92

DEL (α = 30%) −0.59±0.90 −0.90±1.20 −5.48±0.64 1.12±0.76

Table 7: Correctness-based MIA evaluation (∆MIA)

ResNet-18 - CIFAR-10 ViT - SVHN

IID Non-IID IID Non-IID

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning 1.96±1.11 6.07±1.10 −1.05±0.42 11.22±0.65
NegGrad+ 1.89±1.38 4.92±1.14 −6.99±3.53 3.36±1.67
NegGrad 15.39±0.39 3.76±0.94 8.00±0.22 19.70±0.53

Random Label 1.69±0.47 2.07±1.15 −2.82±0.46 5.13±1.81
L1-sparse −1.80±1.08 −1.01±1.03 −2.43±0.39 8.66±0.31

L
oc

al
iz

ed
U

nl
ea

rn
in

g

CritMem-RL (α = 16%, 1%) 2.05±0.45 1.87±1.21 8.16±0.22 20.71±0.26

Shallowest-RL/RFT (α = 25%, 30%) −3.43±0.78 −0.80±1.74 −6.89±0.86 −5.24±2.32

SalLoc-RL/RFT (α = 30%) 3.80±0.39 3.30±1.54 4.55±0.32 −1.71±0.31

DEL (α = 30%) −0.97±0.40 0.64±1.23 −4.26±0.32 −0.78±0.92

A.5 PSEUDOCODE

Algorithm 1: Our localization strategy
Input: Original model θo with p parameters, forget set S, parameter budget α
Output: Localization mask mα

/* Compute criticality score for each parameter */
1 sj ← 0,∀ j ∈ {1, . . . , p}
2 for Mini-batch B ∈ S do
3 sj = sj + θoj · gj(θo,B), ∀ j ∈ {1, . . . , p}
/* Consider only the magnitude of each weighted gradient */

4 sj ← |sj |,∀ j ∈ {1, . . . , p}
/* Compute criticality score for each output channel/neuron */

5 s̃ = Sort(s), coi = 1
hΣhj=1s̃i[j],∀oi ∈ θo

/* Construct localization mask */

6 c̃ = Sort(c),mα = 1
(∑j

i=1 |c̃oi | ≤
(
p · α

))
7 return Localization mask mα

A.6 VIT-SVHN EXPERIMENTS

The full results corresponding to Figure 4 are detailed in Table 8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Comparison to state-of-the-art, including algorithms that update all parameters (“Full-
Parameter”) on Non-IID and IID forget set when training a ViT model on SVHN dataset.

Non-IID Forget Set IID Forget Set

∆forget ∆MIA ∆test ∆forget ∆MIA ∆test

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning −11.27±0.66 11.22±0.65 −0.76±0.20 −2.73±0.49 −1.05±0.42 −0.91±0.22
NegGrad+ −3.45±1.65 3.38±1.67 2.32±0.27 3.22±3.58 −6.99±3.53 3.75±3.53
NegGrad −19.75±0.74 19.70±0.53 0.10±0.21 −11.78±0.36 8.00±0.22 0.58±0.21

Random Label −5.20±1.78 5.13±1.81 3.22±0.67 −0.96±0.54 −2.82±0.46 3.69±0.47
L1-sparse −8.72±0.34 8.66±0.31 0.24±0.19 1.36±0.46 −2.43±0.39 1.52±0.29

IU 1.57±0.28 5.04±0.91 3.11±0.18 1.45±0.36 −5.25±0.22 12.41±0.21

L
oc

al
iz

ed
U

nl
ea

rn
in

g SSD 2.83±1.57 −2.95±1.56 3.30±0.24 7.26±0.88 −11.09±0.85 13.26±0.74

CritMem-RL (α = 1%) −20.77±0.27 20.71±0.26 −0.45±0.18 −11.94±0.35 8.16±0.22 0.08±0.21

Shallowest-RFT (α = 30%) 5.20±2.34 −5.24±2.32 3.78±1.28 3.09±0.90 −6.89±0.86 3.56±0.59

SalLoc-RFT (α = 30%) 1.71±0.32 −1.71±0.31 2.55±0.20 0.78±0.41 4.55±0.32 3.68±0.23

DEL (α = 30%) 0.75±0.91 −0.78±0.92 0.78±0.52 0.46±0.043 −4.26±0.32 0.89±0.29

A.7 RESNET-50-IMAGENET-100 EXPERIMENTS

The results on ImageNet-100 dataset using ResNet-50 model are detailed in Table 9. Consistent with
our previous results, our proposed method outperforms all compared approaches across all studied
unlearning metrics. For test accuracy, our method achieves state-of-the-art performance among
localized approaches; however, full-parameter methods outperform localized unlearning approaches.

Table 9: Comparison to state-of-the-art, including algorithms that update all parameters (“Full-
Parameter”) as well as (“Localized” unlearning algorithms on IID forget set when training a
ResNet-50 model on ImageNet-100 dataset.

∆forget ∆MIA ∆test

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning −6.96±1.33 6.34±1.18 0.54±0.95
NegGrad+ −3.18±1.95 2.54±1.52 5.09±1.64
NegGrad 5.13±8.05 −5.65±8.14 19.68±6.60

Random Label 5.18±1.59 −5.49±1.03 5.96±1.10
L1-sparse −5.58±1.32 4.76±0.94 1.06±0.98

L
oc

al
iz

ed
U

nl
ea

rn
in

g

SSD −14.11±1.96 13.71±1.80 5.44±1.37

Shallowest-RFT (α = 30%) −1.69±2.41 2.36±2.26 11.72±1.50

SalLoc-RFT (α = 30%) 1.36±2.01 −2.19±1.73 6.09±0.98

DEL (α = 30%) 0.78±1.55 −1.74±1.35 5.20±1.08

A.8 MEASURING UTILITY VIA RETAIN ACCURACY

Table 10 presents the retain performance when pairing various localization strategies and unlearning
algorithms. The retain performance is measured as the difference between the accuracy of the
oracle and unlearned models on the retain set (∆retain = Oracleretain − Unlearnretain.). The
experiments are conducted using the ResNet-18 model on the CIFAR-10 dataset with a non-IID
forget set consisting of 10% of randomly selected training samples. This table provides an extension
of the evaluation metrics shown in Figure 3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In terms of retain accuracy, the performance of our method is comparable to, or sometimes exceeds,
the other methods of comparison. By updating only a small portion of parameters (20% or 30%) as
suggested by our localization strategy, unlearning algorithms such as Random Labeling and Reset +
Finetuning can achieve the Oracle retain accuracy.

Table 10: Retain performance (∆retain) of combining different localization strategies and unlearn-
ing algorithms. The retain accuracy values from the unlearned models are provided in (·).

Localization
Strategy Unlearning Algorithm

(α =parameter%) Random Label NegGrad+ Reset + Finetune

CritMem(α = 16%) 7.36±0.04 (92.63±0.09) 0.01±0.003 (99.98±0.005) 0.02±0.018 (99.97±0.04)
Shallowest(α = 14%) 7.63±0.02 (92.36±0.04) 0.02±0.008 (99.98±0.02) 0.013±0.002 (99.98±0.004)
Shallowest(α = 25%) 7.41±0.04 (92.58±0.09) 0.03±0.003 (99.96±0.04) 0.007±0.003 (99.99±0.006)

SalUn(α = 20%) 7.76±0.04 (92.23±0.09) 0.05±0.005 (99.94±0.01) 0.001±0.001 (99.99±0.002)
SalUn(α = 30%) 6.94±0.04 (93.06±0.04) 0.05±0.009 (99.94±0.006) 0.00±0.00 (100.00±0.00)

Ours(α = 20%) 6.97±0.02 (93.02±0.05) −0.04±0.007 (99.95±0.01) 0.000.00 (100.00±0.00)
Ours(α = 30%) 6.83±0.02 (93.16±0.06) −0.04±0.008 (99.95±0.02) 0.00±0.00 (100.00±0.00)

19

	Introduction
	Background
	Unlearning
	Memorization

	Related Work
	Deriving and investigating localized unlearning based on memorization hypotheses
	Improved localized unlearning
	Examining key building blocks of localization algorithms
	Introducing our localization strategy

	Comparison to state-of-the-art and analyses
	Discussion and Conclusion
	Appendix
	Unlearning definition
	Experimental Setup
	Metrics
	 MIA Evaluation
	Pseudocode
	ViT-SVHN experiments
	ResNet-50-ImageNet-100 experiments
	Measuring utility via retain Accuracy

