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ABSTRACT

Machine unlearning refers to removing the influence of a specified subset of training
data from a machine learning model, efficiently, after it has already been trained.
This is important for key applications, including making the model more accurate by
removing outdated, mislabeled, or poisoned data. In this work, we study localized
unlearning, where the unlearning algorithm operates on a (small) identified subset
of parameters. Drawing inspiration from the memorization literature, we propose
an improved localization strategy that yields strong results when paired with
existing unlearning algorithms. We also propose a new unlearning algorithm,
Deletion by Example Localization (DEL), that resets the parameters deemed-to-be
most critical according to our localization strategy, and then finetunes them. Our
extensive experiments on different datasets, forget sets and metrics reveal that DEL
sets a new state-of-the-art for unlearning metrics, against both localized and full-
parameter methods, while modifying a small subset of parameters, and outperforms
the state-of-the-art localized unlearning in terms of test accuracy too.

1 INTRODUCTION

Machine unlearning, coined by Cao & Yang (2015), is the problem of removing from a trained
model (the influence of) a subset of its original training dataset. While unlearning is a young area of
research, it has recently attracted a lot of attention (Triantafillou et al., 2024). Example applications
of unlearning include keeping models up-to-date or improving their quality by deleting training data
that is identified post-training as being outdated, mislabeled or poisoned.

Unlearning is a challenging problem in deep neural networks since they are highly non-convex,
preventing us from easily quantifying the influence of different training examples on the trained
weights. As a straightforward solution to unlearning a given “forget set”, one can simply retrain the
model from scratch on an adjusted training dataset that excludes that set. This approach implements
exact unlearning, guaranteeing that the resulting model has no influence from the forget set. However,
this approach can be prohibitively computationally expensive. Instead, a burgeoning area of research
has emerged that designs methods to post-process the trained model to attempt to approximately erase
the influence of the forget set, efficiently. This post-processing introduces a challenging balancing act,
as imperfect attempts at removing some training examples after-the-fact may accidentally damage
the model and overly reduce its utility (e.g. accuracy on the remainder of the training data or
generalization ability). Therefore, designing successful approximate unlearning methods involves
navigating trade-offs between i) forgetting as well as possible, ii) utility, and iii) efficiency.

We hypothesize that localized unlearning, where the unlearning algorithm operates on only a (small)
subset of the parameters, is a promising avenue for striking a good balance in the above trade-offs.
Specifically, modifying a (appropriately chosen) small fraction of the weights may be intuitively less
likely to overly damage the network’s utility (e.g. generalization capabilities) and more likely to be
efficient, since fewer parameters are subject to modification. However, the success of such a localized
approach hinges on the ability to identify the right subset of parameters to perform unlearning on. In
this work, we take a deep dive into different localization strategies, drawing inspiration specifically
from hypotheses formulated about where in the network training data is “memorized” 1.

1We intend here a very restricted definition of “memorization” in the context of classification models, which
do not provide generative outputs. In this context, memorization relates to a data element contributing to the
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Indeed, a closely-related research community has been studying memorization in neural networks.
Informally, a training example is memorized by a model if that model’s predictions on that example
would have been different had the example not been included in the training set (Feldman, 2020;
Pruthi et al., 2020). As we discuss later, this notion is closely tied to unlearning. In this work, we
investigate whether hypotheses for where memorization happens give rise to improved localized
unlearning, through informing which parts of the network we should act on in order to unlearn a
given set of examples. Our contributions can be summarized as follows:

• We leverage hypotheses for where memorization occurs to derive strategies that pinpoint a
minimal set of parameters that the unlearning algorithm should act on; and we investigate
their strengths and weaknesses. We find that data-agnostic strategies are a poor choice:
they either achieve good unlearning performance at the expense of utility, or the other way
around, but not both. We aim to improve on this via data-dependent approaches that target a
small fraction of the parameters chosen based on the particular forget set.

• Our insights from a thorough investigation led us to propose a practical localization strategy
inspired by the memorization localization algorithm of Maini et al. (2023) that is more
efficient than that algorithm and, when paired with various unlearning algorithms from the
literature, outperforms prior work in terms of unlearning and utility metrics.

• We propose a new localized unlearning algorithm, Deletion by Example Localization (DEL),
by pairing our localization strategy with the simple approach of resetting the deemed-to-be
critical parameters and then finetuning the newly reinitialized parameters.

• DEL outperforms the state-of-the-art localized and full-parameter methods on unlearning
efficacy, and all localized methods on utility too, on different forget sets and datasets. Unlike
other strategies, DEL can achieve strong results for several different parameter budgets.

2 BACKGROUND

We begin by introducing the notation we will use in this paper and defining key concepts.

Let Dtrain denote a training dataset and A a (possibly randomized) training algorithm. Then, we
denote by θo = A(Dtrain) the parameters obtained by training on Dtrain using A. We will refer to θo
as the “original model”, i.e. the model before any unlearning takes place. We will study algorithms
for “unlearning” a subset S ⊂ Dtrain, referred to as the forget set. We refer to Dtrain \ S , the remainder
of the training data, as the retain set. While different variations are possible, we assume for simplicity
that the unlearning algorithm U has access to both the forget set and the retain set.

2.1 UNLEARNING

In this section, we define unlearning intuitively in a way that faithfully reflects the standard metrics
used in the community that we also adopt for evaluation; see Section A.1 for an alternative definition.

Definition 2.1. Unlearning. For a given algorithm A and dataset Dtrain, an algorithm U is said
to unlearn a forget set S if the unlearned model U(θo,S,Dtrain \ S) and the “retrained model”
A(Dtrain \ S) have the same distribution of outputs on S.

The above compares the (distribution of) outputs of the models obtained by two different recipes.
The first is A(Dtrain \ S), retraining “from scratch” on only the retain set, which is prohibitively
expensive but ideal from the standpoint of eliminating the influence of S on the model. The second is
U(θo,S,Dtrain \ S), applying U to post-process the original model θo in order to unlearn S.

In the above, we refer to “distributions” of outputs since re-running either of the two recipes with a
different random seed, that controls the initialization or the order of mini-batches, for example, would
yield slightly different model weights, thus possibly slightly different outputs too. In our experiments
considering classification tasks, the “outputs” are the vector of softmax probabilities, and different
metrics consider different elements of that vector, e.g. the accuracy metric requires the “argmax” of
that vector, whereas more sophisticated metrics consider the correct class probability (“confidence”).

model’s ability to accurately label input data. Such models do not "contain" bit-wise or code-wise copies of their
training data.
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Figure 1: Localized unlearning consists of two parts: a localization strategy that identifies a set
of “critical parameters” (dashed line circles) and an unlearning algorithm that aims to remove the
influence of the forget set by modifying only the critical parameters (highlighted circles), keeping the
rest unchanged. Ideally, the unlearned model should “behave” like the model retrained from scratch,
i.e. the two should produce the same (distribution of) outputs; see Definition 2.1

We desire unlearning algorithms U that cause these two recipes to yield similar outputs, with the
second recipe being substantially more computationally-efficient compared to the first, in order to
justify paying the cost of approximate unlearning rather than simply using the first recipe directly.

Unlearning evaluation. Evaluating unlearning rigorously is an ongoing area of research; current
state-of-the-art evaluation methods (Hayes et al., 2024; Triantafillou et al., 2024) require training a
large number of models, which is very expensive. In this work, we leverage standard metrics in the
research community, building on top of the evaluation procedure of (Fan et al., 2023) that considers
two metrics for unlearning quality. The first is the accuracy of the unlearned model on the forget
set, with the goal of matching the accuracy of the retrained model on the forget set, in line with
Definition 2.1. The second is a Membership Inference Attack (MIA), that, given access to outputs
(“confidences”) of the unlearned model, aims to detect whether an example was used in training.
We adopt the MIAefficacy score of Fan et al. (2023) that measures the efficacy of defending such an
attack as the portion of forget set examples that the attacker thinks were unseen. An ideal unlearning
algorithm would have an MIAefficacy score matching that of the retrained-from-scratch model; see
Section A.3 for details. In addition, a comprehensive evaluation of unlearning also requires measuring
utility, which we measure via test accuracy (and retain accuracy, in Section A.8), and efficiency.

Localized unlearning. In this work, we focus on “localized unlearning” algorithms U that modify
only a (preferably small) subset of the parameters of θo, leaving the rest unchanged (see Figure 1).
We view localized unlearning as a promising direction as we hypothesize that it can yield better
trade-offs between unlearning efficacy, utility and efficiency, due to modifying fewer parameters.

A localized unlearning algorithm has two components. The first is a localization strategy L that
produces a mask m determining which subset of the parameters should be modified to carry out the
unlearning request: m = L(θo,S) where m is a binary vector specifying whether each parameter
will be updated. The second component is a unlearning strategy. This, in principle, can be any
unlearning algorithm that, in this case, will operate on only the subset of the parameters indexed by
m. Overall, a localized unlearning algorithm is instantiated by selecting a particular (L,U) pair.

2.2 MEMORIZATION

An intriguing phenomenon is that, despite models exhibiting strong generalization properties, they
still tend to “memorize” some of their training data (Arpit et al., 2017; Zhang et al., 2021). In fact,
recent theories argue that some forms of memorization are in fact necessary for optimal generalization
(Feldman, 2020; Brown et al., 2021; Attias et al., 2024). In the below, we first present a definition of
memorization borrowed from (Feldman, 2020), and then discuss the connections with unlearning.
Definition 2.2. Label memorization. Assume a dataset Dtrain = {(xi, yi)}Ni=1, where xi and yi
denote the input and label for the i’th training example, and assume a training algorithm A and a
model f(x; θ) parameterized by θ mapping inputs to labels. Then, the memorization score for an
example (xi, yi) ∈ Dtrain (with respect to Dtrain, A and f ) is

Pr
θ∼A(Dtrain)

[f(xi; θ) = yi] − Pr
θ∼A(Dtrain\(xi,yi))

[f(xi; θ) = yi]. (1)

Intuitively, an example is highly memorized by a model if the model can only predict its label correctly
when that example is in the training set. This will be primarily the case for atypical, ambiguous or
mislabeled examples that would not be otherwise correctly predicted (Feldman & Zhang, 2020).
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Connections with unlearning. Some forms of memorization and unlearning are intimately con-
nected: at the extreme where an example isn’t memorized at all, it can be thought of as being trivially
“unlearned” according to some unlearning metrics of interest, because the model’s predictions on
that example aren’t different from what they would have been had that example not been included in
the training set (“retrain from scratch”). Empirically, considering varying degrees of memorization,
Zhao et al. (2024) showed that most approximate unlearning methods are more successful on forget
sets which include examples that have lower memorization scores compared to those with higher
memorization scores. Relatedly, Jagielski et al. (2022) study catastrophic forgetting during training;
a phenomenon that can be characterized as reduced memorization of an example in later stages of
training, that can be interpreted as a passive form of unlearning. They find that, when training on
large datasets, examples that were only seen early in training may be less memorized, which they
quantify via the failure rates of privacy attacks aiming to extract examples or infer whether they were
used for training. Toneva et al. (2018) find that examples with noisy labels witness a larger number
of “forgetting events” during training, defined as an event where an example that was previously
correctly predicted becomes incorrectly predicted later in training. Based on these insights on the
strong connection of memorization and unlearning, we ask: does knowledge (or assumptions) of
where in the network a forget set is memorized give rise to improved unlearning for that forget set?

Localizing memorization. Investigating the above question is a challenging undertaking, as pin-
pointing where memorization occurs is in and of itself a research problem. Baldock et al. (2021)
define the “prediction depth” for an example to be the earliest layer in the network after which the
example is correctly predicted. They find that mislabeled examples are only predicted correctly in the
final few layers of the model, and conclude that “early layers generalize while later layers memorize”.
Stephenson et al. (2021) draw the same conclusion through a study of manifold complexity and
shattering capability. However, Maini et al. (2023) found that the parameters that memorize specific
examples are actually scattered throughout the network and not concentrated in any individual layer.

3 RELATED WORK

Unlearning. Cao & Yang (2015) coined the term unlearning and proposed exact algorithms for
statistical query learning. Bourtoule et al. (2021); Yan et al. (2022) propose frameworks that
support exact unlearning in deep networks more efficiently by considering architectures with many
components, where one only needs to retrain the affected parts of the model for each unlearning
request. However, in the worst case, efficiency can be as poor as in naive retraining and, furthermore,
these specialized architectures may have lower accuracy compared to state-of-the-art ones. Instead, a
plethora of approximate unlearning methods (Ginart et al., 2019; Guo et al., 2019; Golatkar et al.,
2020a;b; Thudi et al., 2022) were developed that operate on an already-trained model to remove
the influence of the forget set. Simple commonly-used baselines include finetuning the model on
only the retain set (“Finetune”), or on only the forget set using the negated gradient (“NegGrad”),
or combining these two in a joint optimization “NegGrad+” (Kurmanji et al., 2024), performing
gradient descent on the retain set and ascent on the forget set, simultaneously. One could also apply a
joint optimization using gradient descent on both the retain and forget sets, after having first randomly
relabelled the examples in the forget set (“Random Label”) (Graves et al., 2021; Fan et al., 2023).
SCRUB (Kurmanji et al., 2024) builds on NegGrad+ by casting unlearning as a teacher-student
problem and using distillation. Liu et al. (2024) show that sparsity aids unlearning and that adding
an L1-penalty to the Finetune baseline improves its performance (“L1-sparse”). One could also
utilize influence function analysis (Koh & Liang, 2017) to mitigate the impact of the forget data by
estimating the importance of the model weights (“IU”) (Izzo et al., 2021).

Localized unlearning. Goel et al. (2022) propose baselines that perform unlearning on only the k
deepest (closest to the output) layers and either simply finetune them (“CF-k”) or reinitialize them
and then finetune them (“EU-k”). The contemporaneous work of Foster et al. (2024) (“SSD”) uses
the Fisher information matrix to identify parameters that are disproportionately important to the
forget set and apply unlearning on those. Fan et al. (2023) proposes Saliency Unlearning (“SalUn”),
which selects a subset of critical parameters by considering the gradients of the forget set and applies
unlearning (by default using Random Label) on the identified parameters. We will later compare
this state-of-the-art method to other strategies inspired by the memorization literature, and propose a
novel strategy that outperforms previous work. Related ideas have been proposed in the context of
unlearning in LLMs (Hase et al., 2024; Guo et al.), though we note that the problem formulation of
LLM unlearning as well as the architectures and algorithms used there are substantially different and
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out of the scope of this paper. We will later discuss how our findings relate and differ from theirs
(See Section 7).

4 DERIVING AND INVESTIGATING LOCALIZED UNLEARNING BASED ON
MEMORIZATION HYPOTHESES

In this section, we derive localization strategies from hypotheses in the memorization literature and
investigate their performance in the context of localized unlearning compared to existing approaches.
Based on the discussion in Section 2.2, we consider two hypotheses for where memorization occurs,
and we then turn each one of them into a localization strategy L(θo,S). The two hypotheses are: i)
memorization happens in the “deepest layers”, i.e. closest to the output, consistent with (Baldock
et al., 2021; Stephenson et al., 2021), and ii) memorization of an example is confined to a small set of
channels, scattered across the network, whose location depends on the example (Maini et al., 2023).

We compare the unlearning performance of four localization strategies: i) Deepest and ii) CritMem,
derived based on the above two hypotheses, iii) selecting the shallowest rather than deepest layers
(“Shallowest”), as a control experiment, and iv) the localization strategy of SalUn (Fan et al., 2023)
(“SalLoc”) that is not motivated through the lens of memorization but is regarded as state-of-the-art
in the unlearning literature. Note that we reserve the name “SalUn” for the pairing of SalLoc with the
Random Label unlearning algorithm, which is the choice that Fan et al. (2023) found worked best
(we mix-and-match localization strategies with unlearning algorithms in Section 5).

Deepest returns a mask that allows only the k deepest (closest to output) layers to be updated during
unlearning, based on the first hypothesis. If paired with an unlearning algorithm that resets the chosen
parameters and then finetunes them, this corresponds to the EU-k method of (Goel et al., 2022).

CritMem is based on the second hypothesis and implemented via the algorithm of Maini et al. (2023).
Given an example, it iteratively finds the deemed-to-be most critical channel, resets all its associated
parameters and repeats, until the prediction on that example flips to an incorrect one. The criterion
used to identify the next most critical channel at each iteration is obtained by multiplying the weights
by their respective gradients on that example, and choosing the channel for which the (sum, over
the channel parameters) of the magnitude of this quantity is the highest. We run this algorithm for
each example in S independently, record the critical channels identified for each and then consider
the union of those as the critical channels for S. The mask is then set to allow to only modify the
parameters involved in those critical channels.

Shallowest returns a mask that allows only the k shallowest (closest to the input) layers to be updated
during unlearning, as a control experiment for Deepest.

SalLoc sorts all parameters based on the magnitude of gradients over S , in descending order and then,
given a threshold α for the percentage of the parameters that might be updated during unlearning, it
returns a mask that turns on only the first α percent of elements of that sorted list (Fan et al., 2023).

The above strategies differ along several axes. Firstly, Deepest and Shallowest are data-agnostic
in that they do not use S to inform which parameters to choose, whereas CritMem and SalLoc are
data-dependent and tailor the mask to S. Secondly, there are differences in granularity: Deepest
and Shallowest consider a layer as the unit (i.e. each layer is either included or excluded as a
whole). CritMem’s unit is a channel while SalLoc has the finest granularity, considering each
individual parameter as a unit. Finally, out of the data-dependent ones, CritMem is substantially more
computationally expensive than SalLoc. This is because for each example in S , it applies an iterative
approach that resets the next most critical channel, one at a time, until the termination criterion.
On the other hand, SalLoc chooses the critical parameters in “one-shot” rather than iteratively and,
additionally, operates on batches of S. Both of these aspects make it significantly more efficient.

Experimental setup We conduct this investigation on CIFAR-10 using ResNet-18, and a forget set
comprised of 10% of the training samples, randomly selected from two classes (2 and 5). We use
a simple unlearning algorithm that resets the identified critical parameters (obtained based on each
localization strategy), and then finetunes only the identified critical parameters and the classifier
layer using only the retain set (“Reset + Finetune”). Since each of the above localization strategies
chooses a different set and number of parameters, to ensure fairness, we compare them to one another
for different “budgets” of how many parameters are updated. For example, for Deepest, we select the
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Figure 2: Comparison of localization strategies combined with the Reset + Finetune (RFT) unlearning
algorithm. An ideal unlearning algorithm would match the “oracle” (“retrain-from-scratch”) on each
metric, with the smallest possible parameter budget, for increased efficiency. The strategy we will
propose later (“ours”) yields the best trade-off, with near-perfect unlearning for several budgets.

k deepest layers (for several different values of k), and we compute the number of parameters that
are selected each time to obtain the “budget”. We measure unlearning performance in terms of three
metrics: Forget accuracy and MIA efficacy for unlearning quality, and test accuracy for utility. For all
three metrics, the ideal behaviour is to match the performance of the retrain-from-scratch “oracle”
on that metric. We include all details in Sections A.2 including hyperparameters but we note that,
throughout the paper, we tune hyperparameters separately for each budget and localization strategy.

Findings From Figure 2 we observe the following. First, when updating (almost) all parameters,
Deepest achieves strong results on all metrics, which is expected since, at that end of the spectrum,
Deepest paired with Reset + Finetune amounts to retraining (almost) the entire model. However, for
smaller budgets, it performs very poorly in unlearning metrics as resetting only deeper layers does
not cause a sufficient accuracy drop on the forget set (though it at least preserves test accuracy). On
the other hand, Shallowest is much more effective at unlearning compared to Deepest, and in fact a
strong baseline, suggesting that research should consider this baseline alongside EU-k of Goel et al.
(2022). This is perhaps due to resetting earlier layers causing larger “disruption” to the information
flow in the network. Indeed, contrary to Deepest, this strategy leads to poor test accuracy for several
budgets, which is the main downside of this approach. CritMem is unable to reach good unlearning
quality in this setup. Note that we can only evaluate CritMem for small budgets, as the algorithm of
Maini et al. (2023) terminates once enough parameters are reset such that the prediction is flipped to
an incorrect one (so the max value of α we can consider is capped). We find that resetting only those
parameters is insufficient for achieving good unlearning results when paired with this unlearning
algorithm. SalLoc has a similar trend to Shallowest in terms of unlearning metrics but leads to higher
test accuracy. It performs similarly to CritMem in the range where we can compare them.

Overall, we observe that data-agnostic localization strategies yield poor performance: each of Deepest
and Shallowest can either achieve good forget accuracy / MIA efficacy at the expense of utility, or
the other way around, but not both. We hypothesize that a data-dependent approach with a finer-
grained control of which earlier and deeper parameters to update in a way that is informed by the
forget set, would yield better trade-offs, due to causing minimal and targeted “disruption” that
preserves utility. We have considered two such data-dependent strategies so far, CritMem and SalLoc.
CritMem, directly adapted from the memorization literature, results in updating only a small number
of parameters (based on its termination criterion) and is unable to achieve good forgetting quality
within that budget in the context of localized unlearning, while it is also computationally expensive, as
discussed above, due to its iterative nature. SalLoc, on the other hand, is more efficient and improves
a little over Shallowest in terms of causing less of a test accuracy drop.

5 IMPROVED LOCALIZED UNLEARNING

In this section, building on our previous observations, we take a deeper dive into key design choices
of CritMem and SalLoc, formulate hypotheses about their appropriateness and empirically investigate
the axes in which they differ, leading to an improved localized unlearning approach.
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5.1 EXAMINING KEY BUILDING BLOCKS OF LOCALIZATION ALGORITHMS

As discussed in Section 4, SalLoc has the finest granularity, making a decision for whether or not
to select individual parameters, whereas CritMem operates on the level of output channels, thus
deciding whether the mask should include or exclude all parameters associated with a channel, as
a unit. We hypothesize that, because attempts to locate where memorization occurs are based on
heuristics and are imperfect, the easier task of making coarser-grained decisions, as in CritMem,
is a more appropriate choice compared to the harder, and thus more error-prone, task of making
parameter-level assessments of criticality. Specifically, marking all parameters of a channel as critical,
if a subset of them are deemed to be critical, can be seen as useful “smoothing”, at the potential
expense of leading to resetting some more parameters than may have been strictly necessary.

Further, we also hypothesize that CritMem’s criticality criterion that uses weighted gradients rather
than simply considering the magnitude of gradients themselves (SalLoc) is also more appropriate: it
can be seen as a more conservative choice, which is more suitable in light of the heuristic nature of
determining criticality. Intuitively, a weight with a small value can be seen as less critical “overall”
(for the training set) which is an important signal to consider in addition the gradients on specific
forget set examples, as it may also serve as a useful “regularizer” when making heuristic assessments.

Table 1: Combining different granu-
larity and criticality criteria in a non-
iterative localization algorithm. The
top-left cell corresponds to the SalLoc,
while the bottom-right cell (shaded) rep-
resent our proposed approach.

Grads Weighted grads

Parameter
∆forget −7.58±8e−3 15.07±0.01
∆test 3.63±4e−3 11.55±6e−3
∆MIA 8.74±1.10 −16.32±1.39

Channel
∆forget −12.33±8e−3 1.58±0.01
∆test 1.55 ±2e−3 4.41±2e−3
∆MIA 15.53±1.10 3.33±1.28

Based on the above, we hypothesize that CritMem’s granu-
larity level and its criticality criterion are more suitable than
SalLoc’s for localized unlearning. However, CritMem’s
iterative nature makes it computationally expensive. Recall
that, for each given example, it determines the next most
critical channel one at a time, resets it and repeats to find
the next most critical one, until the label of the example
flips. To instead obtain a more efficient localization strat-
egy, we investigate incorporating CritMem’s granularity
and its criticality criterion into an algorithm that, akin to
SalLoc, estimates the critical parameters for each batch in
S in “one-shot”, leading to increased efficiency both due to
batching over examples in S as well as due to determining
criticality non-iteratively for each batch.

In Table 1, we investigate the effect of the granularity and
criticality criteria mentioned above, in the context of batched and non-iterative localization algorithms,
on the same experimental setup (dataset, forget set, etc) as in Section 4. We find that indeed the best
choice is given by using the channel-wise granularity and weighted gradients. We therefore build on
these decisions to devise our localization strategy in the next section.

5.2 INTRODUCING OUR LOCALIZATION STRATEGY

Given a forget set S and an original model θo with p parameters, for j ∈ {1, . . . , p}, let θoj and
gj(θ

o,S) represent the weight and gradient values on the forget set, respectively. We define the
criticality score sj of the jth parameter as the magnitude of the weighted gradient over the forget set:
sj = |θoj · gj(θo,S)|; this is the same criticality criterion used in CritMem, whereas SalLoc simply
considers the magnitude of the gradient for each parameter |gj(θo,S)| for assessing its criticality.

As discussed above, we choose to determine criticality in a coarser-grained way compared to individ-
ual parameters. To that end, for an output “channel” oi (or “neuron” more broadly, encompassing
non-convolutional architectures), we describe how to obtain its criticality score coi based on the
criticality score of its constituent parameters. Let s̃i be a list of the criticality scores for the parameters
belonging to neuron oi, sorted in descending order. We set the neuron criticality coi to be the average
of the top h scores of its associated parameters: coi = 1

hΣhj=1s̃i[j].

Finally, having obtained the neuron criticality scores, we put together the mask mα for parameter
budget α, represented as a binary vector of size p, where a 1 indicates the corresponding parameter
will be updated by the unlearning algorithm, whereas an entry of 0 indicates it will be kept unchanged.
To this end, we form another sorted list c̃, that sorts the neurons in descending order of their criticality
scores. We then pick the largest number of neurons from the start of the sorted list, such that the total
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Figure 3: Pairing localization strategies / budgets (e.g. Ours-30% denotes applying our localization
strategy to select 30% of parameters) with three unlearning algorithms, on CIFAR-10 / ResNet (the
ideal behaviour is to match the “Oracle”). Our method has the best unlearning efficacy, paired
with any unlearning algorithm, and its performance degrades much less than SalLoc’s when
the budget reduces from 30% to 20%; meanwhile it has no worse (or better) test accuracy.

selected parameters are within the budget. Then, we assign a 1 to all entries of mα for parameters
belonging to the chosen critical neurons and 0 to the rest. We provide pseudocode in Section A.5.

Our localization strategy can, in principle, be paired with any unlearning algorithm, but we find we
obtain strongest results by pairing it with the simple Reset + Finetune (RFT) algorithm. We refer to
the combination of our localization strategy with RFT as Deletion by Example Localization (DEL).

6 COMPARISON TO STATE-OF-THE-ART AND ANALYSES

In this section, we carry out comprehensive experiments on two datasets and architectures (CIFAR-10
with ResNet-18 and SVHN with ViT; see Section A.2 for details), to examine the performance of our
localization strategy paired with various unlearning algorithms, on different types of forget sets, as
well as various analyses to understand the factors behind the success of localized unlearning methods.

Pairing with different unlearning algorithms. In Figure 3, we compare different localization strate-
gies, for different values of the parameter budget, paired with three different unlearning algorithms.
We observe that i) our method pairs well with different unlearning algorithms, ii) in terms of forget
accuracy and MIA efficacy, our method yields the best results, coming very close to the ideal “oracle”
reference point by updating only 30% of the network’s parameters, iii) at the same time, test accuracy
is no worse (and sometimes better) using our method.

DEL is robust to the parameter budget. Figure 2 shows that DEL is more robust to the budget
compared to all other strategies considered, yielding strong results across several budgets. Figure
3 corroborates this finding in the context of different unlearning algorithms too, showing that our
localization method experiences much lower performance degradation compared to SalLoc, when the
budget is reduced: we significantly outperform SalLoc when the budget is 20%.

DEL outperforms the state-of-the-art for both datasets and forget set types. We compare DEL to
state-of-the-art methods for unlearning, including ones that update all parameters on two different
datasets. On CIFAR-10, we also consider two forget sets: an IID forget set comprised of 10% of
randomly-chosen training samples, and a non-IID forget set of the same size but choosing samples
belonging to a subset of the classes (see details in Section A.2). We present the results in Table 2
and Figure 4 (and Table 8 in the Appendix). For each localized unlearning strategy and on each
dataset, we report results using its best identified parameter budget and its best-paired unlearning
algorithm for that setting. We observe that, generally, localized unlearning methods outperform
their full-parameter counterparts in terms of unlearning metrics (∆forget and ∆MIA); on the former
(∆forget) because full-parameter methods end up causing the forget set accuracy of unlearning to
become significantly lower than the ideal reference point, yielding a negative ∆ (associated with
poor MIA efficacy, too). We hypothesize that localized unlearning, due to making a more targeted
update, can be more easily tuned to reach the desired reference point for the forget accuracy rather
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Table 2: DEL outperforms the state-of-the-art localized and full-parameter unlearning, on CIFAR-
10/ResNet-18 on two forget sets: the Non-IID forget set consists of 10% of the training samples,
randomly selected from two classes, whereas the IID one consists of 10% of the training samples,
randomly selected from all classes. We use three metrics, each represented as ∆, obtained by
subtracting the unlearning algorithm’s value for a given metric from the Oracle’s value for that
metric): forget accuracy (∆forget ), MIA efficacy (∆MIA) and test accuracy (∆test). Note that SalLoc-
RL corresponds to “SalUn” which employs Random Label, regarded as state-of-the-art.

Non-IID Forget Set IID Forget Set

∆forget ∆MIA ∆test ∆forget ∆MIA ∆test

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning −5.60±0.89 6.07±1.10 −1.61±0.34 −1.98±1.10 1.96±1.11 −2.00±0.72
NegGrad+ −4.44±0.95 4.92±1.14 4.61±0.22 1.87±1.31 1.89±1.30 4.21±0.67
NegGrad −3.30±0.72 3.76±0.94 4.60±0.18 −15.04±0.40 15.39±0.39 −1.11±0.51

Random Label −1.64±0.98 2.07±1.15 4.33±0.19 1.69±0.46 1.69±0.47 4.93±0.47
L1-sparse −1.50±0.82 −1.01±1.03 2.07±0.51 1.80±1.20 −1.80±1.08 0.62±0.67

IU −5.00±0.88 5.04±0.91 4.18±0.19 −2.20±0.39 2.19±0.38 10.94±0.43

L
oc

al
iz

ed
U

nl
ea

rn
in

g SSD −11.16±6.28 11.18±6.29 2.68±1.18 1.60±1.99 1.59±1.98 11.58±1.03
CritMem-RL (α = 16%) −1.82±1.19 1.87±1.21 4.86±0.19 −2.03±0.45 2.05±0.45 4.36±0.37

Shallowest-RL (α = 25%) 1.29±1.62 −0.80±1.74 5.88±0.18 3.41±0.77 −3.43±0.78 6.43±0.52
SalLoc-RL (α = 30%) −2.8±1.45 3.30±1.54 4.63±0.27 −3.81±0.40 3.80±0.39 4.29±0.45

DEL (α = 30%) 0.43±1.06 0.64±1.23 2.23±0.25 0.97±0.42 −0.97±0.40 1.87±0.49

Table 3: Random-vs-standard masking using RFT unlearning, α=16%, on CIFAR-10 / ResNet-18.

Standard Masking Random Masking

CritMem SalLoc Ours CritMem SalLoc Ours

∆forget −13.25±1.53 −8.26±0.92 −2.86±1.09 −18.60±1.03 −13.26±0.80 −8.58±0.98
∆MIA 13.73±1.62 8.75±1.09 3.36±1.27 19.09±1.21 13.78±1.02 9.07±1.17
∆test 2.85±0.31 3.50±0.53 2.62±0.22 1.99±0.19 1.91±0.57 1.89±0.21

than “overshooting” it, amending the above issue. On the other hand, full-parameter methods lead to
(marginally) better test accuracy in some cases, especially for the IID forget set. Out of the considered
localized methods, that DEL outperforms the state-of-the-art on all metrics and across forget sets.

Localized unlearning succeeds due to selecting critical parameters. We design a control ex-
periment to investigate to what extent the success of localized unlearning is dependent on which
parameters are chosen (rather than simply how many). To this end, we compare the mask produced
by each localization strategy to a “random mask” that is constructed to follow the same structure and
distribution of the number of chosen parameters per layer as the corresponding non-random mask.
For example, to create the random mask that CritMem will be compared with, we randomly select a
number of channels for each layer equal (but randomly selected this time) to the number of channels
that CritMem selects for that layer. The results in Table 3 indicate that, beyond doubt, localized
unlearning algorithms succeed due to pinpointing critical parameters.

Is localized unlearning better due to tailoring to S? We design a set of experiments to investigate
this by changing the criticality criterion. Specifically, we choose two criteria that are not specific
to the forget set S: the first uses only the magnitude of the weights (“weights”), and the second
uses weighted gradients, but where the gradients this time are over all of Dtrain rather than just S
(“Weighted gradients (train set)”). Our rationale is that, if either of these forget-set-agnostic criteria
work equally well as our method’s criterion (“Weighted gradients (forget set)”), this would suggest
that the success of our method is not due to specialization to S but rather finding parameters that are
“generally critical” for the training data. We observe from Table 4 that, for the IID forget set, the above
two criteria that depend on Dtrain rather than S specifically, yield more similar results to our criterion.
This is reasonable since the forget and train follow the same distribution in the IID forget set case. On
the other hand, for the non-IID forget set, we do observe that tailoring the criticality criterion used in
the localization strategy to S yields better results in terms of the unlearning metrics. These findings
suggest that i) the success of different localization strategies is dependent on the distribution of the
forget set, ii) our method (shaded gray area in the table) is a top performer in all cases.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Investigation of different granularity and criticality criteria in a non-iterative localization
algorithm (α=15%) on IID and Non-IID forget set. The shaded region corresponds to our method.

Non-IID forget set IID forget set

Granularity Gradients
(forget set) Weights

Weighted
gradients
(train set)

Weighted
gradients

(forget set)

Gradients
(forget set) Weights

Weighted
gradients
(train set)

Weighted
gradients

(forget set)

Individual
parameter

∆forget
∆test
∆MIA

−7.58±8e−3
3.63±4e−3
8.74±1.10

15.50±6e−3
10.80±5e−3
−14.73±0.97

14.03±0.01
10.60±6e−3
−13.89±1.29

15.07±0.01
11.55±6e−3
−16.32±1.39

−6.72±0.41
1.98±0.45
6.81±0.41

11.67±0.51
11.11±0.60
11.68±0.50

11.19±0.15
10.90±0.51
−11.21±0.52

11.15±0.48
11.05±0.54
−11.13±0.46

Output
channel

∆forget
∆test
∆MIA

−12.33±8e−3
1.55±2e−3
15.53±1.10

6.02±5e−3
5.64±2e−3
−1.02±0.93

−2.52±0.01
3.52±4e−3
6.73±1.12

1.58±0.01
4.41±2e−3
3.33±1.28

−5.18±0.40
1.26±0.54
5.16±0.39

1.33±0.41
2.86±0.45
−1.40±0.39

1.69±0.68
2.27±0.44
1.67±0.68

0.65±0.60
3.05±0.43
0.69±0.59

7 DISCUSSION AND CONCLUSION

2 4 6 8

forget

MIA

test

DEL (Ours-RFT)
SalLoc-RFT
Shallowest-RFT
Random Label
NegGrad+
L1-sparse
Oracle

Figure 4: On SVHN with ViT, DEL outper-
forms state-of-the-art full-parameter and local-
ized unlearning in terms of unlearning quality.
L1-sparse has better test accuracy than DEL but
has poor unlearning performance. These results
are for the non-IID forget set, and α = 30% for
localized methods; see Table 8 for full results.

To summarize, we have performed an investi-
gation on whether hypotheses for where mem-
orization happens in the network give rise to
improved localized unlearning. Our investiga-
tion led us to propose a new localization strat-
egy that is more practical and efficient compared
to the algorithm from the memorization litera-
ture that it builds upon, while outperforming
the state-of-the-art unlearning methods on sev-
eral metrics, when paired with different unlearn-
ing algorithms. Our proposed DEL method, ob-
tained by pairing our strategy with the simple
RFT unlearning algorithm, sets a new state-of-
the-art on forget sets of different distributions,
different datasets and architectures, and across
parameter budgets. We find that for non-IID for-
get sets, tailoring the parameter selection to the
specific forget set (rather than the training set
more broadly) is more important than it is for
IID forget sets. Our method outperforms others
in both cases but to different degrees, pointing
to important questions for future work regarding what other characteristics of forget sets affect the
behaviours and success rates of localized unlearning.

So, does memorization inform unlearning? Hase et al. (2024) find that, for model editing in LLMs,
the “causal tracing” method (Meng et al., 2022) for knowledge localization, surprisingly, does not
indicate which layer to modify in order to most successfully rewrite a stored fact with a new one.
That is, they find that success in editing tasks is generally unrelated to localization results based on
causal tracing. Guo et al. study whether mechanistic interpretability insights improve unlearning
of “factual associations” in LLMs. They also find that localization techniques based on preserving
outputs (such as causal tracing) yield performance that is no better, or even worse, than non-localized
unlearning. However, they come up with a mechanistic unlearning method that does outperform both
output-based localization and non-localized unlearning, showing that some form of localization is
useful. Our results, in the very different context of unlearning a subset of data in vision classifiers,
offer an important data point in this ongoing discussion. In line with Hase et al. (2024), we find that
directly translating memorization hypotheses into localization strategies does not help unlearning:
Deepest led to very poor unlearning results (demonstrating either its weakness as a memorization
locator, or the disconnect between memorization localization and unlearning performance), and
CritMem, while showing more promise, did not perform better than simple baselines, while being
significantly more expensive than them. However, insights from (Maini et al., 2023), in particular
regarding the granularity and criticality criterion used during localization led us to improve upon
the state-of-the-art localized and full-parameter unlearning methods, renewing hopes that, while
memorization localization and unlearning may be separate research questions, progress in the former
may guide progress in the latter.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES
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A APPENDIX

A.1 UNLEARNING DEFINITION

In this section, we discuss an alternative formal definition of unlearning, proposed in in Ginart et al.
(2019); Neel et al. (2021), using a notion closely related to Differential Privacy (Dwork, 2006).

Definition A.1. Unlearning-2. For a training algorithm A, an algorithm U is an (ε, δ)-unlearner if,
for any training datasetDtrain and forget set S , the distributions ofA(Dtrain\S) and U(θo,S,Dtrain\S)
are (ε, δ)-close, where we say two distributions µ, ν are (ε, δ)-close if µ(B) ≤ eεν(B) + δ and
ν(B) ≤ eεµ(B) + δ for all measurable events B.

Intuitively, the above compares (the distribution of) models that are obtained by two different recipes
to one another:

• A(Dtrain \ S), retraining “from scratch” on only the retain set, which is prohibitively
expensive but ideal from the standpoint of eliminating the influence of S on the model, and

• U(θo,S,Dtrain \ S), applying U to post-process the original model θo in order to unlearn S .

We desire unlearning algorithms U that cause these two recipes to yield similar models, with the
second recipe being substantially more computationally-efficient compared to the first, in order to
justify paying the cost of approximate unlearning rather than simply using the first recipe directly.

Note that we refer to distributions here since re-running either of the two recipes with a different
random seed, that controls the initialization or the order of mini-batches, for example, would yield
slightly different model weights in each case. The above definition therefore measures unlearning
quality based on the notion of (ε, δ)-closeness between the two distributions. The smaller ε and δ are,
indicating increased closeness, the better the unlearning algorithm.

Relationship and differences to our definition This definition compares distributions in weight
space, whereas our Definition 2.1 compares distributions of outputs of models on the forget set. We
opted for the latter in the main paper as it more closely reflects the metrics we use for evaluation (which
are the standard metrics used in unlearning papers). Note that, even works that adopt definitions in
weight-space end up operationalizing them using outputs of models (Triantafillou et al., 2024) instead
of performing weight-space comparisons. This is for several reasons: comparing weights of models
directly may be inappropriate since neural networks are permutation-invariant. Weight space is also
much higher dimensional, posing challenges in creating the right metrics, and, finally, ultimately
what we may care about for various applications of interest is the “behaviours” (e.g. predictions) of
models, rather than their weights. Definition 2.1 captures this more directly.

A.2 EXPERIMENTAL SETUP

Datasets The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 50, 000 train and 10, 000 test
images of shape 32×32 from 10 classes. The SVHN dataset (Netzer et al., 2011) includes 73, 257
train and 26, 032 test samples. The samples are of shape 32×32 pixel, and from 10 classes.The
ImageNet-100 (Hugging Face version) dataset is a subset of ImageNet (Deng et al., 2009), containing
126, 689 train and 5, 000 test samples from 100 classes, randomly selected from the original ImageNet
classes. The resolution of the images on the shortest side is 160 pixels.

We perform no preprocessing or augmentation on the images of CIFAR-10 and SVHN, except
dividing the feature values by 255. For ImageNet-100, on the other hand, we randomly crop the
train images to size 128×128, and horizontally flip them. Moreover, we first resize the test images to
160×160, and then center-crop them to 128×128. We normalize the features of both train and test
images with the mean and variance of ImageNet.

For the unlearning experiments, we employ two different forget sets: (1) IID, where we uniformly
select approximately 10 percent of the images from the train set, and (2) NonIID, in which we
randomly select half of the samples from two classes (2 and 5 in CIFAR-10, and 3 and 6 in SVHN)
so that the size of the forget set is almost 10 percent of the train set. Note that in the former, the
distributions of the samples in the forget and retain sets are highly similar, whereas in the latter, the
sample distribution of the forget set is very different from that of the retain set.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Models We capitalize on the original implementation of ResNet-18 and ResNet-50 (He et al.,
2016) from PyTorch and the implementation of Vision Transformer (ViT) (Dosovitskiy, 2020) from
(Wang, 2021). ResNet-18 and ViT contain around 11 million parameters,whereas ResNet-50 has
approximately 25 million parameters. Due to the low-resolution nature of CIFAR-10, we replace the
first convolutional layer of ResNet-18 with a new convolutional layer with kernel size of 3×3, and
remove the max-pooling layer.

Note that the architectures of the considered models are very different from each other. ResNet-18/50
are convolutional (Conv) networks with an input Conv layer, multiple residual blocks, and a final
classifier layer. The normalization layer of ResNet-18/50 is batch normalization (Ioffe & Szegedy,
2015). In ResNet-18/50, the input images are downsampled multiple times so that deeper layers
operate on smaller input tensors. However, deeper layers have more filters (and thus, more trainable
parameters) than shallower layers.

The ViT architecture, on the other hand, employs linear (fully-connected) and multi-head attention
layers as its main building blocks. It first divides the input images into square patches (e.g. of shape
8×8) and give them as tokens (after some preprocessing including positional encoding) to the encoder
blocks. No downsampling is performed on the input tensors by the encoder blocks. Moreover, all
(i.e. both deeper and shallower) encoder blocks have identical number of trainable parameters. The
normalization layer of ViT architectures is layer normalization (Ba et al., 2016).

Training For the original (pretrained) models, we train ResNet-18 on CIFAR-10 and ViT on SVHN
(i.e. on the training set of the datasets) for 50 epochs using the SGD optimizer with momentum of
0.9, cross-entropy loss function, and batch size of 128. The base learning rate values are 0.1 and
0.05 for ResNet-18-CIFAR-10 and ViT-SVHN, respectively, which is gradually decayed by factor
of 0.01 using the Cosine Annealing scheduler. For the oracle model (gold standard), we train the
model from scratch only on the retain set, following the same procedure employed for the pretrained
model, except the number of epochs, which we set to 20, and learning rate, which is the half of that in
original training. We provide the hyper-parameter values for the approximate unlearning algorithms
in the tables below. We repeat each experiment three times and report the average values along with
95% confidence interval margins of the mean.

Table 5: Learning rate tuning.

Scheduler Parameters

Finetuning/ l1-sparse CosineAnnealingLR ηmin = 0.01 ∗ lrinit
Random Label CosineAnnealingLR ηmin = 0.5 ∗ lrinit
NegGrad+/NegGrad Constant -

Non-IID forget set IID Forget set

lrbest candidate values lrbest Candidate values

Finetuning 1.25 [0.5, 1.5] 1.25 [0.5, 1.5]
l1-sparse 0.5 [0.1, 1] 0.5 [0.1, 1]
Random Label 7e-3 [5e-3, 1e-2] 6e-3 [5e-3, 1e-2]
NegGrad+ 7e-4 [5e-4, 1e-3] 0.14 [0.1, 1]
NegGrad 7e-6 [5e-6, 1e-5] 4e-3 [1e-3, 5e-3]
CritMem-RL (α = 16%) 0.02 [0.01, 0.1] 0.02 [0.01, 0.1]
Shallowest-RL (α = 25%) 7e-3 [5e-3, 1e-2] 7e-3 [5e-3, 1e-2]
SalLoc-RL (α = 30%) 0.012 [5e-3, 1e-2] 0.012 [5e-3, 1e-2]
DEL (α = 30%) 0.015 [5e-3, 1e-2] 0.015 [5e-3, 1e-2]

A.3 METRICS

Following (Fan et al., 2023), we employ accuracy and membership inference attack (MIA) efficacy to
evaluate the effectiveness of different unlearning algorithms.

To compute MIA efficacy, a support vector classifier (SVC) is trained on top of outputs coming
from the unlearned model for the task of predicting whether an example was used in training or
not. This is performed through supervised learning where the test set is used as “unseen data” and a
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subset of retain set (with the same size as and similar label distribution to the test set) as “seen data”.
Specifically, the SVC is trained on the “prediction” outputs (i.e. the integers representing the index
of the predicted class), aiming to distinguish predictions from seen versus unseen data. Then, the
trained classifier is utilized to predict if each sample in the forget set belongs to the seen or unseen
data on the unlearned model. Given that, MIA efficacy is computed as follows:

MIAefficacy =
TN

|S|
,

where TN is the number of true negatives, i.e. forget samples that the classifier recognizes as likely
unseen data for the unlearned model, and |S| is the size of the forget set.

Intuitively, a higher value of MIAefficacy means that the unlearned model has been more successful in
“fooling” the SVC classifier (i.e. the “membership inference attacker”) into thinking that the forget set
was not used in training. However, to interpret how high we expect MIAefficacy to be for an unlearned
model, we must consult the reference point of how high this quantity would be for a model retrained
from scratch without the forget set. Note that, even in that case of “ideal unlearning”, MIAefficacy is
not necessarily 100%, and in fact it can be much lower than this. This is because, some examples in
the forget set might be so “easy” that, even without ever seeing them, the retrained model can still be
equally accurate on those examples as it would have been if they were actually included in training.
This would lead to its MIAefficacy being lower, since some forget set examples would be classified as
“seen” by the SVC. For this reason, in our experiments, we use the reference point as the MIAefficacy
obtained from retrain-from-scratch as the optimal value for this metric. An ideal unlearning algorithm
would therefore match that value.

A.4 MIA EVALUATION

In this section, we present MIA evaluation results using various MIAs for each model-dataset
combination. We compare two MIAs that leverage the model’s (i) correctness (Table 7) and (ii)
confidence (Table 6). Specifically, we train an SVC to distinguish between the seen (train) and unseen
(test) data using either (i) the predictions (i.e. the integers representing the index of the predicted
class) of the unlearned model on retain and test examples or (ii) the confidences (i.e. the Softmax
values associated with these predicted labels) of the unlearned model on these examples. The results
for the first variant (correctness-based MIA) are already presented in Tables 2 and 8, with a summary
provided in Table 7 in this section. Here, we expand the MIA evaluations by incorporating the second
variant (confidence-based MIA).

According to Table 6 and 7, the absolute value of ∆MIA values are larger when using the confidence-
based MIA compared to the correctness-based MIA. Since the model’s confidence on retain and test
samples provides more information than its predictions on these samples, providing the SVC with
confidence values results in a stronger MIA than using the predictions.

Additionally, in the ResNet-18–CIFAR-10 setting, we observe that our localized unlearning algorithm
significantly outperforms the other comparison methods across all evaluated MIAs for both IID
and non-IID forget sets. Similarly, in the ViT-SVHN setting with non-IID forget sets, our method
outperforms the other methods in both correctness-based and confidence-based MIA evaluations.
However, when the forget set is IID in ViT-SVHN setting, for both MIA variants there exists
a full-parameter unlearning algorithm (sometimes multiple, depending on the type of MIA) that
outperforms all the localized unlearning algorithms, including our method, in terms of MIA evaluation.
For example, Fine-tuning yields a more effective confidence-based MIA, while Fine-tuning, Random
Label, and L1-sparse demonstrate enhanced performance in correctness-based MIA compared to the
localized unlearning algorithms. This is an interesting observation that we hope future work will
investigate further.
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Table 6: Confidence-based MIA evaluation (∆MIA)

ResNet-18 - CIFAR-10 ViT - SVHN

IID Non-IID IID Non-IID

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning 6.24±2.18 6.23±1.03 −1.97±0.32 13.85±0.90
NegGrad+ 3.69±1.34 11.27±1.19 −19.40±11.60 3.75±1.82
NegGrad 28.18±0.87 10.44±0.83 12.47±0.25 29.02±1.03

Random Label −31.55±1.30 −19.96±1.46 −15.56±2.45 −6.44±3.58
L1-sparse 4.35±0.88 10.49±2.17 −7.74±0.58 7.62±0.75

L
oc

al
iz

ed
U

nl
ea

rn
in

g

CritMem-RL (α = 16%, 1%) −31.56±1.04 −14.08±2.58 13.12±0.24 32.80±0.71

Shallowest-RL/RFT (α = 25%, 30%) −25.87±0.89 −18.39±1.45 −16.83±1.05 −2.5±8.54

SalLoc-RL/RFT (α = 30%) −24.24±0.89 −14.15±1.76 −17.77±0.42 1.67±0.92

DEL (α = 30%) −0.59±0.90 −0.90±1.20 −5.48±0.64 1.12±0.76

Table 7: Correctness-based MIA evaluation (∆MIA)

ResNet-18 - CIFAR-10 ViT - SVHN

IID Non-IID IID Non-IID

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning 1.96±1.11 6.07±1.10 −1.05±0.42 11.22±0.65
NegGrad+ 1.89±1.38 4.92±1.14 −6.99±3.53 3.36±1.67
NegGrad 15.39±0.39 3.76±0.94 8.00±0.22 19.70±0.53

Random Label 1.69±0.47 2.07±1.15 −2.82±0.46 5.13±1.81
L1-sparse −1.80±1.08 −1.01±1.03 −2.43±0.39 8.66±0.31

L
oc

al
iz

ed
U

nl
ea

rn
in

g

CritMem-RL (α = 16%, 1%) 2.05±0.45 1.87±1.21 8.16±0.22 20.71±0.26

Shallowest-RL/RFT (α = 25%, 30%) −3.43±0.78 −0.80±1.74 −6.89±0.86 −5.24±2.32

SalLoc-RL/RFT (α = 30%) 3.80±0.39 3.30±1.54 4.55±0.32 −1.71±0.31

DEL (α = 30%) −0.97±0.40 0.64±1.23 −4.26±0.32 −0.78±0.92

A.5 PSEUDOCODE

Algorithm 1: Our localization strategy
Input: Original model θo with p parameters, forget set S, parameter budget α
Output: Localization mask mα

/* Compute criticality score for each parameter */
1 sj ← 0,∀ j ∈ {1, . . . , p}
2 for Mini-batch B ∈ S do
3 sj = sj + θoj · gj(θo,B), ∀ j ∈ {1, . . . , p}
/* Consider only the magnitude of each weighted gradient */

4 sj ← |sj |,∀ j ∈ {1, . . . , p}
/* Compute criticality score for each output channel/neuron */

5 s̃ = Sort(s), coi = 1
hΣhj=1s̃i[j],∀oi ∈ θo

/* Construct localization mask */

6 c̃ = Sort(c),mα = 1
(∑j

i=1 |c̃oi | ≤
(
p · α

))
7 return Localization mask mα

A.6 VIT-SVHN EXPERIMENTS

The full results corresponding to Figure 4 are detailed in Table 8.
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Table 8: Comparison to state-of-the-art, including algorithms that update all parameters (“Full-
Parameter”) on Non-IID and IID forget set when training a ViT model on SVHN dataset.

Non-IID Forget Set IID Forget Set

∆forget ∆MIA ∆test ∆forget ∆MIA ∆test

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning −11.27±0.66 11.22±0.65 −0.76±0.20 −2.73±0.49 −1.05±0.42 −0.91±0.22
NegGrad+ −3.45±1.65 3.38±1.67 2.32±0.27 3.22±3.58 −6.99±3.53 3.75±3.53
NegGrad −19.75±0.74 19.70±0.53 0.10±0.21 −11.78±0.36 8.00±0.22 0.58±0.21

Random Label −5.20±1.78 5.13±1.81 3.22±0.67 −0.96±0.54 −2.82±0.46 3.69±0.47
L1-sparse −8.72±0.34 8.66±0.31 0.24±0.19 1.36±0.46 −2.43±0.39 1.52±0.29

IU 1.57±0.28 5.04±0.91 3.11±0.18 1.45±0.36 −5.25±0.22 12.41±0.21

L
oc

al
iz

ed
U

nl
ea

rn
in

g SSD 2.83±1.57 −2.95±1.56 3.30±0.24 7.26±0.88 −11.09±0.85 13.26±0.74

CritMem-RL (α = 1%) −20.77±0.27 20.71±0.26 −0.45±0.18 −11.94±0.35 8.16±0.22 0.08±0.21

Shallowest-RFT (α = 30%) 5.20±2.34 −5.24±2.32 3.78±1.28 3.09±0.90 −6.89±0.86 3.56±0.59

SalLoc-RFT (α = 30%) 1.71±0.32 −1.71±0.31 2.55±0.20 0.78±0.41 4.55±0.32 3.68±0.23

DEL (α = 30%) 0.75±0.91 −0.78±0.92 0.78±0.52 0.46±0.043 −4.26±0.32 0.89±0.29

A.7 RESNET-50-IMAGENET-100 EXPERIMENTS

The results on ImageNet-100 dataset using ResNet-50 model are detailed in Table 9. Consistent with
our previous results, our proposed method outperforms all compared approaches across all studied
unlearning metrics. For test accuracy, our method achieves state-of-the-art performance among
localized approaches; however, full-parameter methods outperform localized unlearning approaches.

Table 9: Comparison to state-of-the-art, including algorithms that update all parameters (“Full-
Parameter”) as well as (“Localized” unlearning algorithms on IID forget set when training a
ResNet-50 model on ImageNet-100 dataset.

∆forget ∆MIA ∆test

Fu
ll-

pa
ra

m
et

er
U

nl
ea

rn
in

g

Retraining(Oracle) 0.00±0.00 0.00±0.00 0.00±0.00

Fine-tuning −6.96±1.33 6.34±1.18 0.54±0.95
NegGrad+ −3.18±1.95 2.54±1.52 5.09±1.64
NegGrad 5.13±8.05 −5.65±8.14 19.68±6.60

Random Label 5.18±1.59 −5.49±1.03 5.96±1.10
L1-sparse −5.58±1.32 4.76±0.94 1.06±0.98

L
oc

al
iz

ed
U

nl
ea

rn
in

g

SSD −14.11±1.96 13.71±1.80 5.44±1.37

Shallowest-RFT (α = 30%) −1.69±2.41 2.36±2.26 11.72±1.50

SalLoc-RFT (α = 30%) 1.36±2.01 −2.19±1.73 6.09±0.98

DEL (α = 30%) 0.78±1.55 −1.74±1.35 5.20±1.08

A.8 MEASURING UTILITY VIA RETAIN ACCURACY

Table 10 presents the retain performance when pairing various localization strategies and unlearning
algorithms. The retain performance is measured as the difference between the accuracy of the
oracle and unlearned models on the retain set (∆retain = Oracleretain − Unlearnretain.). The
experiments are conducted using the ResNet-18 model on the CIFAR-10 dataset with a non-IID
forget set consisting of 10% of randomly selected training samples. This table provides an extension
of the evaluation metrics shown in Figure 3.
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In terms of retain accuracy, the performance of our method is comparable to, or sometimes exceeds,
the other methods of comparison. By updating only a small portion of parameters (20% or 30%) as
suggested by our localization strategy, unlearning algorithms such as Random Labeling and Reset +
Finetuning can achieve the Oracle retain accuracy.

Table 10: Retain performance (∆retain) of combining different localization strategies and unlearn-
ing algorithms. The retain accuracy values from the unlearned models are provided in (·).

Localization
Strategy Unlearning Algorithm

(α =parameter%) Random Label NegGrad+ Reset + Finetune

CritMem(α = 16%) 7.36±0.04 (92.63±0.09) 0.01±0.003 (99.98±0.005) 0.02±0.018 (99.97±0.04)
Shallowest(α = 14%) 7.63±0.02 (92.36±0.04) 0.02±0.008 (99.98±0.02) 0.013±0.002 (99.98±0.004)
Shallowest(α = 25%) 7.41±0.04 (92.58±0.09) 0.03±0.003 (99.96±0.04) 0.007±0.003 (99.99±0.006)

SalUn(α = 20%) 7.76±0.04 (92.23±0.09) 0.05±0.005 (99.94±0.01) 0.001±0.001 (99.99±0.002)
SalUn(α = 30%) 6.94±0.04 (93.06±0.04) 0.05±0.009 (99.94±0.006) 0.00±0.00 (100.00±0.00)

Ours(α = 20%) 6.97±0.02 (93.02±0.05) −0.04±0.007 (99.95±0.01) 0.000.00 (100.00±0.00)
Ours(α = 30%) 6.83±0.02 (93.16±0.06) −0.04±0.008 (99.95±0.02) 0.00±0.00 (100.00±0.00)
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