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Abstract

Diffusion and flow-matching models have demonstrated impressive performance1

in generating diverse, high-fidelity images by learning transformations from noise2

to data. However, their reliance on multi-step sampling requires repeated neural3

network evaluations, leading to high computational cost. We propose FlowFit, a4

family of generative models that enables high-quality sample generation through5

both single-phase training and single-step inference. FlowFit learns to approximate6

the continuous flow trajectory between latent noise x0 and data x1 by fitting a7

basis of functions parameterized over time t ∈ [0, 1] during training. At inference8

time, sampling is performed by simply evaluating the flow only at the terminal9

time t = 1, avoiding iterative denoising or numerical integration. Empirically,10

FlowFit outperforms prior diffusion-based single-phase training methods achieving11

superior sample quality.12

1 Introduction13

In recent years, iterative denoising methods such as diffusion models [16, 5, 17] and flow matching14

[7, 8] have achieved remarkable success across a wide range of generative modeling tasks, including15

image synthesis, molecular generation, and audio modeling. These methods define a generative16

process as the solution to a learned differential equation that progressively transforms simple noise17

into complex data through a series of small, structured updates. Their strong empirical performance18

stems from their ability to model complex distributions with stable training dynamics and flexible19

architectures.20

However, a key limitation of these approaches lies in their sampling efficiency. Since generation is21

performed by solving a differential equation, typically through numerical integration, these methods22

often require hundreds of sequential function evaluations at inference time. This iterative sampling23

procedure can be computationally expensive, slow, and memory-intensive, limiting their practicality24

in real-time or resource-constrained settings.25

In this work, we aim to retain the modeling flexibility and training benefits of diffusion-based methods26

while enabling efficient single-step generation.27

While recent work has explored accelerating inference in diffusion models through distillation, these28

approaches typically follow a two-stage training paradigm. In such methods, a pre-trained diffusion29

model is first learned through standard iterative training, and then a separate model is trained to30

mimic its behavior in fewer steps, usually by generating a large synthetic dataset of intermediate31

trajectories [10, 7] or propagating through a series of teacher and student networks [11, 14]. This32

introduces additional complexity, increases memory requirements, and may limit generalization due33

to reliance on a fixed teacher.34

In contrast, we propose FlowFit, a unified, single-phase training approach that learns to generate35

samples in one step from the outset. Our method directly parameterizes the entire flow using a36
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Figure 1: Comparison Between Multi-Step Flow Matching and Single-Step FlowFit Generation.
The top row shows images generated using a standard flow-matching model with 128 denoising steps,
while the bottom row displays outputs from our single-step FlowFit model. Each column uses the
same initial noise vector for a fair comparison. FlowFit produces high-fidelity samples even with a
single forward pass, offering up to 128× faster sampling than traditional diffusion and flow-matching
approaches while maintaining high image quality.

basis function expansion, enabling the model to learn global transport trajectories in a compact and37

structured manner. Once trained, sampling from the model requires only evaluating the learned flow38

at terminal time t = 1, given a source point x0 ∼ µ0 (see examples in Figure 1).39

A key insight motivating our approach is that a smooth transformation, such as a flow trajectory,40

can be directly fitted using the initial value and all its time derivatives. By fitting the trajectory41

using a set of basis functions anchored at the initial point, we capture the flow’s global behavior and42

bypass the need for iterative integration. This allows us to retain the expressive modeling capacity of43

continuous-time methods while achieving orders-of-magnitude faster sampling.44

We train the model to ensure that the trajectory is consistent with a learned velocity field through a45

combination of Conditional Flow Matching and a trajectory-velocity consistency loss. Additionally,46

we introduce a progressive training strategy that improves stability and alignment between the flow47

and velocity in early training stages.48

Our main contributions can be summarized as follows49

• We propose a novel formulation for flow modeling via basis function fitting. FlowFit, a new50

generative modeling framework that directly parameterizes continuous-time flows using51

a residual expansion over fixed basis functions. This allows the model to represent entire52

flow trajectories with a compact, structured parameterization. To the best of our knowledge,53

FlowFit is the first to propose such a formulation.54

• We demonstrate that FlowFit achieves sample quality better or on par with existing single55

step diffusion-based approaches .56

2 Related Work57

We review prior research efforts aimed at accelerating diffusion-based generative models through58

single-step sampling. Existing approaches generally fall into two categories: those based on multi-59

stage distillation and those relying on direct, single-phase training.60

2.1 Two-Phase Training Approaches61

A common strategy for improving inference efficiency involves distilling multi-step diffusion models62

into simpler one-step samplers. These techniques typically follow a two-phase process: a full63
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diffusion model is trained first, and then a lightweight student model is optimized to mimic its64

behavior over fewer denoising steps.65

Several works adopt this paradigm by simulating the full denoising trajectory to generate supervision66

pairs, as seen in knowledge distillation [10] and rectified flows [8]. While effective, these methods67

are computationally intensive due to the need for full reverse-time ODE evaluations. To mitigate this,68

more recent efforts introduce bootstrapping mechanisms that shorten the ODE simulation path [4, 19].69

Additionally, researchers have explored a variety of loss functions beyond the traditional L2 objective,70

including adversarial criteria [15] and distributional matching techniques [21, 20].71

Progressive distillation [14, 1, 11] offers a multi-stage solution, wherein a sequence of student models72

is trained with progressively larger time steps. This hierarchical approach reduces the dependency on73

costly long-path bootstrap samples.74

Our proposed method diverges from these frameworks by eliminating the need for both pretraining75

and distillation. Instead, it adopts a unified, end-to-end training scheme that learns a single-step76

generator directly, simplifying both the implementation and training pipeline.77

2.2 Single-Phase Training Approaches78

Only a limited number of methods have been developed for one-step generation via single-stage79

training. Among the first of its kind, Consistency Models [18] learn to map noisy inputs directly to80

their clean counterparts in a single forward pass. Although originally designed for distillation, they81

have also been extended to an end-to-end training setup.82

Shortcut models [3] introduce a flexible generative approach that allows conditioning on both the83

input noise level and the desired step size, enabling inference under various computational constraints.84

While FlowFit shares the general concept of consistency with [18] and [3], it is significantly different.85

To the best of our knowledge, FlowFit is the first method to directly aim for a single-step diffusion86

model using a basis of functions.87

3 Preliminary: Diffusion and Flow Matching88

Recent advances in generative modeling have led to the development of methods such as diffusion89

models [16, 5, 17] and flow-matching approaches [7, 8], which learn a continuous-time transformation90

from a simple noise distribution to a complex data distribution. These models typically define the91

generative process through an ordinary differential equation (ODE), where the time-dependent92

dynamics are learned to guide samples from noise toward data.93

In this work, we adopt the flow-matching formulation based on the optimal transport objective94

introduced by [8], as it offers a simple and effective framework for learning such dynamics. While95

diffusion models and flow-matching approaches are often studied separately, recent perspectives,96

such as that of [6], highlight that flow matching can be interpreted as a deterministic special case97

of diffusion modeling. Accordingly, we treat the two paradigms as closely related and use the98

terminology interchangeably where appropriate.99

Flow Matching provides a supervised learning framework for modeling deterministic, continuous-100

time flows that transport a base distribution µ0 (e.g., standard Gaussian) into a target distribution µ1101

(e.g., data distribution). Drawing from optimal transport and neural ODEs, it directly learns a velocity102

field that defines a transport trajectory between paired samples.103

Let x0 ∼ µ0 be a sample from the source distribution and x1 ∼ µ1 its corresponding target. The104

model learns a time-dependent velocity field vθ(x, t) such that solving the associated ODE transforms105

µ0 into µ1. Formally, the flow is described by106 
d

dt
ψt(x) = ut(ψt(x)),

ψ0(x) = x,
(1)

where ut : [0, 1]× Rd → Rd is a neural network parameterizing the velocity field, and ψt(x) is the107

flow map at time t.108
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A common training strategy is to supervise the model using velocity information along linear paths109

between x0 and x1, evaluated at intermediate points (1− t)x0+ tx1. The corresponding ground-truth110

velocity at such a point is simply x1 − x0.111

The model is then trained to match this known velocity at intermediate points. The Conditional Flow112

Matching (CFM) objective function is defined as113

L(θ) = Ex0∼µ0, x1∼µ1, t∼U [0,1]

[
∥vθ ((1− t)x0 + tx1, t)− (x1 − x0)∥2

]
. (2)

This loss guides the model to predict the instantaneous velocity field that aligns with the linear flow114

between samples. Notably, this avoids the need for computing density functions or score gradients,115

distinguishing it from traditional diffusion models.116

Once training is complete, sample generation begins by drawing an initial point x0 ∼ µ0, typically117

from a standard Gaussian distribution. This point is then transformed toward the data distribution by118

solving the learned ODE defined by the velocity field vθ(x, t). In practice, this continuous-time flow119

is discretized and approximated using numerical integration methods such as Euler’s method, where120

the sample is updated iteratively over a sequence of small time steps from t = 0 to t = 1.121

4 FlowFit: Direct Flow Parameterization via Basis Function Fitting122

In this section, we introduce FlowFit, a novel approach for modeling continuous-time flows via123

basis function fitting. Specifically, we aim to directly parameterize the flow ψt(x) using a basis of124

functions that are conditioned on both the initial point x0 and the time parameter t. Thus, the goal is125

to model the mapping (x0, t) 7→ ψt(x) = xt, where ψt(x) is the flow at time t, and xt represents the126

transformed point at time t.127

To this end, we approximate the true flow ψt(x) with a learnable function ψθ(x0, t)1 , parameterized128

via neural networks and basis functions. For simplicity, we use the notation xt interchangeably with129

both ψt(x) and ψθ(x0, t), with the dependence on x0 and t understood implicitly. This allows us to130

define the transformation in terms of a set of basis functions, which we leverage to approximate the131

flow dynamics. Importantly, this representation enables efficient single-step generation by evaluating132

the learned trajectory at t = 1, and requires only the initial sample x0 ∼ µ0 at inference time.133

4.1 Trajectory Parameterization134

We approximate the continuous flow trajectory using the time-dependent formulation135 ψθ(x0, t) = xt =

K∑
k=1

fθ,k(x0)γk(t),

ψθ(x0, 0) = x0,

(3)

where136

• {γk(t)}Kk=1 are fixed scalar basis functions (e.g., polynomial or Fourier),137

• fθ,k : Rd → Rd are neural networks that produce the coefficients,138

• θ denotes all learnable parameters.139

A first question is whether one can approximate arbitrarily well the trajectory ψ(x, t) with the140

above basis expansion. This is a rather straightforward result that we report in the Appendix for141

completeness.142

4.2 FlowFit Training143

We jointly train two models: ψθ, which parameterizes the flow trajectory, and vθ′ , which models the144

time-dependent velocity field. To ensure that the learned trajectory ψθ(x0, t) evolves in alignment145

1In the general case, we aim to learn ψθ(x0, c, t), where c denotes any form of conditioning (e.g., class
labels). For simplicity of derivation, we omit c.
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with the correct transport dynamics, we supervise it by matching its time derivative to a known target146

velocity field. Taking the derivative of the basis function parameterization gives147

dψθ
dt

(x0, t) =

K∑
k=1

fθ,k(x0)
dγk
dt

(t). (4)

Simultaneously, the velocity model vθ′(x, t) is trained using the standard Conditional Flow Matching148

(CFM) objective. In this setup, a source point x0 is randomly sampled from the base distribution149

µ0 and a target point x1 is independently sampled from the data distribution µ1. The model is then150

trained to match the ground-truth velocity ṽ(x0, x1, t) = x1 − x0 at intermediate points along the151

linear interpolation between x0 and x1. The loss is given by152

LCFM(θ′) = Ex0∼µ0, x1∼µ1, t∼U [0,1]

[
∥vθ′((1− t)x0 + tx1, t)− (x1 − x0)∥2

]
. (5)

To align the basis-induced flow with the learned velocity field, we require that the velocity induced153

by the basis-function trajectory matches the prediction of the velocity model at the corresponding154

location along the flow155

dψθ
dt

(x0, t) ≈ vθ′(ψθ(x0, t), t). (6)

We formalize this requirement with a loss that enforces matching the flow derivative to the velocity156

Lderivative(θ) = Ex0∼µ0, t∼U [0,1]

[∥∥∥∥dψθdt (x0, t)− vθ′(sg[ψθ(x0, t)], t)
∥∥∥∥2

]
, (7)

where sg[·] denotes the stop-gradient. This loss encourages the parameterized trajectory to follow157

a velocity field that is internally consistent with the learned dynamics, improving the alignment158

between the path and the underlying transport vector field.159

Despite the fact that ψθ(x0, t) may initially provide limited information early in training, we observe160

that the propagation loss remains robust and effective. This eliminates the need for manually161

scheduling t, thereby simplifying the training process and enhancing both stability and usability,162

all without sacrificing performance. The full training algorithm and the corresponding sampling163

procedure are outlined in Algorithm 1 and 2.164

4.3 Single-Step Generation165

At inference time, the model generates samples from the target distribution µ1 by drawing x0 ∼ µ0166

and evaluating the fitted trajectory at terminal time:167

x1 = ψθ(x0, t = 1). (8)

This enables fast and deterministic generation without iterative integration, in contrast to diffusion or168

traditional flow-based models.169

5 Experiments170

5.1 Experimental Setup171

We evaluate our method alongside a range of established baselines under consistent training conditions.172

To ensure fairness, all models are trained from scratch using an identical implementation and share the173

same backbone architecture, the DiT-B diffusion transformer [12]. Our evaluation includes two tasks:174

unconditional image generation on the CelebAHQ-256 dataset [9]. In our supplementary, we also175

provide a comparison with class-conditional generation on ImageNet-256 [2] . For the experiments176

reported in Table 1, we use the AdamW optimizer with a constant learning rate of 4 × 10−5, no177

weight decay, and train each model for 500K iterations. We use a Polynomial basis with order 8. All178

models are trained and sampled in the latent space provided by the sd-vae-ft-mse autoencoder [13].179

Additional experimental details and our codebase are available in the supplementary material.180
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Algorithm 1 Training FlowFit

1: Initialize θ, θ′, time window αt ← 0
2: Initialize ψθ(., t) as in Equation 3
3: for each training step do
4: Sample x0 ∼ µ0, x1 ∼ µ1, t ∼ U [0, 1]
5: Train vθ′ with CFM:
6: x̃t = (1− t)x0 + tx1
7: minθ′ LCFM(θ′) = ∥vθ′(x̃t, t)− (x1 − x0)∥2
8: Update θ′
9: Train ψθ with consistency loss:

10: Compute ψθ(x0, t), dψθ

dt (x0, t) using Equation 4
11: minθ Lderivative(θ) = ∥dψθ

dt (x0, t)− vθ′(ψθ(x0, t), t)∥
2

12: Update θ
13: Increase αt toward 1
14: end for

Algorithm 2 Sampling

1: Sample x0 ∼ µ0

2: Return x1 = ψθ(x0, t = 1)

5.2 Baseline Approaches181

We benchmark our approach against a diverse set of generative models, closely following the182

evaluation protocol introduced in [3]. The results for the competing methods, shown in Table 1, are183

taken from [3]. For clarity, we briefly summarize the training procedures of the baseline models as184

described in that work. The baselines fall into two main categories: two-phase training models, which185

distill fast samplers from pretrained diffusion models, and end-to-end models, which are trained from186

scratch to perform generation in a single step.187

In the distillation category, we include the standard diffusion model, following the setup from [12],188

and Flow Matching [8], which replaces the diffusion objective with a transport-based loss. Reflow [8]189

is a representative distillation method that generates 50k synthetic (x0, x1) pairs on CelebAHQ using190

a teacher model requiring 128 forward passes per sample. The resulting student is then trained over191

the full time interval t ∈ (0, 1). Progressive Distillation [14] iteratively distills a sequence of student192

models, each trained with a step size double that of its predecessor, starting from a classifier-free193

guided teacher. Consistency Distillation [18] trains the student model to predict final samples from194

intermediate pairs generated by the teacher.195

In contrast, end-to-end methods eliminate the need for a teacher model. Consistency Training196

[18] trains a single-step model directly by enforcing consistency between empirical sample pairs197

(xt, xt+δ), with progressively increasing time intervals during training. Shortcut models [3] introduce198

step-size conditioning, allowing for flexible generation across varying inference budgets. Finally,199

Live Reflow [3] jointly trains on both flow-matching and Reflow-distilled targets, regenerating new200

targets at each training step via full denoising from a flow-matching teacher. While this yields strong201

performance, it incurs significant computational cost.202

5.3 Evaluation Protocol203

We follow the evaluation framework established in [3]. Each model generates 50k samples for204

computing the FID-50k score. Our method is evaluated using a single-step sampler, while the205

baseline models are assessed under 128-step, 4-step, and 1-step variants. FID-50k is calculated using206

statistics from the full dataset, with no compression applied to the generated samples. All images are207

resized to 299× 299 via bilinear interpolation and normalized to the [−1, 1] range. During inference,208

we apply the Exponential Moving Average (EMA) of the model parameters to improve stability and209

performance.210

5.4 Comparison211

Table 1 highlights that FlowFit delivers high-quality generations in the single sampling step. Notably,212

it surpasses all other single-phase training methods in one-step generation performance and performs213

on par with progressive distillation techniques that require multiple training stages. In contrast214
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Table 1: Comparison of various training objectives applied to the same architecture (DiT-B). We
report FID-50k scores (lower is better) for 128, 4, and 1-step denoising. FlowFit achieves high-quality
samples using a single training phase and a one-step inference process, significantly reducing the
performance gap with distillation-based methods. Results in parentheses indicate settings beyond the
intended use of the corresponding objective.

CelebAHQ-256
128-Step 4-Step 1-Step

Two phase training
Progressive Distillation (302.9) (251.3) 14.8
Consistency Distillation 59.5 39.6 38.2
Reflow 16.1 18.4 23.2

End-to-end (single training run)
Diffusion 23.0 (123.4) (132.2)
Flow Matching 7.3 (63.3) (280.5)
Consistency Training 53.7 19.0 33.2
Live Reflow 6.3 27.2 43.3
Shortcut Models 6.9 13.8 20.5
FlowFit (ours) - - 14.1

Figure 2: Latent Space Interpolation. All images shown are generated by the model. Each row
illustrates the result of applying one-step denoising to intermediate samples obtained by variance-
preserving interpolation between two independent Gaussian noise vectors.

to these multi-stage approaches, FlowFit achieves its results within a single training phase. As215

anticipated, conventional diffusion and flow-matching models experience a notable decline in sample216

quality when constrained to just 4 or 1 inference steps. We include further qualitative examples in the217

supplementary material.218

5.5 Semantic Structure in the Latent Space of FlowFit219

To assess whether FlowFit gives rise to a semantically meaningful and smooth latent space, we220

perform an interpolation experiment in the input noise domain. We begin by selecting pairs of221

Gaussian noise vectors x00 and x10, and interpolate between them using a variance-preserving scheme222

xn0 = nx10 +
√
1− n2 x00 with n ∈ [0, 1]. Each interpolated point xn0 is then processed through the223

trained model to generate the corresponding output. Figure 2 shows representative results from this224

interpolation. Even though no explicit smoothness constraints or regularization terms are imposed225

during training, the outputs exhibit continuous and visually coherent changes. The interpolated226

generations preserve high-level semantics while gradually morphing between endpoints, indicating227

that FlowFit captures an underlying latent structure that supports semantically consistent transitions.228

6 Ablations229

6.1 Effect of Basis Order230

We investigate how the order of the polynomial basis affects the resulting image quality. In Table 2,231

we present results for two polynomial basis orders under the same training conditions: order 2 with232
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Table 2: Impact of the chosen polynomial basis order on image quality.

Basis Order {tk}2k=1 {tk}8k=1

FID (↓) 18.2 14.1

Table 3: Impact of the basis nature using the same expansion order.
Basis Polynomial Trigonometric

FID ↓ 14.1 16.3

basis functions {tk}2k=1 and order 8 with basis functions {tk}8k=1. Our findings show that using a233

higher-order basis leads to improved image quality.234

6.2 Effect of the Basis Type235

We evaluate the influence of the basis function type on generation quality while keeping the ex-236

pansion order fixed. Specifically, we use {tk}8k=1 for the polynomial basis and {cos(2kπt)}4k=1 ∪237

{sin(2kπt)}4k=1 for the trigonometric basis. As reported in Table 3, the polynomial basis yields a238

better FID score of 14.1 compared to the trigonometric basis (16.3).239

Limitations and Future Work240

While FlowFit demonstrates strong performance, it also has certain limitations. One notable drawback241

is the requirement to train two separate networks, which may lead to increased computational overhead.242

Moreover, the current design is restricted to single-step inference. A promising direction for future243

research is to generalize the framework to support a unified model architecture that enables flexible244

sampling with a variable number of inference steps.245

Due to computational constraints, we explore the method up to order 8 in this work. It would be246

interesting to investigate higher-order expansions and assess their impact. Another potential direction247

is to explore alternative basis functions in the formulation.248

7 Conclusion249

We introduced FlowFit, a novel diffusion-based generative model that enables both single-step250

sampling. The core idea behind our approach is a new formulation for flow modeling based on basis251

function fitting. FlowFit delivers fast, high-quality generation while substantially simplifying the252

training process, making it a practical and efficient diffusion-based method.253
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depend on implicit assumptions, which should be articulated.338

• The authors should reflect on the factors that influence the performance of the approach.339

For example, a facial recognition algorithm may perform poorly when image resolution340

is low or images are taken in low lighting. Or a speech-to-text system might not be341

used reliably to provide closed captions for online lectures because it fails to handle342

technical jargon.343

• The authors should discuss the computational efficiency of the proposed algorithms344

and how they scale with dataset size.345

• If applicable, the authors should discuss possible limitations of their approach to346

address problems of privacy and fairness.347

• While the authors might fear that complete honesty about limitations might be used by348

reviewers as grounds for rejection, a worse outcome might be that reviewers discover349

limitations that aren’t acknowledged in the paper. The authors should use their best350

judgment and recognize that individual actions in favor of transparency play an impor-351

tant role in developing norms that preserve the integrity of the community. Reviewers352

will be specifically instructed to not penalize honesty concerning limitations.353

3. Theory assumptions and proofs354

Question: For each theoretical result, does the paper provide the full set of assumptions and355

a complete (and correct) proof?356

Answer: [Yes]357
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Justification: We included the assumptions and the full derivations.358

Guidelines:359

• The answer NA means that the paper does not include theoretical results.360

• All the theorems, formulas, and proofs in the paper should be numbered and cross-361

referenced.362

• All assumptions should be clearly stated or referenced in the statement of any theorems.363

• The proofs can either appear in the main paper or the supplemental material, but if364

they appear in the supplemental material, the authors are encouraged to provide a short365

proof sketch to provide intuition.366

• Inversely, any informal proof provided in the core of the paper should be complemented367

by formal proofs provided in appendix or supplemental material.368

• Theorems and Lemmas that the proof relies upon should be properly referenced.369

4. Experimental result reproducibility370

Question: Does the paper fully disclose all the information needed to reproduce the main ex-371

perimental results of the paper to the extent that it affects the main claims and/or conclusions372

of the paper (regardless of whether the code and data are provided or not)?373

Answer: [Yes]374

Justification: We will share our code in the supplementary.375

Guidelines:376

• The answer NA means that the paper does not include experiments.377

• If the paper includes experiments, a No answer to this question will not be perceived378

well by the reviewers: Making the paper reproducible is important, regardless of379

whether the code and data are provided or not.380

• If the contribution is a dataset and/or model, the authors should describe the steps taken381

to make their results reproducible or verifiable.382

• Depending on the contribution, reproducibility can be accomplished in various ways.383

For example, if the contribution is a novel architecture, describing the architecture fully384

might suffice, or if the contribution is a specific model and empirical evaluation, it may385

be necessary to either make it possible for others to replicate the model with the same386

dataset, or provide access to the model. In general. releasing code and data is often387

one good way to accomplish this, but reproducibility can also be provided via detailed388

instructions for how to replicate the results, access to a hosted model (e.g., in the case389

of a large language model), releasing of a model checkpoint, or other means that are390

appropriate to the research performed.391

• While NeurIPS does not require releasing code, the conference does require all submis-392

sions to provide some reasonable avenue for reproducibility, which may depend on the393

nature of the contribution. For example394

(a) If the contribution is primarily a new algorithm, the paper should make it clear how395

to reproduce that algorithm.396

(b) If the contribution is primarily a new model architecture, the paper should describe397

the architecture clearly and fully.398

(c) If the contribution is a new model (e.g., a large language model), then there should399

either be a way to access this model for reproducing the results or a way to reproduce400

the model (e.g., with an open-source dataset or instructions for how to construct401

the dataset).402

(d) We recognize that reproducibility may be tricky in some cases, in which case403

authors are welcome to describe the particular way they provide for reproducibility.404

In the case of closed-source models, it may be that access to the model is limited in405

some way (e.g., to registered users), but it should be possible for other researchers406

to have some path to reproducing or verifying the results.407

5. Open access to data and code408

Question: Does the paper provide open access to the data and code, with sufficient instruc-409

tions to faithfully reproduce the main experimental results, as described in supplemental410

material?411
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Answer: [Yes]412

Justification: we will share the code.413

Guidelines:414

• The answer NA means that paper does not include experiments requiring code.415

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/416

public/guides/CodeSubmissionPolicy) for more details.417

• While we encourage the release of code and data, we understand that this might not be418

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not419

including code, unless this is central to the contribution (e.g., for a new open-source420

benchmark).421

• The instructions should contain the exact command and environment needed to run to422

reproduce the results. See the NeurIPS code and data submission guidelines (https:423

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.424

• The authors should provide instructions on data access and preparation, including how425

to access the raw data, preprocessed data, intermediate data, and generated data, etc.426

• The authors should provide scripts to reproduce all experimental results for the new427

proposed method and baselines. If only a subset of experiments are reproducible, they428

should state which ones are omitted from the script and why.429

• At submission time, to preserve anonymity, the authors should release anonymized430

versions (if applicable).431

• Providing as much information as possible in supplemental material (appended to the432

paper) is recommended, but including URLs to data and code is permitted.433

6. Experimental setting/details434

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-435

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the436

results?437

Answer: [Yes]438

Justification: We will share all the details in the supplementary.439

Guidelines:440

• The answer NA means that the paper does not include experiments.441

• The experimental setting should be presented in the core of the paper to a level of detail442

that is necessary to appreciate the results and make sense of them.443

• The full details can be provided either with the code, in appendix, or as supplemental444

material.445

7. Experiment statistical significance446

Question: Does the paper report error bars suitably and correctly defined or other appropriate447

information about the statistical significance of the experiments?448

Answer: [No]449

Justification: We follow prior works that do not .450

Guidelines:451

• The answer NA means that the paper does not include experiments.452

• The authors should answer "Yes" if the results are accompanied by error bars, confi-453

dence intervals, or statistical significance tests, at least for the experiments that support454

the main claims of the paper.455

• The factors of variability that the error bars are capturing should be clearly stated (for456

example, train/test split, initialization, random drawing of some parameter, or overall457

run with given experimental conditions).458

• The method for calculating the error bars should be explained (closed form formula,459

call to a library function, bootstrap, etc.)460

• The assumptions made should be given (e.g., Normally distributed errors).461

• It should be clear whether the error bar is the standard deviation or the standard error462

of the mean.463
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• It is OK to report 1-sigma error bars, but one should state it. The authors should464

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis465

of Normality of errors is not verified.466

• For asymmetric distributions, the authors should be careful not to show in tables or467

figures symmetric error bars that would yield results that are out of range (e.g. negative468

error rates).469

• If error bars are reported in tables or plots, The authors should explain in the text how470

they were calculated and reference the corresponding figures or tables in the text.471

8. Experiments compute resources472

Question: For each experiment, does the paper provide sufficient information on the com-473

puter resources (type of compute workers, memory, time of execution) needed to reproduce474

the experiments?475

Answer: [No]476

Justification: We will provide this information if the reviewers ask for it.477

Guidelines:478

• The answer NA means that the paper does not include experiments.479

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,480

or cloud provider, including relevant memory and storage.481

• The paper should provide the amount of compute required for each of the individual482

experimental runs as well as estimate the total compute.483

• The paper should disclose whether the full research project required more compute484

than the experiments reported in the paper (e.g., preliminary or failed experiments that485

didn’t make it into the paper).486

9. Code of ethics487

Question: Does the research conducted in the paper conform, in every respect, with the488

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?489

Answer: [Yes]490

Justification: We follow the code of ethics.491

Guidelines:492

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.493

• If the authors answer No, they should explain the special circumstances that require a494

deviation from the Code of Ethics.495

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-496

eration due to laws or regulations in their jurisdiction).497

10. Broader impacts498

Question: Does the paper discuss both potential positive societal impacts and negative499

societal impacts of the work performed?500

Answer: [NA]501

Justification: We believe there is no major societal impacts.502

Guidelines:503

• The answer NA means that there is no societal impact of the work performed.504

• If the authors answer NA or No, they should explain why their work has no societal505

impact or why the paper does not address societal impact.506

• Examples of negative societal impacts include potential malicious or unintended uses507

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations508

(e.g., deployment of technologies that could make decisions that unfairly impact specific509

groups), privacy considerations, and security considerations.510

• The conference expects that many papers will be foundational research and not tied511

to particular applications, let alone deployments. However, if there is a direct path to512

any negative applications, the authors should point it out. For example, it is legitimate513

to point out that an improvement in the quality of generative models could be used to514
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generate deepfakes for disinformation. On the other hand, it is not needed to point out515

that a generic algorithm for optimizing neural networks could enable people to train516

models that generate Deepfakes faster.517

• The authors should consider possible harms that could arise when the technology is518

being used as intended and functioning correctly, harms that could arise when the519

technology is being used as intended but gives incorrect results, and harms following520

from (intentional or unintentional) misuse of the technology.521

• If there are negative societal impacts, the authors could also discuss possible mitigation522

strategies (e.g., gated release of models, providing defenses in addition to attacks,523

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from524

feedback over time, improving the efficiency and accessibility of ML).525

11. Safeguards526

Question: Does the paper describe safeguards that have been put in place for responsible527

release of data or models that have a high risk for misuse (e.g., pretrained language models,528

image generators, or scraped datasets)?529

Answer: [NA]530

Justification: There is no high risk.531

Guidelines:532

• The answer NA means that the paper poses no such risks.533

• Released models that have a high risk for misuse or dual-use should be released with534

necessary safeguards to allow for controlled use of the model, for example by requiring535

that users adhere to usage guidelines or restrictions to access the model or implementing536

safety filters.537

• Datasets that have been scraped from the Internet could pose safety risks. The authors538

should describe how they avoided releasing unsafe images.539

• We recognize that providing effective safeguards is challenging, and many papers do540

not require this, but we encourage authors to take this into account and make a best541

faith effort.542

12. Licenses for existing assets543

Question: Are the creators or original owners of assets (e.g., code, data, models), used in544

the paper, properly credited and are the license and terms of use explicitly mentioned and545

properly respected?546

Answer: [Yes]547

Justification: We cited the used assets.548

Guidelines:549

• The answer NA means that the paper does not use existing assets.550

• The authors should cite the original paper that produced the code package or dataset.551

• The authors should state which version of the asset is used and, if possible, include a552

URL.553

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.554

• For scraped data from a particular source (e.g., website), the copyright and terms of555

service of that source should be provided.556

• If assets are released, the license, copyright information, and terms of use in the557

package should be provided. For popular datasets, paperswithcode.com/datasets558

has curated licenses for some datasets. Their licensing guide can help determine the559

license of a dataset.560

• For existing datasets that are re-packaged, both the original license and the license of561

the derived asset (if it has changed) should be provided.562

• If this information is not available online, the authors are encouraged to reach out to563

the asset’s creators.564

13. New assets565

Question: Are new assets introduced in the paper well documented and is the documentation566

provided alongside the assets?567
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Answer:[NA]568

Justification: No new asset.569

Guidelines:570

• The answer NA means that the paper does not release new assets.571

• Researchers should communicate the details of the dataset/code/model as part of their572

submissions via structured templates. This includes details about training, license,573

limitations, etc.574

• The paper should discuss whether and how consent was obtained from people whose575

asset is used.576

• At submission time, remember to anonymize your assets (if applicable). You can either577

create an anonymized URL or include an anonymized zip file.578

14. Crowdsourcing and research with human subjects579

Question: For crowdsourcing experiments and research with human subjects, does the paper580

include the full text of instructions given to participants and screenshots, if applicable, as581

well as details about compensation (if any)?582

Answer: [NA]583

Justification: No crowd-sourcing.584

Guidelines:585

• The answer NA means that the paper does not involve crowdsourcing nor research with586

human subjects.587

• Including this information in the supplemental material is fine, but if the main contribu-588

tion of the paper involves human subjects, then as much detail as possible should be589

included in the main paper.590

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,591

or other labor should be paid at least the minimum wage in the country of the data592

collector.593

15. Institutional review board (IRB) approvals or equivalent for research with human594

subjects595

Question: Does the paper describe potential risks incurred by study participants, whether596

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)597

approvals (or an equivalent approval/review based on the requirements of your country or598

institution) were obtained?599

Answer: [NA]600

Justification: No risks.601

Guidelines:602

• The answer NA means that the paper does not involve crowdsourcing nor research with603

human subjects.604

• Depending on the country in which research is conducted, IRB approval (or equivalent)605

may be required for any human subjects research. If you obtained IRB approval, you606

should clearly state this in the paper.607

• We recognize that the procedures for this may vary significantly between institutions608

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the609

guidelines for their institution.610

• For initial submissions, do not include any information that would break anonymity (if611

applicable), such as the institution conducting the review.612

16. Declaration of LLM usage613

Question: Does the paper describe the usage of LLMs if it is an important, original, or614

non-standard component of the core methods in this research? Note that if the LLM is used615

only for writing, editing, or formatting purposes and does not impact the core methodology,616

scientific rigorousness, or originality of the research, declaration is not required.617

Answer: [NA]618
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Justification: No major use of LLMs.619

Guidelines:620

• The answer NA means that the core method development in this research does not621

involve LLMs as any important, original, or non-standard components.622

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)623

for what should or should not be described.624
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