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ABSTRACT

Autoregressive (AR) models, despite their remarkable successes, encounter limi-
tations in image generation due to sequential prediction of tokens, e.g. local image
patches, in a predetermined row-major raster-scan order. Prior works improve AR
with various designs of prediction units and orders, however, rely on human in-
ductive biases. This work proposes Basis Autoregressive (BAR), a novel paradigm
that conceptualizes tokens as basis vectors within the image space and employs an
end-to-end learnable approach to transform basis. By viewing tokens xk as the
projection of image x onto basis vectors ek, BAR’s unified framework refactors
fixed token sequences through the linear transform y = Ax, and encompasses
previous methods as specific instances of matrix A. Furthermore, BAR adaptively
optimizes the transform matrix with an end-to-end AR objective, thereby discov-
ering effective strategies beyond hand-crafted assumptions. Comprehensive ex-
periments, notably achieving a state-of-the-art FID of 1.15 on the ImageNet-256
benchmark, demonstrate the ability of BAR to overcome human biases and sig-
nificantly advance image generation, including text-to-image synthesis.

1 INTRODUCTION

Autoregressive (AR) models have demonstrated remarkable success in various domains (OpenAI,
2022; Team et al., 2023), particularly in natural language processing (Brown et al., 2020; Devlin
et al., 2019; Raffel et al., 2020). This paradigm of sequentially predicting next tokens is extended
to the vision domain with notable progress (Alayrac et al., 2022; Yu et al., 2022), including image
generation (Esser et al., 2021; Ramesh et al., 2021; Han et al., 2024; Yu et al., 2024a), and even
surpasses diffusion models (Song et al., 2021; Ho et al., 2020; Podell et al., 2024; Tang et al., 2022).
However, prevalent AR models flatten images as 1D sequences of tokens in a row-major raster-scan
order. While it aligns with the sequential nature of language, it overlooks the inherent 2D structure
of images, where each token exhibits strong relationships with its neighbors. This straightforward
adaptation significantly limits the capabilities and further development of AR models.

Recognizing these limitations, recent research (Fan et al., 2024; Li et al., 2024b; Yu et al., 2024c;
Li et al., 2025; Pang et al., 2024) explores alternative strategies to suit the characteristics of images
within the AR framework. VAR (Tian et al., 2024) moves from the standard next-token predic-
tion to the coarse-to-fine next-scale prediction. MAR (Li et al., 2024b) transforms the traditionally
causal, unidirectional generation into a bidirectional attention mechanism. Simultaneously, other
explorations (Ren et al., 2025; Yu et al., 2024b; Wang et al., 2024; Yu et al., 2025) also investigate
various aspects such as flexible token definitions, randomized generation orders, parallel processing,
and frequency-based generation to address the inherent challenges of AR models.

However, these advancements are hindered by two fundamental challenges. First, they rely heavily
on manual designs and inductive biases. VAR (Tian et al., 2024) is based on the coarse-to-fine
causality inspired by human perception, FAR (Yu et al., 2025) opts to exploit frequency-domain
hierarchy, while xAR (Ren et al., 2025) directly groups adjacent tokens as cells. These ad hoc
choices yield divergent conclusions from their own inductive biases. Second, these approaches
lack a unified mathematical framework and formal foundations, undermining their credibility and
persuasiveness. For instance, PAR (Wang et al., 2024) partitions tokens by their locations, RAR (Yu
et al., 2024b) randomly permutes tokens and gradually anneals to normal order, and xAR (Ren et al.,
2025) empirically adopts cell as the basic entity.
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To address these gaps, we propose Basis Autoregressive (BAR), including two pivotal contributions,
e.g. a unified mathematical framework and a parameterized learnable algorithm. First, our frame-
work is grounded in the theory of linear spaces and formalizes prior AR variants (Tian et al., 2024;
Ren et al., 2025; Yu et al., 2024b; Wang et al., 2024; Yu et al., 2025) as specific transforms of space.
They essentially re-mix, re-order, and re-group the token sequences with manually defined rules,
while our framework is compatible with them and further offers a generalized viewpoint. Second,
leveraging this framework, we introduce a parameterized, learnable, and end-to-end optimization
algorithm that does not rely on heuristic designs and human biases. This avoids reliance on hand-
crafted priors, eliminates extensive experimental trial and errors, and allows the model to adaptively
discover optimal transforms through training.

As visualized in fig. 1, we first partition the latent space of token sequences x into a series of sub-
spaces, where each token xi is the projection on them. Then, we apply the linear transform y = Ax,
and the row vectors of A form the basis of transformed space. Prior methods (Tian et al., 2024; Ren
et al., 2025; Yu et al., 2024b; Wang et al., 2024; Yu et al., 2025) are exemplified as certain forms of
A. Then, we propose a joint learning algorithm in fig. 2 for the matrix with the training objectives
derived from existing AR models. Our method enables end-to-end training that seamlessly integrates
with them and is firmly supported by comprehensive experiments on conditional and text-to-image
generation, profound ablations of the learned transform matrix, and the state-of-the-art FID score of
1.15 on ImageNet 256 benchmark. Our contributions are:

• A unified framework that formalizes former AR methods and facilitates novel extensions;
• An end-to-end learnable algorithm that transcends human biases into adaptive optimization;
• Comprehensive experiments and ablations underscore the advantages of our method.

2 BACKGROUND

2.1 DISCRETE AUTOREGRESSIVE VISUAL GENERATION

Autoregressive (AR) models for visual generation adapt the paradigm of sequential modeling from
the field of language, primarily through discrete tokenization. While early approaches (Van den
Oord et al., 2016; Van Den Oord et al., 2016) directly model pixel-level dependencies, VQ-
VAE (Van Den Oord et al., 2017; Razavi et al., 2019) introduces vector quantization and maps
images to discrete tokens. Later works (Ramesh et al., 2021; Yu et al., 2022) scale to text-to-
image generation, demonstrating the potential of AR. LlamaGen (Sun et al., 2024) further adapts
large language model architectures, e.g. Llama (Touvron et al., 2023). Given sequential tokens
x = {x1, x2, . . . , xN} representing an image, AR assumes that each token xk depends only on
its prefix x<k := {x1, x2, . . . , xk−1}, and factorizes the joint distribution pθ(x) into a product of
conditioned probabilities over the sequence as pθ(x) =

∏N
k=1 pθ(xk | x<k).

Recent advancements focus on optimizing token quantization, prediction, and efficiency. RQ-
Transformer (Lee et al., 2022) introduced residual quantization to reduce codebook redundancy,
while TiTok (Yu et al., 2024c) reduces the number of required tokens to encode an image down
to 32. VAR (Tian et al., 2024) pioneered a coarse-to-fine next-scale prediction paradigm, using a
custom multi-scale RQ-VAE to generate tokens at increasing resolutions. PAR (Wang et al., 2024)
introduces parallel decoding by identifying weakly dependent tokens as groups. RAR (Yu et al.,
2024b) addresses fixed factorization orders via randomized permutations, gradually anneals to nor-
mal orders during training, and learns bidirectional contexts of images.

2.2 CONTINUOUS AUTOREGRESSIVE VISUAL GENERATION

Continuous AR models bypass vector quantization to directly model high-fidelity visual contents.
Hybrid approaches (Zhou et al., 2024; Xie et al., 2024) attempt to bridge discrete and continuous
visual data with multi-modal models. Later, MAR (Li et al., 2024b) eliminated vector quantization
by integrating a diffusion loss, where the output tokens of AR are fed into tiny denoising networks
as conditions to generate continuous outputs. Specifically, the output of AR models, noted as zk, no
longer matches the image tokens and serves as the condition for the noisy estimator ϵη . The noisy
estimator is trained via a denoising criterion

LMAR(zk, xk) =
∥∥ϵ− ϵη(x

t
k|t, zk)

∥∥2
2
, (1)
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Figure 1: An overview of the unified framework of BAR and its strength over previous approaches.
(a) By applying a linear transform associated with the matrix A, BAR offers the generalized view-
point that encompasses prior methods as specific instances of A and facilitates further extensions.
(b) BAR at its core lies that each token xk is the projection of whole image x on a sub-space, or
basis with channels omitted. It transforms the standard basis ek into the row vectors ak of matrix A.
(c) We illustrate each method with its corresponding ak. While vanilla AR directly employs ei as
raster scan of tokens and VAR manually designs a coarse-to-fine pattern, BAR adaptively learns ak.

where ϵ ∼ N (0, 1) is random noise, xt
k =

√
ᾱtxk +

√
1− ᾱtϵ is the noise-corrupted sample, and

ᾱ is the noise schedule. Following works like FAR (Yu et al., 2025) in turn adopted a frequency-
domain strategy, generating low-to-high frequency components to align with visual hierarchies, and
captures spatial dependencies efficiently. Furthermore, xAR (Ren et al., 2025) eliminates the diffu-
sion heads of MAR, drives the decoder to directly predict the continuous tokens, and uses groups of
local tokens, e.g. cell, as the unit of each AR step. xAR also utilizes the flow-based (Lipman et al.,
2023; Liu et al., 2023) objective

LxAR(x) =

N∑
k=1

∥∥vθ({xt1
1 , xt2

2 , . . . , xtk
k }, tk)− vtkk

∥∥2
2
, (2)

where xtk
k = (1− tk)xk + tkϵk is the noisy sample, vtkk =

dx
tk
k

dtk
= ϵk − xk is the ground-truth flow,

{t} = {t1, t2, . . . , tn} ∼ U[0, 1] are timesteps, and {ϵ} = {ϵ1, ϵ2, . . . , ϵn} ∼ N (0, 1) are noise.

3 METHOD

3.1 UNIFIED FRAMEWORK

Consider an image encoded into a 2D feature grid {x(i,j)}, where each element corresponds to a
local patch of image, x(i,j) ∈ Rd in the case of VAE, and x(i,j) ∈ ZK := {1, . . . ,K} in the case of
VQ-VAE. AR flattens it into a 1D sequence of tokens x = {x1, x2, . . . , xN}. The entire image can
also be viewed as a vector x ∈ RN×d or x ∈ ZN

K for continuous and discrete cases, respectively.
AR transforms the modeling of the whole image x into the progressive predictions of each token
xk, which can be viewed as the projection from the high-dimensional x yielding a series of low-
dimensional xk in different sub-spaces. In the following discussion, we omit the channel dimension
d for simplicity, since the transform can be independently applied on each channel.

Specifically, consider the standard basis {e1, e2, . . . , eN} of S := RN , where ek = onehot(k) ∈ RN

with its k-th element being one and others being zeros. AR splits the S into the sub-spaces

{Sk|Sk := span(ek), 1 ≤ k ≤ N}, (3)

where span(ek) represents the space spanned by ek. AR transforms the direct modeling of x into
progressively determining its projections onto Sk, e.g. each token xk. However, specific designs
of these sub-spaces {Sk} remain understudied, as most AR models simply adopt the vanilla form
above that corresponds to the row-major raster-scan of image patches.
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Figure 2: Pipeline of BAR and our learnable approach of transform matrix As. The transform
matrix A as a learnable parameter is end-to-end optimized along with AR transformer. While LBAR
effectively trains BAR models, we further apply Lresidual BAR to encourage ordered ak.

Therefore, we propose the next-basis prediction paradigm and Basis Autoregressive (BAR) mod-
els with a linear transform operation that multiplies the image vector x by a full-rank matrix A and
transforms it to another space S ′ := RN ′

y := Ax, (4)

where y = {y1, y2, . . . , yN ′}⊤ ∈ S ′ and A = {a1, a2, . . . , aN ′}⊤ ∈ RN ′×N . The row vectors of
A, e.g. ak ∈ RN , form the basis set of S ′. Consequently, BAR projects y onto the sub-spaces

{S ′
k|S ′

k := span(ak), 1 ≤ k ≤ N ′}, (5)

and progressively predicts yk, e.g. the projections onto each sub-space S ′
k. We apply standard AR

models on new sequence y, following with a reverse transform x = A−1y back to the original space
S. BAR refactors the standard basis and sub-spaces {Sk} of vanilla AR into the transformed basis
and sub-spaces {S ′

k}. This linear transform serves as a unified framework that allows to incorporate
and generalize previous methods as different designs of the transform matrix A.

3.2 SPECIAL CASES

While previous methods also propose to transform the image token sequences, they predominantly
rely on human inductive bias and lack rigorous mathematical formulations. xAR introduces a next-
X prediction paradigm where X can be instantiated as token, subsample, and scale. However, the
concept remains a textual description and xAR empirically adopts cell, e.g. a group of adjacent
tokens, as the basic unit. Here, we systematically discuss prior works as special cases of matrix A.

VAR (Tian et al., 2024) leverages a coarse-to-fine strategy of next-scale prediction, which can be
viewed as a multi-scale transform A with its basis ak as the average pooling of different resolutions.
The sequence y thereby reflects the progression from global features to finer local details.

xAR (Ren et al., 2025) groups a grid of spatially adjacent tokens as cells and sequentially predicts
them. In this case, A also represents the re-ordering and re-grouping of the standard basis set {ek},
where ek and el are grouped together if xk and xl are spatially adjacent on the 2D feature grid.

RAR (Yu et al., 2024b) randomly permutes the token sequence during training, and gradually anneal
to normal. The matrix A is thereby a random permutation matrix Pπ and gradually anneals to I.

PAR (Wang et al., 2024) accelerates inference by predicting groups of tokens with weak dependen-
cies, e.g. sub-sample, in parallel. Here, the transform matrix A takes a specific form of selection
where ek with its corresponding xk in the same sub-sample placed together.

FAR (Yu et al., 2025) performs AR in the frequency domain, instead of the spatial domain, from
low-frequency to high-frequency components. Similarly, the transform matrix A can be constructed
as multi-frequency filters, where each ak is a low-pass filter with different cut-off frequencies.

TiTok (Yu et al., 2024c) is designed to tokenize an image into an ultra-compact 1D sequence of
M ≪ N latent representations. The corresponding transform matrix A ∈ RM×N serves as an
abstraction from the long sequence x ∈ RN×d into the short sequence y ∈ RM×d.

FractalGen (Li et al., 2025) proposes the AR modeling with recursive, self-similar architectures
inspired by fractals. The corresponding matrix A would be similar to VAR with its basis ak repre-
senting hierarchical structures, generating the sequence yk at various levels of the fractal recursion.
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3.3 LEARNABLE APPROACH

Prior AR models, as discussed above, often depend on static hand-crafted designs of specific pre-
diction units or orders derived from inductive biases, and might lead to divergent conclusions based
on similar empirical observations. Therefore, we propose an adaptive algorithm to parameterize and
learn the transform matrix A in an end-to-end manner alongside the AR model itself.

We narrow the search space for the transform matrix A to enhance efficiency without loss of gen-
erality. Firstly, we follow prior methods to omit the channel dimension and treat each token as a
whole, as AR typically progresses on the sequence dimension. Secondly, we consider A ∈ RN×N

to be square matrix, as it does not change sequence lengths and remains a minimum modification of
existing AR models. The matrix A essentially exchanges the standard basis {ek} for learned basis
{ak}. Furthermore, we focus on the orthogonal matrices, a noteworthy category for the transform
matrix A, in this work. Such matrices possess desirable properties for our learnable approach, for
example, they preserve the Euclidean norm of vectors, e.g. ∥y∥2 ≡ ∥x∥2 where y = Ax.

To facilitate the adaptive search for the transform matrix A, we treat it as a learnable parameter
along with AR models and derive a training objective equivalent to previous AR methods. Here we
mainly focus on continuous AR models. We have the following proposition.

Proposition 1. Optimizing BAR on the transformed image y and token sequence {yk} is equivalent
to MAR on the original image x and token sequence {xk}, i.e. LMAR(zk, yk) = LMAR(zk, xk).

Proof. Consider a reference model optimized with LMAR, we rewrite eq. (1) as

Lref
MAR(x) =

N∑
k=1

∥∥ϵk − ϵη(x
t
k|t, zθ(x<k))

∥∥2
2

=

N∑
k=1

∥∥∥∥∥
√
ᾱt√

1− ᾱt

((
xt
k −

√
1− ᾱtϵk

)
√
ᾱt

−
(
xt
k −

√
1− ᾱtϵη

)
√
ᾱt

)∥∥∥∥∥
2

2

=

N∑
k=1

∥∥∥∥ √
ᾱt√

1− ᾱt
(xk − x̂k)

∥∥∥∥2
2

=
ᾱt

1− ᾱt
∥(x− x̂)∥22 ,

(6)

where x̂k := 1√
ᾱt

(
xt
k −

√
1− ᾱtϵη

)
is obtained via the reparameterization of the noise prediction

ϵη , and x̂ is the predicted image vector. On the other hand, we also apply MAR to our transformed
sequence y = Ax. The correspondents of noisy tokens xt

k in the transformed space S ′ are

ytk = a⊤k x =

N∑
l=1

ak,lx
t
l =

N∑
l=1

ak,l
(√

ᾱtxl +
√
1− ᾱtϵl

)
=

√
ᾱt

N∑
l=1

ak,lxl +
√
1− ᾱt

N∑
l=1

ak,lϵl =
√
ᾱtyk +

√
1− ᾱtϵ

′
k,

(7)

where ϵ′k :=
∑N

l=1 ak,lϵl is the transformed noise. Note that if we denote ε := {ϵ1, ϵ2, . . . , ϵN} and
ε′ := {ϵ′1, ϵ′2, . . . , ϵ′N}, we have ε′ = Aε, E(ε′) = AE(ε) = 0, and Σε′ = E[(ε′ − E(ε′))(ε′ −
E(ε′))⊤] = E[(Aε)(Aε)⊤] = I, which suggests that ε′ is also composed of i.i.d. Gaussian noise.
The subsequent BAR objective on the transformed image y is

LBAR(y) =

N∑
k=1

∥∥ϵ′k − ϵ′η(y
t
k|tk, zθ(y<k))

∥∥2
2

=

N∑
k=1

∥∥∥∥ √
ᾱt√

1− ᾱt
(yk − ŷk)

∥∥∥∥2
2

=
ᾱt

1− ᾱt
∥(y − ŷ)∥22

=
ᾱt

1− ᾱt
∥A(x− x̂)∥22 = Lref

MAR,

(8)

which indicates that optimizing BAR on y is equivalent to optimizing the underlying MAR on x.
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Figure 3: Visualization of learned basis ak with k denoted above. Darker marks higher values.

Proposition 2. Optimizing BAR on the transformed image y and token sequence {yk} is equivalent
to xAR on the original image x and token sequence {xk}, i.e. LBAR(y) = LxAR(x).

Similarly, we can also train xAR models on the transformed image y and token sequence {yk},
and leave the detailed proof for the following proposition in the Appendix. The propositions 1
and 2 ensure that LBAR is a valid objective as LMAR and LxAR, e.g. the performance of BAR and
MAR(xAR) would be the same when optimizing only the network parameters. However, when
incorporating the learnable matrix A, we will see great improvements in the following experiments.

3.4 RESIDUAL OBJECTIVE

While propositions 1 and 2 indicate the potential for direct optimization of the transform matrix
A, the full exploitation of the capabilities of AR models necessitates the incorporation of certain
desirable properties. Specifically, a primary objective is the maximization of information content
within the earlier basis vectors ak. This aims to facilitate the most accurate possible reconstruction
of the image x utilizing earlier tokens yk, a characteristic intrinsic to the sequential token prediction
nature of AR models. Consequently, we introduce a residual training objective designed to explicitly
enforce an ordering of the basis vectors ak and tokens yk according to their respective information
richness and their contribution to the image recovery process.

Note that the BAR objective in eq. (8) can be rewritten as

LBAR(y) =
ᾱt

1− ᾱt
∥y − ŷ∥22 =

ᾱt

1− ᾱt

∥∥A(x−A⊤ŷ)
∥∥2
2
=

ᾱt

1− ᾱt

∥∥x−A⊤ŷ
∥∥2
2
, (9)

we propose the residual BAR objective as

Lresidual BAR(y) =
ᾱt

1− ᾱt

N∑
k=1

∥∥x−A⊤ỹk

∥∥2
2

where ỹk := ŷ⊤(

k∑
l=1

el). (10)

Here, ỹk is the k-prefix of ŷ, i.e. ỹk := {ỹ1, ỹ2, . . . , ỹN} where ỹi = ŷi for 1 ≤ i ≤ k and ỹi = 0
for k < i ≤ N . The motivation lies that the first output token y1 should maximize the recovery of
image x, and the following tokens yk should maximize the recovery of the residuals x−A⊤ỹk−1.

Discussion Lresidual BAR partially shares the same principle as VAR and RQ-VAE. While VAR as-
sumes the average of patches as coarse contexts and RQ-VAE progressively quantizes the remaining
residuals, our design enables an adaptive learning process and introduces fewer inductive biases.

3.5 IMPLEMENTATION DETAILS

Regularization is critical to our learnable algorithm, since we assume A to be orthogonal. Specifi-
cally, we use the term Lreg := ∥A⊤A− I∥22, and train models with LBAR+Lreg or Lresidual BAR+Lreg.

Orthogonal projection as closed-form solution of Orthogonal Procrustes problem (Schönemann,
1966; Ge et al., 2013) applies Singular Value Decomposition (SVD) as USV⊤ = A, then lets
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Table 1: Benchmarking conditional image generation on ImageNet 256× 256.
Type Model FID↓ IS↑ Pre.↑ Rec.↑ Time↓ #Step↓ #Param↓
Diff. ADM (Dhariwal & Nichol, 2021) 4.59 186.7 0.82 0.52 44.68 250 544M
Diff. LDM (Rombach et al., 2022) 3.60 247.7 0.87 0.48 207.2 250 400M
Diff. U-ViT (Bao et al., 2023) 2.29 263.9 0.82 0.57 - - 501M
Diff. DiT (Peebles & Xie, 2023) 2.27 278.2 0.83 0.57 11.97 250 675M
Diff. SiT (Ma et al., 2024) 2.06 277.5 0.83 0.59 11.97 250 675M
Diff. VDM++ (Kingma & Gao, 2023) 2.12 267.7 0.81 0.65 - - 2.0B
Diff. MDTv2 (Gao et al., 2023) 1.58 314.7 0.79 0.65 - 250 676M
Diff. REPA (Yu et al., 2024d) 1.42 305.7 0.80 0.65 11.97 250 675M
Diff. Light.DiT (Yao & Wang, 2025) 1.35 295.3 0.79 0.65 - 250 675M
Diff. MG (Tang et al., 2025) 1.34 321.5 0.81 0.65 6.03 250 675M

Mask. MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 0.5 8 227M
Mask. RCG (Li et al., 2024a) 3.49 215.5 - - 1.9 20 502M
Mask. TiTok (Yu et al., 2024c) 1.97 281.8 - - - 64 287M

AR VQGAN (Esser et al., 2021) 5.20 280.3 - - 6.38 256 1.4B
AR RQTrans. (Lee et al., 2022) 3.80 323.7 - - 5.58 256 3.8B
AR FAR (Yu et al., 2025) 3.21 300.6 0.81 0.55 - 10 812M
AR PAR (Wang et al., 2024) 2.29 255.5 0.82 0.58 3.46 147 3.1B
AR LlamaGen (Sun et al., 2024) 2.18 263.3 0.81 0.58 12.41 576 3.1B
AR VAR (Tian et al., 2024) 1.73 350.2 0.82 0.60 0.27 10 2.0B
AR FlowAR (Ren et al., 2024) 1.65 296.5 0.83 0.60 - 10 1.9B
AR MAR (Li et al., 2024b) 1.55 303.7 0.81 0.62 28.24 64 943M
AR RAR (Yu et al., 2024b) 1.48 326.0 0.80 0.63 - 256 1.5B
AR xAR (Ren et al., 2025) 1.24 301.6 0.83 0.64 0.68 50 1.1B

AR BAR-B(ours) 1.56 292.4 0.83 0.63 0.08 50 172M
AR BAR-L(ours) 1.21 301.1 0.84 0.64 0.27 50 608M
AR BAR-H(ours) 1.15 327.1 0.86 0.68 0.68 50 1.1B

A = USδV
⊤, where the diagonals of S is clamped to (1 − δ, 1 + δ) as Sδ with δ = 0 in hard

projection and δ ∈ (0, 1) in soft projection.

Initialization of the transform matrix A is important for its optimization. While the identity matrix
I corresponds to vanilla AR, we can also use a random matrix followed by an orthogonal projection.

4 EXPERIMENT

4.1 SETUP

Implementation. We apply our BAR framework to two different architectures of AR and follow the
protocol in MAR (Li et al., 2024b) and xAR (Ren et al., 2025). We primarily conduct experiments
on the ImageNet (Deng et al., 2009) 256×256 dataset and then raise the spatial resolution of images
to 512 × 512. We also conduct ablation studies on the FFHQ (Karras et al., 2019) dataset for its
human-face-centric nature at 64 × 64 and 256 × 256 resolutions. The KL-16 continuous tokenizer
provided by LDM (Rombach et al., 2022) is employed to encode the images into latent tokens. Our
models are mainly based on xAR (Ren et al., 2025), and we conduct ablation experiments with
xAR-B. All models are trained following previous settings (Li et al., 2024b; Ren et al., 2025), e.g.
800 epochs and the batch size of 256, for fair comparisons, and all experiments are conducted with
16 NVIDIA A100 40G GPUs. For the text-to-image generation task, we follow FAR (Yu et al.,
2025) and use the JourneyDB (Sun et al., 2023) dataset and the Qwen2-1.5B (Yang et al., 2024) text
encoder.

Evaluation. As metrics, we report the commonly adopted Frechet inception distance (FID) (Heusel
et al., 2017), Inception Score (IS) (Salimans et al., 2016), Precision (Pre.), and Recall
(Rec.) (Kynkäänniemi et al., 2019) over 50K generated samples, which is consistent with previous
works. We also list the number of parameters, sampling steps, and the wall-clock time to generate
one image for each method, which facilitate the thorough investigation of the balance between sam-
pling quality and generation efficiency. For the text-to-image generation task, we follow FAR (Yu
et al., 2025) to measure FID-30K on MS-COCO 2014 (Lin et al., 2014) and the GenEval (Ghosh
et al., 2023) benchmark.
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Figure 4: We decode the generated sequences every 25 tokens. The first column uses only one token.

Figure 5: Uncurated samples on ImageNet 256. Figure 6: Generated text-to-image samples.

4.2 MAIN RESULTS

ImageNet 256×256 benchmark. In table 1, we present the system-level comparison of conditional
generation performance on the ImageNet 256 × 256 dataset with concurrent advanced methods,
including diffusion, mask-based, and AR models. Notably, we achieve new state-of-the-art results
with an FID of 1.15, while our BAR-B model also exhibits strong performance with only 172M
parameters and a lightning speed of 0.08 seconds per image. While our models offer outstanding
generation quality, they are also faster than most of the previous methods. The generated images of
our model are provided in fig. 5.

Compatibility with different architectures. While our models are mainly based on xAR, we
show in table 2 that the framework of BAR is also compatible with other existing AR models. We
additionally apply our method to MAR and experiment with their -B, -L, and -H variants. The
significant improvement over their corresponding baselines indicates the effectiveness of BAR on
different AR approaches and model sizes.

Scalability to ImageNet 512 × 512. The extension of our method to high-resolution images is
also notable. We conduct experiments on the ImageNet 512 × 512 dataset in table 3 and the re-
markable margin over both MAR and xAR baselines demonstrates that BAR is capable of modeling
challenging distributions and longer token sequences.

Text-to-image generation. In addition to the class-conditioned task on ImageNet, we also employ
BAR for text-to-image generation and depict the comparison in table 4. Following FAR (Yu et al.,
2025), our model further surpasses it by a gain of 1.36 FID. It suggests that BAR is promising across
various conditioning modalities. We also present the generated samples of our method in fig. 6.

4.3 ABLATION STUDY

Visualizing learned basis. We visualize the learned basis ak in fig. 3, where k is denoted above each
subfigure. The basis ak is reshaped to match the 2D feature grid of images, and darker regions mark
high values, i.e. the weight of corresponding image patch is higher for ak. Here, we additionally
experiment on pixel-space 64× 64 FFHQ and patchify 4× 4 pixels as a token. The basis on pixel-
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Table 2: Experiments on different models.
Model FID↓ IS↑ Pre.↑ Rec.↑
MAR-B (Li et al., 2024b) 2.31 281.7 0.82 0.57
+BAR(ours) 2.18 289.6 0.83 0.60

MAR-L (Li et al., 2024b) 1.78 296.0 0.81 0.60
+BAR(ours) 1.56 304.1 0.83 0.61

MAR-H (Li et al., 2024b) 1.55 303.7 0.81 0.62
+BAR(ours) 1.49 312.8 0.82 0.64

xAR-B (Ren et al., 2025) 1.72 280.4 0.82 0.59
+BAR(ours) 1.56 292.4 0.83 0.63

xAR-L (Ren et al., 2025) 1.28 292.5 0.82 0.62
+BAR(ours) 1.21 301.1 0.84 0.64

xAR-H (Ren et al., 2025) 1.24 301.6 0.83 0.64
+BAR(ours) 1.15 324.5 0.85 0.68

Table 3: Experiments on ImageNet 512.
Model FID↓ IS↑ Pre.↑ Rec.↑
VAR (Tian et al., 2024) 2.63 303.2 0.82 0.62
REPA (Yu et al., 2024d) 2.08 274.6 0.81 0.61
EDM2 (Karras et al., 2024) 1.81 273.2 0.85 0.63

MAR-L (Li et al., 2024b) 1.73 279.9 0.84 0.62
+BAR(ours) 1.65 287.7 0.85 0.64

xAR-L (Ren et al., 2025) 1.70 281.5 0.84 0.64
+BAR(ours) 1.63 292.0 0.85 0.64

Table 4: Experiments on text-to-image.
Model FID↓ GenEval↑
LDM (Rombach et al., 2022) 12.70 0.37
LlamaGen (Sun et al., 2024) 15.05 0.32
FAR (Yu et al., 2025) 13.91 0.37

BAR 12.55 0.39

Table 5: Ablation on initialization.
Initialize FID↓ IS↑ Pre.↑ Rec.↑
Baseline 1.72 280.4 0.82 0.59
Identity 1.56 292.4 0.83 0.63
Orthogonal 1.66 289.6 0.83 0.61

Table 6: Ablation on orthogonal projection.
Projection FID↓ IS↑ Pre.↑ Rec.↑
Baseline 1.72 280.4 0.82 0.59
None 1.70 284.9 0.81 0.61
Hard 1.66 285.8 0.82 0.61
Softδ=0.5 1.56 292.4 0.83 0.63

Table 7: Ablation on training objective.
Objective FID↓ IS↑ Pre.↑ Rec.↑
Baseline 1.72 280.4 0.82 0.59
LBAR 1.64 289.7 0.84 0.64
Lresidual BAR 1.56 292.4 0.83 0.63

space FFHQ clearly reflects the shape of human faces, while the basis on latent-space FFHQ exhibits
less continuity, which explains the success of AR models on tokenized images. Furthermore, the
earlier basis on ImageNet shows an interesting pattern, while later ones seem to be more random,
which is beyond static hand-crafted designs.

Visualizing generation process. We also visualize the generation process of BAR models by pro-
gressively decoding the generated token sequence with its prefix, e.g. we only decode the first k
tokens with k increasing with a step size of 25 starting from the first token. The output images also
show a coarse-to-fine paradigm, which is consistent with the motivation of our residual objective.

Initialization strategy. The initialization of transform matrix A is critical to our learnable approach.
In table 5, using the identity matrix I as initialization obtains using best results, since it corresponds
to vanilla AR models, while our method also offers a gain over the baseline with random orthogonal
initialization.

Orthogonal projection. The orthogonal projection is also crucial to the training process. In table 6,
the soft projection with δ = 0.5 offers the best results, while the performance is significantly im-
paired without projection. The main reason is that the regularization term for orthogonality alone is
not strong enough, while hard projection limits the potential update directions for A.

Training objective. Although LBAR itself is capable of effectively training BAR models, we further
introduce and apply Lresidual BAR that encourages ak to be ordered by the recovery of the original
images and mimics a coarse-to-fine characteristic as in fig. 4. The results in table 7 confirm that
both LBAR and Lresidual BAR provide satisfactory performance, while Lresidual BAR is slightly better.

5 CONCLUSION

In conclusion, this work introduces Basis Autoregressive (BAR), a novel paradigm for image gen-
eration that addresses the inherent limitations of traditional AR models tied to fixed, raster-scan
prediction of tokens. By conceptualizing tokens as the projection of image vector on basis of lin-
ear space and employing an end-to-end learnable transform of these bases, BAR offers a unified
mathematical framework. It not only encompasses previous methodologies as specific instances but
also adaptively optimizes the transform to discover effective strategies beyond manual designs. The
demonstrated state-of-the-art performance, highlighted by an FID score of 1.15 on the ImageNet-
256 benchmark, underscores its capability to transcend human biases and significantly advance the
field of image generation, including its application in text-to-image synthesis. BAR represents a
significant step in developing more flexible and powerful AR models for visual content creation.
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A PROOFS

A.1 MAR VARIANTS

In this section, we provide further details of propositions 1 and 2 and their corresponding proofs.
We first begin with BAR implemented with existing MAR architectures.

Proposition 1. Optimizing BAR on the transformed image y and token sequence {yk} is equivalent
to MAR on the original image x and token sequence {xk}, i.e. LMAR(zk, yk) = LMAR(zk, xk).

Proof. Consider a reference model optimized with LMAR. Recall that the noise-corrupted sample is
obtained via the interpolating ground-truth image and sampled noise via the noise schedule

xt
k =

√
ᾱtxk +

√
1− ᾱtϵ, (11)

where ϵ ∼ N (0, 1) is random noise drawn from Gaussian distribution, and ᾱ is the noise schedule
used in diffusion models (Song & Ermon, 2019; Ho et al., 2020). Given the model outputs as predic-
tions of added noises, we can obtain the prediction of unnoised image x̂ via the reparameterization

x̂k =
xt
k −

√
1− ᾱtϵ̂√
ᾱt

, where ϵ̂ := ϵη(x
t
k|t, zθ(x<k)). (12)

We thereby rewrite eq. (1) as

Lref
MAR(x) =

N∑
k=1

∥∥ϵk − ϵη(x
t
k|t, zθ(x<k))

∥∥2
2

=

N∑
k=1

∥∥∥∥ 1√
1− ᾱt

(√
1− ᾱtϵk −

√
1− ᾱtϵη

)∥∥∥∥2
2

=

N∑
k=1

∥∥∥∥ 1√
1− ᾱt

((
xt
k −

√
1− ᾱtϵk

)
−
(
xt
k −

√
1− ᾱtϵη

))∥∥∥∥2
2

=

N∑
k=1

∥∥∥∥∥
√
ᾱt√

1− ᾱt

((
xt
k −

√
1− ᾱtϵk

)
√
ᾱt

−
(
xt
k −

√
1− ᾱtϵη

)
√
ᾱt

)∥∥∥∥∥
2

2

=

N∑
k=1

∥∥∥∥ √
ᾱt√

1− ᾱt
(xk − x̂k)

∥∥∥∥2
2

=
ᾱt

1− ᾱt
∥(x− x̂)∥22 .

(13)

On the other hand, we also apply MAR to our transformed sequence y = Ax. The correspondents
of noisy tokens xt

k in the transformed space S ′ are

ytk = a⊤k x

=

N∑
l=1

ak,lx
t
l

=

N∑
l=1

ak,l
(√

ᾱtxl +
√
1− ᾱtϵl

)
=

√
ᾱt

N∑
l=1

ak,lxl +
√
1− ᾱt

N∑
l=1

ak,lϵl

=
√
ᾱtyk +

√
1− ᾱtϵ

′
k,

(14)
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where the noise added to transformed tokens yk is

ϵ′k :=

N∑
l=1

ak,lϵl. (15)

Note that if we concatenate all noises into a single vector and denote ε := {ϵ1, ϵ2, . . . , ϵN} and
ε′ := {ϵ′1, ϵ′2, . . . , ϵ′N}, we find that first sampling ε ∼ N (0, 1) then using the transform in eq. (15),
i.e. ε′ = Aε, to obtain ε′ is equivalent to directly sampling from ε′ ∼ N (0, 1). To validate this, we
can calculate the expectation of ε′

E(ε′) = E(Aε) = AE(ε) = 0, (16)

and its covariance

Σε′ = E[(ε′ − E(ε′))(ε′ − E(ε′))⊤]
= E[ε′ε′⊤]
= E[(Aε)(Aε)⊤]

= E[Aεε⊤A⊤]

= AE[εε⊤]A⊤

= AE[(ε− E(ε))(ε− E(ε))⊤]A⊤

= AΣεA
⊤

= AA⊤

= I,

(17)

which suggest that ε′ is also composed of i.i.d. Gaussian noise and can be directly sampled with
ε′ ∼ N (0, 1). This ensures that we can directly apply MAR framework on the transformed image
y. The subsequent BAR objective is

LBAR(y) =

N∑
k=1

∥∥ϵ′k − ϵ′η(y
t
k|tk, zθ(y<k))

∥∥2
2

=

N∑
k=1

∥∥∥∥ 1√
1− ᾱt

(√
1− ᾱtϵ

′
k −

√
1− ᾱtϵ

′
η

)∥∥∥∥2
2

=

N∑
k=1

∥∥∥∥ 1√
1− ᾱt

((
ytk −

√
1− ᾱtϵ

′
k

)
−
(
ytk −

√
1− ᾱtϵ

′
η

))∥∥∥∥2
2

=

N∑
k=1

∥∥∥∥∥
√
ᾱt√

1− ᾱt

((
ytk −

√
1− ᾱtϵ

′
k

)
√
ᾱt

−
(
ytk −

√
1− ᾱtϵ

′
η

)
√
ᾱt

)∥∥∥∥∥
2

2

=

N∑
k=1

∥∥∥∥ √
ᾱt√

1− ᾱt
(yk − ŷk)

∥∥∥∥2
2

=
ᾱt

1− ᾱt
∥(y − ŷ)∥22

=
ᾱt

1− ᾱt
∥A(x− x̂)∥22

=
ᾱt

1− ᾱt
∥(x− x̂)∥22

= Lref
MAR,

(18)

which indicates that optimizing BAR on y is equivalent to optimizing the underlying MAR on x.
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A.2 XAR VARIANTS

Then, we discuss the case where BAR is implemented with the model architectures of xAR. and
provide the detailed proof of proposition 2.

Proposition 2. Optimizing BAR on the transformed image y and token sequence {yk} is equivalent
to xAR on the original image x and token sequence {xk}, i.e. LBAR(y) = LxAR(x).

Proof. Consider a reference model optimized with LxAR. Recall that the noise-corrupted sample is
obtained via the interpolating ground-truth image and sampled noise by

xtk
k = (1− tk)xk + tkϵk, (19)

where ϵk ∼ N (0, 1) is Gaussian noise, and the ground-truth flow is

vtkk =
dxtk

k

dtk
= ϵk − xk. (20)

Similarly, we can obtain the prediction of unnoised image x̂ via the reparameterization

x̂k = ϵk − v̂tkk , where v̂tkk := vθ({xt1
1 , xt2

2 , . . . , xtk
k }, tk). (21)

We thereby rewrite eq. (2) as

Lref
xAR =

N∑
k=1

∥∥vθ({xt1
1 , xt2

2 , . . . , xtk
k }, tk)− vtkk

∥∥2
2

=

N∑
k=1

∥(ϵk − x̂k)− (ϵk − xk)∥22

=

N∑
k=1

∥x̂k − xk∥22

= ∥x̂− x∥22 .

(22)

On the other hand, we also apply xAR to our transformed sequence y = Ax. The correspondents
of noisy tokens xt

k in the transformed space S ′ are

ytk = a⊤k x

=

N∑
l=1

ak,lx
t
l

=

N∑
l=1

ak,l ((1− tl)xl + tlϵl)

= (1− tk)

N∑
l=1

ak,lxl + tk

N∑
l=1

ak,lϵl

= (1− tk)yk + tkϵ
′
k,

(23)

where we assume that ∀i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , k}, ti = tj for simplicity, since {t} =
{t1, t2, . . . , tn} ∼ U[0, 1] is arbitrarily sampled in xAR (Ren et al., 2025). The noise added to
transformed tokens yk is

ϵ′k :=

N∑
l=1

ak,lϵl. (24)

Note that if we concatenate all noises into a single vector and denote ε := {ϵ1, ϵ2, . . . , ϵN} and
ε′ := {ϵ′1, ϵ′2, . . . , ϵ′N}, we find that first sampling ε ∼ N (0, 1) then using the transform in eq. (24),
i.e. ε′ = Aε, to obtain ε′ is equivalent to directly sampling from ε′ ∼ N (0, 1). To validate this, we

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

can calculate the expectation of ε′

E(ε′) = E(Aε)

= AE(ε)
= 0,

(25)

and its covariance
Σε′ = E[(ε′ − E(ε′))(ε′ − E(ε′))⊤]

= E[ε′ε′⊤]
= E[(Aε)(Aε)⊤]

= E[Aεε⊤A⊤]

= AE[εε⊤]A⊤

= AE[(ε− E(ε))(ε− E(ε))⊤]A⊤

= AΣεA
⊤

= AA⊤

= I,

(26)

which suggest that ε′ is also composed of i.i.d. Gaussian noise and can be directly sampled with
ε′ ∼ N (0, 1). This ensures that we can directly apply xAR framework on the transformed image y.
The subsequent BAR objective is

LBAR =

N∑
k=1

∥∥∥v′θ({yt11 , yt22 , . . . , ytkk }, tk)− v′
tk
k

∥∥∥2
2

=

N∑
k=1

∥(ϵ′k − ŷk)− (ϵ′k − yk)∥
2
2

=

N∑
k=1

∥ŷk − yk∥22

= ∥ŷ − y∥22
= ∥A(x̂− x)∥22 ,
= ∥x̂− x∥22
= Lref

xAR,

(27)

where the ground-truth flow of ytkk is

v′
tk
k =

dytkk
dtk

= ϵ′k − yk. (28)

B LIMITATIONS AND BROADER IMPACTS

Limitations This work focuses on enhancing the output quality and training speed of current AR
models, but still depends on existing VAEs (Rombach et al., 2022). Recent studies (Yao & Wang,
2025; Leng et al., 2025) achieved significant success with the end-to-end training of VAE and AR
models, and incorporating our approach into VAE would be a promising direction. Furthermore,
this work are mainly conducted on continuous AR models. Extending BAR to discrete AR models
is an imperative next-step, as we discussed in section E.

Broader Impacts Although this work primarily discussed images generation AR models, the next-
token prediction paradigm is employed on other modalities, e.g. video and speech. Applying this
work to AR models in these fields shows potential. On the downside, since our models are trained
on existing dataset, it might unintentionally reproduce any biases within. Furthermore, the image
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generation abilities developed could potentially be misused to create and spread false information.
We will consider restricting the access to our model weights to address this.

Table 8: Setup for table 1.

BAR-B BAR-L BAR-H

Architecture
Tokenizer KL-16 (Rombach et al., 2022) KL-16 (Rombach et al., 2022) KL-16 (Rombach et al., 2022)
Input dimension 16×16×16 16×16×16 16×16×16
Encoder layers 8 16 20
Encoder dimension 768 1024 1280
Encoder heads 12 16 16
Decoder layers 8 16 20
Decoder dimension 768 1024 1280
Decoder heads 12 16 16
Number of parameters 172M 608M 1.1B

Hyperparameters
Optimizer AdamW (Kingma, 2014; Loshchilov, 2019) AdamW (Kingma, 2014; Loshchilov, 2019) AdamW (Kingma, 2014; Loshchilov, 2019)
Momentum (β1, β2) (0.9, 0.96) (0.9, 0.96) (0.9, 0.96)
Weight decay 0.02 0.02 0.02
Batch size 2048 2048 2048
Learning rate schedule cosine cosine cosine
Peak learning rate 4× 10−4 4× 10−4 4× 10−4

End learning rate 1× 10−5 1× 10−5 1× 10−5

Total epochs 800 800 800
Warmup epochs 100 100 100
Dropout rate 0.1 0.1 0.1
Label dropout rate 0.1 0.1 0.1

Inference
Sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama
Steps 50 50 50

Algorithm 1 Training BAR: PyTorch-like Pseudo-code
def train(residual_loss=True):

for step, (x, c) in enumerate(dataloader):
# sample random noise and timestep
noise = torch.randn(x.shape)
timestep = torch.rand(x.shape[0], 1, 1)

# BAR: linear transform
y = x @ self.A_mat

# sample y_t from y
y_t = (1 - timestep) * y + timestep * noise

# predict v_hat and y_hat from y_t
v_hat = net(y_t, timestep, c)
y_hat = noise - v_hat

# compute loss
if residual_loss:

x_hat = [y_hat[:, :, k+1] @ self.A_mat[:, :k+1] for k in range(x.
shape[-1])]

loss = ((torch.stack(x_hat, dim=1) - x.unsqueeze(1)) ** 2).mean()
else:

loss = ((y_hat - y) ** 2).mean()

# regularize term
loss += ((self.A_mat @ self.A_mat.T - torch.eye(self.A_mat.shape[0]))

** 2).mean()

# optimize
opt.step()
opt.zero_grad()

C HYPERPARAMETER AND IMPLEMENTATION DETAILS

Implementations. We implement our method based on the code of xAR (Ren et al., 2025) and
MAR (Li et al., 2024b). We use the exact same structure and same hyper-parameters as xAR (Ren
et al., 2025) and MAR (Li et al., 2024b) throughout all experiments. We use a batch size of 2048
in consistence with xAR (Ren et al., 2025) and MAR (Li et al., 2024b), and we apologize for the
typo in the main text of the batch size of 256. We use AdamW (Kingma, 2014; Loshchilov, 2019)
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with cosine learning rate schedule starting from 4 × 10−4, warm up for 100 epochs, and gradually
decay to 1×10−5. The optimizer momentum is (β1, β2) = (0.9, 0.96) and the weight decay is 0.02.
We also pre-compute and save the latent vectors of images and use these latent vectors for training,
similar to xAR (Ren et al., 2025) and MAR (Li et al., 2024b). Therefore, we only apply simple
random horizontal flip as data augmentation. We use continuous KL-16 VAE from LDM (Rombach
et al., 2022) for encoding and decoding images. The detailed hyper-parameter setup are provided in
table 8.

Sampler. For MAR variants, we use the ADM (Dhariwal & Nichol, 2021) sampler with 100 steps
the same as the original MAR (Li et al., 2024b). For xAR variants, we use the Euler-Maruyama
sampler (Ma et al., 2024; Yu et al., 2024d) with 50 steps the same as the original xAR (Ren et al.,
2025).

Computing resources. We use 16x NVIDIA A100 40GB GPUs for experiments. We use a batch
size of 2048 and remain unchanged for all experiments.

Pseudo-code. We provide a torch-like pseudo-code of training models with BAR in algorithm 1.

D TRAINING WALL-TIME AND EFFICIENCY

D.1 CONVERGENCE SPEEDUP

0 100 200 300 400
Epochs

10

20

30

40

50

FI
D

-5
K

xAR
BAR

Figure 7: We train BAR-B and xAR-B for 400 epochs. Our BAR-B converges significantly
faster than xAR-B, and obtains lower FID-5K throughout the whole training process.

BAR not only improves the final generation quality of AR models, but also accelerates the training
process and its convergence, since the image tokens are transformed and refactored to better suit
the nature of the next-token prediction paradigm. As illustrated in figs. 3 and 4, the basis and
transformed tokens mimic a coarse-to-fine pattern, allowing the AR models to first focus on the
global structures then refine the local details.

In fig. 7, we conduct ablation experiment with BAR-B model and compare the intermediate FID-5K
evaluation results with xAR-B during the training process. As shown, the convergence speed of
BAR is significantly faster than xAR, and our BAR-B model obtains better performance compared
to xAR-B under the same iterations throughout the whole training process.

D.2 TRAINING EFFICIENCY

We also compare the wall-time per iteration and GPU memory usage during training in table 9
using one A100 GPU. Since BAR only introduces an additional matrix multiplication in the training
process (see algorithm 1), both the training time and memory cost of BAR is the same as the original
xAR. When incorporating the proposed residual loss to explicitly regularize the order within learn
basis, the training cost is slightly raised by the overheads of 0.01× wall-time and 0.03× memory.
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Table 9: Training efficiency of BAR. Results evaluated on one A100 GPU.

xAR BAR (without residual loss) BAR (with residual loss)

Wall-time per iteration 1.00× 1.00× 1.01×
GPU memory usage 1.00× 1.00× 1.03×

E EXTENSION TO DISCRETE AR MODELS

While this paper predominantly focuses on the exposition and experiments of continuous BAR mod-
els, the unified framework of linear transform can also be adapted to discrete AR paradigms. The
rationale for prioritizing continuous BAR models herein is that they avoid the quantization of the
output introduced by VQ-VAEs. Such quantization, a prerequisite step required by discrete AR
models, inherently introduces loss of information. This loss can detrimentally affect the fidelity
and quality of the final generated images. Consequently, the adoption of continuous AR models
circumvents this quantization-induced information bottleneck, facilitating superior preservation of
information directly from the latent representation of VAEs.

There exist two potential strategies to extend BAR to discrete AR models. The first involves adapt-
ing the principles of linear transformations and learnable basis to the quantization stage of VQ-VAE.
For instance, VAR (Tian et al., 2024) implements a manual designed hierarchical quantization, pro-
gressing from global to local image features. This is achieved by resizing the outputs of VAE to
various resolutions prior to quantization, effectively dedicating the initial basis to the holistic image
representation, subsequent four bases to the quadrants of image, etc. In a similar vein, the learned
bases, as visualized in fig. 3, derived from a BAR model could potentially guide the quantization of
VAE latents. However, it might require a multi-stage training process, or the joint optimization of
both VQ-VAE and AR model.

The second relies and utilizes the outputs of existing VQ-VAEs. In this case, the content of each
discrete token remains unaltered, and the linear transform is thereby confined to the rearrangement
or regrouping of tokens the standard basis ei. The corresponding transform matrix A takes the
form of permutation matrix, which consists of only 0 and 1. This is similar to RAR (Yu et al.,
2024b) and PAR (Wang et al., 2024), where the former introduces random permutations of the token
sequence during training, and the latter partitions the tokens into groups and prioritizes the pivot
tokens. However, this approach may introduce challenges on how to optimize the matrix A while
maintaining it as a permutation matrix.

F ABLATION ON RESIDUAL LOSS

Table 10: Compare offline pre-computed basis and online learnable basis with Lresidual BAR.

Model FID↓ IS↑ Pre.↑ Rec.↑
Baseline 1.72 280.4 0.82 0.59
Offline basis 1.65 286.4 0.82 0.60
Online learnable basis 1.56 292.4 0.83 0.63

The design of our proposed Lresidual BAR in eq. (10) naturally leads to the question that can we first
apply a similar residual loss on real images from dataset, then fix the offline pre-computed basis
to train AR models? We conduct ablation experiments in table 10, and find that while AR models
benefit from the offline basis, our online learnable basis allows adjustments to the inherit dynamics
of AR models and obtains better performances.
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Table 11: FDDINOv2, KID, and CLIP score comparison.

FDDINOv2↓ KID↓ CLIP score↑
DiT (Peebles & Xie, 2023) 77.43 0.060 0.317
SiT (Ma et al., 2024) 70.52 0.055 0.326
REPA (Yu et al., 2024d) 59.16 0.052 0.334
LightningDiT (Yao & Wang, 2025) 56.23 0.050 0.338
BAR 52.33 0.047 0.343

Table 12: CLIPscore and HPSv2 comparison.

CLIP score↑ HPSv2↑
LDM 0.330 25.56
LlamaGen 0.319 24.22
FAR 0.328 25.28
BAR 0.332 25.71

G MORE RESULTS

G.1 ADDITIONAL METRICS

To provide a more comprehensive evaluation beyond the commonly utilized Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016), we also incorpo-
rate more metrics in table 11, including FDDINOv2 (Stein et al., 2023) and Kernel Inception Distance
(KID) (Bińkowski et al., 2018). Furthermore, to quantify the alignment between generated images
and input conditions, we report the CLIP (Radford et al., 2021) score in tables 11 and 12 by comput-
ing the CLIP similarity between images and corresponding prompts. For the class-conditional image
generation task on ImageNet, as detailed in table 11, the text prompt is constructed as ”a photo of
[CLASS]”, where [CLASS] is replaced by the specific class label. In the context of text-to-image
models, we also present HPSv2 (Wu et al., 2023) results in table 12.

G.2 LEARNED BASIS VISUALIZATION

In addition to fig. 3, we provide more visualization results of the learned basis in fig. 8. We attribute
the discontinuous pattern of latent space FFHQ to the insufficient training, while the basis of latent
space ImageNet is optimized for more iterations.

G.3 GENERATION PROCESS VISUALIZATION

In addition to fig. 4, we provide more visualization results of the generation process by progressively
decoding the generated token sequence y in fig. 9.

G.4 GENERATED SAMPLES

We present more visualization of generated samples with our BAR-H model in figs. 10 to 17. We
also present more text-to-image samples of our BAR model in fig. 18.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

FFHQ (latent space)FFHQ (pixel space) ImageNet (latent space)

Figure 8: Visualization of the first 20 learned basis ak. Darker regions mark higher values.
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FFHQ ImageNet

Figure 9: We decode the generated sequences every 25 tokens. The first row uses only one token.
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Figure 10: Generated samples of BAR-H on the
class ”balloon” (417).

Figure 11: Generated samples of BAR-H on the
class ”panda” (388).
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Figure 12: Generated samples of BAR-H on the
class ”golden retriever” (207).

Figure 13: Generated samples of BAR-H on the
class ”lion” (291).
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Figure 14: Generated samples of BAR-H on the
class ”space shuttle” (812).

Figure 15: Generated samples of BAR-H on the
class ”valley” (979).
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Figure 16: Generated samples of BAR-H on the
class ”volcano” (980).

Figure 17: Generated samples of BAR-H on the
class ”lake shore” (975).
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A cozy, sun-drenched 

kitchen with a freshly baked 

pie on the windowsill, and a 

cat peacefully napping 

nearby.

A hyperrealistic close-up 

shows a dew-covered 

dragonfly resting delicately 

on a vibrant, freshly 

bloomed lotus flower.

An old, weathered wooden 

ship sails courageously 

through a tumultuous, 

storm-tossed sea towards 

the horizon.

A tranquil scene shows a 

wooden rowboat gently 

drifting on a still lake, 

reflecting the vibrant 

autumn foliage perfectly.

A surreal underwater library 

has bookshelves made of 

coral and fish swimming 

gracefully among floating, 

open books.

A dramatic volcanic 

eruption, with molten lava 

flowing down the 

mountainside under a 

stormy, ash-filled sky.

A highly detailed macro 

photograph captures the 

intricate patterns and 

iridescent colors of a 

butterfly's delicate wings.

An ancient, moss-covered 

stone archway opens to a 

mystical forest bathed in the 

soft glow of a full moon.

A surreal desert oasis 

appears with palm trees and 

shimmering water under a 

sky filled with impossibly 

large moons.

An abandoned spaceship, 

overgrown with alien flora, 

rests silently on the crimson 

plains of an unexplored, 

distant planet.

An impressionistic painting 

captures a bustling Parisian 

street cafe scene on a rainy 

evening with glowing 

reflections.

A surreal dreamscape 

depicts floating islands 

connected by shimmering, 

ethereal bridges under a sky 

of swirling pastel colors.

A lone astronaut stands on a 

desolate alien planet, gazing 

at a swirling nebula in the 

distant, star-filled sky.

A nomadic desert caravan 

travels across vast, sun-

drenched sand dunes under 

a sky painted with hues of 

orange and purple.

An old-fashioned steam 

train chugs through a 

picturesque snowy 

mountain landscape, smoke 

billowing from its chimney.

An enchanting fairy tale 

cottage with a thatched roof 

is nestled beside a sparkling 

stream in a sun-dappled 

forest.

A dramatic scene shows a 

lone lighthouse bravely 

standing against a raging, 

stormy sea with crashing 

waves.

A close-up of a surprised, 

wide-eyed tabby cat sitting 

behind the dining table, 

gazing at plates of potatoes 

in the front.

A vibrant underwater scene 

features a sunken ship, 

colorful coral reefs, and 

various tropical fish 

illuminated by sunlight.

A hidden waterfall 

cascades into a crystal-clear 

pool within a lush, emerald 

grotto, sunlight filtering 

through leaves.

A whimsical candy land 

constructed entirely of 

lollipops, chocolate rivers, 

and gingerbread houses 

under a cotton candy sky.

a surreal paint of large, 

statuesque busts of men in 

suits, partially buried in a 

vast, sandy desert under a 

muted sky.

A cozy, book-filled library 

with a crackling fireplace 

offers a warm and inviting 

atmosphere on a snowy 

winter day.

A serene mountain 

monastery perches 

precariously on a cliffside, 

overlooking a vast valley 

shrouded in morning mist.

A tranquil Japanese garden 

in springtime, featuring a 

koi pond, cherry blossom 

trees, and traditional stone 

lanterns.

Figure 18: Text-to-image samples of BAR.
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