
Under review as a conference paper at ICLR 2024

COMFETCH: FEDERATED LEARNING OF LARGE NET-
WORKS ON CONSTRAINED CLIENTS VIA SKETCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a popular paradigm for private and collaborative model
training on the edge. In centralized FL, the parameters of a global architec-
ture (such as a deep neural network) are maintained and distributed by a cen-
tral server/controller to clients who transmit model updates (gradients) back to
the server based on local optimization. While many efforts have focused on re-
ducing the communication complexity of gradient transmission, the vast majority
of compression-based algorithms assume that each participating client is able to
download and train the current and full set of parameters, which may not be a
practical assumption depending on the resource constraints of smaller clients such
as mobile devices. In this work, we propose a simple yet effective novel algorithm
Comfetch, which allows clients to train large networks using reduced represen-
tations of the global architecture via the count sketch, which reduces local compu-
tational and memory costs along with bi-directional communication complexity.
We provide a nonconvex convergence guarantee and experimentally demonstrate
that it is possible to learn large models, such as a deep convolutional network,
through federated training on their sketched counterparts. The resulting global
models exhibit competitive test accuracy over CIFAR10/100 classification when
compared against un-compressed model training.

1 INTRODUCTION

Federated learning (FL) is an emerging setting of machine learning that has gained considerable
interest within the last few years (Kairouz et al., 2019). In centralized federated learning, a set
of clients, such as mobile devices, collaboratively solve a machine learning problem under the co-
ordination of a central server without revealing any local data. This private paradigm has found
use in a wide breadth of tasks such as speech prediction, document classification, computer vision,
healthcare, and finance.

Constrained Clients. At each iteration of federated training, clients download and train a global
model on privately-held local data. Model updates (in the form of weights or gradients) across all
participating clients are then communicated to the central server, where they are aggregated (aver-
aged, for example) and used to update the global model. However, an oft-neglected caveat to this
procedure is that constrained clients such as mobile devices could face difficulty downloading larger
models such as deep convolutional networks (Krizhevsky et al., 2009; He et al., 2016), transformers
(Vaswani et al., 2017), and LSTMs (Hochreiter & Schmidhuber, 1997; Sherstinsky, 2020), which
can contain prohibitive numbers of parameters. Furthermore, constrained clients may not be able
to store or compute on fully-sized architectures. Consequently, deep learning towards edge-based
applications face a resource challenge as state-of-the-art models continue to grow without bound
(Zhao et al., 2023; Deng, 2019).

There has been an abundance of progress towards improving communication-efficiency via reduced
complexity of outgoing model updates (Konečnỳ et al., 2016; Haddadpour et al., 2021; Ivkin et al.,
2019; Rothchild et al., 2020; Reisizadeh et al., 2020; Horvóth et al., 2022; Safaryan et al., 2022;
Khirirat et al., 2018). In all of these instances, gradients are quantized/compressed to reduce up-
link complexity. However, very few works have addressed the cost of downloading and hosting
large models in local client memory (downlink complexity) which is at least equally responsible for
communication bottlenecks.

1

Under review as a conference paper at ICLR 2024

In this paper, we propose a novel federated learning algorithm, Comfetch, which allows memory-
constrained clients to train a large global model by computing local gradients with respect to
memory-friendly sketch-based representations of large weights. Comfetch parameterizes each
target weight W in the global architecture as a sketch key pair which contains a count sketch of the
weight H(W) and an unsketching map U(·). Count sketches are data structures commonly used for
lower-dimensional projections with desirable ℓ2-recovery guarantees (Charikar et al., 2002). The
central server first transmits sketch key pairs of target layer weights to the client. The client then
uses the key to pass each layer input x first through the count sketched weight as H(W)(x) and then
unsketches the result using U(·) so the output-dimensionality is retained. Since these sketched key
pairs are cheaper to transmit and feed inputs through, we not only improve local memory costs but
also improve communication and computational efficiency for free.

Our contributions. (1) We develop bi-directional compression FL algorithm Comfetch which al-
lows memory-constrained clients to train a large network. In comparison to FL with full architecture
downloads, Comfetch greatly reduces memory overhead and communication costs. Additionally,
unlike other bi-directional works, fully-sized weights are never seen in local memory. (2) We exper-
imentally demonstrate that Comfetch training converges to global models which are competitive
against uncompressed training and other popular model reduction strategies such as random dropout
and magnitude-based pruning while only using 10-25% of the full model size. (3) We provide
a probabilistic non-convex convergence guarantee for Comfetch. In particular, our theory must
contend with accumulated gradient approximation error resulting from successive inexact weight
approximations. However, we prove under modest assumptions that these sketched architectures are
guaranteed to converge to a stationary point.

2 PRELIMINARIES AND PROBLEM SETUP

In this section, we outline the objectives and assumptions of our federated learning setting.
Comfetch is compatible (but not exclusively) with fully-connected networks and convolutional
networks, so we also review notations common to these types of models. We end with a formal
description of the Count Sketch data structure.

2.1 FEDERATED LEARNING SETUP

Let D = X × Y be a global data set, where X and Y are the feature space and label space, respec-
tively. Let {Di}Ni=1 be a (possibly non-iid) collection of N local client data distributions over D.
Given a loss function L : W × D → R, where W is a hypothesis class parameterized by weight
matrices, we will solve the optimization problem,

min
W

f(W) =
1

N

N∑
i=1

fi(W), (1)

where W describes the set of model parameters and fi(W) = Ez∼Diℓ(W ; ξ) is client i’s loss
function ℓ (we assume homogeneous loss type) and local data distribution Di. The central server
and clients will collaboratively solve this optimization problem in an iterative manner, so we let Wt

represent the global model weights at time t. At the beginning of each round, the server selects N
clients uniformly at random from a large cluster to participate in training. Each client ci for 1 ≤
i ≤ N downloads Wt and minimizes fi using a preferred optimizer (SGD, Adam, etc.) and sends
their locally-updated model parameters (or gradients) to the central server. The server aggregates all
the local models to update the global weights. A typical scheme for aggregation is averaging over
models/gradients (as implied in equation 1), which is referred to as FedAvg (McMahan et al., 2017).

2.2 NETWORK ARCHITECTURES

To facilitate later descriptions of how to parametrize layer weights via the count sketch, we review
the forward pass of two popular architectures: fully-connected networks and convolutional ResNets.
Our description follows the notations of (Du et al., 2019).

Multilayer fully-connected networks: Let {W ℓ
t }Lℓ=1 represent the weights of our layers at time t,

where L is the depth of the network. Let x ∈ Rd be the input. We define the network prediction

2

Under review as a conference paper at ICLR 2024

recursively. Let σ : Rd → Rd represent a nonlinear activation function, and denote x0 := x. We
have that xℓ = σ(W ℓ

t x
ℓ−1) for 1 ≤ ℓ ≤ L− 1 and the final prediction is ŷ = a⊤xL, where a ∈ Rd

is the output layer. Here, we have omitted bias and regularization terms. The output ŷ is fed into L
where it is compared against the true label.

Convolutional ResNet: We will now describe the output of a canonical ResNet architecture. We will
intentionally avoid using any convolutional operators (∗) since we will be sketching along the input
or output channel mode. Let x0 ∈ Rs0×p, where s0 is the number of input channels and p is the
number of pixels. We denote sℓ = m as the number of channels and p as the number of pixels for
all ℓ ∈ [L]. For xℓ−1 ∈ Rsℓ−1×p, we use an operator ϕℓ(·) to divide xℓ−1 into a stack of p patches.
Each patch will have size qsℓ−1 which implies that ϕℓ(x

ℓ−1) ∈ Rqsℓ−1×p. Let W ℓ
t ∈ Rsℓ×qsℓ−1 .

Similar to the fully-connected case, we define the layers recursively:

x1 =

√
cσ
m

σ
(
W 1

t ϕ0(x
0)
)
,

xℓ = xℓ−1 +
cres
L
√
m
σ
(
W ℓ

t ϕℓ(x
ℓ−1)

)
, 2 ≤ ℓ ≤ L,

0 < cres < 1.The output is ŷ = ⟨WL
t , xL⟩, where WL

t ∈ Rm×p and ⟨ , ⟩ is the Frobenius product.

2.3 COUNT SKETCH

The crux of Comfetch is using the count sketch to compress layer weights. Briefly, the count
sketch data structure contains a collection of k pairwise-independent hashing maps hi : [d] → [c]
for i ∈ [k], each of which is paired with a sign map si : [d] → {±1}, for i ∈ [k]. Each hash
function/sign map pair is used to project a d-dimensional vector x into a smaller c-dimensional
space, which we refer to as a sketch. Through an “unsketch” procedure (detailed in Appendix A), we
use the k sketches to create a d-dimensional approximation x̂ of x. To develop a sketch of a weight
matrix, we apply a count sketch to each row of the weight matrix. Our method is generalizable
to tensorial weights, but these require higher-order count sketches (HCS); we refer the reader to
Appendix A for further treatment of HCS.

3 RELATED WORK

3.1 NETWORK COMPRESSION

A popular approach to network compression involves taking low-rank factorizations of the weight
tensors (Oseledets, 2011; Denil et al., 2013; Tai et al., 2015; Novikov et al., 2015). Oftentimes, this
will require learning the factors, which increase training overhead (Oseledets, 2011; Denil et al.,
2013) or increases the depth of the network (Tai et al., 2015), and computing exact tensor factoriza-
tions is known to be NP-hard (Gillis & Glineur, 2011). Comfetch avoids these issues by relying on
simple linear transformations of the original weights. (Kasiviswanathan et al., 2017) replaces fully-
connected and convolutional layers in a non-federated setting via sign sketches (Hadamard matri-
ces). Their compressed CNNs perform worse than our federated models on CIFAR-10 (Krizhevsky
et al., 2009) classification, cost more memory than our Comfetch to store, and do not have conver-
gence guarantees. Knowledge distillation (Hinton et al., 2015; Ba & Caruana, 2013), quantization
(Jacob et al., 2018), binarization (Hubara et al., 2016), Huffman coding (Han et al., 2015), and other
similar techniques seek to gradually reduce the number of the parameters during training or com-
press the model post-training. In our scenario, the memory-constrained clients can never store the
original architecture due to its size, and in most centralized FL settings, the server does not have ac-
cess to the local client data Kairouz et al. (2019), therefore rendering these techniques inapplicable.
Hence, we opt for the popular count sketch compression scheme, which is data-oblivious.

3.2 COMMUNICATION-EFFICIENT FEDERATED LEARNING

A practical assumption of centralized federated learning is that clients will be physically removed
from the central server and communicate over unreliable wireless channels (Kairouz et al., 2019;
Yang et al., 2018; Amiri & Gündüz, 2020). Therefore, there has been significant interest in reduc-
ing the size of data communicated between the server and federated agents (Konečnỳ et al., 2016).

3

Under review as a conference paper at ICLR 2024

(Ivkin et al., 2019) suggest taking count sketches of the local gradients to reduce client update costs
to great effect, but their algorithm Sketched SGD requires an extra round of communication with
the server, which although appropriate for their distributed single-machine setting, would fail in
the general federated setting due to a lack of persistent clients. (Rothchild et al., 2020) success-
fully eliminates the extra round with their FetchSGD by taking several independent sketches of
the gradients coupled with error feedback (Karimireddy et al., 2019) in the server update phase.
FetchSGD only extracts the Top-k components of the gradients to mitigate count sketch recovery
error, similar to the MISSION algorithm (Aghazadeh et al., 2018). Low-precision quantization of
gradients has also been proposed (Alistarh et al., 2017; Reisizadeh et al., 2020) to great effect.

While the aforementioned methods successfully decrease upload communication costs, they do not
address downlink complexity, which could be a bottleneck for memory-constrained clients such as
mobile devices. (Niu et al., 2020) and (Diao et al., 2021) propose distributing subnetworks of the
global models to clients based on computational and memory constraints, but we are interested in
implicitly preserving the full-dimensionality of the model to maximize performance. (Shah & Lau,
2021) sparsifies global models at the server, which once again, reduces the overall capacity of the
model, and is better suited for pruning; pre-trained models. Bi-directional compression works are
still uncommon: to the best of our knowledge, (Dorfman et al., 2023), is the only other work to
consider compression of model weights while retaining dimensionality, but convergence guarantees
are only provided under aggressive assumptions of lossless decompression and experiments are
only performed on relatively small models such as ResNet-9. Other bi-directional works transmit
compressed gradients (Philippenko & Dieuleveut, 2020; Tang et al., 2019; Gruntkowska et al., 2023;
Zheng et al., 2019) and require restoration inside local memory which is equivalent to storing a fully-
sized architecture, which Comfetch avoids.

4 COMFETCH

We propose Algorithm 1, Comfetch, to minimize the aggregated loss function (equation 1) of
a large network on memory-constrained devices. Algorithm 1 uses only a single sketch, but it is
possible to utilize multiple sketches of weights. We assume a single count sketch is used for all
weight compressions for the remainder of this section.

We use a sketch-unsketch paradigm W ℓ
t → U(H(W ℓ

t)) = Hℓ⊤HℓW ℓ
t , where Hℓ ∈ Rd×c is a

randomly drawn count sketch matrix to approximate each weight W ℓ
t ∈ Rd×d at iteration t and

layer ℓ with c << d. We require the client to store only a hash-function hℓ ∈ Rd associated with
Hℓ and the sketched weight HℓW ℓ

t , thus reducing the memory footprint of storing each layer from
O(d2) to O((c+ 1)d). (As an abuse of notation, we use hℓ and Hℓ interchangeably, since one may
infer Hℓ from hℓ, the latter of which we will transmit in implementation since it is cheaper to do
so.) We design a mechanism for the central controller to aggregate model updates from the clients
and backpropagate the sketched model parameters. The algorithm follows the typical structure of a
federated learning algorithm: model transmission and download, client update, and model update.
This process is repeated over T iterations. We will describe each phase in detail for a fixed weight.
For simplicity of notations, we assume that W ℓ

t ∈ Rd×d.

4.1 MODEL TRANSMISSION AND DOWNLOAD

At iteration t, the central server first prepares the global model for the transmission by sketching
down all the current weights {W ℓ

t }Lℓ=1, via Count Sketch matrices Hℓ ∈ Rc×d, where c << d
is referred to as the sketching length or sketch dimension. We assume that our layers are either
convolutional or fully-connected as described in Section 2. For each weight W ℓ

t , the server randomly
draws a count sketch matrix Hℓ. The server transmits {(Hℓ⊤, HℓW ℓ

t)}Lℓ=1 to N clients selected
uniformly at random from a large cluster, who then download the sketched parameters.

Cost Complexity. Note that any Hℓ bijectively corresponds to a hash function hℓ : d → c which
is representable as a length d vector, so it is cheaper to store/transmit hℓ. Hence, in practice, the
central server will transmit {(hℓ, Hℓ

iW
ℓ
t)}Lℓ=1, for a total local memory and transmission cost of

O
(
(c+ 1)d

)
, which is far less than the usual O(d2) cost of transmission and storage.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Comfetch (Single Sketch)

Require: initial weights {W ℓ
0}Lℓ=1, learning rate η, number of iterations T , momentum parameter

ρ, batch size M of data, batch size N of clients
Init momentum term {uℓ

0 = 0}Lℓ=1
2: Init error accumulation term e0 = 0

for t = 1, 2, . . . , T do
4: Init sketch key pairs {HℓT , HℓW ℓ

t }Lℓ=1
Uniformly select at random N clients c1, c2, . . . , cN

6: loop {in parallel on clients {ci}Ni=1}
for ℓ = 1, 2, . . . , L do

8: Download weight sketches {HℓT , HℓW ℓ
t }Lℓ=1

Compute grads gℓi = ∇Hℓwℓ
t
L(Ŵ ℓ

t , z ∼ Di) ▷ Ŵ ℓ
t = Hℓ⊤HℓW ℓ

t

10: end for
Send {gℓi}Lℓ=1 to Central Server

12: end loop
for ℓ = 1, 2, . . . , L do

14: Aggregate restored gradients: gℓ = 1
N

∑N
i=1 g

ℓ
i

Update momentum: uℓ
t = ρuℓ

t−1 + gℓ

16: Update error feedback: eℓt = ηuℓ
t + eℓt

Approximate gradient: ∆t = Top-k(eℓt)
18: Error accumulation: eℓt+1 = eℓt −∆t

Update weight: W ℓ
t+1 = W ℓ

t −∆t

20: end for
end forreturn {W ℓ

T }Lℓ=1

4.2 CLIENT UPDATE

The client Ci will now conduct a single round of training on the sketched network parameters using
local data. In practice, the client distributions Di will be finite and small (Kairouz et al., 2019), so
we assume that the client is taking the full gradient with respect to the weights, but the algorithm
generalizes to stochastic gradients as well.

Figure 1: The forward pass of a fully-connected layer.

Forward pass. Assume there are L weights. Following the notations described in Section 2, the
forward pass of a fully-connected (FC) layer is xℓ = σ(Hℓ⊤(HℓW ℓ

t x
ℓ−1)), for 1 ≤ ℓ ≤ L− 1 and

the final output is ŷ = a⊤xL. Similarly, for a convolutional ResNet, we have that

x1 =

√
cσ
m

σ
(
H1⊤(H1W 1ϕ1(x

0))
)
, (2)

xℓ = xℓ−1 +
cres
L
√
m
σ
(
Hℓ⊤(HℓW ℓϕℓ(x

ℓ−1)
))

, (3)

for 2 ≤ ℓ ≤ L and the final output is ŷ = ⟨WL, xL⟩, where WL ∈ Rm×p.

Cost Complexity. Each sketched weight costs the client O(cd) to locally store which is an im-
provement over storing the original weight which costs O(d2).

Remark 1: The client never sees or directly compute a d × d weight matrix at any stage. As em-
phasized by parenthetical grouping, for example in the case of a fully-connected layer, we compute
HℓW ℓ

t x
ℓ−1, followed by multiplication on the left by Hℓ⊤.

5

Under review as a conference paper at ICLR 2024

Remark 2: In the convolutional case, where the kernel can be interpreted as a tensor of filter weights,
HℓW ℓϕℓ(x

ℓ−1) can be regarded as a higher-order count sketch (HCS) of W ℓϕℓ(x
ℓ−1) (Appendix

A.2, or we may matricize the kernel and apply the count sketch in a stacked manner.

4.3 BACKWARDS PASS AND UPLINK

To compute the gradient, we must first clearly define the weights of the client networks. We have
Hℓ⊤HℓW ℓ

t x
ℓ−1 and HℓW ℓϕℓ(x

ℓ−1) in the fully-connected and convolutional layers, respectively.
Therefore, we can represent each sketched weight as RℓW ℓ

t where Rℓ = Hℓ⊤H⊤W ℓ
t , so our

sketches are simply dimension-preserving linear transformations of the original weights. For further
notational convenience, we denote Ŵ ℓ

t ≜ RℓW ℓ
t . Now that we have defined the weights of our client

models, we may now take gradients. The server will want to receive ∂L(Ŵ ℓ
t ,z)

∂W ℓ
t

as an approximation

of ∂L(W ℓ
t ,z)

∂W ℓ
t

, but the client will not want to store or compute ∂L(Ŵ ℓ
t ,z)

∂W ℓ
t

, since it is of size d × d.
Instead, the client will transmit a O(c × d) packet of data which will allow the server to compute
∂L(Ŵ ℓ

t ,z)

∂W ℓ
t

. Using the chain rule we have that:

∂L(Ŵ ℓ
t , z)

∂W ℓ
t

=
∂L(Ŵ ℓ

t , z)

∂HℓW ℓ
t

∂HℓW ℓ
t

∂W ℓ
t

. (4)

Since the server has knowledge of ∂HℓW ℓ
t

∂W ℓ
t

= Hℓ, the client only needs to upload gℓi ≜

∇HℓW ℓ
t
L(Ŵ ℓ

t , z) ∈ Rc×d. One might ask: how does ∇HℓW ℓ
t
L(Ŵ ℓ

t , z) relate to ∇L(Ŵ ℓ
t , z)?

Using the chain rule again (and dropping z for notational convenience), we have that

∇W ℓ
t
L(Ŵ ℓ

t , z) = ∇L(Ŵ ℓ
t)∇W ℓ

t
Ŵ ℓ

t = ∇L(Ŵ ℓ
t)R

ℓ, (5)

which indicates that ∇W ℓ
t
L(Ŵ ℓ

t)R
ℓ = ∇L(Ŵ ℓ

t), i.e., the gradients the client is submitting to the
server are count sketch approximations of the true gradient of our sketched network. Thus, we are
performing uplink compression of our gradients using count sketches as our compression operator.

Cost Complexity. Each gℓt costs O(cd) to store and transmit, which is a strong improvement over
the usual uplink complexity of O(d2) and even cheaper than the sketched storage cost of O((c+1)d).
Remark. The client will never directly compute gℓi ∈ Rd×d. The purpose of equation equation 4 is
to illustrate the gradient calculation, but we first take care to show this derivative is well-defined.
Assuming L is differentiable with respect to any weight, we only need to prove that ∂RℓW

∂HℓW
is

computable, which is indeed the case due to the structure Hℓ. In particular, for any valid count
sketch matrix HRc×d and vector x ∈ Rd, if xi is bucketed by hash function hj , we have that
[H⊤Hx]i = Hji · [Hx]j , therefore, the partial derivative ∂RℓW

∂HℓW
is well-defined. However, in prac-

tice, the client will use an autograd-like library.

4.4 MODEL UPDATE

The Central Server aggregates the {gℓi}Lℓ=1 across all clients ci for i ∈ [N] and computes a de-
compressed average over the gradients: gℓ = 1

NHℓ⊤∑N
i=1 g

ℓ
i
⊤.

The remainder of the model update is an SGD (or Adam)-like procedure that follows the error-
feedback and momentum scheme similar to other compression-correcting literature (Rothchild et al.,
2020; Ivkin et al., 2019). The error-feedback term et allows for the correction of error associated
with our gradient approximations gℓ. Specifically, we are correcting the error associated with using
∇W ℓ

t
f(RℓW ℓ

t) as an approximation of ∇f(W ℓ
t). Once we form the full error term et, we take the

Top-k components (in absolute magnitude) of it, which we expect to be relatively undiluted by the
approximation error, to form ∆t. We have that ∆t is our error-corrected gradient approximation
with a momentum term already baked into it. (The momentum term ut is common to SGD-variants
in the non-federated setting, the benefits of which are discussed by Sutskever et al. (Hinton et al.,
2015).) This ∆t will help us mimic stochastic gradient descent, as shown in Line 18 of Algorithm
1.

6

Under review as a conference paper at ICLR 2024

5 CONVERGENCE GUARANTEE

In this section, we provide a non-convex convergence result for Comfetch For all results, || · ||
refers to the ℓ2 norm. We begin by outlining our assumptions. Without loss of generality, we will
denote our weights as w ∈ Rd (through vectorization, for example).
Assumption 1 (L-Smooth). The objective function f(W) in equation 1 is L-smooth. That is, for
all x, y ∈ Rd we have that,

||∇f(x)−∇f(y)|| ≤ L||x− y||. (6)
Assumption 2 (Unbiased and Bounded). All stochastic gradients g of f(w) are unbiased and
bounded,

Eg = ∇f(w) and E||g||2 ≤ G2. (7)

Assumptions 1-2 are standard to convergence proofs of SGD-like algorithms, including those of
a federated nature (Karimireddy et al., 2019; Nemirovski et al., 2009; Ivkin et al., 2019; Shalev-
Shwartz et al., 2011; Rothchild et al., 2020).
Assumption 3 (Heavy Hitters). In the notation of Algorithm 1, let {W ℓ

t }Tt=1 be the sequence of
model weights of the ℓth layer generated by Comfetch. There exists a constant ϵ such that for
all t ∈ [T], the approximated gradient of our sketch network with momentum zℓt := η(ρuℓ

t−1 +

gℓt−1) + eℓt−1 contains at least one coordinate i such that (zt)2i ≥ ϵ||zt||2. Furthermore, there
exists a constant c such that for any given weight W ℓ

t , there exists a coordinate j with (W ℓ
t)

2
j ≥

(1/c)||W ℓ
t ||2. These coordinates are referred to as heavy hitters (Alon et al., 1999).

Assumption 3 is a variant on a common heavy-hitter assumption suggested in the convergence the-
orem of FetchSGD to ensure successful error-feedback (Rothchild et al., 2020). Heavy hitters are
also required in the convergence analysis of Sketched-SGD (Ivkin et al., 2019). In this version,
we are requiring ∇wL(H⊤Hw) to contain a heavy hitter.
Theorem 1. Let w0 ∈ Rd denote an initialized model weight and consider a sketch of size
O
(

1
ϵ2 log

d
δ

)
where sketch dimension c = 1/ϵ2. Define f̃(x) = f(UH(H(x)). Under Assumptions

1-3 and with step size γ = c(1−ρ)

2Ld
√
T

, we have that Comfetch returns {wℓ
t}Ti=1 such that

min
t=1···T

||∇f̃(wt)||2 = O
(
4Ld(f(w0)− f∗) +G2

c
√
T

+
2d2(1 + ϵ)2G2

c2(1− ϵ)2ϵ2T

)
, (8)

with probability 1− δ over the sketching randomness.

Our analysis critically relies on the fact that if our original network is L-smooth, the sketched archi-
tecture is Ld

c -smooth. We defer the proof to Appendix B

6 EXPERIMENTS

In this section, we investigate the performance of Comfetch models.

Vision Task. We perform image classification tasks over CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) using a ResNet-18 architecture, which contains roughly 11M parameters. Both CIFAR-
10/100 are benchmark computer vision datasets containing with 60K 32×32 color images labeled
with 10 or 100 possible labels, respectively. Vision experiments were run on a computing cluster
using mixtures of NVIDIA Tesla T4 and RTX A4000 GPUs each equipped with 16 GB RAM. We
used the PyTorch library for training our models and MPI for distributed averaging.

Training Setup. The number of federated clients is always either 4 or 10, which we specify within
the captions. At each round, all clients download the current model and each weight W is passed
through a count sketch recovery operation H⊤HW , where H is a count sketch matrix of size
d2 × cr · d1, where d2 is the output dimensionality, cr is the compression rate, and d1 is the in-
put dimensionality. This simulates a layer input passing through a sketch key pair (see Figure 1).

Clients will locally train their model for E = 1 epoch with batch size B = 128 before averaging and
the clients use an Adam optimizer with learning rate lr = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e− 8.
After completing the training epoch, the local models are averaged to update the global model.

7

Under review as a conference paper at ICLR 2024

The sketch used is homogeneous across all clients and we do not use error feedback (which has been
observed to have an insignificant effect on performance and only needed for theoretical analysis).

Data Splits. For iid training, the training dataset is shuffled and then each client is handed |D|/N
samples selected uniformly at random, where |D| is the total dataset size and N = 4 or N = 10.
For non-iid training, the size of local training sets are the same size, but samples are selected in a
label-skewed manner according to a Dirichlet allocation.

6.1 CIFAR10/100 EXPERIMENTS

In general, Comfetch models are competitive against uncompressed FedAvg training in CI-
FAR10/100 training. CIFAR-10 model performance is presented in Table 1 and and Figures 2 and
3. For iid settings, 50% sketched compression results in a test accuracy drop off of < 2%, while
75% compression results in decreased accuracy of < 4%. We begin to notice a significant decline at
90% compression, which appears to be a general threshold across all experiments. Non-iid training
appears to be slightly more challenging, but nonetheless, our Comfetch models mimic the perfor-
mance of un-sketched models with minimal dropoff for compression rates up to 75%. CIFAR-100

Method Compression
Rate

IID Test
Accuracy (%)

Non-IID Test
Accuracy (%)

Comfetch 90% 76.53 75.29
Comfetch 75% 82.85 81.89
Comfetch 50% 84.42 83.59

No Compression 0% 86.37 84.99

Table 1: IID CIFAR-10 Top accuracy. Aver-
age top test accuracy over three runs for 10 client
Comfetch classifying CIFAR-10 Krizhevsky
et al. (2009) using ResNet-18. We analyze how
Comfetch performs over a range of compres-
sion rates as well as IID and non-IID (α = 1)
dataset splits.

100 101 102 103

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Tr
ai

n
Ac

cu
ra

cy
 A

cr
os

s D
ev

ice
s

90% Compression
75% Compression
50% Compression
No Compression

(a) Train Accuracy

100 101 102

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

90% Compression
75% Compression
50% Compression
No Compression

(b) Test Accuracy

100 101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Tr
ai

n
Ac

cu
ra

cy
 A

cr
os

s D
ev

ice
s

90% Compression
75% Compression
50% Compression
No Compression

(c) Train Accuracy

100 101 102

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

90% Compression
75% Compression
50% Compression
No Compression

(d) Test Accuracy

Figure 2: IID CIFAR-10/100 Training/Test Curves. Test accuracy convergence of Comfetch
under varying compression rates. (a)-(b) corresponds to CIFAR-10 Krizhevsky et al. (2009) image
classification, while (c)-(d) correspond to CIFAR-100 image classification. In these experiments,
only a single sketch is used and the datasets are IID. Similar accuracy with different Comfetch
compression rates suggests that our method retains the expressive power of non-sketched models,
while simultaneously reducing their storage size.

training, displayed in Table 2 and the bottom series of Figures 2 and 3, is far more challenging. How-
ever, our models still display competitive performance against non-sketched training for models with
up to 75%, regardless of iid or non-iid training. We similarly observed a noticeable decline at 90%

Method Compression
Rate

IID Test
Accuracy (%)

Non-IID Test
Accuracy (%)

Comfetch 90% 43.80 42.52
Comfetch 75% 52.25 50.21
Comfetch 50% 54.76 52.89

No Compression 0% 57.16 55.21

Table 2: Non-IID CIFAR-100 Top Accuracy.
Average test accuracy over three random runs
for 10 clients classifying CIFAR-100 Krizhevsky
et al. (2009) using ResNet18. We analyze how
Comfetch performs over a range of compres-
sion rates as well as IID and non-IID (α = 1)
dataset splits.

compression, which we suspect is due to the sketch recovery becoming too lossy at such an extreme.

8

Under review as a conference paper at ICLR 2024

100 101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Tr
ai

n
Ac

cu
ra

cy
 A

cr
os

s D
ev

ice
s

90% Compression
75% Compression
50% Compression
No Compression

(a) Train Accuracy

100 101 102

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

90% Compression
75% Compression
50% Compression
No Compression

(b) Test Accuracy

100 101 102 103

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Tr
ai

n
Ac

cu
ra

cy
 A

cr
os

s D
ev

ice
s

90% Compression
75% Compression
50% Compression
No Compression

(c) Train Accuracy

100 101 102

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

90% Compression
75% Compression
50% Compression
No Compression

(d) Test Accuracy

Figure 3: Non-IID CIFAR-10/100 Training/Test Curves. Test accuracy convergence of
Comfetch under varying compression rates in non-IID settings. (a)-(b) corresponds to CIFAR-
10 image classification, while (c)-(d) corresponds to CIFAR-100 image classification. Datasets are
non-IID with a Dirichlet split using α = 1. Furthermore, only a single sketch is used. Similar ac-
curacy with different Comfetch compression rates suggests that our method retains the expressive
power of the model while reducing the parameter counts even in the non-IID domain.

0 25 50 75 100 125 150 175 200
Communication Round

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

CIFAR-10: 0.1 CR

Comfetch
Random
L1

(a) L1 Pruning

0 25 50 75 100 125 150 175 200
Communication Round

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

CIFAR-10: 0.25 CR

Comfetch
Random
L1

(b) Random Pruning

0 25 50 75 100 125 150 175 200
Communication Round

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

CIFAR-10: 0.5 CR

Comfetch
Random
L1

(c) Random Pruning

Figure 4: Pruned Models. 4 clients are given iid distributions of CIFAR-10 (12500 samples each)
split across classes. Client model weights are then pruned randomly or based on L1 metrics at
compressions of 0.1, 0.25 and 0.5.

6.2 FEDAVG PRUNING

For multi-client federated averaging, we investigate baseline model compressions in Figure 4 where
a non-sketched ResNet-18 is pruned according to ℓ1-magnitude or random dropout prior to training
to simulate compression. There are 4 clients in this setting, splitting CIFAR-10 in an iid manner.
While such strategies have been shown to perform well for pre-trained models, we demonstrate in
Figure 4, that such naive model compression is less performant than Comfetch. No matter the prun-
ing strategy or degree of compression, FedAvg models compressed in this manner underperform
sketch-based weight compression. Random dropout, in particular, prior to training is especially de-
structive. We observe that at 90% compression with random weight pruning, the models essentially
classify close to random. Magnitude-based pruning appears to be far superior to random pruning.

7 CONCLUSION

In this work, we present a federated learning algorithm Comfetch for training large networks
on memory-constrained clients. In our scheme, the central server parameterizes the global model
via sketch key pairs of the weight matrices, significantly reducing storage costs. These sketched
architectures greatly reduce bi-directional communication, local memory, and computational costs
while retaining high performance.

The limitations of Comfetch motivate future directions. We note that the theory developed in
Section 5 does not predict the success of single-sketch Comfetch which we observe to be very
effective in our experiments. Structurally-aware sketches (Zhang et al., 2020; Chen & Zhang, 2016)
or oblivious sketches (Ahle et al., 2020) may provide insight into one-sketch guarantees.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Amirali Aghazadeh, Ryan Spring, Daniel Lejeune, Gautam Dasarathy, Anshumali Shrivastava, et al.
Mission: Ultra large-scale feature selection using count-sketches. In International Conference on
Machine Learning, pp. 80–88. PMLR, 2018.

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P
Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 141–160.
SIAM, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
communication-efficient SGD via gradient quantization and encoding. In Isabelle Guyon, Ul-
rike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pp. 1709–1720, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/6c340f25839e6acdc73414517203f5f0-Abstract.html.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and system sciences, 58(1):137–147, 1999.

Mohammad Mohammadi Amiri and Deniz Gündüz. Federated learning over wireless fading chan-
nels. IEEE Transactions on Wireless Communications, 19(5):3546–3557, 2020.

Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv preprint
arXiv:1312.6184, 2013.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pp. 693–703. Springer,
2002.

Jiecao Chen and Qin Zhang. Bias-aware sketches. arXiv preprint arXiv:1610.07718, 2016.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

Yunbin Deng. Deep learning on mobile devices: a review. In Mobile Multimedia/Image Processing,
Security, and Applications 2019, volume 10993, pp. 109930A. International Society for Optics
and Photonics, 2019.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predict-
ing parameters in deep learning. arXiv preprint arXiv:1306.0543, 2013.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
federated learning for heterogeneous clients. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=TNkPBBYFkXg.

Ron Dorfman, Shay Vargaftik, Yaniv Ben-Itzhak, and Kfir Yehuda Levy. Docofl: Downlink com-
pression for cross-device federated learning. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pp. 8356–8388. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/dorfman23a.html.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685. PMLR, 2019.

Nicolas Gillis and François Glineur. Low-rank matrix approximation with weights or missing data
is np-hard. SIAM Journal on Matrix Analysis and Applications, 32(4):1149–1165, 2011.

10

https://proceedings.neurips.cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html
https://openreview.net/forum?id=TNkPBBYFkXg
https://proceedings.mlr.press/v202/dorfman23a.html
https://proceedings.mlr.press/v202/dorfman23a.html

Under review as a conference paper at ICLR 2024

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. Ef21-p and friends: Improved theoret-
ical communication complexity for distributed optimization with bidirectional compression. In
International Conference on Machine Learning, pp. 11761–11807. PMLR, 2023.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Feder-
ated learning with compression: Unified analysis and sharp guarantees. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2350–2358. PMLR, 2021.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 4114–4122, 2016.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed sgd with sketching. arXiv preprint arXiv:1903.04488, 2019.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, 2018.

Ruhui Jin, Tamara G Kolda, and Rachel Ward. Faster johnson-lindenstrauss transforms via kro-
necker products. arXiv preprint arXiv:1909.04801, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin. Deep neural network approxi-
mation using tensor sketching. arXiv preprint arXiv:1710.07850, 2017.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with com-
pressed gradients. arXiv preprint arXiv:1806.06573, 2018.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

11

Under review as a conference paper at ICLR 2024

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhihua Wu, and Gui-
hai Chen. Billion-scale federated learning on mobile clients: a submodel design with tunable
privacy. In MobiCom ’20: The 26th Annual International Conference on Mobile Computing and
Networking, London, United Kingdom, September 21-25, 2020, pp. 31:1–31:14. ACM, 2020. doi:
10.1145/3372224.3419188. URL https://doi.org/10.1145/3372224.3419188.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks. arXiv preprint arXiv:1509.06569, 2015.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 239–247, 2013.

Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous set-
tings for distributed or federated learning with partial participation: tight convergence guarantees.
arXiv preprint arXiv:2006.14591, 2020.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. In International Conference on Artificial Intelligence and Statistics, pp. 2021–2031.
PMLR, 2020.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In International Conference on Machine Learning, pp. 8253–8265. PMLR, 2020.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication com-
pression in distributed and federated learning and the search for an optimal compressor. Informa-
tion and Inference: A Journal of the IMA, 11(2):557–580, 2022.

Suhail Mohmad Shah and Vincent KN Lau. Model compression for communication efficient feder-
ated learning. IEEE Transactions on Neural Networks and Learning Systems, 2021.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory
(lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

Yang Shi and Animashree Anandkumar. Higher-order count sketch: Dimensionality reduction that
retains efficient tensor operations. arXiv preprint arXiv:1901.11261, 2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. arXiv
preprint arXiv:1809.07599, 2018.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-
rank regularization. arXiv preprint arXiv:1511.06067, 2015.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In International Conference
on Machine Learning, pp. 6155–6165. PMLR, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

12

https://doi.org/10.1145/3372224.3419188

Under review as a conference paper at ICLR 2024

Yining Wang, Hsiao-Yu Tung, Alexander Smola, and Animashree Anandkumar. Fast and guaranteed
tensor decomposition via sketching. arXiv preprint arXiv:1506.04448, 2015.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
mage, and Françoise Beaufays. Applied federated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903, 2018.

Anru R Zhang, Yuetian Luo, Garvesh Raskutti, and Ming Yuan. Islet: Fast and optimal low-rank
tensor regression via importance sketching. SIAM journal on mathematics of data science, 2(2):
444–479, 2020.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise mo-
mentum sgd with error-feedback. Advances in Neural Information Processing Systems, 32, 2019.

13

Under review as a conference paper at ICLR 2024

APPENDIX

A SKETCHES

In this section, we review sketching algorithms and data structures which are the most relevant to
the implementation of Comfetch.

A.1 COUNT SKETCH

Sketching algorithms seek to compress high-dimensional data structures into lower-dimensional
spaces via entry hashing. Sketching was initially proposed by Muthukrishnan et al. (Cormode &
Muthukrishnan, 2005) as a solution to estimating the frequency of items in a stream Cormode &
Muthukrishnan (2005). Alon et al. Alon et al. (1999) then proposed the eponymous AMS sketch
to formalize this setting along with ℓ2-guarantees of the decompression of hashed data. The Count
Sketch is the successor of the AMS sketch, first proposed by Charikar et al. (Charikar et al., 2002)
and outlined in Algorithm 2. The Count Sketch is desired in settings where one is interested in
estimating the heavy hitters of a high-dimensional vector, which are the entries with large absolute
magnitude relative to other entries.

The Count Sketch data structure contains a collection of k pairwise-independent hashing maps hi :
[d] → [c] for i ∈ [k], each of which is paired with a sign map si : [d] → {±1}, for i ∈ [k]. Each hash
function/sign map pair is used to project a d-dimensional vector x into c-dimensional space, which
we refer to as a sketch. Furthermore, we refer to c as the sketching length and k as the number of the
sketches. Each of the k sketches is representable as a linear transformation Hix ∈ Rc for i ∈ [k],
where Hi ∈ Rc×d is referred to as a Count Sketch matrix. To “unsketch” or restore a sketch back to
d-dimensional space, we simply multiply by the transpose of Hi, i.e., x̂i = H⊤

i Hix ∈ Rd, where
we use the hat notation to specifically indicate that x̂i is merely an approximation of x. The final
approximation x̂ of x is determined coordinate-wise as (x̂)j = median

1≤i≤k
{x̂i}ki=1 for j ∈ [d].

Count sketch matrices As detailed in the previous section, each sketch has a matrix representation
which we will now make explicit. Let h : [d] → [c] and s : [d] → {±1} be a hash function/sign pair.
The associated count sketch matrix H is representable as the following c× d matrix transformation:
fixing i ∈ [c] and j ∈ [d], we have that (H)ij = s(i) if h(j) = i for j ∈ [d] and 0 otherwise.

Algorithm 2 Count Sketch Charikar et al. (2002)

Require: vector x ∈ Rd, number of hash functions k, sketch length c
procedure INIT(c, k)

2: Init sign hashes {sj}kj=1 and hash functions {hj}kj=1 ▷ Must be 2-wise independent
end procedure

4: Init k × c table of counters S
procedure SKETCH(i, xi)

6: for j = 1, . . . , k do
S[j, hj(i)]+ = sj(i)xi

8: end for
end procedure

10: procedure UNSKETCH(k)
Init length k array estimates

12: for j = 1, . . . , k do
estimates[k] = sj(i)S[j, hj(i)]

14: end forreturn
end procedure

A.2 HIGHER-ORDER SKETCHES

While the count sketch is traditionally used to project vectors into lower-dimensional space, it is
also possible to sketch higher order tensors. The advantage to sketching higher order tensors is two-
fold for us: (1) The ℓ2 guarantees associated with vectorizing a tensor and then using a standard

14

Under review as a conference paper at ICLR 2024

count sketch does not scale well with increased modes and does not take advantage of the compact
representations tensors offer. (2) In the forward pass discussion of Section 4, for multi-layer percep-
trons, our parameterized weights imitate the count sketch of vectors (namely, the last layer’s output),
but for CNN layers, our parametrized weights imitate multiplying matrices by count sketch matrices
(since the last layer’s output is a matrix), which are not modeled under the usual count sketch model.
A variety of tensor sketching algorithms exist Pham & Pagh (2013); Jin et al. (2019); Wang et al.
(2015), but we elect to use the higher-order sketch (HCS) of Shi et al. (Shi & Anandkumar, 2019)
due to its ease of implementation and resemblance to the count sketch.

We leave the details of the HCS algorithm for tensors with order 3 or greater to (Shi & Anandkumar,
2019), but for matrices, the method is straightforward. Let W ∈ Rd×d, for simplicity (but one may
use rectangular matrices as well). First, in the same manner as the count sketch, draw k pairwise-
independent hash functions hi and sign maps si of sketching length c. To sketch W , simply compute
and maintain the collection of products Ŵi = H⊤

i HiW . The decompression (recovery) of W is
denoted Ŵ , where coordinate-wise, we have that (Ŵ)mn = median{Ŵimn

}ki=1, for m,n ∈ [d].

A.3 TWO-SIDED SKETCHING

Our discussion of the HCS in Section A.2 only allows compression along a single mode of a ma-
trix W ∈ Rd×d, but it is possible to sketch along both modes of the matrix, allowing for further
compression. In architectural terms, this allows us to decrease the width of each layer and decrease
the density of inter-layer connectivity. The procedure is a simple extension of the one-sided HCS.
Draw k pairwise-independent hash functions hi and sign maps si . To sketch W , maintain the col-
lection of products Ŵi = (H⊤

i1
Hi1)W (H⊤

i2
Hi2), where we note that Hi1 and Hi2 are independently

drawn. The decompression (recovery) of W is denoted Ŵ , where coordinate-wise, we have that
(Ŵ)mn = median{Ŵimn

}ki=1, for m,n ∈ [d].

Backpropagation Rule Following the single-sketch model of Section 4, we derive the backprop-
agation rule for a two-sided sketch. We first require a lemma, which is a basic result of matrix
calculus:
Lemma 2. Let X ∈ Rm×n, A ∈ Rp×m, B ∈ Rm×q , then

∂AXB

∂X
= B ⊗A⊤ (9)

where ⊗ is the Kronecker product.

We may now use the above result for calculating the gradient of our network after sketching our
layers {W ℓ

t }Lℓ=1 from both sides, in the same notation as the federated learning setup discussed in
Section 2.
Proposition 3. Let W ℓ

t ∈ Rd×d, Hℓ
1 ∈ Rp×d, Hℓ

2 ∈ Rd×q . Denote W̃ ℓ
t = Hℓ

1WℓH
ℓ
2, i.e., a weight

matrix sketched from both sides. Then,

∇W ℓ
t
L(W ℓ

t , z) = (Hℓ
2 ⊗Hℓ

1

⊤
)∇

W̃ ℓ
t
L (10)

Proof. By the chain rule,

∂L
∂W ℓ

t

=
∂L
∂W̃ ℓ

t

∂W̃ ℓ
t

W ℓ
t

(11)

=
∂L
∂W̃ ℓ

t

(Hℓ
1 ⊗Hℓ

2

⊤
), (12)

where the last line follows by Lemma 2. By transposing both sides of the equation to obtain gradient
equations and noting that (A⊗B)⊤ = B⊤ ⊗A⊤, the result follows.

B PROOF OF THEOREM 1

Before proving our main convergence result, we define a recursive sequence crucial to error-
feedback analysis following (Rothchild et al., 2020; Karimireddy et al., 2019).

15

Under review as a conference paper at ICLR 2024

Let C(x) = Top-k(U(H(x)). We define the temporal sequence W̃t = Wt − et − ηρ
1−ρut−1. This

sequence is recursive:

W̃t = Wt−1 − C(ηut−2 + gt−1)

+ C(η(ρut−2 + gt−1) + et−1)

− η(ρut−2 + gt−1)− et−1 −
ηρ

1− ρ
zt−1

= Wt−1 − et−1 − ηgt−1 − ηρut−2

− ηρ

1− ρ
(ρut−2 + gt−1)

= Wt−1 − et−1 −
ηρ

1− ρ
ut−2 −

η

1− ρ
gt−1

= W̃t−1 −
η

1− ρ
gt−1

This is an almost-stochastic SGD update, but we must prove ∇f(W̃t) ≈ ∇f(Wt). To do so, we
will provide two results which bound E||ut||2 and E||et||2, respectively.

Lemma 4. E||ut−1||2 ≤
(

G
1−ρ

)2
.

Proof.

E||ut||2 = E||
t∑

i=1

ρigi||2 ≤ E||
∞∑
i=1

ρigi||2 ≤
(

G

(1− ρ)

)2

. (13)

Proposition 5 (Karimireddy et al. (2019), Lemma 3). E||et−1||2 ≤ 4(1−ϵ2)η2G2

ϵ2(1−ρ)2 .

Proof.

E||et+1||2 = E||η(ρut + gt) + et − C(η(ρut + gt) + et)||2

≤ (1− ϵ)E||η(ρut + gt) + et||2

≤ (1− ϵ)
(
(1 + γ)||et||2 + (1 + 1/γ)η2||ut||2

)
≤ (1− ϵ)

(
||et−1||2 +

(1 + 1/γ)η2G2

(1− ρ)2

)

≤
∞∑
i=0

((1− ϵ)(1 + γ))i(1 + 1/γ)η2G2

(1− ρ)2

≤ (1− ϵ)(1 + 1/γ)η2G2)

1− ((1− ϵ)(1 + γ))

≤ 4(1− ϵ)η2G2

ϵ2(1− ρ)2
,

where in the third inequality, we use Young’s inequality; in the fourth inequality, we invoke Lemma
4; and in the last line, we bound everything by choosing γ = ϵ

2(1−γ) .

We will now prove our convergence result.

Proof of Theorem 1. Consider a Comfetch model weight: w is sent down by the server as a sketch
key pair {UH(·), H(w)} where H is a count sketch structure of size O

(
1
ϵ log

d
δ)
)

(following notation
as described in Section 2.3). The objective function of our sketch network is f̃(w) ≜ f(UH(H(w))).

16

Under review as a conference paper at ICLR 2024

Although UH(Hw) is not a linear transformation, we note that for any fixed single count sketch
matrix H∗, ||H⊤Hw|| ≤ d

c ||w||, therefore, under the count sketch median recovery scheme,
||UH(H(w))|| ≤ d

c ||w||. Now, invoking Assumption 1, we have that

||∇f̂(x)−∇f̃(y)|| = ||∇f(UH(H(x)))−∇f(UH(H(w)))||
≤ L||UH(H(x))− UH(H(y))||

≤ Ld

c
||x− y||.

This establishes that f̃ is Ld
c -smooth. Furthermore, Assumption 2 trivially holds for the stochastic

gradients of f̂ as well. Denote w̃t = UH(H(w)). We follow analysis in Rothchild et al. (2020); by
Ld
c -smoothness of f̃ ,

Ef̃(wt+1) ≤ f̃(w̃t) +
〈
∇f̃(w̃t),E[w̃t+1 − w̃t]

〉
+

Ld

2c
E
∣∣∣∣∣∣w̃t+1 − w̃t

∣∣∣∣∣∣2
≤ f̃(w̃t) +

〈
∇f̃(w̃t),E[w̃t+1 − w̃t]

〉
+

Ldη2

2c(1− ρ)2
E||g̃t||2

≤ f̃(w̃t)−
η

(1− ρ)

〈
∇f̃(w̃t),E[gt]

〉
+

Ldη2

2c(1− ρ)2
E||g̃t||2

≤ f̃(w̃t)−
η

1− ρ
⟨∇f̃(w̃t),∇f̃(wt)⟩+

Ldη2G2

2c(1− ρ)2

= f̃(w̃t)−
η

(1− ρ)2
E||∇f̃(wt)||2 +

η

2(1− ρ)2
E||∇f̃(wt)||2

+
η

2(1− ρ)2
E||∇f̃(w̃t)−∇f̃(wt)||2 +

Ldη2G2

2c(1− ρ)2

≤ f(w̃t)−
η

2(1− ρ)
E||∇f̃(wt)||2 +

ηL2d2

2(1− ρ)c2
||w̃t − wt||2 +

Ldη2G2

2c(1− ρ)2

≤ f(w̃t)−
η

2(1− ρ)
E||∇f̃(wt)||2 +

ηL2d2

2(1− ρ)c2
||et +

ηρ

1− ρ
ut−1||2 +

Ldη2G2

2c(1− ρ)2

.

We must bound ||et + ηρ
1−ρut−1||2 now. However, since we only maintain H(et) and H(ut−1), we

may instead consider the sketched norm,

||H(et) +
ηρ

1− ρ
H(ut−1)||2.

By size of H(·) and Assumption 3, we have with probability 1 − δ that our sketch will recover
all (ℓ2, ϵ)-heavy hitters of w and that ||H(w)|| ≤ (1 + ϵ)||w|| (Cormode & Muthukrishnan, 2005).
Invoking Lemma 4,

||H(ut−1)||2 ≤
(t−1∑
i=1

ρi||H(g̃i)||2
)
≤
(t−1∑
i=1

ρi(1 + ϵ)G
)2 ≤

((1 + ϵ)G

1− ρ

)2
. (14)

We also have by Proposition 5 that

||H(et)||2 ≤ (1 + ϵ)2(1− ϵ)(1 + 1/γ)η2G2

1− ((1− ϵ)(1 + γ))
. (15)

By choosing γ = ϵ
2(1−ϵ) in Equation 15, we have that

||H(et)||2 ≤ 4(1 + ϵ)2(1− ϵ)η2G2

ϵ2(1− ρ)2
. (16)

17

Under review as a conference paper at ICLR 2024

Using Equations 16 and 14 to upper bound ||et + ηρ
1−ρut−1||2, we conclude that

E||∇f̃(wt)||2 ≤ 2(1− ρ)

η

(
f̃(w̃t)− Ef̃(w̃t+1)

)
+

2(1− ρ)

η

(4ηL2d2(1 + ϵ)2η2G2

2(1− ρ)c2(1− ϵ)ϵ2(1− ρ)2
)

+
2(1− ρ)

η

(
Ldη2G2

2c(1− ρ)2

)
.

Averaging over T and setting η = c(1−ρ)

2Ld
√
T

gives us our result.

Remark. The theory is more restrictive than our empirical results, which is often the case
with sketching compression schemes, as the classical sketching concentration bounds are ensured
via multiple sketches. In particular, using only a single sketch works very well as shown in Section 6.

C MULTI-SKETCH COMFETCH

In this section, we describe how to incorporate the usage of multiple sketches per layer for
Comfetch, which is described by Algorithm 3.

Algorithm 3 Multi-sketch Comfetch

Require: initial weights {W ℓ
0}Lℓ=1, learning rate η, number of iterations T , momentum parameter

ρ, batch size M of data, batch size N of clients
Init momentum term {uℓ

0 = 0}Lℓ=1
2: Init error accumulation term e0 = 0

for t = 1, 2, . . . , T do
4: Init sketching and unsketching procedures {Uℓ,Sℓ}Lℓ=1

Uniformly select at random N clients c1, c2, . . . , cN
6: loop {in parallel on clients {ci}Ni=1}

Download parameterized weight pairs {(Uℓ,Sℓ(W ℓ
t)}Lℓ=1

8: for ℓ = 1, 2, . . . , L do
Compute grads gℓi = {∇HjWt

L(Rℓ
iW

ℓ
t , z ∼ Di)}kj=1 ▷ See equation 24

10: end for
Send {gℓt}Lℓ=1 to Central Server

12: end loop
for ℓ = 1, 2, . . . , L do

14: Aggregate restored gradients: gℓt =
1
N

∑N
i=1 G(gℓi) ▷ See equation 25

Update sketched momentum: uℓ
t = ρuℓ

t−1 + gℓt
16: Update error feedback: et = ηut + et

Approximate gradient with feedback: ∆t = Top-k(et)
18: Error accumulation: et+1 = et −∆t

Update weights: Wt+1 = Wt −∆t

20: end for
end forreturn {wℓ

T }Lℓ=1

C.1 MODEL TRANSMISSION AND DOWNLOAD

At iteration t, the central server first prepares the global model for the transmission by sketch-
ing down all the current weights {W ℓ

t }Lℓ=1, . We assume that our layers are either convolu-
tional or fully-connected as described in Section 2, and for simplicity, that all our W ℓ

t are of
size d × d, but they can be rectangular in practice. For each weight W ℓ

t , the central server
randomly draws count sketch matrices {Hℓ

i }ki=1, where Hℓ
i ∈ Rc×d, c << d is the sketch-

ing length, and transmits {(Hℓ
i
⊤
, Hℓ

iW
ℓ
t)}ki=1 to a selection of N uniformly randomly drawn

18

Under review as a conference paper at ICLR 2024

clients, who then download these sketched parameters into local memory. Henceforth, will denote
{(Uℓ, Sℓ(W ℓ

t)} ≜ {(Hℓ
i
⊤
, Hℓ

iW
ℓ
t)}ki=1 for ℓ ∈ [L].

Cost Complexity We note that k corresponds to the number of independent sketches, which is
required theoretically to achieve a guarantee on approximating W ℓ

t , but in practice, we observe in
Section 6 that one sketch is sufficient for model convergence. Also note that any Hℓ

i bijectively
corresponds to a hash function hℓ

i : d → c which is representable as a length d vector. Hence, in
practice, the central server will transmit {(hℓ

i , H
ℓ
iW

ℓ
t)}ki=1, for a total local memory and transmis-

sion cost of O
(
(kc + 1)d

)
, which in the one-sketch (k = 1) case is less than the O(d2) cost of

transmitting the full weight.

C.2 CLIENT UPDATE

The client Ci will now conduct a single round of training on the sketched network parameters using
their local data. Often in practice, the client distributions Di will be finite and small Kairouz et al.
(2019), so we can assume that the client is always taking the full gradient with respect to the weights,
but the algorithm generalizes to stochastic gradients as well.

Forward pass Let x ∈ Di and let {(Uℓ, Sℓ(W ℓ
t)} ≜ {(Hℓ

i
⊤
, Hℓ

iW
ℓ
t)}ki=1 for l ∈ [L], where L

is the depth of our network. Following the notations described in Section 2, the forward pass of a
fully-connected layer is

xℓ = σ(Uℓ(Si(W ℓ
t x

i−1)), 1 ≤ ℓ ≤ L− 1 (17)

ŷ = a⊤xL, (18)

where (Uℓ(Sℓ(W ℓ
t))x)i ≜ median

1≤j≤k
{(Hℓ

j
⊤
Hℓ

jW
ℓ
t x} for any x ∈ Rd, in agreement with the count

sketch procedure of Algorithm 2. Similarly, for a convolutional ResNet, we have that

x1 =

√
cσ
m
σ
(
U1(S1(W 1

t))ϕ(x
0)
)

(19)

xℓ = xℓ−1 +
cres
L
√
m
σ
(
Uℓ(Sℓ(W ℓ

t))ϕℓ(x
ℓ−1)

)
,

2 ≤ ℓ ≤ L (20)

ŷ = ⟨WL
t , x

L⟩, where WL ∈ Rm×p. (21)

Remark 1: We never directly compute a d× d weight matrix at any stage.
Remark 2: In the convolutional case, where the inputs between layers are matrices, HiWx = Hi(Wx) can be
regarded as a higher-order count sketch (HCS) of Wx as described in Appendix A.

Backward pass In order to compute the gradient, we must first clearly define the weights of the modified
network. Let {Hi}ki=1 be a random set of c × d count sketch matrices and let x ∈ Rd. We have that x̂i :=
U(S(x))i = median

1≤j≤k
{(H⊤

j Hjx)i}. If sketch Hji results in the median recovery of the ith coordinate of x,

then we have the following representation:

x̂ =

d∑
i=1

EiH
⊤
jiHjix, (22)

where Ei ∈ Rd×d is a matrix with 1 at entry i, i and 0 everywhere else. Therefore, it possible to define
x̂ = U(S(x)) = Ax where A ∈ Rd×d. That is, we can represent the count sketch recovery of x as a matrix
transformation.

By the above discussion, we can represent Uℓ(Sℓ(W ℓ
t x

ℓ−1)) = Rℓ
iW

ℓ
t x

ℓ−1, where Rℓ
i ∈ Rd×d is referred to

as the recovery matrix. Hence, the weights of the client network are Rℓ
iW

ℓ
t . Note that we specifically indicate

the client index i, since the recovery matrix will vary depending on the local data.

Now that we have have defined the weights of our client models, we may now take gradients. The server

will want to receive ∂L(Rℓ
iW

ℓ
t ,z)

∂W ℓ
t

as an approximation of ∂L(W ℓ
t ,z)

∂W ℓ
t

, but the client will not want to compute
∂L(Rℓ

iŴ
ℓ
t ,z)

∂W ℓ
t

, since it is of size d× d. We will want to transmit a O(kc× d) packet of data which will allow the

19

Under review as a conference paper at ICLR 2024

server to compute ∂L(Rℓ
iW

ℓ
t ,z)

∂W ℓ
t

. To this end, let {Hℓ
i }ki=1 be the set of count sketch matrices associated with

layer ℓ. Let EHi ∈ Rd×d denote the matrix which has a 1 at entry j, j for 1 ≤ j ≤ d if Hi contains the median
recovery of (W ℓ

t x
ℓ−1)j and 0 everywhere else. We have then that,

Rℓ
i =

k∑
i=1

EHiHiW
ℓ
t x

ℓ−1. (23)

Therefore, by the chain rule of the total derivative,

∂L(Rℓ
iW

ℓ
t , z)

∂W ℓ
t

=

k∑
i=1

∂L(Rℓ
iW

ℓ
t , z)

∂Hℓ
iW

ℓ
t

∂Hℓ
i

∂W ℓ
t

. (24)

Thus, the client will upload gℓt ≜ {∇HiW
ℓ
t
L(Rℓ

iW
ℓ
t , z)}ki=1 for all ℓ ∈ [L].

Remark. We subtly avoided the point that the recovery matrix Rℓ
i as described is recursively determined by the

initial input. Therefore, our sketched weights will not be represented as simple linear transformations of the
original weights. However, since the client will clearly be determining gradients through an autograd-like
library, this will not pose an issue anyways.

Cost Complexity If the client chooses to upload the gradients contained within gℓt in a predefined manner
(for example, in the order the sketches were transmitted), then the central server will know which gradients cor-
respond to which sketch, and thus will be able to compute equation without any additional information. Thus,
the total communication cost is O(kcd), which in the single-sketch k = 1 scenario, is a strong improvement
over the usual uplink cost of O(d2) and even cheaper than the download cost.
Remark. The complexity of computingRℓ

iW
ℓ
t x

ℓ−1 is O(2kcd+k), since the client must individually compute
H⊤

i HiWtx
ℓ−1
t for all i ∈ [k] to determine the median coordinates. This may not be cheaper than the usual

O(d2) matrix-vector multiplication of the original layer if too many sketches are used, but as we demonstrate
in Section 6, a single sketch is sufficient.

C.3 MODEL UPDATE

The Central Server aggregates the {gℓi}Lℓ=1 across all i ∈ [N]. We describe the procedure for updating the
weight of a fixed layer ℓ. For each i ∈ [N], the server computes

G(gℓi) =
k∑

j=1

Hℓ
j

⊤∇Hℓ
jW

ℓ
t
L(Rℓ

iW
ℓ
t , z). (25)

The server takes an average over the G(gℓ) to compute a stochastic gradient of f(RℓW ℓ
t) with respect to W ℓ

t .
That is,

∇W ℓ
t
f(Rℓ

iW
ℓ
t) = E 1

N

N∑
i=1

G(gℓi). (26)

The remainder of the model update follows the error-feedback and momentum scheme of FetchSGDRothchild
et al. (2020). Error-feedback allows for the correction of error associated with gradient approximations. In the
case of FetchSGD, error-feedback corrects the error associated with a taking a sketch and unsketch of the
gradients. In the case of Comfetch, we are correcting the error associated with using ∇W ℓ

t
f(RℓW ℓ

t) as an

approximation of ∇f(W ℓ
t). The reader is encourage to consult the work of Karimireddy et al. and Stitch et al.

for further details on error-feedback for SGD-like methods Karimireddy et al. (2019); Stich et al. (2018).

Remark. We subtly avoided the point that the recovery matrix Rℓ
i as described is recursively determined by

the initial input. Therefore, our sketched weights will not be represented as simple linear transformations of
the original weights. However, since in practice the client will clearly be determining gradients through an
autograd-like library, this will not pose an issue.

D ADDITIONAL LANGUAGE TASK DATA

In this section, we present additional data in Table 3 and Figure 5 for language tasks not included in the main
paper. The results demonstrate that our Comfetch preserves accuracy while reducing the size of weights in
gates of the LSTM layer by different ratios. We maintain a high test accuracy while reducing the number of
parameters from 9607 to 2439. We exclude embedding parameters from the overall parameter counts as they
serve as inputs and can be pre-trained.

20

Under review as a conference paper at ICLR 2024

Method Bandwidth
Compression

Memory
Compression

Number of
Params

Test Acc (%)

FedAvg 1 1 9607 47.58
FedAvg-1/2 1 1/2 4423 49.78
FedAvg-1/4 1 1/4 2599 44.01
FedAvg-1/8 1 1/8 1879 25.63

FetchSGD 1 1 9607 86.81

Comfetch 1 1 9607 80.44
Comfetch-1/2 1/2 1/2 5511 81.50
Comfetch-1/4 1/4 1/4 3463 80.57
Comfetch-1/8 1/8 1/8 2439 78.61

Table 3: Model accuracies under different memory footprints in clients, for predicting part of speech taggings
for MNLI Williams et al. (2017) sentences using LSTM. We exclude embeddings from parameter counts as
they serve as inputs and can be pretrained.

2 4 6 8

20

40

60

80

Communication Compression Rate

A
cc

ur
ac

y

Part of Speech Prediction

FetchSGD
FedAvg
ComFetch

00.20.40.60.81
60

70

80

90

Top-k Ratio vs Accuracy

Te
st

A
cc

ur
ac

y
%

Part of Speech Prediction

8x compression
4x compression
2x compression

Figure 5: Test accuracy achieved on predicting part of speech taggings for MNLI Williams et al. (2017)
sentences. On the left, we present quantitative comparisons to other methods. The horizontal line reflects the
simple baseline where no compression is applied during training. On the right, we report the test accuracy with
different compression rate while varying theK ratio. FetchSGD only compresses the network weights during
communication, but each client still needs to decompress the entire network locally to perform training.

E PREDICTION ERROR BOUND

In this section, we provide a bound on the error between the prediction of a fully-connected multi-layer network
and its sketched counterpart. We denote by ϕ : Rd → Rd, the ReLU (rectified linear unit), where for any
x ∈ Rd, we have that (ϕ(x))i = max((x)i, 0). For ease (and an abuse) of notation, we let ψ ◦ WL ◦
ψ ◦ WL−1 ◦ · · · ◦ ψ ◦ W1x = ϕ(WL(ϕ(WL−1(· · · (ϕ(W1x) · · ·), where Wℓ ∈ Rd×d for 1 ≤ ℓ ≤ L,
x ∈ Rd, and we are freely allowing W1 to act as both a linear transformation and a matrix multiplication (i.e.,
W1 ◦ x =W1x).

Theorem 6. Let
ŷL = ψ ◦WL ◦ ψ ◦WL−1 ◦ · · · ◦ ψ ◦W1 ◦ x, (27)

Wℓ ∈ Rd×d for 1 ≤ ℓ ≤ L, x ∈ Rd,, and ψ is the ReLU activation function. Now let

ỹL = ψ ◦H−1
L HLWL ◦ ψ ◦H−1

L−1HL−1WL−1◦ (28)

· · · ◦ ψ ◦H−1
1 H1W1x, (29)

whereH−1
ℓ HℓWi reflects a count sketch recovery ofWℓ. If for eachH−1

ℓ HℓWℓ we have chosen each sketching
length of Wℓ as c = Ω(||Wℓ||2F /ϵ2) and the number of independent sketches as O(log d

δ
), for 0 < δ < 1, then

with (1− δ)L probability we have that

||ỹL − ŷL|| ≤
L∑

j=1

gj(x), (30)

where gj(x) = λjλj+1 · · ·λL||x||d2ϵ2
∏j−1

n=1 λ̂n, λi is the maximum singular value of Wi, and λ̂i is the
maximum singular value of H−1

ℓ Hℓ. We let g0 = d2ϵ2||x||.

21

Under review as a conference paper at ICLR 2024

Proof. We proceed by induction on the number of layers L. For simplicity, we denote Ŵi := H−1
i ◦Hi ◦Wi.

For L = 1, we have that

||ψ ◦ Ŵix− ψWix|| ≤ ||Ŵi −Wi|||x|| ≤ d2ϵ2||x|| = g0, (31)

where the first inequality follows by the fact the ReLU ψ is 1-Lipschitz and the second inequality follows by
the conventional HCS guarantee (Shi & Anandkumar, 2019) and our prescribed width and depth of sketches,
O(1

ϵ2
log d

δ
). Assume the hypothesis holds for L = k layers, then for L = k + 1 layers we have that

||ỹk+1 − ŷk+1|| = ||ψ ◦ ˆWk+1 ◦ ỹk − ψ ◦Wk+1 ◦ ŷk|| (32)

≤ ||Ŵk+1 ◦ ỹk −Wk+1 ◦ ŷk|| (33)

≤ ||Ŵk+1 ◦ ỹk −Wk+1 ◦ ỹk +Wk+1 ◦ ỹk −Wk+1 ◦ ŷk|| (34)

≤ ||Ŵk+1 ◦ ỹk −Wk+1 ◦ ỹk||+ ||Wk+1 ◦ ỹk −Wk+1 ◦ ŷk|| (35)

≤ ||Ŵk+1 −Wk+1||||ỹk||+ ||Wk+1||||ỹk − ŷk|| (36)

≤ dϵ2||x||
k∏

n=1

λ̂n + λk+1

k∑
j=1

gj (37)

=

k+1∑
j=1

gj , (38)

where the second to last inequality follows by applying the inductive hypothesis to the right term ||ỹk − ŷk||
and noting that for the left term,

||ỹk|| = ||ψ ◦ Ŵk ◦ ψŴk−1 ◦ · · · ◦ Ŵix|| (39)

≤ ||x||
k∏

i=1

||Ŵi|| ≤ λ̂i||x||. (40)

The probabilistic guarantee of (1− δ)L follows by the independence of each individual layer sketching.

The above result theoretically demonstrates that the noise is controllable via increased sketched length and
number of independent sketches, and in general, requires increased space complexity as L increases.

E.1 MULTI-SKETCH ABLATION & RESNET-9 EXPERIMENTS

Figure 6: Multi-Sketch Comfetch. We assess the affect of using multiple sketches during training,
for a single client training of CIFAR-10 with 87.5% compression. The use of multiple sketches has
no noticeable effect on model performance.

Theorem 1 and nearly all of count sketch theory use multiple sketches to obtain convergence guarantees. To
assess the effects of using using multiple sketches on model performance, in Figure 6, we train a single client
on CIFAR-10 using varying number of sketches between layers for weight recovery. We set our compression
rate to 87.5% since Comfetch models at this level of compression experience noticeable performance decline.
We find that using multiple sketches does not improve performance, justifying usage of a single sketch in
our experiments. We believe that one-sketch guarantees would be valuable for uplink/downlink compression
literature since the single-sketch compression strategy is successful in practice.

22

Under review as a conference paper at ICLR 2024

E.2 1 CLIENT, RESNET-9

In Table 4, we conduct a simple study examining how Comfetch compression affects single (unfederated) client
training when ResNet-9 is used to train over CIFAR-10 over 25 epochs. We additionally conduct random prun-
ing of a non-sketched model to mimic compression. Fixed random pruning to achieve the same compression
amount outputs worse models. It is important to note that pruning works well for pre-trained models, but this
study demonstrates the ineffectiveness of one-time pruning prior to training. Figure 2 demonstrates the training
and test curves.

Method Model
Size

Test Acc
(%)

No sketch 1 86.04

No sketch 1/2 75.38
Comfetch 1/2 87.89

No sketch 1/4 73.34
Comfetch 1/4 86.12

No sketch 1/8 72.40
Comfetch 1/8 81.18

Table 4: Test accuracy under different memory foot-
prints in clients for the CIFAR-10 Krizhevsky et al.
(2009) image classification task. Comfetch main-
tains a large and powerful global model under com-
munication compression and client memory compres-
sion. The no sketch model is compressed via random
pruning, which performs much worse than our sketch-
compressed models.

0 5 10 15 20 25
20

40

60

80

Epoch

Tr
ai

n
A

cc
ur

ac
y

%

CIFAR-10 Train Accuracy

Uncompressed
1/2 Compression
1/4 Compression
1/8 Compression

(a) Train Accuracy

0 5 10 15 20 25
20

40

60

80

Epoch

Te
st

A
cc

ur
ac

y
%

CIFAR-10 Test Accuracy

Uncompressed
1/2 Compression
1/4 Compression
1/8 Compression

(b) Test Accuracy

Figure 7: Test accuracy convergence of 1-client ResNet-9 Comfetch under varying compression rates.
(a)-(b) correspond to the CIFAR-10 Krizhevsky et al. (2009) image classification. Similar accuracy with 1)
different Comfetch compression rates suggests that our method retains the expressive power of the model
while reducing the parameter sizes.

23

	Introduction
	Preliminaries and Problem Setup
	Federated Learning Setup
	Network Architectures
	Count Sketch

	Related Work
	Network Compression
	Communication-Efficient Federated Learning

	Comfetch
	Model Transmission and Download
	Client Update
	Backwards pass and uplink
	Model Update

	Convergence Guarantee
	Experiments
	CIFAR10/100 Experiments
	FedAvg Pruning

	Conclusion
	Sketches
	Count Sketch
	Higher-order Sketches
	Two-Sided Sketching

	Proof of Theorem 1
	Multi-Sketch Comfetch
	Model Transmission and Download
	Client Update
	Model Update

	Additional Language Task Data
	Prediction Error Bound
	Multi-Sketch Ablation & ResNet-9 Experiments
	1 Client, ResNet-9

