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Abstract

We propose MCGrad, a novel and scalable multicalibration algo-
rithm. Multicalibration - calibration in subgroups of the data - is
an important property for the performance of machine learning-
based systems. Existing multicalibration methods have thus far
received limited traction in industry. We argue that this is be-
cause existing methods (1) require such subgroups to be man-
ually specified, which ML practitioners often struggle with, (2)
are not scalable, or (3) may harm other notions of model perfor-
mance such as log loss and Area Under the Precision-Recall Curve
(PRAUC). MCGrad does not require explicit specification of pro-
tected groups, is scalable, and often improves other ML evaluation
metrics instead of harming them. MCGrad has been in production
at Meta, and is now part of hundreds of production models. We
present results from these deployments as well as results on public
datasets. We provide an open source implementation of MCGrad
at https://github.com/facebookincubator/MCGrad.
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1 Introduction

A machine learning model is said to be calibrated when its predic-
tions match the true outcome frequencies [2, 39, 56]. The impor-
tance of calibration to ML-based systems has been widely recog-
nized [24, 34, 38], including in web applications such as content
ranking [40, 48], recommender systems [11, 23, 57], digital adver-
tising [7, 9, 17] and content moderation [36, 41, 59]. Calibration
is necessary for such systems to make optimal decisions without
under- or overestimating risk or opportunity.

Multicalibration is a more powerful property that extends the
concept of calibration to ensure that predictors are simultaneously
calibrated on various (potentially overlapping) groups [29, 32, 46,
49]. Often, multicalibration is applied as a post-processing step to
fix a base classifier’s predictions. While it originated in the study
of algorithmic fairness, its significance extends far beyond it. A
growing body of work shows that multicalibration can increase
model performance and robustness in many circumstances, rang-
ing from out-of-distribution prediction to confidence scoring of
LLMs [14, 16, 22, 35, 60, 61].

Despite its potential, multicalibration has received limited trac-
tion in industry. We argue that this is due to three main reasons.
First, existing multicalibration methods require protected groups to
be manually defined [31]: not only do users need to specify the co-
variates that require protection (e.g., user age and user country),
but also they must define concrete protected groups through binary
membership indicators, such as “is an adult in the US?”. This
poses a significant challenge to real-world application of multi-
calibration because practitioners (a) may not have established the
precise set of protected groups, (b) may be subject to changes to
the definition of protected groups over time thus requiring ongoing
effort and change management (e.g., due to changes related to legal

https://github.com/facebookincubator/MCGrad
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context, policy frameworks, ethical considerations, or otherwise),
or (c) may only seek an overall performance improvement without
prioritizing specific groups for protection. The difficulties defining
protected groups become even more pronounced when the set of
features that we want to protect is large. Second, existing methods
lack the ability to scale to large datasets and/or many protected
groups, which makes them hard to deploy in production. For in-
stance, Hebert-Johnson et al. [29]’s algorithm scales at least linearly
in time and memory with the number of groups, being potentially
inefficient when a large set of groups is specified. To be deployed at
web scale, multicalibration methods must be highly optimized so as
to not introduce significant computational requirements at training
or inference time. Third, existing multicalibration methods lack
guardrails to be safely deployed, and risk harming model perfor-
mance (e.g., due to overfitting), which may prevent practitioners
from deploying them altogether.

In this paper, we introduce MCGrad (MultiCalibration Gradient
Boosting) a novel multicalibration algorithm deployed in produc-
tion that is lightweight and safe to use. MCGrad requires only the
specification of a set of protected features, rather than predefined
protected groups. It then identifies miscalibrated regions within
this feature space, and calibrates a base classifier’s predictions over
all groups that can be defined based on these features. On a high
level, MCGrad uses a Gradient Boosted Decision Tree (GBDT) algo-
rithm recursively, such that the result converges to amulticalibrated
predictor (Section 3.1). By using a highly optimized GBDT imple-
mentation, like LightGBM [33], MCGrad inherits scalability and
regularization (Section 3.2). Finally, it employs an early stopping
procedure to avoid overfitting, ensuring that model performance is
not harmed (Section 3.3).

Empirically, on benchmark datasets, we show that MCGrad im-
proves the base predictor’s outputs in terms of multicalibration,
calibration, and even predictive performance (Section 4). We com-
plement this analysis by describing the impact of MCGrad on
real-world data: MCGrad has been used in production at Meta on
hundreds of machine learning models, and in total, generates over a
million multicalibrated real-time predictions per second (Section 5).
MCGrad successfully addresses all three previous challenges and,
to the best of our knowledge, this is the largest-scale adoption of
multicalibration in production. Our deployment results show sig-
nificant impact: on 24 of 27 models tested via A/B testing on our
Looper platform [43], MCGrad significantly outperformed Platt
scaling, leading to promotion of the MCGrad-calibrated variants
to production. Additionally, across 120+ models on our internal ML
platform, MCGrad improved log loss for 88.7% of models, PRAUC
for 76.7%, and Expected Calibration Error for 86.0%. With these real-
world results, we add to the growing body of evidence that shows
that multicalibration can significantly contribute to model perfor-
mance. We also provide valuable practical learnings from applying
multicalibration in industry (Section 6), and link multicalibration
to related areas (Section 7).

2 Background on (Multi)Calibration

Let X = R𝑑 be a 𝑑-dimensional input space and Y = {0, 1} the
binary target space. Let 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 ∼ 𝑝 (𝑋,𝑌 ) be the dataset
with 𝑛 i.i.d. samples, where the random variables 𝑋 , 𝑌 represent,

respectively, a 𝑑-dimensional feature vector and the target. A prob-
abilistic predictor 𝑓 is a map 𝑓 : X → [0, 1], which assigns an
instance 𝑥 ∼ 𝑝 (𝑋 ) to an estimate of its class conditional probability
𝑝 (𝑌 = 1 | 𝑋 = 𝑥). For any probabilistic predictor 𝑓 , we denote
with 𝐹 its logit (referred to as the predictor), i.e., 𝑓 (𝑥) = 𝜇 (𝐹 (𝑥)),
where 𝜇 (𝐹 ) = 1/(1 + 𝑒−𝐹 ) is the sigmoid function. We assume a
base probabilistic predictor 𝑓0 is given; this predictor is the one
targeted for calibration via a post-processing procedure.

Let L : R × Y → R be the log loss (negative log-likelihood), i.e.,
for any (𝑥,𝑦) ∈ X × Y and any predictor 𝐹 ,

L(𝐹 (𝑥), 𝑦) = −[𝑦 log(𝜇 (𝐹 (𝑥))) + (1 − 𝑦) log(1 − 𝜇 (𝐹 (𝑥)))] .
We use the symbol E for the expectation with respect to an

arbitrary distribution that is clear from the context, and E𝐷 for the
sample mean over 𝐷 .

Calibration. A predictor 𝑓 is perfectly calibrated if and only if
P(𝑌 = 1 | 𝑓 (𝑋 ) = 𝑝) = 𝑝 , where 𝑝 is the true underlying probabil-
ity. Intuitively, for all input pairs (𝑥,𝑦) ∈ 𝐷 , if 𝑓 predicts 0.8, we
expect that 80% of them have 1 as label. Recently, Tygert [58] intro-
duced the Estimated Cumulative Calibration Error (ECCE), a novel
parameter-free metric for measuring calibration that computes the
maximum difference between the means of labels and predictions
over any score interval:

ECCE(𝑓 ) = 1
𝑛

max
1≤𝑖≤ 𝑗≤𝑛

�� 𝑗∑︁
𝑘=𝑖

(𝑦 (𝑘 ) − 𝑓 (𝑥 (𝑘 ) ))
��, (1)

where (𝑥 (1) , 𝑦 (𝑖 ) ), . . . , (𝑥 (𝑛) , 𝑦 (𝑛) ) are the points {(𝑥𝑖 , 𝑦𝑖 )}𝑖∈𝐷 or-
dered such that 𝑓 (𝑥 (1) ) ≤ · · · ≤ 𝑓 (𝑥 (𝑛) ).

This metric enjoys useful statistical properties. In particular, it
can be standardized by dividing it by the following scaling statistic:1

𝜎 (𝑓 ) =

√√
1
𝑛2

𝑛∑︁
𝑘=1

𝑓 (𝑥𝑘 ) (1 − 𝑓 (𝑥𝑘 )) .

This gives rise to two ways of interpreting the metric. The abso-
lute scale ECCE(𝑓 ) is designed to measure the magnitude of miscal-
ibration. When the data size increases, 𝑛 →∞, ECCE(𝑓 ) converges
to a true magnitude of miscalibration (0 if 𝑓 is calibrated and a pos-
itive value otherwise). The sigma scale ECCE(𝑓 )/𝜎 (𝑓 ) however con-
verges to a distribution when 𝑓 is calibrated, and diverges to infinity
when it is miscalibrated. The two scales are used to answer different
questions. ECCE is used to answer the question "is the miscalibra-
tion large?". ECCE(𝑓 )/𝜎 (𝑓 ) is used to answer the question "is there
statistical evidence of miscalibration?". For example, we might have
that ECCE(𝑓1) = 0.05 = 20𝜎 (𝑓1) and ECCE(𝑓2) = 0.05 = 2𝜎 (𝑓2).
This would tell us that while the magnitude of miscalibration on
the data appears to be similar for 𝑓1, 𝑓2, the result is statistically sig-
nificant for 𝑓1 but not for 𝑓2, which could simply be due to random
sampling. See [1, 58] for further discussion.

Multicalibration. Unlike calibration, multicalibration consid-
ers the intersection of the score interval and the protected groups.
Let G ⊂ {𝑔 : [0, 1] → {0, 1}} be the set of interval membership

functions, i.e. 𝑔(𝑣) = 1𝐼 (𝑣) for 𝑣 ∈ [0, 1], and any interval 𝐼 ⊆ [0, 1].
1Notice that 𝜎 (𝑓 ) is the standard deviation of the sample mean of prediction labels
with prediction probabilities according to 𝑓 . For a calibrated predictor 𝑓 , the expected
value of ECCE(𝑓 )/𝜎 (𝑓 ) scales as 𝑐 , for large data size 𝑛, with 𝑐 = 2

√︁
2/𝜋 ≈ 1.6 [1].
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Similarly, letH ⊆ {ℎ : X → {0, 1}} be a set of group membership

functions overX, such that a point 𝑥 ∈ X belongs to a group ℎ ∈ H
if and only if ℎ(𝑥) = 1. The groups can be overlapping, i.e., some
point 𝑥 ∈ X may belong to multiple groups.

Multicalibration is defined in various ways across the litera-
ture [3, 13, 22, 26, 29, 53]. Here, we employ an operational definition
of multicalibration:

Definition 2.1 (Multicalibration). A probabilistic predictor 𝑓 is 𝛼-
multicalibrated (𝛼-MC) with respect toH if, for the MC-deviation
given as Δℎ,𝑔 (𝑓 ) :=

��E [ℎ(𝑋 )𝑔(𝑓 (𝑋 )) (𝑌 − 𝑓 (𝑋 ))]
�� and a given scale

parameter 𝜏ℎ (𝑓 ):
Δℎ,𝑔 (𝑓 ) ≤ 𝛼𝜏ℎ (𝑓 ) ∀ℎ ∈ H , 𝑔 ∈ G.

We say that 𝑓 is multicalibrated if 𝛼 = 0.

A common choice is to use a uniform bound on theMC-deviation,
which is accommodated by choosing the scale parameter 𝜏ℎ (𝑓 ) to be
a constant equal to 1. In Appendix A, we show that Definition 2.1,
with 𝜏ℎ (𝑓 )2 = E [ℎ(𝑋 ) 𝑓 (𝑋 ) (1 − 𝑓 (𝑋 ))], naturally matches with
Multicalibration Error (MCE) by Guy et al. [25], which quantifies
multicalibration error by computing the maximum ECCE over the
protected groups with a suitable normalization:

MCE(𝑓 ) =max
ℎ∈H

ECCEℎ (𝑓 )
𝜎ℎ (𝑓 )

(2)

where ECCEℎ (𝑓 ), 𝜎ℎ (𝑓 ) are defined as ECCE(𝑓 ), 𝜎 (𝑓 ) above but
restricted to the group ℎ. Roughly speaking, MCE measures the
strongest statistical evidence of miscalibration across protected
groups. The unit of the MCE is the same as for ECCE/𝜎 . It can be
re-scaled to an absolute measure by multiplying with 𝜎 (𝑓 ).

Using amulticalibrationmetric that is equivalent to the definition
of 𝛼-MC can help ensure that empirical work is aligned with theory.
In Section 4 we use MCE to measure multicalibration, thereby
directly estimating the minimal 𝛼 for which a model is 𝛼-MC. To
our knowledge, this is the first empirical multicalibration study
that achieves this. See Appendix A for further discussion.

3 MCGrad: A Practical Algorithm for

Multicalibration

This paper tackles the following problem:
Given a labeled dataset 𝐷 , an initial probabilistic predictor 𝑓0;
Return a probabilistic predictor 𝑓 that is 𝛼-MC w.r.t.H .
Designing an algorithm for multicalibration without specifying

a set of groups is challenging for four reasons. First, the absence of
groups requires the multicalibration model to automatically deter-
mine the regions of the feature space where the base model is highly
miscalibrated. Second, adjusting the model’s output to improve its
calibration in a specific region might harm the predictions over
other regions, thus increasing the multicalibration error. Third, a
post-processing algorithm has to be fast and lightweight to prevent
large memory consumption or increased latency of model inference.
Fourth, while existing algorithms claim to achieve multicalibration
on the training set, they are subject to overfitting issues.

Our proposed algorithm MCGrad, presented in Algorithm 1, is
a lightweight algorithm that multicalibrates a base model without
requiring the specification of the groups on which the model has
to be calibrated. MCGrad relies on a key observation: by including

Algorithm 1MCGrad
Input: a probabilistic predictor 𝑓0, a dataset 𝐷 ;
𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙𝑖𝑑 = train_validation_split(𝐷)
𝐹0 = 𝜇−1 (𝑓0) # inverse sigmoid transformation
𝜀−1 = +∞, 𝜀0 = E𝐷𝑣𝑎𝑙𝑖𝑑

[L(𝐹0 (𝑋 ), 𝑌 )] # initialize errors
𝑡 = 1 # initialize number of rounds for early stopping
while 𝜀𝑡−1 − 𝜀𝑡 > 0 do

ℎ𝑡 (𝑥, 𝑓𝑡−1 (𝑥)) = fit GBDT on {((𝑥𝑖 , 𝑓𝑡−1 (𝑥𝑖 )), 𝑦𝑖 )}𝑖∈𝐷𝑡𝑟𝑎𝑖𝑛

𝜃𝑡 = argmin𝜃 E𝐷𝑡𝑟𝑎𝑖𝑛
[L(𝜃 · (𝐹𝑡−1 (𝑋 ) + ℎ𝑡 (𝑋, 𝑓𝑡−1 (𝑋 ))), 𝑌 )]

𝐹𝑡 (𝑥) = 𝜃𝑡 · (𝐹𝑡−1 (𝑥) + ℎ𝑡 (𝑥, 𝑓𝑡−1 (𝑥)))
𝑓𝑡 (𝑥) = 𝜇 (𝐹𝑡 (𝑥))
𝜀𝑡+1 = E𝐷𝑣𝑎𝑙𝑖𝑑

[L(𝐹𝑡 (𝑋 ), 𝑌 )]
𝑡 ← 𝑡 + 1

end while

# Found 𝑡 − 1 to be the best number of rounds
for 𝑠 in [1, . . . , 𝑡 − 1] do

ℎ𝑠 (𝑥, 𝑓𝑠−1) = fit GBDT on {((𝑥𝑖 , 𝑓𝑠−1 (𝑥𝑖 )), 𝑦𝑖 )}𝑖∈𝐷
𝜃𝑠 = argmin𝜃 E𝐷 [L(𝜃 · (𝐹𝑠−1 (𝑋 ) + ℎ𝑠 (𝑋, 𝑓𝑠−1 (𝑋 ))), 𝑌 )]
𝐹𝑠 (𝑥) = 𝜃𝑠 · (𝐹𝑠−1 (𝑥) + ℎ𝑠 (𝑥, 𝑓𝑠−1 (𝑥)))
𝑓𝑠 (𝑥) = 𝜇 (𝐹𝑠 (𝑥))

end for

𝑓 (𝑥) = 𝜇 (𝐹𝑡−1 (𝑥))
Output: 𝑓 ;

the base model’s predictions as a feature, the loss function of the
multicalibration algorithm captures the feature values that corre-
spond to miscalibrated initial predictions. In addition, decreasing
the loss function implies correcting the base model’s predictions for
some regions of the feature space. Because corrections in some re-
gions may negatively impact others, MCGrad runs multiple rounds,
using the previous round’s processed predictions as input. Since
GBDTs are regularized using shrinkage (or a step size < 1), a simple
rescaling step reduces the number of trees and rounds required,
while having a negligible impact on overfitting. Finally, MCGrad
employs early stopping to avoid overfitting.

3.1 Achieving Multicalibration with 𝑇 Rounds

Our intuition builds on the following two key insights. First, GBDT
returns a solution 𝑓 that approximately sets the gradient of the loss
function L to zero:

E𝐷 [ℎ(𝑋 ) (𝑌 − 𝑓 (𝑋 ))] = 0 ∀ℎ ∈ H ,

whereH is the set of all regression trees over the feature space.
Second, if we augment the feature space X with a single addi-

tional feature 𝑓0 (𝑥), then the GBDT approximately achieves

E𝐷 [ℎ(𝑋, 𝑓0 (𝑋 )) (𝑌 − 𝑓1 (𝑋 ))] = 0 ∀ℎ ∈ H ′ (3)

whereH ′ ⊂ {ℎ : X× [0, 1] → R} is the space of trees with an extra
real-valued input, and 𝑓1 (𝑥) = 𝜇 (𝐹0 (𝑥) +ℎ1 (𝑥, 𝑓0 (𝑥))). This creates
a bridge between (a) group and interval membership functions
and (b) regression trees over the augmented feature space. Strictly
speaking, for any ℎ ∈ H , 𝑔 ∈ G there exists ℎ′ ∈ H ′ such that
ℎ(𝑥)𝑔(𝑓 (𝑥)) = ℎ′ (𝑥, 𝑓 (𝑥)) for 𝑥 ∈ X.

Perhaps surprisingly, Eq. (3) is equivalent to 0-multicalibration
according to Definition 2.1 under the condition 𝑓1 ≡ 𝑓0. However,
this condition may not always hold: correcting 𝑓0 for some regions
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identified by ℎ(𝑥, 𝑓0 (𝑥)) returns a predictor 𝑓1 that might be miscal-

ibrated on regions identified by its own predictions ℎ(𝑥, 𝑓1 (𝑥)). To
resolve this, we create a loop over multiple rounds: in each round
𝑡 , we train a GBDT model 𝑓𝑡 using the features 𝑥 and the previous
round’s predictions 𝑓𝑡−1, such that, after 𝑇 rounds, we have

E𝐷 [ℎ(𝑋, 𝑓𝑇−1 (𝑋 )) (𝑌 − 𝑓𝑇 (𝑋 ))] = 0 ∀ℎ ∈ H ∗

where 𝑓𝑇 (𝑥) = 𝜇 (𝐹𝑇−1 (𝑥) + ℎ𝑇 (𝑥, 𝑓𝑇−1 (𝑥))).
Intuitively, if for some probabilistic predictor 𝑓 ∗, 𝑓𝑇 → 𝑓 ∗ as

𝑇 → ∞, then for all ℎ ∈ H ∗, E𝐷 [ℎ(𝑋, 𝑓𝑇−1 (𝑋 )) (𝑌 − 𝑓𝑇 (𝑋 ))] →
E𝐷 [ℎ(𝑋, 𝑓 ∗ (𝑋 )) (𝑌 − 𝑓 ∗ (𝑋 ))] = 0 as 𝑇 →∞, which is our desired
condition. This suggests that, for sufficiently large 𝑇 , the proba-
bilistic predictor 𝑓𝑇 should be approximately multicalibrated. See
Appendix B for further intuitions and theoretical results.

3.2 Fast Training and Prediction

To be deployed at web scale, there are strict requirements for an
algorithm to be efficient both at training and inference time. Several
design choices ensure that MCGrad meets these requirements.

Efficient gradient boosting. First, the algorithm has been de-
signed to rely on a relatively small number of calls to a GBDT,
delegating the most compute intensive steps to one of many highly
optimized GBDT implementations (e.g. [8, 33]). This differentiates it
from existing implementations such as [29]. In our implementation,
we use LightGBM.

Rescaling the logits. GBDTs are regularized in multiple ways,
including using a step size smaller than 1 for scaling each additional
tree. While this helps to avoid overfitting, it results in a predictor
which can be improved by rescaling it by a factor slightly greater
than 1. As a result, the next round will attempt to apply this rescal-
ing. Since linear rescaling is not easily expressed by decision trees,
this may require many trees, ending up requiring unnecessarily
many trees to achieve multicalibration.

We introduce a simple rescaling after every round:

𝜃𝑡 = argmin
𝜃

E𝐷 [L(𝜃 · (𝐹𝑡−1 (𝑋 ) + ℎ𝑡 (𝑋, 𝑓𝑡−1 (𝑋 ))), 𝑌 )]

where ℎ𝑡 is obtained with LightGBM. We call the round 𝑡 ’s learned
predictor (on the logits) as 𝐹𝑡 = 𝜃𝑡 (𝐹𝑡−1 + ℎ𝑡 ).

Note that this constant is typically very close to 1 and has a very
limited detrimental effect on regularization. Rescaling is not the
same as using a step size of 1: it affects the whole sum of trees
(i.e., the whole predictor), while the step size only targets each tree
sequentially (i.e., each weak learner).

3.3 Preventing Overfitting

Modern GBDT algorithms support various methods for regulariza-
tion, such as limiting the growth of the trees, the leaf splits, and
the number of trees. MCGrad’s recursive structure can give rise to
additional overfitting beyond standard GBDTs, which we address
in the following ways.

Early stopping. While multiple rounds are required for conver-
gence, they also increase the capacity of the model. With 𝑇 rounds
and𝑀 trees in each round, the MCGrad model is at least as expres-
sive as a tree ensemble with𝑇 ·𝑀 trees. Since the model capacity of

tree ensembles is Ω(number of trees) (see [54]), overfitting is more
likely for a large number of rounds.

We solve this problem with a standard early stopping procedure
on the number of rounds𝑇 . Specifically, we split i.i.d. the dataset 𝐷
into training (𝐷𝑡𝑟𝑎𝑖𝑛) and validation (𝐷𝑣𝑎𝑙𝑖𝑑 ) sets, and determine the
number of rounds 𝑇 by taking the last round before the expected
loss over the validation set increases. That is,

𝑇 =min{𝑡 : E𝐷𝑣𝑎𝑙𝑖𝑑
[L(𝐹𝑡+1 (𝑋 ), 𝑌 ) − L(𝐹𝑡 (𝑋 ), 𝑌 )] > 0} − 1,

where the models 𝑓𝑡 are obtained using 𝐷𝑡𝑟𝑎𝑖𝑛 instead of 𝐷 . Using
early stopping in a real-world deployed system has a relevant con-
sequence: MCGrad does not harm the base model’s prediction, and,
instead, would select 𝑇 = 0 as optimal number of rounds if the first
step decreased the initial performance:

E𝐷𝑣𝑎𝑙𝑖𝑑
[L(𝐹1 (𝑋 ), 𝑌 ) − L(𝐹0 (𝑋 ), 𝑌 )] > 0 =⇒ 𝑇 = 0

which means that 𝑓𝑇 = 𝑓0.

Regularizing through the min sum Hessian in leaf. Aug-
menting the data with the previous round’s model necessarily gives
rise to regions of the augmented feature space that are particu-
larly prone to overfitting. Consider a leaf of a partially constructed
tree in GBDT. The leaf splitting algorithm can choose to split the
leaf on values of the previous predictor 𝑓𝑡 (𝑥). In this leaf, the left
tail 𝑓𝑡 (𝑥) < 𝑎 for some small 𝑎 will contain only negative labels
even if the true distribution may assign a positive probability to a
positive label (and analogously for the right tail). In that case the
new model can improve the likelihood simply by assigning a very
low probability to this tail, as low as zero. Common regularization
strategies, like setting the minimum number of samples per leaf,
are insufficient to address this scenario. We solve this problem by
using a more targeted form of regularization that limits the min-
imum total Hessian in a leaf, which is offered as one of multiple
regularization techniques in LightGBM. The Hessian in a leaf 𝑆
equals

∑
(𝑥,𝑦) ∈𝑆 𝑓𝑡 (𝑥) (1 − 𝑓𝑡 (𝑥)) and, as such, is a refined version

of the simple sample size rule |𝑆 |. As the predicted probabilities
become close to 0 or 1, the total Hessian becomes smaller and split
in multiple leaves can no longer be considered. As shown in our
ablation studies (Section 4) this regularization reduces overfitting
and improves performance.

4 Benchmark Experimental Analysis

We evaluate MCGrad on both public and production data. In this
section, we present experiments on benchmark datasets and com-
pare MCGrad against state-of-the-art baselines. In Section 5 we
present results of MCGrad in production. Here, we focus on five
research questions:2

Q1. How does MCGrad compare to existing baselines on unspec-
ified groups?

Q2. Existing methods require manual specification of protected
groups. Does MCGrad still protect those specified groups,
even though they are not specified in MCGrad?

Q3. Does MCGrad benefit from running multiple rounds?
Q4. What is the effect of rescaling the logits and the regularization

through min sum Hessian in leaf on MCGrad?

2Code: https://github.com/facebookresearch/mcgrad_multicalibration_at_web_scale.

https://github.com/facebookresearch/mcgrad_multicalibration_at_web_scale
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Q5. How does MCGrad’s computational time compare to exist-
ing multicalibration methods?

4.1 Experimental Setup

Data. Our experimental analysis uses 11 datasets (see Table 1).
Six binarized prediction tasks are derived from the American Com-
munity Survey (ACS) [15, 18] using the folktable package, plus a
California-specific income task (ACSIncomeCA). The remaining
five datasets are: UCI Bank Marketing [44] (term deposit predic-
tion), UCI Default of Credit Card Clients [62] (debt default), Home
Mortgage Disclosure Act (HMDA) [10] (mortgage acceptance), and
Medical Expenditure Panel Survey (MEPS) [55] (medical visits). For
all datasets we use the same protected groups as in [28]. Protected
attributes are selected following standard fairness benchmarks.

Baselines. We compare MCGrad against two multicalibration
baselines: Discretization-Free MultiCalibration (DFMC) [31] and
HKRR Hebert-Johnson et al. [29]. DFMC shares some similarities
with MCGrad: It fits a single GBDT with a fixed maximum depth
of 2 for each weak learner. Protected groups are explicitly speci-
fied by the user, rather than learned like in MCGrad. Protected
groups are provided to the algorithm as binary features that en-
code group membership. HKRR is the boosting procedure proposed
by Hebert-Johnson et al. [29], for which we use Hansen et al. [28]’s
implementation3. We also include Logistic Regression as BasePred,
the base predictor 𝑓0 shared by all methods, and Isotonic [63]
(Isotonic Regression), a widely adopted calibration algorithm.

Metrics. We evaluate MCGrad relative to baselines on three
dimensions: the effect on 1) predictive performance, 2) calibration,
and 3) multicalibration.

1) Predictive performance. We employ the Area Under Precision-
Recall Curve (PRAUC) [12] and the log loss.

2) Calibration. Various calibration metrics have been proposed
in the literature. The Expected Calibration Error (ECE) [45] is the
most commonly used calibration measure in machine learning,
which bins the model scores and computes the deviation from
perfect calibration, i.e., the absolute difference between the model’s
predicted accuracy and its empirical accuracy [45]. Binning-based
calibration metrics, including ECE, vary significantly based on
the choice of bins. This is a well-documented shortcoming [1, 51].
Alternativemetrics that aim to circumvent the drawbacks of binning
include smooth ECE (smECE) which relies on kernel smoothing [4],
but merely replaces sensitivity to the arbitrary choice of binning
with sensitivity to an arbitrary choice of kernel [1]. The Estimated

Cumulative Calibration Error (ECCE) [1] is a calibration metric that
is rooted in cumulative statistics that does not require making an
arbitrary choice in bin or kernel, which we covered in more detail in
Section 2. Brier score is a proper scoring rule that is commonly used
to evaluate probabilistic forecasts that is essentially just the mean
squared error of predicted probability. Brier score decomposes into
calibration and the model’s ability to separate the positive and
negative class [5]. In this paper, we quantify calibration error using
ECCE, with exceptions in Section 5, where for pragmatic reasons

3https://github.com/dutchhansen/empirical-multicalibration

we resort to ECE and Brier score whenever ECCE was not measured
in the production system.

3) Multicalibration. Błasiok et al. [3] proposed the maximum

group-wise smECEmetric, which was used for empirical evaluations
in Hansen et al. [28]. Guy et al. [25] proposed an extension of
ECCE to quantify multicalibration, called Multicalibration Error

(MCE), which we defined in Eq. (2). Maximum group-wise smECE

andMCE have in common that they both are defined as a maximum
of some quantity over groups, but differ in the calibration quantity
calculated in each group, where they respectively use smECE and
ECCE. In this paper, we use MCE to quantify multicalibration. In
the online supplement4, we additionally report group-wise smECE,
thereby providing results that are in-line with [28]. We can measure
any multicalibration metric with respect to either of two sets of
groups. Prespecified Groups: refers to a small (less than 15 across
all datasets) set of protected groups that are formed using various
features of the datasets. For this, we use the groups specifications
that were used in Hansen et al. [28]. Unspecified Groups: covers
the case where the user does not specify which groups to protect
against. In that case, the scores are expected to be multicalibrated
with respect to all possible groups, and to calculate this, an extensive
set of combinatorially generated groups are used.

Hyperparameters. MCGrad uses LightGBM as GBDT imple-
mentation. To ensure seamless adoption by ML engineers, we set
default hyperparameters so that MCGrad works out-of-the-box,
without requiring application-specific tuning in the majority of use-
cases. We determined the default hyperparameters by performing a
grid search over 35 company-internal datasets and selecting the con-
figuration that never degraded the base model’s log loss or PRAUC,
and minimized the average MCE across datasets. The resulting
hyperparameters are: learning_rate= 0.02873, max_depth= 5,
min_child_samples = 160, n_estimators= 94, num_leaves= 5,
lambda_l2= 0.00913, min_gain_to_split= 0.15. All other param-
eters are set as for LightGBM defaults.

For HKRRwe followHansen et al. [28] and pick the best hyperpa-
rameters from a set of four specifications using a held-out validation
set. For DFMC we use the default hyperparameters of LightGBM
since the paper does not suggest any specific hyperparameters.

4.2 Experimental Results

Q1. MCGrad vs existing baselines on unspecified groups.

Figure 1 (left-hand side) shows the Multicalibration Error (MCE) for
all comparedmethods using all available features. Overall, MCGrad
outperforms all baselines on 10 out of the 11 datasets by reducing
the base predictor’s MCE between 4% (Credit) and 93% (ACSEm-
ploy), and obtaining an average reduction of 56.1%. In contrast,
DFMC, Isotonic, and HKRR only achieve an average reduction
of, respectively, 11.9%, 9.6%, and 1.4%. In addition, MCGrad never
harms the base predictor’s performance: even on MEPS, where
there is low evidence of BasePred’s miscalibration (3.9 MCE), it
slightly improves the MCE by 2.8%. On the other hand, Isotonic,
DFMC, and HKRR increase (worsen) the MCE of BasePred on 3, 3
and 4 datasets respectively.

4https://github.com/facebookresearch/mcgrad_multicalibration_at_web_scale

https://github.com/dutchhansen/empirical-multicalibration
https://github.com/facebookresearch/mcgrad_multicalibration_at_web_scale
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Dataset # Samples 𝑛 # Features 𝑑 Class Distr. Protected Attributes

MEPS [55] 11079 139 0.169 Race, Gender, Age, Income, Insurance Status
Credit [62] 30000 118 0.221 Gender, Age, Education, Marital Status
Marketing [44] 45211 41 0.116 Age, Marital Status, Education, Occupation
HMDA [10] 114185 89 0.752 Race, Gender, Ethnicity, Age
ACSIncomeCA [15, 18] 195665 10 0.410 Race, Gender, Age, Education, Income, Employment
ACSMobility [15, 18] 616207 23 0.735 Race, Gender, Age, Education, Income, Employment
ACSPublic [15, 18] 1123374 24 0.293 Race, Gender, Age, Education, Income, Employment
ACSTravel [15, 18] 1458542 19 0.437 Race, Gender, Age, Education, Income, Employment
ACSIncome [15, 18] 1655429 10 0.370 Race, Gender, Age, Education, Income, Employment
ACSEmploy [15, 18] 3207990 20 0.456 Race, Gender, Age, Education, Income, Employment
ACSHealth [15, 18] 3207990 31 0.150 Race, Gender, Age, Education, Income, Employment

Table 1: Number of samples, features, class distribution (𝑝 (𝑌 = 1)), and protected attributes for each benchmark dataset.
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Figure 1: Multicalibration Error computed using unspecified groups (left) or the manually prespecified groups (right) for all

compared methods on each benchmark dataset. Overall, MCGrad achieves a better (lower) error for 10 out of 11 datasets when

tested on unspecified groups, and for 5 out of 11 datasets when tested on prespecified groups.
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Figure 2: Improvement (in %) of MCGrad’s variants relative to the original version. While setting𝑇 = 1 yields a significant drop
in performance, the effect of the rescaling factor and min sum Hessian in leaf are mild due to the datasets limited size.

Table 2 reports the average performance over the datasets. MC-
Grad achieves by far the best average log loss improvement (10.4%)
and PRAUC improvement (8.1%) over the base predictor. Besides
these average improvements over datasets, MCGrad never harms

performance, which helps build the necessary trust among ML en-
gineers to deploy it in production environments. Other methods
don’t have this guarantee. For instance, while DFMC improves
model performance metrics by a lower 1.8% and 0.76%, it harms
PRAUC and log loss on two datasets. Isotonic and HKRR even
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Baseline MCE log loss PRAUC ECCE
Avg Rank Avg Rank Avg Rank Avg Rank

MCGrad 6.60 1.18 0.375 1.00 0.714 1.00 1.97 2.27
Isotonic 24.00 2.91 0.410 3.27 0.662 3.91 1.53 1.54

DFMC 24.95 3.00 0.408 2.27 0.671 2.18 2.20 2.91
HKRR 25.74 3.73 0.414 4.00 0.637 5.00 3.29 3.54
BasePred 29.07 4.18 0.414 4.45 0.668 2.91 4.66 4.73
Table 2: Average value (Avg) and rank (Rank) over the

datasets, for various metrics. MCGrad has the best average

log loss and PRAUC, and second-best average ECCE.
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Figure 3: Computational time of multicalibration algorithms

with varying numbers of groups. (Left) Fit time and (Right)

predict time in seconds as a function of the number of groups

on a log-log scale. Runtime for DFMC and HKRR increases

with the number of groups, while MCGrad is constant.

decrease the PRAUC on average by, respectively, 1% and 5% with a
negligible change in log loss. For each metric, we rank all compared
methods from 1 (best) to 5 (worst) and report the average ranking
position in Table 2. A lower average rank indicates how often the
method is preferred, as opposed to the average performance, which
reflects the magnitude. MCGrad consistently ranks as #1 baseline
on log loss and PRAUC, while only ranking third for MCE on the
MEPS dataset. Finally, MCGrad ranks second best method in terms
of global calibration (ECCE), losing against Isotonic Regression,
which is expected because it is trained to directly optimize the
global calibration of the base predictor.

Q2. MCGrad vs existing baselines on prespecified groups.

To verify that good performance on the MCE metric for all groups
implies also protection for prespecified groups, we report results
just for these groups in Figure 1 (right-hand side). Overall, MCGrad
outperforms all baselines on 5 out of 11 datasets achieving a 54% av-
erage MCE improvement, and is followed by DFMC that is the best
baseline on three datasets (ACSMobility, HDMA, ACSTravel) and
achieves an average MCE improvement of 51%. HKRR obtains an
average improvement in MCE of 36%, while Isotonic only achieves
an improvement of 16%. Note that HKRR and DFMC have direct ac-
cess to these groups, while MCGrad only has access to the features
used to define the groups.

Q3. The impact of multiple rounds on MCGrad. Because
MCGrad recurrently improves its own predictions by using 𝑇

rounds, one relevant question is whether 𝑇 > 1 is really necessary
in practice. For this goal, we compare MCGrad with its variant
Only One Round that forces the number of rounds𝑇 = 1.5 Figure 2
(purple line) shows the relative improvement of Only One Round
for the four considered metrics and all benchmark datasets. In the
majority of cases, it is evident that Only One Round deteriorates
MCGrad’s performance: on the MCE and ECCE axes, it more than
doubles its value (relative improvement < −100) for, respectively, 6
and 5 datasets, while, on the log loss and PRAUC axes, it worsens
the performance by approximately 2% or more on, respectively,
8 and 6 out of 11 datasets. Interestingly, the largest deterioration
of performance corresponds to MCGrad running for the highest
number of rounds: the optimal 𝑇 for ACSEmploy, ACSIncome,
ACSPublic, and ACSMobility is, respectively, 20, 35, 27 and 22.

Q4. Impact of rescaling the logits and the regularization

through min sum Hessian in leaf . Rescaling the logits of all
predictions by learning a constant speeds up MCGrad training by
reducing rounds, especially on very large datasets. As a downside,
it might affect MCGrad’s performance. Figure 2 (light blue) shows
the relative deterioration after removing rescaling. Effects are mild
and balanced: removal worsens MCE, log loss, and PRAUC on 6, 6,
and 7 datasets respectively, with average drops of 9%, 0.5%, 0.03%.

LightGBM’s default min sum Hessian leaf (MSHL) is 0.001 with
a min leaf sample size of 20. We claim that higher MHL values
prevent probabilities from pushing to extremes, reducing overfitting
(Section 3.3). We compare MCGrad with MHL= 0.001 versus our
default of 20. Figure 2 (dark blue bar) shows mild deterioration
using 0.001, likely due to limited dataset sizes. On average, lower
MHL slightly harms performance, but this becomes evident on
ACSEmploy (the largest dataset), where the MHL variant runs only
2 rounds (vs. 10) because our regularization mechanism stops the
training earlier to avoid overfitting.

Q5. Computational time of MCGrad vs multicalibration

baselines as the number of groups scales. Scalability can be a
relevant bottleneck for multicalibration deployment in production
environments. To evaluate this, we measure the training (fit) and
inference (predict) times of MCGrad, HKRR, and DFMC as the
number of protected groups increases from 10 to 1000, using ≈ 1𝑀
training and ≈ 300𝑘 test samples from the ACSEmploy dataset.

Figure 3 shows the methods’ computational time per sample
(in microseconds) as a function of the number of groups. Notably,
the gap between MCGrad and each baseline becomes larger as
group count increases: at 1000 groups, MCGrad maintains nearly
constant inference time (∼ 20𝜇𝑠) while HKRR and DFMC require,
respectively, 5019 and 1292 𝜇𝑠 , meaning MCGrad achieves less
than 2% of their latency overhead. This gap becomes even larger
in production settings where models with 100s of features can
generate tens of thousands of potential protected groups.

More importantly, these seemingly small latency differences
have strong business impact. Production models typically serve on-
line inference where even millisecond-scale increases in response

5Early stopping can possibly return𝑇 = 0.
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Model PRAUC (↑ ) Brier Score (↓ )
Platt Scaling MCGrad Platt scaling MCGrad

#1 0.5295 0.6565 (+23.9%) Not available Not available
#2 0.1824 0.2433 (+33.4%) 0.0117 0.0116 (-0.45%)
#3 0.2161 0.2300 (+6.4%) 0.0642 0.0632 (-1.56%)
#4 0.6268 0.6354 (+1.4%) 0.0394 0.0365 (-7.24%)

Table 3: Online results for four models on Looper, where

either Platt Scaling or MCGrad is used for post-processing.

time negatively affect the system performance and the user ex-
perience. Existing research claims that an increase of latency di-
rectly correlates with reduced user engagement and online business
metrics [37]. MCGrad’s sub-20𝜇𝑠 inference overhead allows de-
ployment in production, while baseline methods requiring few
milliseconds per prediction can be impractical for production use.

5 Results in Production Deployment

We describe the results obtained by using MCGrad in a real-world
production system. MCGrad has been deployed and used in pro-
duction at Meta. Specifically, we have integrated MCGrad into two
ML training platforms at Meta: the publicly released Looper [43],
and an internal platform that we refer to as MLplatform#2. The
evaluation consists of a total of 147 binary classification models
that serve live production traffic: 27 models on Looper and 120
models on the other platform. On both ML training platforms, we
run MCGrad with default hyperparameters.

Looper Results. Looper [43] is a system that automates model
training, online A/B test comparisons between the new model vari-
ant and the existing production model, and launch decisions on
whether or not to promote the new model variant. These launch
decisions are made based on whether the new model variant out-
performs the existing production model on the selected evaluation
metric with statistical significance.

For 27 binary classification models that serve active production
traffic on Looper, we created a variant of the model that applies MC-
Grad as calibration post-processing. We started online A/B tests to
compare these 27 models against the active production models, all
of which are GBDTs. Those production models all had previously
already applied Platt scaling [50].

We found that on 24 out of 27 models, the variant with MCGrad
statistically significantly outperformed the same model with Platt
scaling [50], resulting in the promotion of the MCGrad-calibrated
model variant to become the primary production model.

Looper alsomonitors area under the precision-recall curve (PRAUC)
on online production data. PRAUC improved on 24 of the 27 models
and was neutral on the rest. Due to data retention, we are able to
calculate the exact PRAUC for four of the 27 Looper models for
which we most recently deployed MCGrad, as well as the Brier
score [6]. Table 3 summarizes the results on those models.

MLplatform#2 Results. This ML training platform is widely
used at Meta. ML model training scripts on this platform define the
training set, a validation set, the test set, the ML model architecture,
and the set of model evaluation metrics. The ML platform allows
running an evaluation flow that trains the model on the training

First Time Period Second Time Period

Percentile Log loss PRAUC AUROC ECE Log loss PRAUC AUROC ECE

10th -26.50% +3.58% +3.15% -93.88% -16.34% +6.31% +1.97% -90.84%
25th -10.35% +0.93% +0.52% -87.45% -3.43% +1.92% +1.10% -83.07%
50th -1.39% +0.32% +0.17% -53.83% -0.86% +0.06% +0.16% -58.19%
75th -0.51% +0.00% +0.03% -14.54% -0.11% -0.95% 0.0% -21.96%
90th +0.02% -2.07% -0.20% +7.56% +1.75% -4.85% -0.39% +26.23%

Table 4: Summary statistics for the two time periods of the

impact of MCGrad on 120 (first period, left) and 65 (second
period, right) ML models on MLplatform#2.

set and evaluates the model on the test set using the specified
set of evaluation metrics, or a publish flow that prepares an API
endpoint that can generate predictions for live production traffic.
We integrated MCGrad into the evaluation flow so that we obtain
an additional set of evaluation results for MCGrad.

For every ML model evaluation on this ML platform, we col-
lected parallel evaluation results with and without MCGrad. We
conducted data collection in two separate periods. Table 4 summa-
rizes the results. In the first data collection period, we obtained re-
sults on 120 binary classification production models. We found that
applying MCGrad post-processing improved log loss for 88.7% of
the models, compared to the production models without it. PRAUC
improved for 76.7% of the models, AUROC for 80.2%, and Expected
Calibration Error (ECE) [45] for 86%. Note that on most models
where no improvement was found, there was no metric degrada-
tion either, due to the early stopping. In Table 4 we can see that
the worst 10th-percentile metric effects of MCGrad still result in
degradations. We manually investigated a sample of those models,
and found that these were mostly explained by errors by ML prac-
titioners in the train and test set specification. E.g., in some cases
the train and test set were clearly from a different population, or
sample weights were defined in the train set but not in the test set.

In a second data collection period, we obtained results on 65
binary classification models. We found that MCGrad provided
improvements over the production models on the log loss metric
for 80.3% of the models, on the PRAUC metric for 75.4% of the
models, on the AUROC for 79.3%, and ECE for 86%.

6 Learnings from Production Deployment

Despite the recent focus of the academic community on multi-
calibration, it has seen little to no uptake in industry. Here we
summarize various learnings from applying multicalibration in in-
dustry through production deployments of MCGrad and of the
Multicalibration Error metric (MCE) [25].

Learning 1. Multicalibration has business value.

Our results demonstrate that MCGrad can improve real-world
models’ multicalibration as well as performance metrics that tend
to correlate with business outcomes, such as PRAUC. Furthermore,
baselines such as Isotonic Regression do not achieve this. This
contradicts observations by Hansen et al. [28] that (1) Isotonic
Regression is often competitive compared to algorithms designed
specifically for multicalibration, and (2) practitioners may face a
trade-off between multicalibration and predictive performance.
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Learning 2. Practitioners struggle to define protected groups.

Many multicalibration algorithms [29, 31] require manual specifica-
tion of the protected groups. In our experience deploying multicali-
bration in production, we found that many ML engineers struggle
to manually define relevant protected groups, and lack guidelines
and frameworks for defining them. This experience is in line with
findings from a series of interviews on AI fairness adoption in indus-
try [30], where it turns out that practitioners often lack knowledge
on different types of biases and cannot identify the relevant biases
to correct for. Hence, our experience is that in order to succeed in
obtaining industry adoption, a method needs to relieve users of the
burden of manually defining protected groups, like MCGrad does.

Learning 3. Practitioners consider adopting multicalibration

methods only when they work out-of-the-box, reliably, and

with no risk of harming model performance.

Many multicalibration algorithms have hyperparameters. We found
industry practitioners to be open to applying multicalibration to
production ML models, but only if it takes limited effort. Hyperpa-
rameter tuning is often seen as complex or time-consuming. They
also perceive it as a reliability risk: if a method requires hyperparam-
eter tuning to work well, then they wonder if the hyperparameter
configuration will still work well in subsequent training runs.

Therefore, for a multicalibration algorithm to find successful
adoption in industry, it is important that it works out-of-the-box,
without the need for hyperparameter tuning. Moreover, while prac-
titioners care about multicalibration, we found that they are not
willing to accept a degradation in metrics like the log loss and the
PRAUC, which are often believed to relate to topline metrics.

We defined a set of hyperparameter default values for MCGrad
that achieves (1) no degradation in PRAUC and log loss, and (2)
substantial reduction in MCE. By pre-computing defaults through
meta-analysis across 35 datasets, we enable MCGrad to deliver
consistent improvements without requiring domain expertise or
extensive experimentation. Results in Sections 4 and 5 confirm
that those default values consistently produce log loss and PRAUC
improvements over models calibrated with Platt scaling (on Looper)
or uncalibrated models (on MLplatform#2), and consistently yield
log loss, PRAUC, and MCE improvements on the public datasets.

7 Related Work

Multicalibration was introduced by Hebert-Johnson et al. [29] as
a learning objective requiring predictors to be calibrated across a
large collection of subgroups. Subsequent work has deepened its
theoretical foundations, exploring computational complexity and
connections to other learning paradigms [3, 13, 14, 21].

Extensions such as low-degree multicalibration [22] generalize
subgroup definitions using weight functions, showing that restrict-
ing to low-degree polynomials can reduce computational complex-
ity. Swap multicalibration [21] strengthens the original concept and
is satisfied by some existing algorithms; it is also equivalent to
swap omniprediction for certain loss function classes. The notion
of omnipredictors [20] further generalizes agnostic learning by re-
quiring minimization guarantees for a class of loss functions [47].
Connections to multi-objective learning have also been explored,
framing multicalibration as a game dynamics problem [27].

Algorithms for multicalibration. The early proposals of mul-
ticalibration algorithms, such as HKRR [29] (e.g., implemented in
MCBoost [49] or by Hansen et al. [28]) and LSBoost [19], rely on
discretizing the output space and calibrating the prediction for
each discretization level until convergence. A discretization-free
multicalibration algorithm was proposed in [31], requiring group
functions as input and using a gradient boosting machine to fit
an ensemble of depth-two decision trees to the residuals of an
uncalibrated predictor using both the original features and the
predictions of the uncalibrated predictor. For guaranteeing multi-
calibration within an additive error, this algorithm requires a loss
saturation condition to hold, i.e., that the squared-error loss can be
further reduced only by a small amount. Our algorithm uses gra-
dient boosting similarly but does not require pre-specified groups.
Instead, it leverages multi-round recursive gradient boosting and
supports arbitrary user-defined decision trees in each round.

8 Conclusion & Limitations

We tackle the problem of designing a multicalibration algorithm
without having access to pre-specified protected sets, that is fast and
safe to deploy in production. These three aspects are relevant for
practitioners as they are often (1) unable to define groups for their
task, (2) forced to limit the overhead in terms of memory and speed,
and (3) required to guarantee that the algorithm does not harm
the base predictor. We proposed MCGrad, a novel algorithm that
achievesmulticalibration by finding and fixing regions of the feature
space where the miscalibration is large. Because this might create
new regions with evidence of miscalibration, MCGrad employs
multiple rounds, where in each round it corrects its own output. In
addition, MCGrad’s implementation is fast, lightweight, and safe to
deploy.We showed that MCGrad outperforms existing baselines on
benchmark datasets and provided results obtained in a large-scale
industry production deployment at Meta consisting of hundreds of
production models. Finally, we included practical takeaways from
our experience applying multicalibration in industry.

Limitations. Although MCGrad shows improvements, several
limitations remain. First, guardrails against harming the base predic-
tor may not be sufficient under concept drift. Specifically, MCGrad
can potentially worsen performance on post-drift data distributions,
as multicalibration is only robust to certain types of distribution
shift [35, 52]. Second, MCGrad is currently limited to binary clas-
sification settings. Although multiclass extensions exist, they often
suffer from reduced sample efficiency and increased complexity,
creating challenges for real-world deployment [64]. Third, while
MCGrad can be applied to other data modalities such as text and im-
ages (using embeddings), these applications have not been explored
in this paper. Future research may study MCGrad’s (1) robustness
to broader forms of drift, (2) extension to multiclass/regression
problems, and (3) effectiveness on other data modalities.
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A Bridging Multicalibration Error and 𝛼−MC

Several definitions of approximate multicalibration, known as 𝛼-
multicalibration, exist in the literature. A common approach uses a
uniform bound on absolute deviation Δℎ,𝑔 (𝑓 ) ≤ 𝛼 where the precise
choice of ℎ and 𝑔 varies [3, 13, 22, 26]. Another common choice is
a uniform bound on the conditional deviation [29, 53], i.e.
𝛿ℎ,𝑔 (𝑓 ) := |E [ℎ(𝑋 )𝑔(𝑓 (𝑋 )) (𝑌 − 𝑓 (𝑋 )) | ℎ(𝑋 )𝑔(𝑓 (𝑋 )) = 1] | ≤ 𝛼.

Recent work [26] improved these by showing a tighter bound
Δℎ,𝑔 (𝑓 ) ≤ 𝛼

√︁
E [ℎ(𝑋 )] can be achieved with no extra requirements.

We next show that Definition 2.1, for the expected deviation
corresponding to the sample mean deviation over dataset 𝐷 , i.e.,

E𝐷 [ℎ(𝑋 )𝑔(𝑓 (𝑋 )) (𝑌 − 𝑓 (𝑋 ))] = 1
𝑛

𝑛∑︁
𝑘=1

ℎ(𝑥𝑘 )𝑔(𝑓 (𝑥𝑘 )) (𝑦𝑘− 𝑓 (𝑥𝑘 )),

with scale parameter chosen 𝜏ℎ (𝑓 ) =
√︁
E𝐷 [ℎ(𝑋 ) 𝑓 (𝑋 ) (1 − 𝑓 (𝑋 ))],

matches with the MCE metric defined in Eq. (2).

Proposition A.1. Given a setH of group membership functions,

a probabilistic predictor 𝑓 is 𝛼-multicalibrated with respect to H ,

with the scale parameter 𝜏ℎ (𝑓 ), if and only if MCE(𝑓 ) ≤ 𝛼
√
𝑛.

Proof. Note thatΔℎ,𝑔 (𝑓 ) = 1
𝑛

�� ∑𝑛
𝑘=1 ℎ(𝑥𝑘 )𝑔(𝑓 (𝑥𝑘 )) (𝑦𝑘−𝑓 (𝑥𝑘 ))

��.
Combining with the definition of ECCEℎ (𝑓 ), we get that

max
𝑔∈G

Δℎ,𝑔 (𝑓 ) =
𝑛ℎ

𝑛
ECCEℎ (𝑓 ) .

Plugging in the definition of MCE(𝑓 ), as in Eq. (2), we have

1
√
𝑛
MCE(𝑓 )= 1

√
𝑛
max
ℎ∈H

ECCEℎ (𝑓 )
𝜎ℎ (𝑓 )

= max
ℎ∈H,𝑔∈G

√
𝑛Δℎ,𝑔 (𝑓 )
𝑛ℎ𝜎ℎ (𝑓 )

= max
ℎ∈H,𝑔∈G

Δℎ,𝑔 (𝑓 )
𝜏ℎ (𝑓 )

.

Now, from the last expression, 𝛼-MC with respect to H holds if
and only if MCE(𝑓 ) ≤ 𝛼

√
𝑛. □

B Convergence Analysis

We analyze the convergence of Algorithm 1 under specific condi-
tions for the GBM used in each round. We show that (1) the loss
does not increase with more rounds and decreases unless the pre-
dictor has converged, and (2) the 𝛼-multicalibration error after 𝑇
rounds is bounded by the difference between predictors 𝐹𝑇+1 and
𝐹𝑇 and that 0-multicalibration is achieved at convergence. Unlike
Section 3.1, which assumes adding an optimal linear combination
of weak learners each round, here the GBM incrementally adds
regression trees to 𝐹𝑡 to form 𝐹𝑡+1.

We consider a GBM that, in round 𝑡 , iteratively combines 𝑀𝑡

regression trees as 𝐹𝑚+1𝑡 (𝑥) = 𝐹𝑚𝑡 (𝑥) + 𝜌𝑚ℎ 𝑗𝑚 (𝑥, 𝑓𝑡 (𝑥)) where 𝑗𝑚
is the index of the regression tree added in the𝑚-th iteration, 𝜌𝑚
is the step size, and𝑚 = 0, 1, . . . , 𝑀𝑡 − 1. Let

L𝑡 (𝑤) = E𝐷

[
L

(
𝐹𝑡 (𝑋 ) +

𝐾∑︁
𝑘=1

𝑤𝑘ℎ𝑘 (𝑋, 𝑓𝑡 (𝑋 )), 𝑌
)]

.

The gradient of the loss function with respect to𝑤𝑘 is given by

∇𝑘L𝑡 (𝑤) = E𝐷 [ℎ𝑘 (𝑋, 𝑓𝑡 (𝑋 )) (𝑌 − 𝑓𝑡+1 (𝑋 ))]
where 𝑓𝑡+1 (𝑥) = 𝜇 (𝐹𝑡 (𝑥) +

∑𝐾
𝑘=1𝑤𝑘ℎ𝑘 (𝑥, 𝑓𝑡 (𝑥))).

A GBM can be shown to correspond to a coordinate gradient
descent in the coefficient space [42], with updates of the form
𝑤𝑚+1 =𝑤𝑚 − 𝜌∇𝑗𝑚L𝑡 (𝑤𝑚)𝑒 𝑗𝑚 , where 𝑒 𝑗 is the 𝑗-th standard basis
vector in R𝐾 and 𝜌 is the step size.

Decreasing Loss Property.

Proposition B.1. Assume that the loss function L is a convex

and 𝐿-smooth (for the log loss, 𝐿 = 1/4) and that the step size 𝜌 is set

as 𝜌 = 1/𝐿. Then, for every 𝑡 ≥ 0, the following inequality holds

E𝐷 [L(𝐹𝑡+1 (𝑋 ), 𝑌 )] ≤ E𝐷 [L(𝐹𝑡 (𝑋 ), 𝑌 )]
and is strict if ∇𝑗𝑚L𝑡 (𝑤𝑚) ≠ 0 for some𝑚 ∈ {0, . . . , 𝑀𝑡 − 1}.

Proof. Note the following relations, for any 𝜌𝑚 :

L𝑡 (𝑤𝑚+1) ≤L𝑡 (𝑤𝑚+𝜌𝑚𝑒 𝑗𝑚 ) ≤L𝑡 (𝑤𝑚)+𝜌𝑚∇L𝑡 (𝑤𝑚)⊤𝑒 𝑗𝑚+
𝐿

2
𝜌2𝑚 .

By taking 𝜌𝑚 = −(1/𝐿)∇𝑗𝑚L𝑡 (𝑤𝑚), we have

L𝑡 (𝑤𝑚+1) ≤ L𝑡 (𝑤𝑚) −
1
2𝐿
(∇𝑗𝑚L𝑡 (𝑤𝑚))2 .

https://arxiv.org/abs/2501.17205
https://arxiv.org/abs/2501.17205
https://arxiv.org/abs/2501.17205
https://www.cis.upenn.edu/~aaroth/uncertainty-notes.pdf
https://www.cis.upenn.edu/~aaroth/uncertainty-notes.pdf
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It follows that L𝑡 (𝑤𝑀𝑡 ) − L𝑡 (𝑤0) ≤ − 1
2𝐿

∑𝑀𝑡 −1
𝑚=0 (∇𝑗𝑚L𝑡 (𝑤𝑚))2,

which allows us to conclude that L𝑡 (𝑤𝑀𝑡 ) −L𝑡 (𝑤0) ≤ 0 where the
inequality is strict if ∇𝑗𝑚L𝑡 (𝑤𝑚) ≠ 0 for some 0 ≤𝑚 < 𝑀𝑡 . □

For a GBM that, in each iteration, greedily selects the weak
learner with the largest absolute value of the loss gradient, i.e.,
𝑗𝑚 ∈ argmax𝑗 |∇𝑗L𝑡 (𝑤𝑚) |, we can establish a convergence rate to
the loss of the optimum linear combination of weak learners using
Theorem 4.2 [42]. Let𝑤∗ (𝑡) = argmin𝑤 L𝑡 (𝑤). Then,

E𝐷 [L(𝐹𝑡+1 (𝑋 ), 𝑌 )] − L𝑡 (𝑤∗ (𝑡)) ≤ 0.5 · Dist2t
1
𝑀𝑡

(4)

whereDist𝑡 denotes the distance between the level set {𝑤 : L𝑡 (𝑤) ≤
L𝑡 (𝑤0)} and𝑤∗ (𝑡), as defined in [42].

This result justifies modeling each round as updating the predic-
tor with an optimal ensemble of weak learners that minimizes loss.
Proposition B.1 shows the training loss never increases with more
rounds and converges to a limit as rounds go to infinity.

A Bound on the Multicalibration Error. The bound in Proposi-
tion B.2 provides a theoretical upper-bound guarantee, showing that
the multicalibration error converges to zero when𝐶𝑇 is bounded by
a constant, the gap between prediction values 𝐹𝑇+1 and 𝐹𝑇 vanishes
as the number of rounds𝑇 increases, and the GBM achieves optimal
loss in round 𝑇 . Before proving this, we need a preliminary result:

Lemma B.1. If 𝑓𝑇 is such that |E [ℎ(𝑋 )𝑔(𝑓𝑇 (𝑋 )) (𝑦 − 𝑓𝑇 (𝑋 ))] | ≥
𝛼
√︁
E [ℎ(𝑋 ) 𝑓𝑇 (𝑋 ) (1 − 𝑓𝑇 (𝑋 ))], for some ℎ ∈ H and 𝑔 ∈ G, then

there exists 𝑤̃ ∈ R𝐾 such that for ℎ̃(𝑥) = ∑𝐾
𝑘=1 𝑤̃𝑘ℎ𝑘 (𝑥, 𝑓𝑇 (𝑥)):

𝛼 ≤ 2
√
3
𝐶𝑇

√︂
E [L(𝐹𝑇 (𝑋 ), 𝑌 )] − E

[
L(𝐹𝑇 (𝑋 ) + ℎ̃(𝑋 ), 𝑌 )

]
where 𝐶2

𝑇
:= max

ℎ∈H,𝑔∈G

E [𝑔(𝑓𝑇 (𝑋 )) | ℎ(𝑋 ) = 1]
E [𝑓𝑇 (𝑋 ) (1 − 𝑓𝑇 (𝑋 )) | ℎ(𝑋 ) = 1] .

Proof. For any 𝐹 , ℎ and any convex, 𝐿-smooth loss function L,

L(𝐹 (𝑥), 𝑦) − L(𝐹 (𝑥) + ℎ(𝑥), 𝑦) ≥ 𝑑

𝑑𝐹
L(𝐹 (𝑥) + ℎ(𝑥), 𝑦) (−ℎ(𝑥))

≥ 𝑑

𝑑𝐹
L(𝐹 (𝑥), 𝑦) (−ℎ(𝑥)) − 𝐿ℎ(𝑥)2

where the first inequality holds as L is convex and the second
inequality holds because L is 𝐿-smooth.

For the log loss (𝑑/𝑑𝐹 )L(𝐹,𝑦) = −(𝑦 − 𝜇 (𝐹 )), hence, we have
E [L(𝐹 (𝑋 ), 𝑌 )−L(𝐹 (𝑋 )+ℎ(𝑋 ), 𝑌 )] ≥E [(𝑌− 𝑓 (𝑋 ))ℎ(𝑋 )]−𝐿E

[
ℎ(𝑋 )2

]
Let

(ℎ∗, 𝑔∗) ∈ arg max
ℎ∈G,𝑔∈G

|E [ℎ(𝑋 )𝑔(𝑓𝑇 (𝑋 )) (𝑌 − 𝑓𝑇 (𝑋 ))] |√︁
E [ℎ(𝑋 ) 𝑓𝑇 (𝑋 ) (1 − 𝑓𝑇 (𝑋 ))]

and, let 𝑤̃ be defined as:

𝑤̃ℎ,𝑔 =
E[ℎ(𝑋 )𝑔(𝑓𝑇 (𝑋 )) (𝑌 − 𝑓𝑇 (𝑋 ))]

E [(ℎ(𝑋 )𝑔(𝑓𝑇 (𝑋 )))2]
if (ℎ,𝑔) = (ℎ∗, 𝑔∗), otherwise 𝑤̃ℎ,𝑔 = 0. For𝑤 = 𝑤̃ , we have both

E

[
(𝑌− 𝑓𝑇 (𝑋 ))

𝐾∑︁
𝑘=1

𝑤𝑘ℎ𝑘 (𝑥, 𝑓𝑇 (𝑋 ))
]
=
E [ℎ∗ (𝑋 )𝑔∗(𝑓𝑇 (𝑋 )) (𝑌− 𝑓𝑇 (𝑋 ))]2

E [(ℎ∗ (𝑋 )𝑔∗ (𝑓𝑇 (𝑋 )))2]

E


(
𝐾∑︁
𝑘=1

𝑤𝑘ℎ𝑘 (𝑋, 𝑓𝑇 (𝑋 ))
)2 =

E [ℎ∗ (𝑋 )𝑔∗ (𝑓𝑇 (𝑋 )) (𝑌 − 𝑓𝑇 (𝑋 ))]2

E [(ℎ∗ (𝑋 )𝑔∗ (𝑓𝑇 (𝑋 )))2]
.

Hence, we have

E

[
L(𝐹𝑇 (𝑋 ), 𝑌 )−L

(
𝐹𝑇 (𝑋 )+

𝐾∑︁
𝑘=1

𝑤̃𝑘ℎ𝑘 (𝑋, 𝑓𝑇 (𝑋 )),𝑌
)]

≥ (1 − 𝐿) E [ℎ
∗ (𝑋 )𝑔∗ (𝑓𝑇 (𝑋 )) (𝑌 − 𝑓𝑇 (𝑋 ))]2

E [(ℎ∗ (𝑋 )𝑔∗ (𝑓𝑇 (𝑋 )))2]

≥ (1 − 𝐿) E [𝑓𝑇 (𝑋 ) (1 − 𝑓𝑇 (𝑋 )) | ℎ∗ (𝑋 ) = 1]
E [𝑔∗ (𝑓𝑇 (𝑋 )) | ℎ∗ (𝑋 ) = 1] 𝛼2 .

Because 𝐿 = 1/4 for the log loss, we conclude the proof

𝛼2 ≤ 4
3
𝐶2
𝑇

(
E [L(𝐹𝑇 (𝑋 ), 𝑌 )] − E

[
L

(
𝐹𝑇 (𝑋 ) + ℎ̃(𝑋 ), 𝑌

)] )
□

Now, we can derive the upper bound of the MC error:

Proposition B.2. 𝑓𝑇 is 𝛼-MC with 𝛼 ≤ 2√
3
𝐶𝑇

√︁
𝜙𝑇 + 𝜖𝑇 where

𝜙𝑇 := 2 E [|𝐹𝑇+1 (𝑋 ) − 𝐹𝑇 (𝑋 ) |] +
1
8
E

[
(𝐹𝑇+1 (𝑋 ) − 𝐹𝑇 (𝑋 ))2

]
𝜖𝑇 := E [L(𝐹𝑇+1 (𝑋 ), 𝑌 )] − L𝑇 (𝑤∗ (𝑇 )),

and 𝐶𝑇 is defined as in Lemma B.1.

Proof. For any𝑤 ∈ R𝐾 ,

E [L(𝐹𝑡 (𝑋 ), 𝑌 )] − E
[
L

(
𝐹𝑡 (𝑋 ) +

𝐾∑︁
𝑘=1

𝑤𝑘ℎ𝑘 (𝑋, 𝑓𝑡 (𝑋 )),𝑌
)]

≤E [L(𝐹𝑡 (𝑋 ),𝑌 )−L(𝐹𝑡+1 (𝑋 ),𝑌 )]︸                                   ︷︷                                   ︸
(∗)

+E [L(𝐹𝑡+1 (𝑋 ),𝑌 )]−L𝑡 (𝑤∗ (𝑡))︸                                  ︷︷                                  ︸
(∗∗)

The first term (∗) captures the gap of the loss function values at
two successive rounds of the algorithm and can be bounded by
2E [|𝐹𝑡+1 (𝑋 ) − 𝐹𝑡 (𝑋 |]+ 𝐿2E

[
(𝐹𝑡+1 (𝑋 ) − 𝐹𝑡 (𝑋 ))2

]
. The second term

(∗∗) measures the gap between the loss at the end of round 𝑡 and the
loss from an optimal linear combination of weak classifiers. This
gap can be reduced by increasing the number of GBM iterations and
is bounded as in Eq (4). The lemma follows from Lemma B.1. □

The bound on the multicalibration error depends on three terms:
(a)𝐶𝑇 , which depends inversely on the average prediction variance
within subgroups, (b) 𝜙𝑇 , which depends on the gap between the
prediction values 𝐹𝑇+1 and 𝐹𝑇 , and (c) 𝜖𝑇 , which measures the gap
between the loss achieved by the predictor 𝐹𝑇+1 and the optimum
loss in round 𝑇 . If 𝐶𝑇 is bounded by a constant, the MC error can
be made arbitrarily small by reducing 𝜙𝑇 and 𝜖𝑇 . As 𝑇 increases,
𝜙𝑇 approaches zero, and 𝜖𝑇 can be minimized by increasing the
number of GBM iterations𝑀𝑇 , as shown in Eq. (4). Also, note that

𝐶2
𝑇 ≤

1
minℎ∈H E [𝑓𝑇 (𝑋 ) (1 − 𝑓𝑇 (𝑋 )) | ℎ(𝑋 ) = 1] .

This bound is finite if and only ifE [𝑓𝑇 (𝑋 ) (1 − 𝑓𝑇 (𝑋 )) | ℎ(𝑋 ) = 1] >
0 for every group ℎ ∈ H . Equivalently, for every group ℎ, there
exists at least one member 𝑥 such that 0 < 𝑓𝑇 (𝑥) < 1. This condi-
tion clearly holds if 0 < 𝑓𝑇 (𝑥) < 1 for all 𝑥 ∈ X which is satisfied
whenever 𝐹𝑇 (𝑥) ∈ [−𝑅, 𝑅] for every 𝑥 ∈ X, for some constant
𝑅 > 0. Moreover, if the predictor 𝑓𝑇 takes values in [𝜖, 1 − 𝜖], for
some 0 < 𝜖 ≤ 1/2, then 𝐶2

𝑇
≤ 2

𝜖
.
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