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ABSTRACT

Autoregressive (AR) models, despite their remarkable successes, encounter limi-
tations in image generation due to sequential prediction of tokens, e.g. local image
patches, in a predetermined row-major raster-scan order. Prior works improve AR
with various designs of prediction units and orders, however, rely on human in-
ductive biases. This work proposes Basis Autoregressive (BAR), a novel paradigm
that conceptualizes tokens as basis vectors within the image space and employs an
end-to-end learnable approach to transform basis. By viewing tokens xj as the
projection of image x onto basis vectors e;, BAR’s unified framework refactors
fixed token sequences through the linear transform y = Ax, and encompasses
previous methods as specific instances of matrix A. Furthermore, BAR adaptively
optimizes the transform matrix with an end-to-end AR objective, thereby discov-
ering effective strategies beyond hand-crafted assumptions. Comprehensive ex-
periments, notably achieving a state-of-the-art FID of 1.15 on the ImageNet-256
benchmark, demonstrate the ability of BAR to overcome human biases and sig-
nificantly advance image generation, including text-to-image synthesis.

1 INTRODUCTION

Autoregressive (AR) models have demonstrated remarkable success in various domains (OpenAl,
2022; [Team et al. [2023)), particularly in natural language processing (Brown et al., 2020; [Devlin
et al.| 2019} [Raffel et al., 2020). This paradigm of sequentially predicting next tokens is extended
to the vision domain with notable progress (Alayrac et al., {2022 Yu et al.l [2022)), including image
generation (Esser et al.l 2021} [Ramesh et al. 2021} Han et al., [2024; |Yu et al.| |2024a), and even
surpasses diffusion models (Song et al.,[2021; |Ho et al.,|2020; Podell et al., {2024} Tang et al., | 2022).
However, prevalent AR models flatten images as 1D sequences of tokens in a row-major raster-scan
order. While it aligns with the sequential nature of language, it overlooks the inherent 2D structure
of images, where each token exhibits strong relationships with its neighbors. This straightforward
adaptation significantly limits the capabilities and further development of AR models.

Recognizing these limitations, recent research (Fan et al.| [2024; [Li et al., 2024b; [Yu et al., |2024c;
Li et al.; [2025; [Pang et al., 2024) explores alternative strategies to suit the characteristics of images
within the AR framework. VAR (Tian et al., 2024) moves from the standard next-token predic-
tion to the coarse-to-fine next-scale prediction. MAR (Li et al.,[2024b)) transforms the traditionally
causal, unidirectional generation into a bidirectional attention mechanism. Simultaneously, other
explorations (Ren et al.| |2025; |Yu et al., |2024b; [Wang et al., 2024; [Yu et al.l [2025) also investigate
various aspects such as flexible token definitions, randomized generation orders, parallel processing,
and frequency-based generation to address the inherent challenges of AR models.

However, these advancements are hindered by two fundamental challenges. First, they rely heavily
on manual designs and inductive biases. VAR (Tian et al., |2024) is based on the coarse-to-fine
causality inspired by human perception, FAR (Yu et al.l [2025) opts to exploit frequency-domain
hierarchy, while xAR (Ren et al., 2025)) directly groups adjacent tokens as cells. These ad hoc
choices yield divergent conclusions from their own inductive biases. Second, these approaches
lack a unified mathematical framework and formal foundations, undermining their credibility and
persuasiveness. For instance, PAR (Wang et al.| [2024) partitions tokens by their locations, RAR (Yu
et al.,|2024b) randomly permutes tokens and gradually anneals to normal order, and xAR (Ren et al.,
2025) empirically adopts cell as the basic entity.
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To address these gaps, we propose Basis Autoregressive (BAR), including two pivotal contributions,
e.g. a unified mathematical framework and a parameterized learnable algorithm. First, our frame-
work is grounded in the theory of linear spaces and formalizes prior AR variants (Tian et al.| 2024;
Ren et al., 2025} |Yu et al.| [2024bj Wang et al.| [2024; [Yu et al.| [2025) as specific transforms of space.
They essentially re-mix, re-order, and re-group the token sequences with manually defined rules,
while our framework is compatible with them and further offers a generalized viewpoint. Second,
leveraging this framework, we introduce a parameterized, learnable, and end-to-end optimization
algorithm that does not rely on heuristic designs and human biases. This avoids reliance on hand-
crafted priors, eliminates extensive experimental trial and errors, and allows the model to adaptively
discover optimal transforms through training.

As visualized in fig. [I} we first partition the latent space of token sequences x into a series of sub-
spaces, where each token x; is the projection on them. Then, we apply the linear transform y = Ax,
and the row vectors of A form the basis of transformed space. Prior methods (Tian et al.}[2024; Ren
et al., [2025} |Yu et al.| 2024bj; |Wang et al., 2024; | Yu et al., [2025)) are exemplified as certain forms of
A. Then, we propose a joint learning algorithm in fig. [2| for the matrix with the training objectives
derived from existing AR models. Our method enables end-to-end training that seamlessly integrates
with them and is firmly supported by comprehensive experiments on conditional and text-to-image
generation, profound ablations of the learned transform matrix, and the state-of-the-art FID score of
1.15 on ImageNet 256 benchmark. Our contributions are:

¢ A unified framework that formalizes former AR methods and facilitates novel extensions;
* Anend-to-end learnable algorithm that transcends human biases into adaptive optimization;
* Comprehensive experiments and ablations underscore the advantages of our method.

2 BACKGROUND

2.1 DISCRETE AUTOREGRESSIVE VISUAL GENERATION

Autoregressive (AR) models for visual generation adapt the paradigm of sequential modeling from
the field of language, primarily through discrete tokenization. While early approaches (Van den
Oord et al.l [2016; Van Den Oord et al., 2016) directly model pixel-level dependencies, VQ-
VAE (Van Den Oord et al., 2017; [Razavi et al., |2019) introduces vector quantization and maps
images to discrete tokens. Later works (Ramesh et all [2021; [Yu et all [2022) scale to text-to-
image generation, demonstrating the potential of AR. LlamaGen (Sun et al., 2024) further adapts
large language model architectures, e.g. Llama (Touvron et al) [2023). Given sequential tokens
x = {w1,x9,...,2N} representing an image, AR assumes that each token x;, depends only on
its prefix x<y, := {x1,22,...,2,_1}, and factorizes the joint distribution py(x) into a product of

conditioned probabilities over the sequence as py(x) = H]kV:1 po(xp | k).

Recent advancements focus on optimizing token quantization, prediction, and efficiency. RQ-
Transformer (Lee et al.l [2022) introduced residual quantization to reduce codebook redundancy,
while TiTok (Yu et al., [2024c) reduces the number of required tokens to encode an image down
to 32. VAR (Tian et al., 2024)) pioneered a coarse-to-fine next-scale prediction paradigm, using a
custom multi-scale RQ-VAE to generate tokens at increasing resolutions. PAR (Wang et al., [2024)
introduces parallel decoding by identifying weakly dependent tokens as groups. RAR (Yu et al.
2024b) addresses fixed factorization orders via randomized permutations, gradually anneals to nor-
mal orders during training, and learns bidirectional contexts of images.

2.2 CONTINUOUS AUTOREGRESSIVE VISUAL GENERATION

Continuous AR models bypass vector quantization to directly model high-fidelity visual contents.
Hybrid approaches (Zhou et al., [2024; [Xie et al., [2024) attempt to bridge discrete and continuous
visual data with multi-modal models. Later, MAR (Li et al,[2024b) eliminated vector quantization
by integrating a diffusion loss, where the output tokens of AR are fed into tiny denoising networks
as conditions to generate continuous outputs. Specifically, the output of AR models, noted as zx, no
longer matches the image tokens and serves as the condition for the noisy estimator ¢,. The noisy
estimator is trained via a denoising criterion

Lyar (2, T1) = ||€—677(x};|t,2’k)||§7 M
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Figure 1: An overview of the unified framework of BAR and its strength over previous approaches.
(a) By applying a linear transform associated with the matrix A, BAR offers the generalized view-
point that encompasses prior methods as specific instances of A and facilitates further extensions.
(b) BAR at its core lies that each token xj, is the projection of whole image x on a sub-space, or
basis with channels omitted. It transforms the standard basis ey, into the row vectors a; of matrix A.
(c) We illustrate each method with its corresponding aj. While vanilla AR directly employs e; as
raster scan of tokens and VAR manually designs a coarse-to-fine pattern, BAR adaptively learns ay.

where € ~ N(0, 1) is random noise, 2}, = /azz + /1 — &€ is the noise-corrupted sample, and
@ is the noise schedule. Following works like FAR in turn adopted a frequency-
domain strategy, generating low-to-high frequency components to align with visual hierarchies, and
captures spatial dependencies efficiently. Furthermore, xAR 2025) eliminates the diffu-
sion heads of MAR, drives the decoder to directly predict the continuous tokens, and uses groups of
local tokens, e.g. cell, as the unit of each AR step. XxAR also utilizes the flow-based

[2023} [Liu et al} [2023)) objective

N
2
Laar(x) =Y [va({aft 2k, i b te) — o) )
k=1
t
where x}i" = (1 — tg)xy + tieg is the noisy sample, v,tg"' = d;t‘;k = €, — xf, is the ground-truth flow,

{t} = {t1,t2,...,tn} ~ U[0,1] are timesteps, and {e} = {€1,€2,...,€,} ~ N (0,1) are noise.

3 METHOD

3.1 UNIFIED FRAMEWORK

Consider an image encoded into a 2D feature grid {x; ;) }, where each element corresponds to a
local patch of image, z(; j) € R in the case of VAE, and v 5 € Zk = {1,..., K} in the case of
VQ-VAE. AR flattens it into a 1D sequence of tokens x = {x1, 3, ..., 2y }. The entire image can
also be viewed as a vector x € RV*4 or x € Z¥ for continuous and discrete cases, respectively.
AR transforms the modeling of the whole image x into the progressive predictions of each token
xj, which can be viewed as the projection from the high-dimensional x yielding a series of low-
dimensional xj, in different sub-spaces. In the following discussion, we omit the channel dimension
d for simplicity, since the transform can be independently applied on each channel.

Specifically, consider the standard basis {e1, e2,...,en} of S := RY, where e, = onehot(k) € RN
with its k-th element being one and others being zeros. AR splits the S into the sub-spaces
{8k|Sk := span(e;),1 <k < N}, 3)

where span(ey, ) represents the space spanned by e;. AR transforms the direct modeling of x into
progressively determining its projections onto Sy, e.g. each token x;. However, specific designs
of these sub-spaces {Sy} remain understudied, as most AR models simply adopt the vanilla form
above that corresponds to the row-major raster-scan of image patches.
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Figure 2: Pipeline of BAR and our learnable approach of transform matrix As. The transform
matrix A as a learnable parameter is end-to-end optimized along with AR transformer. While Lgar
effectively trains BAR models, we further apply L esigual BAR tO encourage ordered ay.

Therefore, we propose the next-basis prediction paradigm and Basis Autoregressive (BAR) mod-
els with a linear transform operation that multiplies the image vector x by a full-rank matrix A and
transforms it to another space S’ := R /

y = Ax, 4)
where y = {y1,%2,...,yn'} ' € S and A = {a1,a9,...,an/}' € RN >N The row vectors of
A, e.g. a, € RN, form the basis set of S’. Consequently, BAR projects y onto the sub-spaces

{S8.|S;. :=span(a),1 < k < N'}, (3)

and progressively predicts yy, e.g. the projections onto each sub-space S;.. We apply standard AR
models on new sequence y, following with a reverse transform x = A ~!y back to the original space
S. BAR refactors the standard basis and sub-spaces {S} of vanilla AR into the transformed basis
and sub-spaces {S;, }. This linear transform serves as a unified framework that allows to incorporate
and generalize previous methods as different designs of the transform matrix A.

3.2 SPECIAL CASES

While previous methods also propose to transform the image token sequences, they predominantly
rely on human inductive bias and lack rigorous mathematical formulations. xAR introduces a nexz-
X prediction paradigm where X can be instantiated as token, subsample, and scale. However, the
concept remains a textual description and xAR empirically adopts cell, e.g. a group of adjacent
tokens, as the basic unit. Here, we systematically discuss prior works as special cases of matrix A.

VAR (Tian et al.| |2024) leverages a coarse-to-fine strategy of next-scale prediction, which can be
viewed as a multi-scale transform A with its basis ay as the average pooling of different resolutions.
The sequence y thereby reflects the progression from global features to finer local details.

xAR (Ren et al., [2025)) groups a grid of spatially adjacent tokens as cells and sequentially predicts
them. In this case, A also represents the re-ordering and re-grouping of the standard basis set {ey },
where e and e; are grouped together if z;, and x; are spatially adjacent on the 2D feature grid.

RAR (Yu et al.L[2024b)) randomly permutes the token sequence during training, and gradually anneal
to normal. The matrix A is thereby a random permutation matrix P, and gradually anneals to I.

PAR (Wang et al.,|2024) accelerates inference by predicting groups of tokens with weak dependen-
cies, e.g. sub-sample, in parallel. Here, the transform matrix A takes a specific form of selection
where e, with its corresponding xj, in the same sub-sample placed together.

FAR (Yu et all [2025) performs AR in the frequency domain, instead of the spatial domain, from
low-frequency to high-frequency components. Similarly, the transform matrix A can be constructed
as multi-frequency filters, where each ay, is a low-pass filter with different cut-off frequencies.

TiTok (Yu et al.| [2024c) is designed to tokenize an image into an ultra-compact 1D sequence of
M < N latent representations. The corresponding transform matrix A € RM*N gerves as an
abstraction from the long sequence x € RY %< into the short sequence y € RM x4,

FractalGen (Li et al., 2025)) proposes the AR modeling with recursive, self-similar architectures
inspired by fractals. The corresponding matrix A would be similar to VAR with its basis ay, repre-
senting hierarchical structures, generating the sequence y;, at various levels of the fractal recursion.
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3.3 LEARNABLE APPROACH

Prior AR models, as discussed above, often depend on static hand-crafted designs of specific pre-
diction units or orders derived from inductive biases, and might lead to divergent conclusions based
on similar empirical observations. Therefore, we propose an adaptive algorithm to parameterize and
learn the transform matrix A in an end-to-end manner alongside the AR model itself.

We narrow the search space for the transform matrix A to enhance efficiency without loss of gen-
erality. Firstly, we follow prior methods to omit the channel dimension and treat each token as a
whole, as AR typically progresses on the sequence dimension. Secondly, we consider A € RV*V
to be square matrix, as it does not change sequence lengths and remains a minimum modification of
existing AR models. The matrix A essentially exchanges the standard basis {ey } for learned basis
{ax}. Furthermore, we focus on the orthogonal matrices, a noteworthy category for the transform
matrix A, in this work. Such matrices possess desirable properties for our learnable approach, for
example, they preserve the Euclidean norm of vectors, e.g. ||y||2 = ||x||2 where y = Ax.

To facilitate the adaptive search for the transform matrix A, we treat it as a learnable parameter
along with AR models and derive a training objective equivalent to previous AR methods. Here we
mainly focus on continuous AR models. We have the following proposition.

Proposition 1. Optimizing BAR on the transformed image 'y and token sequence {yy} is equivalent
to MAR on the original image x and token sequence {xy}, i.e. Lyar(2k, Yk) = Lmar (25, Tk )-

Proof. Consider a reference model optimized with Lyagr, we rewrite eq. (1)) as

N
LR () = [|ex — en(ahlt, 20(z<r))] 5
k=1
_ XN: \/5716 (xff —V1i- @tﬁk) _ (xz]; —Vv1- @teﬁ) ’ (6)
oV vV Vay )
al (o . 2 Qy 12
:Z_: ﬁ(wk*l’k) 1o [(x =%,

where @), := —= (¢}, — v/T = Gyey) is obtained via the reparameterization of the noise prediction

€n, and x is the predicted image vector. On the other hand, we also apply MAR to our transformed
sequence y = Ax. The correspondents of noisy tokens z?, in the transformed space S’ are

N N
y;i = agx = Zakﬂ:f = Z ak,l (\/@ta:g +v1—- &tel)
=1 =1

N N (7N
=Vay Zak,lxz +v1i-o Zak,zﬁl = Vauyr + V1 - ey,
=1 =1
where €], 1= Z,]il ay € is the transformed noise. Note that if we denote € := {e, €2,...,en} and

g = {€],€,,...,eé}, wehave ¢/ = Ae, E(¢') = AE(e) = 0, and X, = E[(e’ — E(¢'))(¢' —
E(") "] = E[(Ag)(Ae)T] = I, which suggests that ¢’ is also composed of i.i.d. Gaussian noise.
The subsequent BAR objective on the transformed image y is

N
2
Loar(y) = Y |lék — €, (Whltr, z0(y<i)) |,
k=1
N = 2 =
- o P a 2 ®)
,; m(yk yk)2 1_5%”(3’ Yl
a A
= =g, A= %)5 = L,

which indicates that optimizing BAR on y is equivalent to optimizing the underlying MAR onx. [
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Figure 3: Visualization of learned basis a; with k£ denoted above. Darker marks higher values.

Proposition 2. Optimizing BAR on the transformed image 'y and token sequence {yy} is equivalent
to xAR on the original image x and token sequence {x}}, i.e. Lpar(Y) = Lxar(X).

Similarly, we can also train XAR models on the transformed image y and token sequence {yy},
and leave the detailed proof for the following proposition in the Appendix. The propositions [I]
and 2] ensure that Lgag is a valid objective as Lyar and Liar, e.g. the performance of BAR and
MAR(xAR) would be the same when optimizing only the network parameters. However, when
incorporating the learnable matrix A, we will see great improvements in the following experiments.

3.4 RESIDUAL OBJECTIVE

While propositions [I] and [2] indicate the potential for direct optimization of the transform matrix
A, the full exploitation of the capabilities of AR models necessitates the incorporation of certain
desirable properties. Specifically, a primary objective is the maximization of information content
within the earlier basis vectors ax. This aims to facilitate the most accurate possible reconstruction
of the image x utilizing earlier tokens yy, a characteristic intrinsic to the sequential token prediction
nature of AR models. Consequently, we introduce a residual training objective designed to explicitly
enforce an ordering of the basis vectors aj and tokens y; according to their respective information
richness and their contribution to the image recovery process.

Note that the BAR objective in eq. (8) can be rewritten as

Lowy) = 1oy 3= o A - AT o= 12 - ATS ;. ©)
we propose the residual BAR objective as
_ N
Lresidual BAR () = 1 ft@t Z Hx — ATSIkH; where yi := yT(Z er). (10)
k=1 =1

Here, §y is the k-prefix of ¥, i.e. ¥x := {01, U2,...,9n} where g; = g; for1 <i< kand g, =0
for k < i < N. The motivation lies that the first output token y; should maximize the recovery of
image x, and the following tokens y, should maximize the recovery of the residuals x — AT ¥, _1.

Discussion L,.aua Bar partially shares the same principle as VAR and RQ-VAE. While VAR as-
sumes the average of patches as coarse contexts and RQ-VAE progressively quantizes the remaining
residuals, our design enables an adaptive learning process and introduces fewer inductive biases.

3.5 IMPLEMENTATION DETAILS

Regularization is critical to our learnable algorithm, since we assume A to be orthogonal. Specifi-
cally, we use the term L,y := |ATA —1||2, and train models with Lg AR 1 Lreg OF Lregidual BAR T Lreg-

Orthogonal projection as closed-form solution of Orthogonal Procrustes problem (Schonemann,
[1966; |Ge et al., 2013) applies Singular Value Decomposition (SVD) as USV T = A, then lets
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Table 1: Benchmarking conditional image generation on ImageNet 256 x 256.

Type | Model | FID| 1St Pret Rect | Time| #Step| #Param]
Diff. ADM (Dhariwal & Nichol}2021) | 4.59 186.7 0.82 0.52 44.68 250 544M
Diff. LDM (Rombach et al.[[2022) 3.60 2477 0.87 0.48 207.2 250 400M
Diff. U-ViT (Bao et al.[[2023) 229 2639 0.82 0.57 - - 501M
Diff. DiT (Peebles & Xiel[2023) 227 2782 0.83 0.57 11.97 250 675M
Diff. SiT (Ma et al.|[2024) 2.06 2775 0.83 0.59 11.97 250 675M
Diff. VDM++ (Kingma & Gao||2023) 212 2677 0.81 0.65 - - 2.0B
Diff. MDTV2 (Gao et al.||2023) 1.58 3147 0.79 0.65 - 250 676M
Diff. REPA (Yu et al.|[2024d) 142 3057 080 0.65 11.97 250 675M
Diff. Light.DiT (Yao & Wang![2025) 1.35 2953 0.79 0.65 - 250 675M
Diff. MG (Tang et al.|[2025) 1.34 3215 0.81 0.65 6.03 250 675M
Mask. | MaskGIT (Chang et al.|[2022) 6.18 182.1 0.80 0.51 0.5 8 227TM
Mask. | RCG (Li et al.|[2024a) 349 2155 - - 1.9 20 502M
Mask. | TiTok (Yu et al.[[2024c) 1.97 281.8 - - - 64 287TM
AR VQGAN (Esser et al.|[2021) 5.20 280.3 - - 6.38 256 1.4B
AR RQTrans. (Lee et al.|[2022) 3.80 3237 - - 5.58 256 3.8B
AR FAR (Yu et al.||2025) 321 300.6 0.81 0.55 - 10 812M
AR PAR (Wang et al.||2024) 2.29 2555 0.82 0.58 3.46 147 3.1B
AR LlamaGen (Sun et al.|[2024) 2.18 2633 0.81 0.58 12.41 576 3.1B
AR VAR (Tian et al.[[2024) 1.73 3502 0.82 0.60 0.27 10 2.0B
AR FlowAR (Ren et al.|[2024) 1.65 296.5 0.83 0.60 - 10 1.9B
AR MAR (Li et al.|[2024b) 1.55 303.7 0.81 0.62 28.24 64 943M
AR RAR (Yu et al.|[2024b) 148 3260 0.80 0.63 - 256 1.5B
AR xAR (Ren et al.][2025) 124 301.6 0.83 0.64 0.68 50 1.1B
AR BAR-B gurs) 1.56 2924 0.83 0.63 0.08 50 172M
AR BAR-Lours) 1.21 301.1 0.84 0.64 0.27 50 608M
AR BAR-Hours) 1.15 327.1 0.86 0.68 0.68 50 1.1B

A =US; VT, where the diagonals of S is clamped to (1 — 6,1 + ) as S5 with § = 0 in hard
projection and ¢ € (0, 1) in soft projection.

Initialization of the transform matrix A is important for its optimization. While the identity matrix
I corresponds to vanilla AR, we can also use a random matrix followed by an orthogonal projection.

4 EXPERIMENT

4.1 SETUP

Implementation. We apply our BAR framework to two different architectures of AR and follow the
protocol in MAR (Li et al., [2024b) and xAR (Ren et al.| 2025). We primarily conduct experiments
on the ImageNet (Deng et al., | 2009) 256 x 256 dataset and then raise the spatial resolution of images
to 512 x 512. We also conduct ablation studies on the FFHQ (Karras et al., 2019) dataset for its
human-face-centric nature at 64 x 64 and 256 x 256 resolutions. The KL-16 continuous tokenizer
provided by LDM (Rombach et al., |2022) is employed to encode the images into latent tokens. Our
models are mainly based on xAR (Ren et al.| 2025)), and we conduct ablation experiments with
xAR-B. All models are trained following previous settings (Li et al., 2024b; Ren et al., 2025)), e.g.
800 epochs and the batch size of 256, for fair comparisons, and all experiments are conducted with
16 NVIDIA A100 40G GPUs. For the text-to-image generation task, we follow FAR (Yu et al.|
20235)) and use the JourneyDB (Sun et al.,2023) dataset and the Qwen2-1.5B (Yang et al., [2024)) text
encoder.

Evaluation. As metrics, we report the commonly adopted Frechet inception distance (FID) (Heusel
et all [2017), Inception Score (IS) (Salimans et al. [2016), Precision (Pre.), and Recall
(Rec.) (Kynkadnniemi et al., [2019) over 50K generated samples, which is consistent with previous
works. We also list the number of parameters, sampling steps, and the wall-clock time to generate
one image for each method, which facilitate the thorough investigation of the balance between sam-
pling quality and generation efficiency. For the text-to-image generation task, we follow FAR (Yu
et al., 2025) to measure FID-30K on MS-COCO 2014 (Lin et al.l 2014) and the GenEval (Ghosh
et al., [2023)) benchmark.
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Figure 4: We decode the generated éequences every 25 tokens. The ﬁrét column uses only one token.

4.2 MAIN RESULTS

ImageNet 256 x 256 benchmark. In table[T} we present the system-level comparison of conditional
generation performance on the ImageNet 256 x 256 dataset with concurrent advanced methods,
including diffusion, mask-based, and AR models. Notably, we achieve new state-of-the-art results
with an FID of 1.15, while our BAR-B model also exhibits strong performance with only 172M
parameters and a lightning speed of 0.08 seconds per image. While our models offer outstanding
generation quality, they are also faster than most of the previous methods. The generated images of
our model are provided in fig.[5]

Compatibility with different architectures. While our models are mainly based on xAR, we
show in table 2] that the framework of BAR is also compatible with other existing AR models. We
additionally apply our method to MAR and experiment with their -B, -L, and -H variants. The
significant improvement over their corresponding baselines indicates the effectiveness of BAR on
different AR approaches and model sizes.

Scalability to ImageNet 512 x 512. The extension of our method to high-resolution images is
also notable. We conduct experiments on the ImageNet 512 x 512 dataset in table [3] and the re-
markable margin over both MAR and xAR baselines demonstrates that BAR is capable of modeling
challenging distributions and longer token sequences.

Text-to-image generation. In addition to the class-conditioned task on ImageNet, we also employ
BAR for text-to-image generation and depict the comparison in table ] Following FAR
[2025), our model further surpasses it by a gain of 1.36 FID. It suggests that BAR is promising across
various conditioning modalities. We also present the generated samples of our method in fig.

4.3 ABLATION STUDY

Visualizing learned basis. We visualize the learned basis ay, in fig.[3] where % is denoted above each
subfigure. The basis ay, is reshaped to match the 2D feature grid of images, and darker regions mark
high values, i.e. the weight of corresponding image patch is higher for a;. Here, we additionally
experiment on pixel-space 64 x 64 FFHQ and patchify 4 x 4 pixels as a token. The basis on pixel-
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Table 2: Experiments on different models. Table 4: Experiments on text-to-image.
Model | FID, ISt Pref Rect Model | FID, GenEvalt
MAR-B (Lietal]2024b) | 231 281.7 082 0.57 LDM (Rombach et al.[2022} | 12.70  0.37
+BAR (ours) 218 289.6 083 0.0 LlamaGen (Sun et al.| 2024} | 1505  0.32
MAR-L (Lict al]p024b) | 1.78 2960 081 0.60 FAR {Yu et al [2020} 1391 037
+BAR (ours) 156 3041 083 061 BAR | 1255 039
MAR-H (Lietal.|2024b) | 1.55 303.7 0.81 0.62 . L
+B AR(M(S) : ‘ 149 3128 082 064 Table 5: Ablation on initialization.
XAR-B (Renetal |2025) | 1.72 2804 0.82  0.59 Initialize | FID]  IST  Pre Rect
+BAR (ours) 156 2924 083  0.63 Baseline 172 2804 082 0.9
XAR-L (Renetal.|2025) | 1.28 2925 0.82 0.62 Identity 156 2924 083 063
+BAR (ours) 121 301.1 084 064 Orthogonal | 1.66 289.6 0.83  0.61
XAR-H (Ren etal |2025) | 124 301.6 083 0.64 . : ot
+BAR ‘ e e L L Table 6: Ablation on orthogonal projection.

Projection | FID] ISt  Pret Rec.t
Table 3: Experiments on ImageNet 512. Baseline | 1.72 2804 0.82  0.59
None 170 2849 081 0.6l
Model | FID] 1St  Pref Rec.t Hard 1.66 2858 082 0.6l
VAR (Tian et al.|[2024) 2,63 3032 0.82 062 Softs—o5 | 1.56 2924 083 0.63
REPA (Yu et al.](2024d) 208 2746 081 061 - . .
EDM? (Karras et al.|[2024) | 1.81 2732 085 0.63 Table 7: Ablation on training objective.
MAR-L (Li et al.[|2024b) ‘ 1.73 2799 0.84 0.62 Objective | FID] ISt  Pre.t Rec.t
+BARury LS T R Baseline 172 2804 082 059
XAR-L (Ren et al.]2025) 170 2815 084 0.64 Lpar 1.64 2897 0.84 0.64
+BAR (ours) 1.63 2920 085 0.64 LiesiquaBar | 156 2924 0.83  0.63

space FFHQ clearly reflects the shape of human faces, while the basis on latent-space FFHQ exhibits
less continuity, which explains the success of AR models on tokenized images. Furthermore, the
earlier basis on ImageNet shows an interesting pattern, while later ones seem to be more random,
which is beyond static hand-crafted designs.

Visualizing generation process. We also visualize the generation process of BAR models by pro-
gressively decoding the generated token sequence with its prefix, e.g. we only decode the first k
tokens with £ increasing with a step size of 25 starting from the first token. The output images also
show a coarse-to-fine paradigm, which is consistent with the motivation of our residual objective.

Initialization strategy. The initialization of transform matrix A is critical to our learnable approach.
In table 5] using the identity matrix I as initialization obtains using best results, since it corresponds
to vanilla AR models, while our method also offers a gain over the baseline with random orthogonal
initialization.

Orthogonal projection. The orthogonal projection is also crucial to the training process. In table[6]
the soft projection with § = 0.5 offers the best results, while the performance is significantly im-
paired without projection. The main reason is that the regularization term for orthogonality alone is
not strong enough, while hard projection limits the potential update directions for A.

Training objective. Although Lpar itself is capable of effectively training BAR models, we further
introduce and apply Liesiqua BAR that encourages ay, to be ordered by the recovery of the original
images and mimics a coarse-to-fine characteristic as in fig. @ The results in table [7] confirm that
both Lgar and L esigual BAR provide satisfactory performance, while L egqual BAR 18 slightly better.

5 CONCLUSION

In conclusion, this work introduces Basis Autoregressive (BAR), a novel paradigm for image gen-
eration that addresses the inherent limitations of traditional AR models tied to fixed, raster-scan
prediction of tokens. By conceptualizing tokens as the projection of image vector on basis of lin-
ear space and employing an end-to-end learnable transform of these bases, BAR offers a unified
mathematical framework. It not only encompasses previous methodologies as specific instances but
also adaptively optimizes the transform to discover effective strategies beyond manual designs. The
demonstrated state-of-the-art performance, highlighted by an FID score of 1.15 on the ImageNet-
256 benchmark, underscores its capability to transcend human biases and significantly advance the
field of image generation, including its application in text-to-image synthesis. BAR represents a
significant step in developing more flexible and powerful AR models for visual content creation.
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A  PROOFS

A.1 MAR VARIANTS

In this section, we provide further details of propositions [T] and ] and their corresponding proofs.
We first begin with BAR implemented with existing MAR architectures.

Proposition 1. Optimizing BAR on the transformed image y and token sequence {yy,} is equivalent
to MAR on the original image x and token sequence {xy}, i.e. Lyar(2k, Yr) = Lmar (2k, Tk )-

Proof. Consider a reference model optimized with Lyar. Recall that the noise-corrupted sample is
obtained via the interpolating ground-truth image and sampled noise via the noise schedule

rh = Vagr, + V1 — e, (11)

where € ~ N(0,1) is random noise drawn from Gaussian distribution, and & is the noise schedule
used in diffusion models (Song & Ermonl[2019;|Ho et al.,[2020). Given the model outputs as predic-
tions of added noises, we can obtain the prediction of unnoised image X via the reparameterization

IZ*\/I*O_Zté
var

T = where € := €, (z}|t, zo(x<k)). (12)

We thereby rewrite eq. (1)) as

N
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On the other hand, we also apply MAR to our transformed sequence y = Ax. The correspondents
of noisy tokens z, in the transformed space S’ are
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where the noise added to transformed tokens yy, is

N
6;6 = Zakqu. (15)

=1
Note that if we concatenate all noises into a single vector and denote & := {ey,€9,...,en} and

e’ = {€), e, ..., e}, we find that first sampling € ~ A(0, 1) then using the transform in eq. ,
i.e. & = Ag, to obtain €’ is equivalent to directly sampling from ¢’ ~ A(0, 1). To validate this, we
can calculate the expectation of &’

E(¢') = E(Ae) = AE(e) = 0, (16)

and its covariance

e JAT (17)

which suggest that €’ is also composed of i.i.d. Gaussian noise and can be directly sampled with
¢’ ~ N(0,1). This ensures that we can directly apply MAR framework on the transformed image
y. The subsequent BAR objective is

N
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which indicates that optimizing BAR on y is equivalent to optimizing the underlying MAR onx. [
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A.2 XAR VARIANTS
Then, we discuss the case where BAR is implemented with the model architectures of xAR. and
provide the detailed proof of proposition

Proposition 2. Optimizing BAR on the transformed image y and token sequence {yy,} is equivalent
to xAR on the original image x and token sequence {xy}, i.e. Lpar(Y) = Lxar(X).

Proof. Consider a reference model optimized with L4ag. Recall that the noise-corrupted sample is
obtained via the interpolating ground-truth image and sampled noise by

zik = (1 — tg)zy + trer, (19)
where €, ~ N(0,1) is Gaussian noise, and the ground-truth flow is
da*

Similarly, we can obtain the prediction of unnoised image X via the reparameterization
P i h e o t1 .2 ty t 21
&y =€ — 0, where 0 :=vo({al', 2, ... 2}, tk). (21

We thereby rewrite eq. (2)) as

N
‘ 2
LR = E : oo ({282, .. 2t} te) — vk |,

(22)

On the other hand, we also apply xAR to our transformed sequence y = Ax. The correspondents
of noisy tokens z% in the transformed space S’ are

N
= Zak,l (T =tz + tier) (23)

N N
=(1—tg) Z ap Ty + tg Z Q1€
=1 =1

= (1 — te)yk + trer,

where we assume that Vi € {1,2,...,k}and j € {1,2,...,k},t; = t; for simplicity, since {t} =
{t1,t2,...,t,} ~ UJ0,1] is arbitrarily sampled in XAR (Ren et al., 2025). The noise added to
transformed tokens yy, is

N
62 = Zak,lel- 24)
=1
Note that if we concatenate all noises into a single vector and denote € := {e1,€3,...,€ex} and

' :={€}, €, ..., €y}, we find that first sampling e ~ N(0, 1) then using the transform in eq. (24),
i.e. ' = Ae, to obtain ¢’ is equivalent to directly sampling from &’ ~ N(0, 1). To validate this, we

17



Under review as a conference paper at ICLR 2026

can calculate the expectation of &’
E(¢') = E(Ag)
= AE(¢e) (25)

and its covariance
E[eeT]AT (26)
[

which suggest that ¢’ is also composed of i.i.d. Gaussian noise and can be directly sampled with
¢’ ~ N(0,1). This ensures that we can directly apply xAR framework on the transformed image y.
The subsequent BAR objective is

N
Lpar = Z ’
k=1

2
X t
U/O({yilvy?’ s vyltgk}atk) - U/kk 9

M= T

N 2
(e — k) — (& —w) I3

= > llge — il @n
k=1
- 2
=9 -yl
. 2
= [AZ =%,
s 2
=[x =xll;
_ Lref
— ~xAR>
where the ground-truth flow of yli’”" is
dyt*
R Tk (28)
O

B LIMITATIONS AND BROADER IMPACTS

Limitations This work focuses on enhancing the output quality and training speed of current AR
models, but still depends on existing VAEs (Rombach et al.| 2022). Recent studies (Yao & Wang,
2025} [Leng et al.| 2025) achieved significant success with the end-to-end training of VAE and AR
models, and incorporating our approach into VAE would be a promising direction. Furthermore,
this work are mainly conducted on continuous AR models. Extending BAR to discrete AR models
is an imperative next-step, as we discussed in section [E]

Broader Impacts Although this work primarily discussed images generation AR models, the next-
token prediction paradigm is employed on other modalities, e.g. video and speech. Applying this
work to AR models in these fields shows potential. On the downside, since our models are trained
on existing dataset, it might unintentionally reproduce any biases within. Furthermore, the image
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generation abilities developed could potentially be misused to create and spread false information.
We will consider restricting the access to our model weights to address this.

Table 8: Setup for table

BAR-B BAR-L BAR-H
Architecture
Tokenizer KL-16 2022 KL-16 KL-16 2022
Input dimension XT6XT6 XT6xT16 6XT6X
Encoder layers 8 16 20
Encoder dimension 768 1024 1280
Encoder heads 12 16 16
Decoder layers 8 16 20
Decoder dimension 768 1024 1280
Decoder heads 12 16 16
Number of parameters 172M 608M 1.1B
Hyperparameters
Optimizer AdamW (Kingmal[2014][Coshchilov][2019) ~ AdamW (Kingmal[2014][Loshchilov][2019] ~ AdamW (Kingma][2014][Loshchilov][2019)
Momentum (81, B2) 0.9, 0.96) (0.9,0.96) 0.9,0.96)
Weight decay 0.02 0.02 0.02
Batch size 2048 2048 2048
Learning rate schedule cosine cosine cosine
Peak learning rate 4x107* 4x 107 4x 107
End learning rate 1x107° 1x107° 1x107°
Total epochs 800 800 800
Warmup epochs 100 100 100
Dropout rate 0.1 0.1 0.1
Label dropout rate 0.1 0.1 0.1
Inference
Sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama
Steps 50 50 50

Algorithm 1 Training BAR: PyTorch-like Pseudo-code

def train(residual_loss=True) :

for step,

(x, ¢©)

in enumerate (dataloader) :

# sample random noise and timestep

noise = torch.randn (x.shape)
timestep = torch.rand(x.shape[0], 1, 1)
# BAR: linear transform

y = x @ self.A_mat
# sample y_t from y
y_t = (1 - timestep) % y + timestep * noise
# predict v_hat and y_hat from y_t

v_hat = net(y_t, timestep, c)

y_hat = noise - v_hat

# compute loss
if residual_loss:
x_hat = [y_hat[:, :,
shape[-1]) ]

k+1] @ self.A_mat[:, :k+1]

for k in range(x

loss = ((torch.stack(x_hat, dim=1) - x.unsqueeze(l)) %% 2).mean|()
else:
loss = ((y_hat - y) *x 2).mean()

# regularize term
loss +=
*+ 2) .mean ()

# optimize
opt.step ()

((self.A_mat @ self.A_mat.T - torch.eye(self.A_mat.shapel0]))

opt.zero_grad()

C HYPERPARAMETER AND IMPLEMENTATION DETAILS

Implementations. We implement our method based on the code of xAR (Ren et all 2025)) and

MAR (Li et al.}|
2025) and

2024b). We use the exact same structure and same hyper-parameters as XAR
MAR (Li et al.} [2024b)) throughout all experiments. We use a batch size of 2048

in consistence with xAR 2025) and MAR (Li et al/, [2024b), and we apologize for the
typo in the main text of the batch size of 256. We use AdamW (Kingmal 2014} [Loshchilov, [2019)
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with cosine learning rate schedule starting from 4 x 10~%, warm up for 100 epochs, and gradually
decay to 1 x 10~°. The optimizer momentum is (31, 32) = (0.9,0.96) and the weight decay is 0.02.
We also pre-compute and save the latent vectors of images and use these latent vectors for training,
similar to XAR (Ren et al., |2025) and MAR (Li et al., [2024b)). Therefore, we only apply simple
random horizontal flip as data augmentation. We use continuous KL-16 VAE from LDM (Rombach
et al.||2022) for encoding and decoding images. The detailed hyper-parameter setup are provided in
table

Sampler. For MAR variants, we use the ADM (Dhariwal & Nichol, 2021)) sampler with 100 steps
the same as the original MAR (Li et al., |2024b). For xAR variants, we use the Euler-Maruyama
sampler (Ma et al.| 2024 [Yu et al.| [2024d) with 50 steps the same as the original xAR (Ren et al.,
2025).

Computing resources. We use 16x NVIDIA A100 40GB GPUs for experiments. We use a batch
size of 2048 and remain unchanged for all experiments.

Pseudo-code. We provide a torch-like pseudo-code of training models with BAR in algorithm 1]

D TRAINING WALL-TIME AND EFFICIENCY

D.1 CONVERGENCE SPEEDUP

50 A
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Figure 7: We train BAR-B and xAR-B for 400 epochs. Our BAR-B converges significantly
faster than xAR-B, and obtains lower FID-5K throughout the whole training process.

BAR not only improves the final generation quality of AR models, but also accelerates the training
process and its convergence, since the image tokens are transformed and refactored to better suit
the nature of the next-token prediction paradigm. As illustrated in figs. [3] and 4] the basis and
transformed tokens mimic a coarse-to-fine pattern, allowing the AR models to first focus on the
global structures then refine the local details.

In fig. [/} we conduct ablation experiment with BAR-B model and compare the intermediate FID-5K
evaluation results with xAR-B during the training process. As shown, the convergence speed of
BAR is significantly faster than xAR, and our BAR-B model obtains better performance compared
to xAR-B under the same iterations throughout the whole training process.

D.2 TRAINING EFFICIENCY

We also compare the wall-time per iteration and GPU memory usage during training in table [J]
using one A100 GPU. Since BAR only introduces an additional matrix multiplication in the training
process (see algorithm|[T)), both the training time and memory cost of BAR is the same as the original
xAR. When incorporating the proposed residual loss to explicitly regularize the order within learn
basis, the training cost is slightly raised by the overheads of 0.01 x wall-time and 0.03 X memory.
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Table 9: Training efficiency of BAR. Results evaluated on one A100 GPU.

\ xAR  BAR (without residual loss) BAR (with residual loss)

Wall-time per iteration | 1.00x 1.00x 1.01x
GPU memory usage 1.00x 1.00x 1.03 %

E EXTENSION TO DISCRETE AR MODELS

While this paper predominantly focuses on the exposition and experiments of continuous BAR mod-
els, the unified framework of linear transform can also be adapted to discrete AR paradigms. The
rationale for prioritizing continuous BAR models herein is that they avoid the quantization of the
output introduced by VQ-VAEs. Such quantization, a prerequisite step required by discrete AR
models, inherently introduces loss of information. This loss can detrimentally affect the fidelity
and quality of the final generated images. Consequently, the adoption of continuous AR models
circumvents this quantization-induced information bottleneck, facilitating superior preservation of
information directly from the latent representation of VAEs.

There exist two potential strategies to extend BAR to discrete AR models. The first involves adapt-
ing the principles of linear transformations and learnable basis to the quantization stage of VQ-VAE.
For instance, VAR (Tian et al.,|2024) implements a manual designed hierarchical quantization, pro-
gressing from global to local image features. This is achieved by resizing the outputs of VAE to
various resolutions prior to quantization, effectively dedicating the initial basis to the holistic image
representation, subsequent four bases to the quadrants of image, efc. In a similar vein, the learned
bases, as visualized in fig.|3| derived from a BAR model could potentially guide the quantization of
VAE latents. However, it might require a multi-stage training process, or the joint optimization of
both VQ-VAE and AR model.

The second relies and utilizes the outputs of existing VQ-VAEs. In this case, the content of each
discrete token remains unaltered, and the linear transform is thereby confined to the rearrangement
or regrouping of tokens the standard basis e;. The corresponding transform matrix A takes the
form of permutation matrix, which consists of only 0 and 1. This is similar to RAR (Yu et al.,
2024b) and PAR (Wang et al.| 2024])), where the former introduces random permutations of the token
sequence during training, and the latter partitions the tokens into groups and prioritizes the pivot
tokens. However, this approach may introduce challenges on how to optimize the matrix A while
maintaining it as a permutation matrix.

F ABLATION ON RESIDUAL LOSS

Table 10: Compare offline pre-computed basis and online learnable basis with L egidual BAR-

Model | FID| ISt  Pref Rec.t
Baseline 1.72 2804 0.82 0.59
Offline basis 1.65 2864 0.82 0.60

Online learnable basis | 1.56 2924 0.83 0.63

The design of our proposed L esigual BAR 1N €. @ naturally leads to the question that can we first
apply a similar residual loss on real images from dataset, then fix the offline pre-computed basis
to train AR models? We conduct ablation experiments in table [I0] and find that while AR models
benefit from the offline basis, our online learnable basis allows adjustments to the inherit dynamics
of AR models and obtains better performances.
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Table 11: FDpNov2, KID, and CLIP score comparison.

| FDpmove! KID]  CLIP scoret

DiT (Peebles & Xie, 2023) 7743 0.060 0.317
SiT (Ma et al| 2024) 7052 0.055 0.326
REPA (Yu et al.| 2024d) 59.16  0.052 0.334
LightningDiT (Yao & Wang,2025) | 56.23  0.050 0.338
BAR 5233 0.047 0.343

Table 12: CLIPscore and HPSv2 comparison.

| CLIP scoref HPSv2t

LDM 0.330 25.56
LlamaGen 0.319 24.22
FAR 0.328 25.28
BAR 0.332 25.71

G MORE RESULTS

G.1 ADDITIONAL METRICS

To provide a more comprehensive evaluation beyond the commonly utilized Fréchet Inception Dis-
tance (FID) (Heusel et al., |2017) and Inception Score (IS) (Salimans et al.,|2016), we also incorpo-
rate more metrics in table including FDpovz (Stein et al., [2023) and Kernel Inception Distance
(KID) (Binkowski et al.| 2018). Furthermore, to quantify the alignment between generated images
and input conditions, we report the CLIP (Radford et al.| 2021)) score in tables[TT]and [I2]by comput-
ing the CLIP similarity between images and corresponding prompts. For the class-conditional image
generation task on ImageNet, as detailed in table [T} the text prompt is constructed as “a photo of
[CLASS]”, where [CLASS] is replaced by the specific class label. In the context of text-to-image
models, we also present HPSv2 (Wu et al.| 2023) results in table

G.2 LEARNED BASIS VISUALIZATION

In addition to fig.[3] we provide more visualization results of the learned basis in fig.[8] We attribute
the discontinuous pattern of latent space FFHQ to the insufficient training, while the basis of latent
space ImageNet is optimized for more iterations.

G.3 GENERATION PROCESS VISUALIZATION

In addition to fig.[4] we provide more visualization results of the generation process by progressively
decoding the generated token sequence y in fig. [0}

G.4 GENERATED SAMPLES

We present more visualization of generated samples with our BAR-H model in figs. [10|to We
also present more text-to-image samples of our BAR model in fig.
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Figure 8: Visualization of the first 20 learned basis aj. Darker regions mark higher values.
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Figure 9: We decode the generated sequences every 25 tokens. The first row uses only one token.
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Figure 10: Generated samples of BAR-H on the  Figure 11: Generated samples of BAR-H on the
class ”balloon” (417). class “panda” (388).
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Figure 12: Generated samples of BAR-H onthe  Figure 13: Generated samples of BAR-H on the
class ”golden retriever” (207). class ’lion” (291).

26



Under review as a conference paper at ICLR 2026

Figure 14: Generated samples of BAR-H on the  Figure 15: Generated samples of BAR-H on the
class ’space shuttle” (812). class “valley” (979).
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Figure 16: Generated samples of BAR-H on the = Figure 17: Generated samples of BAR-H on the
class ”volcano” (980). class “’lake shore” (975).
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Figure 18: Text-to-image samples of BAR.
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