
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTROLAGENT: AUTOMATING CONTROL SYSTEM
DESIGN VIA NOVEL INTEGRATION OF LLM AGENTS
AND DOMAIN EXPERTISE

Anonymous authors
Paper under double-blind review

ABSTRACT

Control system design is a crucial aspect of modern engineering with far-reaching
applications across diverse sectors, including aerospace, automotive systems, in-
dustrial processes, power grids, and robotics. Despite advances made by Large
Language Models (LLMs) in various domains, their application in control system
design remains limited due to the complexity and specificity of control theory. To
bridge this gap, we introduce ControlAgent, a new paradigm that automates con-
trol system design via novel integration of LLM agents and control-oriented do-
main expertise. ControlAgent encodes expert control knowledge and emulates hu-
man iterative design processes by gradually tuning controller parameters to meet
user-specified requirements for stability, performance (e.g. settling time), and ro-
bustness (e.g., phase margin). Specifically, ControlAgent integrates multiple col-
laborative LLM agents, including a central agent responsible for task distribution
and task-specific agents dedicated to detailed controller design for various types
of systems and requirements. In addition to LLM agents, ControlAgent employs
a Python computation agent that performs complex control gain calculations and
controller evaluations based on standard design information (e.g. crossover fre-
quency, etc) provided by task-specified LLM agents. Combined with a history and
feedback module, the task-specific LLM agents iteratively refine controller pa-
rameters based on real-time feedback from prior designs. Overall, ControlAgent
mimics the design processes used by (human) practicing engineers, but removes
all the human efforts and can be run in a fully automated way to give end-to-end
solutions for control system design with user-specified requirements. To validate
ControlAgent’s effectiveness, we develop ControlEval, an evaluation dataset that
comprises 500 control tasks with various specific design goals. Comparative eval-
uations between LLM-based and traditional human-involved toolbox-based base-
lines demonstrate that ControlAgent can effectively carry out control design tasks,
marking a significant step towards fully automated control engineering solutions.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have spurred the development of sophis-
ticated LLM agents, demonstrating remarkable capabilities in areas such as code generation, rea-
soning, tool use, and software development, among many other applications (Hong et al., 2023;
Zhang et al., 2024; Mei et al., 2024; Wu et al., 2023; Liu et al., 2023b; Talebirad & Nadiri, 2023;
Li et al., 2023; M. Bran et al., 2024; Liu et al., 2024b; 2023a; Zhuge et al., 2024). Despite these
breakthroughs, the application of LLM agents in modern engineering design remains relatively un-
derexplored. Building on the exciting progress in LLM reasoning, it seems natural to expect great
potential of LLMs as modern engineering design assistants. By breaking down complex engineering
design processes into smaller specific tasks, LLM agents could potentially improve both the produc-
tivity and efficiency of engineering workflows via reducing human efforts from practicing engineers.

Control design is a cornerstone of modern engineering, underpinning a wide range of applications
in both daily life and industrial processes, such as automobile cruise control systems, home ther-
mostats, industrial robot manipulators, aircraft autopilots, chemical process control in refineries,
and power grid frequency regulation (Åström & Murray, 2021; Ogata, 2009; Boyd & Barratt, 1991;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Domain
Expertise

Task-specific LLM Agents

Central LLM Agent

Memory

FeedbackComputation
Agent

Iterative Design
Process

Loop Shaping

S
tep R

esponse
PID Controller

User

Figure 1: General ControlAgent framework.

Anderson, 1993; Rivera et al., 1986). Conventional controller design often requires human expertise
and iterative design protocols, which may involve tedious repeated computation work. For instance,
Proportional-Integral-Derivative (PID) control has been widely used in industry, but its design pro-
cess involves iterative tuning from practicing control engineers to meet conflicting requirements1

in terms of system performance and robustness (Ogata, 2009; Xu et al., 2008; Liu et al., 2014). It
seems natural to ask whether LLMs can be leveraged to automate such tedious design processes and
reduce the burden on human experts. In this paper, we provide an affirmative answer to this question
via integrating LLM agents and control-oriented domain expertise in a novel manner.

Specifically, our paper presents ControlAgent, an LLM-based framework that automates control
system design by seamlessly integrating domain knowledge and tool utilization. ControlAgent en-
codes expert control knowledge and emulates human iterative design processes by gradually tuning
controller parameters to meet user-specified requirements for stability, performance (e.g. settling
time), and robustness (e.g., phase margin). ControlAgent integrates multiple collaborative LLM
agents, including a central agent for task distribution and task-specific agents for detailed controller
design across various systems and requirements, alongside a Python computation agent that per-
forms complex control gain calculations and evaluations based on standard design information pro-
vided by the task-specific LLM agents. Utilizing a history and feedback module, ControlAgent
enables task-specific LLM agents to iteratively refine controller parameters, mimicking the design
processes of practicing engineers while eliminating human effort to provide fully automated, end-
to-end solutions for control system design that meet user-specified requirements. Figure 1 illustrates
a general overview of the ControlAgent framework. Users simply provide the necessary task infor-
mation, such as the dynamic systems to be controlled and the associated performance requirements.
ControlAgent then analyzes the task, performs iterative design processes similar to practicing en-
gineers, and returns the final design solution. Our contributions are threefold. Firstly, we present
ControlAgent, a first fully automated LLM-based framework that emulates human-like iterative de-
sign processes for control engineering. By integrating domain-specific human expertise into LLM
agents and combining external tool use, ControlAgent systematically refines control designs based
on prior designs without human intervention. Secondly, we construct ControlEval, a thorough evalu-
ation benchmark for classic control design, ranging from relatively simple first-order system designs
to more complex higher-order system designs. This benchmark serves as a standard for evaluating
LLM-based control design workflows. Thirdly, we conduct a comprehensive experimental study

1Due to the fundamental trade-offs between performance and robustness, control design is intrinsically
subtle with a multi-objective nature. For example, classical control aims to achieve fast reference tracking and
disturbance rejection while also being insensitive to noise and robust to model uncertainty.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

on ControlEval to validate the performance and robustness of ControlAgent, demonstrating superior
performance of ControlAgent over both LLM-based and traditional toolbox-based baseline methods.

Unique Novelty. Recently, there has been some work showing that LLMs have gained knowledge
related to control engineering and can answer textbook-level control system questions to some ex-
tent (Kevian et al., 2024). However, going beyond the textbook level, LLMs still cannot generate
practical control design in a reliable manner. Beside the computation errors, LLMs may also make
various reasoning errors for practical control design. A key gap is that control design is intrinsically
subtle due to the performance-robustness trade-off, and LLMs do not know how to mitigate such
subtle trade-offs in a reliable way even if they are exposed to many different control methods. In
this paper, we develop ControlAgent in a way that it mimics how practicing engineers mitigate such
design trade-offs via PID tuning and frequency-domain loop-shaping (see Figure 1). Consequently,
ControlAgent becomes reliable in designing controllers with satisfying performance and robustness.

2 RELATED WORK

Classic Control Design. Controller design is traditionally approached in a case-by-case manner,
as it heavily depends on the specific applications at hand. Among various control strategies, PID
control and loop-shaping remain the most widely used due to their simplicity and ease of implemen-
tation. Over the years, a plethora of PID/loop-shaping tuning methods have been developed (Åström
& Hägglund, 1995; Skogestad, 2001; Mann et al., 2001; Awouda & Mamat, 2010; O’dwyer, 2009;
Padula & Visioli, 2011; Panda, 2008; Lequin et al., 2003; Skogestad, 2003). Despite these ad-
vancements, the tuning process still heavily relies on human expertise and manual intervention to
identify suitable controller parameters that meet design criteria. ControlAgent aims to fill this gap
via integrating LLM agents and human expert knowledge for automating control system design.

LLM for Engineering Design. Several studies have explored the potential of LLMs in addressing
various engineering domains (Ghosh & Team, 2024; Poddar et al., 2024; Alsaqer et al., 2024; Ma-
jumder et al., 2024). In addition, (Kevian et al., 2024; Syed et al., 2024; Xu et al., 2024) introduced
benchmark datasets to evaluate the textbook-level knowledge of LLMs in control, transportation,
and water engineering. AnalogCoder (Lai et al., 2024) is developed for analog circuits design, while
SPICED (Chaudhuri et al., 2024) focused on the bug detection in circuit netlists with the aid of
LLMs. Furthermore, AmpAgent (Liu et al., 2024a) utilizes LLMs for multi-stage amplifier design.

LLM-based Agents. LLM-based agents take textual or visual information as input for complex
task solving, which has attracted a lot interests in both academia and industry recently (Wang et al.,
2024). In particular, multi-agent systems leverage the interaction among multiple LLM agents for
more complex tasks (Kambhampati et al., 2024; Zhuge et al., 2024; Josifoski et al., 2023; Park
et al., 2023; Li et al., 2023; Zhuge et al., 2023). For example, AutoGen (Wu et al., 2023) provides
a generic multi-agent framework for various applications including coding, question answering,
mathematics, etc. MetaGPT (Hong et al., 2023) is a multi-agent LLM framework inspired by the
Standardized Operating Procedures developed from human protocol for efficient task decomposition
and coordination. Overall, the field of LLM agents is very active. See Appendix B.1 for a more
comprehensive literature review.

3 PRELIMINARY

This section briefly reviews the basic background of classic control. The field of control engineering
focuses on the design, analysis, and implementation of feedback mechanisms that are used to reg-
ulate and steer dynamic systems to achieve desired outputs or behaviors (Åström & Murray, 2021;
Ogata, 2009). Application examples includes everyday devices like the heating and air conditioning
as well as more advanced systems such as autonomous cars and airplane autopilots. First, we review
the notion of dynamical systems studied in classic control. A dynamical system can be represented
in various forms including differential equations, state-space models, and transfer functions (Good-
win et al., 2001; Boyd & Barratt, 1991). The main objects studied in classic control design are linear
time-invariant (LTI) systems, which can be represented in either time domain by a linear ordinary
differential equation (ODE) or in frequency domain by an equivalent transfer function. For instance,
the transfer function of an LTI system has the following form:

G(s) =
bmsm + bm−1s

m−1 + · · ·+ b1s+ b0
ansn + an−1sn−1 + · · ·+ a1s+ a0

, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Reference !

Controller "($)

Disturbance (

Noise)

Output *

Dynamical Model &($)

Real Physical System

Figure 2: A feedback control system illustrating the reference r, measured output y, disturbance d,
and noise n. The dynamical model G(s) provides a mathematical approximation of the real physical
system. The inherent mismatch between the real system and its mathematical model underscores the
need for a robust controller C(s) to ensure reliable performance despite modeling inaccuracies.

where s is the complex frequency variable in the Laplace domain. Notice that the system (1) has an
equivalent time-domain ODE form that relates the input signal u(t) to the output signal y(t):

an
dn

dtn
y(t) + . . .+ a1

d

dt
y(t) + a0 y(t) = bm

dm

dtm
u(t) + . . .+ b1

d

dt
u(t) + b0 u(t) (2)

This form is general enough to model the dynamics of various practical systems such as automotive
systems, robotics, and many others. There always exist gaps between models and reality. Classic
control is successful in practice as control engineers use robustness margins to account for such gaps.

Classic Control Design. Feedback control, shown in Figure 2, can be used to steer the plant output
y(t) to track a reference signal r(t). This architecture: (a) uses a sensor to measure the output y(t),
(b) computes the tracking error e(t) = r(t)−y(t), and (c) uses a control algorithm C(s) to compute
the input to the plant based on the error. Figure 2 depicts a standard feedback loop where the
measured output y(t) is used by the controller to compute the input to the system which then affects
the output y(t). Classical control focuses on designing the controller C(s) (which is an LTI system
by itself). There are numerous, often conflicting, objectives for classic control design, and standard
design requirements include2: i) closed-loop stability, ii) fast reference tracking, iii) rejection of
disturbance (e.g., the wind gusts and hills acting on a car), iv) actuator limits, v) rejection of sensor
noise, and vi) robustness to model-reality gap (e.g., unmodeled dynamics, etc). This necessitates the
performance/robustness trade-offs, which lie at the core of classic control design.

Performance/Robustness Trade-offs. The various design requirements roughly boil down to three
main categories : i) closed-loop stability , ii) performance (e.g. tracking speed), and iii) robustness
(see Appendix B.2 for definitions). The settling time Ts is arguably the most important performance
metric, since it measures the time required for the systems response to reach within a specified per-
centage (e.g., 2% or 5%) of the steady-state value, and small Ts just implies fast reference tracking.
Robustness is also crucial. As illustrated in Figure 2, there always exist a gap between the dynamical
model used for control design and the real physical system which the controller is deployed on. It is
a must to make the controller robust against the model-reality gap. In this context, phase margin is
typically recognized as the most important robustness metric (Chang & Han, 1990; Ho et al., 1996),
and on the conceptual level, large phase margin implies strong robustness. Since achieving small
settling time (fast tracking) and large phase margin (robustness) are competing objectives, practic-
ing control engineers typically use settling time and phase margin as tuning knobs for navigating the
performance/robustness trade-offs in classic control design. There are many secondary metrics (e.g.
gain margin, etc) that can be used to provide fine-grained descriptions for the six control design re-
quirements mentioned above. However, it is known from control practice that PID and loop-shaping
design with settling time and phase margin being tuning knobs can be sufficient in addressing the
complicated performance/robustness trade-offs involving all six control design requirements simul-
taneously. One main goal of our study is to develop the first LLM-based framework that can
automatically address such subtle performance/robustness trade-offs in control design.

2See Appendix B.2 for more explanations of these control design requirements.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Design a controller for
! " = 5.6/(" + 3.4)

Requirements:
1. Stability: the closed-loop system should be stable.
2. Phase margin: larger than 70 degree.
3. Settling time: less than 0.3 sec.

User
Role: Task provider

The system transfer function ! " = 5.6/(" + 3.4) is a first-order system with
a single pole at " = −3.4, this is a stable system since the pole is located in
the left half of the complex plane.
For the given requirements:
Stability: The closed-loop system should remain stable …
Phase margin: The system requires a phase margin …
Settling time: The settling time should be less than 0.3 sec …

Central Agent
Role: Task distributor

Based on the requirements, we likely need to design a controller to meet the
performance goals. The agent for the stable first-order system controller
design is selected.

Task Analysis

Action

To design the controller for the given plant ! " = 5.6/(" + 3.4): we start by
selecting an appropriate loop bandwidth .!. Given the need for a fast
response, a higher .! is preferable to achieve a faster response. We choose
.! = 10	234/"56 as a staring point …
Next, we design the integral boost 7" " = (8#" + .!)/"92:(8#$ + 1)" …
Initially, we select 8# = "92:(10) as a starting point …

Task-Specific Agent
Role: Control engineer for stable first-order system

Controller parameter design: .!, 8# = [10, 3.162]

Design

Controller Parameter

Python Agent
Role: Computator

import numpy as np
import control as ctrl
import math
def check_stability(omega_L, beta_b, num, den):

Define the transfer function G(s)
G = ctrl.TransferFunction(num, den)
mag_c, phase_c, _ = ctrl.frequency_response(G,

omega_L)
Compute proportional gain controller
K_p = 1 / np.abs(mag_c)[0]
Integral boost Ki(s)
para = math.sqrt(beta_b*beta_b + 1)
K_i = ctrl.TransferFunction([beta_b, omega_L],[para, 0])
Final controller
K = K_p * Ki
L = G * K
Closed-loop transfer function
T = ctrl.feedback(L, 1)
poles = ctrl.poles(T)
return np.all(np.real(poles) < -0.01)

def loop_shaping(omega_L, beta_b, num, den):
G = ctrl.TransferFunction(num, den)
mag_c, phase_c, _ = ctrl.frequency_response(G,

omega_L)
K_p = 1 / np.abs(mag_c)[0]
para = math.sqrt(beta_b*beta_b + 1)
K_i = ctrl.TransferFunction([beta_b, omega_L],[para, 0])
Performance Check
K = K_p * Ki
L = G * K
sys = ctrl.feedback(L, 1)
Get the step response info of the closed-loop system

T(s)
info = ctrl.step_info(sys)
Gain margin and phase margin
gm, pm, wg, wp = ctrl.margin(L)
Steady-state error (assuming unit step input)
ess = 1 / (1 + np.abs(ctrl.dcgain(L)))
return pm, info['SettlingTime'], ess

Design 1
Parameters: .! = 10, 8# = 3.162
Performance:
Steady state error = 0.0, hence the closed-loop system is stable;
Phase margin= 91.45 deg;
Settling time =0.47 sec.
Design 2
Parameters: .! = 20, 8# = 3.162	
Performance:
Steady state error = 0.0, hence the closed-loop system is stable;
Phase margin= 82.22 deg;
Settling time =0.43 sec.

History Design and Feedback
Role: Store history designs and provide feedbacks

Design History

Check stability

Controller Evaluation

Feedback: Settling time should be less than 0.3 sec. Please design a faster
controller.

Feedback

ControlAgent

Figure 3: The controller design process of ControlAgent, showcasing interactions between the User,
Central agent, Python agent, History and Feedback module, and Task-Specific Agents to design a
controller that meets stability, phase margin, and settling time requirements.

4 CONTROLAGENT

In this section, we present ControlAgent, detailing its agent architecture, iterative design mecha-
nisms, and communication protocols. An overview of ControlAgent has been illustrated in Figure 1,

Agent Design. We break down the complex controller design into smaller and more specific tasks,
requiring the collaboration of agents with different skills and expertise. ControlAgent compromises
three types of agents: 1) Central agent Ac acts as the task distributor, processes user inputs and
assigns specific requests to the sublevel agents based on the nature of the controller design task,
2) Task-specific agent Aspec receives the user request and high-level task analysis from the central
agent, and encodes with domain-specific expertise to initiate the controller design process, follow-
ing the iterative methodology discussed below, and 3) Python computation agent Ap carries out
the complex computation steps involved in controller design and performance evaluations, ensur-
ing reliable controller synthesis and evaluations. Figure 3 present an illustrative example of the
controller design workflow within ControlAgent. The user initially provides the system’s dynamic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

!! = 0.47 sec

Time (sec)

St
ep

 R
es

po
ns

e

!! = 0.34 sec

Time (sec)

St
ep

 R
es

po
ns

e

!! = 0.28 sec

Time (sec)

St
ep

 R
es

po
ns

e

You are a control engineer expert, and your goal is to design a controller ?(") for a system with transfer function !(") using loop shaping
method. The loop transfer function is @ " = ! " ?(") and here are the basic loop shaping steps:
[step1] Choose a proper loop bandwidth .! for the given plant ! " . Note: Increasing A% will make the response faster …
[step2] Select a proportional gain 7& to set the desired loop bandwidth .! …

Please design a controller for ! " = 5.6/(" + 3.4) and meeting the following requirements:
1. Phase margin: the phase margin should be larger than 70 deg.
2. Settling time: the settling time should less than 0.3 sec.
3. Stability: the steady state error should less than 0.001.

History and Feedback:
Design 1:
Controller parameters: …
System performance: …
Feedback: the settling time should be
less than 0.3 sec …

Iteration 1

Controller
Evaluation

Memory &
Feedback

History and Feedback:
Design 1:
Controller parameters: …
System performance: …
Feedback: …
Design 2:

Controller
Evaluation

Memory &
Feedback

Controller
Evaluation

Memory &
Feedback

Response Instruction:
Your response should strictly adhere to
the following JSON format, which
includes two keys: 'design' and
'parameter’ …

Iteration 2 Iteration 3

Design Instruction User Requirement Response InstructionHistory and Feedback

*" = 91.4∘ *" = 77.5∘ *" = 75.5∘

.$ = 10	012/456 .$ = 25	012/456 .$ = 30	012/456

Figure 4: Workflow of the task-specific agent in ControlAgent. The design history and feedback
are dynamically updated based on previous iterations. ControlAgent refines its designs iteratively,
incorporating user instructions and feedback at each step. By the third iteration, ControlAgent
achieves a final design that satisfies the users requirements, achieving a settling time of less than 0.3
seconds (as shown in the time response plot) and maintaining a phase margin consistently greater
than 70◦ (as depicted in the Bode plot).

model (represented as a transfer function) along with the specified design criteria on closed-loop
stability, settling time, and phase margin. The central agent subsequently analyzes the task and del-
egates it to a specialized task-specific agent, tailored to the task’s requirements. Each task-specific
agent, endowed with domain-specific expertise, initiates the design process upon receiving the as-
signment. The designed controller is evaluated by the Python agent, while a history and feedback
module archives the design process and generates valuable feedback to enable iterative refinement.

Iterative Design via Structured Memory Design. ControlAgent relies on the iterative design and
feedback mechanism to mimic the design processes used by practicing engineers (see Figure 4).
Traditional controller design by control engineers often involves a cycle of trial and error, requiring
fine-tuning of controller parameters based on observed feedback. Similarly, for LLM agents to per-
form control system design effectively, they must follow an iterative design process. This involves
accessing previous designs and performance metrics, and using feedback to refine their outputs to
improve the performance and robustness of the controller configuration. However, storing all past
outputs of LLM agents and simply reusing them in the next iteration is impractical due to the context
window limitations of LLMs. To address this, ControlAgent manages memory through an efficient
structured memory bufferM that retains only essential information: the previously designed con-
troller parameters and their associated performances, rather than complete historical outputs. This

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

System Type 1st-order stb 2nd-order stb 1st-order w/ delay Higher-order System

System Model 2.19

s+ 10.99

5.88

s2 + 1.43s+ 0.91

8.79e−0.14s

s+ 4

225

s3 + 14.2s2 + 46s+ 40

Response Mode Moderate Slow (-) (-)
Stability ✓ ✓ ✓ ✓
Settling Time Range Ts ∈ [0.04, 0.58] Ts ∈ [12.70, 34.04] Ts ∈ [0.63, 6.68] Ts ∈ [1.05, 8.4]
Phase Margin ϕm ≥ 81.74◦ ϕm ≥ 61.57◦ ϕm ≥ 44.06◦ ϕm ≥ 62.54◦

Table 1: System models and their corresponding control design criteria.

strategy allows the agent to recall crucial details from past iterations without exceeding memory ca-
pacity. In addition, ControlAgent also dynamically evaluates the current performance in comparison
to user requirements. If the current design does not meet the requirements, a feedback F is created,
encoded, and then incorporated into the input prompt for the LLM agent in the next iteration.

Now we explain Figure 4, which illustrates the iterative design process. The input prompt to the
LLM agents consists of four main components: 1. Design instruction: the design instruction Espec
is distilled from domain expertise for each specific task to enhance the LLM agents’ capabilities in
controller design with particular focus on mitigating performance/robustness trade-offs via PID or
loop-shaping with settling time and phase margin being used as the tuning knobs. 2. User require-
ments: the user requirements U are provided directly by the user. 3. Memory and feedback: this
component includes the retrieval of previous design parameters from the structured memory buffer
M, along with automatically generated feedback to highlight the deficiencies of the current design.
4. Response instruction: the response instruction R specifies the response format to ensure that
key information can be extracted efficiently. Upon receiving the task requirements from the central
agent Ac, the task-specific LLM agent Aspec iteratively designs a new controller based on the pro-
vided instructions, previously failed designs, and feedback. During each iteration, Aspec generates a
new controller design, which is then stored in the memory buffer. Subsequently, a Python agent Ap

retrieves the design and conducts evaluations. If the current design satisfies the user-defined require-
ments, the iteration process halts, and the successfully designed controller is returned. Otherwise, a
feedback signal is generated by comparing the current performance against the user requirements,
and the process continues to the next iteration until the maximum iteration count is reached. The
iterative design process of ControlAgent is summarized in Algorithm 1 at Appendix.

5 CONTROLEVAL

Since no suitable open-source dataset is currently available for validating ControlAgent, we devel-
oped a new evaluation dataset, called ControlEval, to serve this purpose. ControlEval consists of
10 distinct types of control tasks based on various systems and requirements. For each task type, we
construct 50 individual systems, each paired with its corresponding design requirements, resulting
in a comprehensive dataset of 500 control tasks. ControlEval includes a diverse set of dynamical
systems such as first-order stable and unstable systems, second-order stable and unstable systems
with varying response speed modes, first-order systems with time delay, and general higher-order
systems. The design criteria for each task involve a combination of closed-loop stability, settling
time (to quantify tracking performance), and phase margin (to assess robustness). These are three
key metrics for classic control design. For first and second-order stable systems, we further dif-
ferentiate between three different speeds of response defined by the variation in settling time: fast,
moderate, and slow. The fast mode requires the system to converge to its steady-state value within
a short period of time, which is typical for applications that demand quick response times, such
as servo motor control systems (Krah & Klarenbach, 2010) and quadcopter flight control systems
(Bramlette & Barrett-Gonzalez, 2017). In contrast, the slow mode requires a more gradual conver-
gence, which is more suitable in scenarios where the dynamic system model is less precise and less
aggressive control is desired, such as wind turbine control (Ossmann et al., 2021). Some samples
from ControlEval are provided in Table 1 including the system types, system dynamical models,
response mode, and the associated design requirements.

Due to inherent limitations in the control of unstable systems, systems with time delays, and higher-
order systems, it is not always possible to satisfy arbitrary combinations of performance/robustness
requirements (Stein, 2003; Seron et al., 2012; Freudenberg & Looze, 1985; 1987; 1988). Therefore,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

System Type 1st-ord stb 2nd-ord stb 1st-ord ustb 2nd-ord ustb w/ dly Hgr-ord

Response Mode fast moderate slow fast moderate slow (-) (-) (-) (-)

Zero-shot 8.0 19.2 10.0 14.0 18.4 13.2 5.2 0.4 15.6 2.0
Zero-shot CoT 26.8 3.2 0.4 12.4 18.8 12.0 4.4 0.8 8.8 8.0
Few-shot 12.4 19.6 15.6 12.0 12.4 15.2 14.0 29.2 11.6 12.0
Few-shot CoT 11.2 21.6 21.2 7.6 14.0 25.6 6.0 22.4 16.0 16.4
PIDtune 56.0 90.4 86.4 81.6 98.8 77.6 30.4 10.8 100.0 50.0
ControlAgent 100.0 100.0 100.0 100.0 98.8 90.8 97.2 96.8 97.2 82.0

Table 2: Average Success Rate (ASR, %) of baseline methods and ControlAgent on ControlEval
for various system types and response modes. The best result for each task is highlighted in bold.
The results show that ControlAgent consistently outperforms all other LLM-based and toolbox-
based baselines (except the first-order system with delay) across all categories, demonstrating its
effectiveness and robustness in handling diverse control tasks.

human experts have carefully curated the dataset to ensure that the task requirements are feasible
and achievable. Further information on the dataset can be found in Appendix F.

6 EXPERIMENTAL RESULTS

In this section, we present a comprehensive set of experiments to evaluate the performance of Con-
trolAgent on the ControlEval. GPT-4o is used as the main underlying base LLM for both the central
agent and task-specific agents, and study on comparing different base LLMs is also presented. The
detailed prompts for ControlAgent can be found in Appendix E.1. Additionally, we compare Contro-
lAgent against two different baseline categories: LLM-based and control toolbox-based baselines.

LLM-based Baselines: We consider four LLM-based baseline approaches utilizing GPT-4o: zero-
shot prompting, zero-shot Chain-of-Thought (CoT), few-shot, and few-shot CoT. In the zero-shot
approach, we directly provide the user requirements and ask the LLM to perform the controller de-
sign without additional guidance. The CoT variant enhances this by prompting the LLM to explicitly
conduct the design step-by-step. For the few-shot approach, we present the LLM with several ex-
amples of successful controller designs to guide its process. In the few-shot CoT setting, the prompt
not only includes the successful designs but also details the step-by-step reasoning process required
to create a successful controller. The detailed prompt for each setting can be found in Appendix E.2.

Control Toolbox-based Baseline: We also considered the widely used control toolbox for PID de-
sign: PIDtune (MathWorks, 2023) from MathWorks as a baseline. This toolbox is human-involved
as the user needs to specify a proper value of crossover frequency as an input to optimize the con-
troller gains, whereas ControlAgent tunes crossover frequency automatically without any human
effort. Further details on how we set up PIDtune are reported in Appendix D.

Evaluation Metrics: We use Average Successful Rate (ASR) to measure the effectiveness of con-
trol designs across multiple independent trials for each method, and we use Aggregate Successful
Rate (AgSR) to evaluate the success designs on a system-by-system basis, where one system is con-
sidered successfully designed if at least one of the multiple independent trials results in a successful
controller design. We also employed the standard pass@k with k = {1, 3, 5} to provide a more
robust metric with reduced variance. The formal metric definitions can be found in Appendix D.

6.1 MAIN RESULTS

Table 2 shows the ASR of ControlAgent and various baseline methods on the ControlEval bench-
mark. The best results for each task are highlighted in bold. Our key observations are given below.

ControlAgent consistently outperforms all baseline methods. ControlAgent achieves signifi-
cantly higher ASR across all control tasks compared to both LLM-based and traditional toolbox-
based baselines (with the sole exception of the first-order system with time delay, where ControlA-
gent achieves the second-best result at 97.2%). This superior performance is evident not only for
simpler first-order and second-order stable systems but also for more complex cases, such as unsta-
ble systems and higher-order systems. The ability of ControlAgent to maintain high success rates
across diverse system types showcases the potential of integrating LLMs with domain expertise,
making it a highly reliable tool for automated control system design.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

Su
cc

es
sf

ul
 R

at
e

(%
)

First-order Stable Systems Higher-order Systems

Figure 5: ASR and AgSR for first-order stable systems (averaged across fast, moderate, and slow
modes) and higher-order system.

ControlAgent w/o-iterative w/o-instruction w/o-python agent w/o-feedback

ASR iteration # ASR iteration # ASR iteration # ASR iteration # ASR iteration #

fast 100.0 2.74 28.4 (-) 70.4 4.84 76.0 4.34 85.6 4.45
moderate 100.0 1.78 33.2 (-) 60.4 6.38 85.2 3.71 92.4 3.05
slow 100.0 2.19 4.0 (-) 56.4 6.39 71.2 5.19 94.0 2.46

Table 3: Ablation study results (ASR and average iteration number) for ControlAgent and its vari-
ous component configurations. The ablated versions exclude specific components, such as iterative
refinement, user instructions, the Python agent, and feedback incorporation.

ControlAgent can solve easy tasks perfectly. For relatively simpler systems, such as first/second-
order stable systems, ControlAgent achieves perfect scores (100% ASR) across all response modes
(fast, moderate, and slow). This indicates that ControlAgent is capable of flawlessly handling
straightforward control problems, meeting all user-defined performance requirements.

PIDtune outperforms LLM-based baselines on most control tasks. It is noteworthy that PID-
tune, a control toolbox-based method, performs better than LLM-based baselines (e.g., Zero-shot
and Few-shot) on most control tasks, except for second-order unstable systems. This suggests that
LLMs alone or simple prompt engineering methods are not sufficient to solve many control tasks
effectively. The results highlight the gap between standard LLM capabilities and traditional con-
trol toolboxes. ControlAgent bridges this gap by employing an iterative controller design procedure
that integrates LLMs, control domain expertise, and tool utilization to mimic how practicing control
engineers mitigate the performance/robustness trade-offs in classic control design.

Figure 5 illustrates the ASR and AgSR for ControlAgent and the baseline methods for first-order sta-
ble systems (averaged across fast, moderate, and slow modes) and higher-order system, respectively.
We run each method for five independent trials. The results show that each method significantly im-
proves its success rate, highlighting the advantage of aggregating results from multiple trials to
boost overall performance. ControlAgent remains one of the top-performing methods, achieving
high success rates across all methods. More AgSR results can be found in Appendix D.

6.2 ABLATION STUDY

In this section, we perform ablation study on the ControlAgent.

Effect of Key Components in ControlAgent: To investigate the impact of different components
within ControlAgent on its overall performance, we compare the ASR and the average number of
iterations required for successful design across three response modes for first-order stable systems.
The results, shown in Table 3, indicate that the complete version of ControlAgent achieves a perfect
ASR (100%) across all response modes with the fewest iterations, underscoring the effectiveness of
its integrated design. In contrast, removing the iterative design process leads to a drastic decline in
ASR, particularly for the slow response mode, where the ASR drops to just 4%. Similarly, exclud-
ing design instructions or the Python agent significantly reduces the ASR and increases the number
of iterations needed for success, highlighting the critical role these components play in improving
design efficiency. Although ControlAgent performs reasonably well without feedback, the increased

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Left: first order, right: second order

AS
R

(%
)

Number of Iteration

AS
R

(%
)

Number of Iteration

Figure 6: The effect of the number of iterations on ASR across different response modes (Fast,
Moderate, and Slow). Left: first order stable systems; right: second order stable systems.

Base LLM GPT-4o Claude-3.5 Sonnet GPT-4-turbo Gemini-1.5-pro GPT-3.5-turbo

ASR iteration # ASR iteration # ASR iteration # ASR iteration # ASR iteration #

fast 100.0 2.74 98.4 2.66 94.0 3.82 86.8 2.96 49.2 6.84
moderate 100.0 1.78 99.2 2.05 98.4 2.55 86.4 2.41 97.2 3.01
slow 100.0 2.19 97.2 2.18 99.2 2.14 85.6 2.67 77.6 4.18

Table 4: ASR (%) and average number of iterations for ControlAgent using different base LLMs
across three response modes (fast, moderate, and slow) for first-order stable systems. The highest
ASR and lowest iterations highlighted in bold.

average iteration count shows that feedback is essential for faster convergence. Overall, these find-
ings demonstrate that each component is vital to the robustness and efficiency of ControlAgent.
Figure 6 demonstrates that increasing the maximum number of iterations consistently improvement
in ASR across all response modes (fast, moderate, and slow) for first-order and second-order stable
systems. As the number of iterations increases, ControlAgent has more opportunities to refine its
design, which translates into higher success rates. This trend indicates that allowing more iterations
enhances ControlAgent’s ability to meet control design criteria, particularly for complex scenarios
that may require additional iterations to achieve optimal results.

Results on Different Base LLMs: Table 4 presents the performance of ControlAgent with different
base LLMs, including GPT-4o, Claude-3.5 Sonnet, GPT-4-turbo, Gemini-1.5-pro, and GPT-3.5-
turbo. The results indicate that all state-of-the-art LLMs achieve reasonably good performance,
with most models attaining high ASR values across different response modes. GPT-4o stands out
by achieving a perfect ASR (100%) in all response modes and requiring the fewest iterations in
the moderate mode. Similarly, Claude-3.5 Sonnet and GPT-4-turbo perform competitively; notably,
Claude-3.5 achieves near-perfect ASR and has the lowest iteration count for the fast and slow modes.
Although there is still a performance gap for Gemini-1.5-pro and GPT-3.5-turbo, these findings
suggest that the state-of-the-art LLMs perform similarly, demonstrating that ControlAgent is flexible
and adaptable to a variety of LLM configurations.

7 LIMITATIONS AND FUTURE WORK

In this paper, we introduced ControlAgent, an advanced LLM-powered framework for automated
control system design. Despite the strong performance of ControlAgent across a range of control
tasks, several limitations indicate avenues for future research and enhancement. One primary con-
straint is that the current implementation of ControlAgent is tailored to LTI systems and conventional
control strategies, such as loop-shaping and PID controllers. Future work can expand ControlAgents
capabilities by considering complex nonlinear systems and integrating advanced control strategies,
such as adaptive and robust controllers. Another compelling direction involves utilizing different
base LLMs for distinct roles, leveraging their unique strengths and expertise. For instance, incorpo-
rating fine-tuned, smaller LLMs for specialized tasks within control system design could improve
efficiency and reduce dependence on proprietary models. Finally, the evaluation dataset, ControlE-
val, could be further extended to include more complex control tasks, such as real-world systems and
hardware implementations, providing a more comprehensive assessment of ControlAgent’s practical
utility. We provide more detailed discussions on the future research directions in Appendix A.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In developing ControlAgent, we carefully considered the ethical implications of our work and took
steps to ensure responsible research practices. All experiments were conducted using simulation
environments and synthetic datasets, with no involvement of human subjects, thereby avoiding any
privacy, security, or legal compliance concerns. ControlAgents focus on automated control system
design raises the possibility of its deployment in critical applications, such as industrial automa-
tion, autonomous vehicles, and robotics. Improper use or deployment of AI-driven control systems
in such domains could result in unintended outcomes. To mitigate these risks, we emphasize the
need for rigorous testing, validation, and adherence to established safety standards before applying
ControlAgent to real-world systems.

In terms of transparency and accessibility, the use of proprietary LLMs may limit broader access
and reproducibility. To address this, future work will explore the use of open-source LLMs to
enhance accessibility and facilitate community collaboration. Additionally, since ControlAgents
performance depends on LLMs that could inherit biases from their training data, ongoing research
will focus on mitigating bias and ensuring fairness in control system recommendations. The authors
declare no conflicts of interest or external sponsorship that influenced the findings or interpretations
in this study. Overall, we are committed to developing and applying ControlAgent ethically, with
careful consideration of its societal impact and potential risks.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Detailed descriptions
of the experimental setup, hyperparameters, and configurations are provided in Section 6 of the
main paper and Appendix D. Specifically, the architecture of ControlAgent and the LLM prompt
structures are outlined in Section 4 and Appendix E. We also provide comprehensive descriptions
of the ablation studies and baseline comparisons in Section 6 to aid in reproducing the results. The
dataset used in our experiments, including details on dataset generation and control design criteria,
is thoroughly described in Appendix F. Additionally, our code is available through an anonymized
link for reproducibility check: https://anonymous.4open.science/r/ControlAgent-C5A1/.

REFERENCES

Shadan Alsaqer, Sarah Alajmi, Imtiaz Ahmad, and Mohammad Alfailakawi. The potential of llms
in hardware design. Journal of Engineering Research, 2024.

Brian DO Anderson. Controller design: moving from theory to practice. IEEE Control Systems
Magazine, 13(4):16–25, 1993.

Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design, and technology.
IEEE transactions on control systems technology, 13(4):559–576, 2005.

K. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning. The Instrumentation,
Systems, and Automation Society, 2nd edition, 1995.

Karl Johan Åström and Richard Murray. Feedback systems: an introduction for scientists and
engineers. Princeton university press, 2021.

Ala Eldin Abdallah Awouda and Rosbi Bin Mamat. Refine pid tuning rule using itae criteria. In 2010
The 2nd International conference on computer and automation engineering (ICCAE), volume 5,
pp. 171–176. IEEE, 2010.

J. D. Blight, R. L. Dailey, and D. Gangsaas. Practical control law design for aircraft using multivari-
able techniques. International Journal of Control, 59(1):93–137, 1994.

Stephen P Boyd and Craig H Barratt. Linear controller design: limits of performance, volume 78.
Citeseer, 1991.

Richard B Bramlette and Ronald M Barrett-Gonzalez. Design and flight testing of a convertible
quadcopter for maximum flight speed. In 55th AIAA Aerospace Sciences Meeting, pp. 0243,
2017.

11

https://anonymous.4open.science/r/ControlAgent-C5A1/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Che-Hsu Chang and Kuang-Wei Han. Gain margins and phase margins for control systems with
adjustable parameters. Journal of guidance, control, and dynamics, 13(3):404–408, 1990.

Jayeeta Chaudhuri, Dhruv Thapar, Arjun Chaudhuri, Farshad Firouzi, and Krishnendu Chakrabarty.
Spiced: Syntactical bug and trojan pattern identification in a/ms circuits using llm-enhanced de-
tection. arXiv preprint arXiv:2408.16018, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Richard Dorf and Robert Bishop. Modern Control Systems Global Edition. Pearson Deutsch-
land, 2007. ISBN 9781292152974. URL https://elibrary.pearson.de/book/99.
150005/9781292152981.

John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback control theory. Courier
Corporation, 2013.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

J. Freudenberg and D. Looze. A sensitivity tradeoff for plants with time delay. IEEE Transactions
on Automatic Control, 32(2):99–104, 1987.

J. Freudenberg and D.P. Looze. Right half plane poles and zeros and design tradeoffs in feedback
systems. IEEE transactions on automatic control, 30(6):555–565, 1985.

J.S. Freudenberg and D.P. Looze. Frequency domain properties of scalar and multivariable feedback
systems. Springer, 1988.

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. Improving language model negotiation with
self-play and in-context learning from ai feedback. arXiv preprint arXiv:2305.10142, 2023.

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
Openagi: When llm meets domain experts. Advances in Neural Information Processing Systems,
36, 2024.

Debi Prasad Ghosh and Design Automation Team. Retrieval-augmented generation in engineering
design, 2024.

Carlos Gómez-Rodrı́guez and Paul Williams. A confederacy of models: A comprehensive evaluation
of llms on creative writing. arXiv preprint arXiv:2310.08433, 2023.

Graham Clifford Goodwin, Stefan F Graebe, Mario E Salgado, et al. Control system design, volume
240. Prentice Hall Upper Saddle River, 2001.

Tanishq Gupta, Mohd Zaki, NM Anoop Krishnan, and Mausam. Matscibert: A materials domain
language model for text mining and information extraction. npj Computational Materials, 8(1):
102, 2022.

12

https://elibrary.pearson.de/book/99.150005/9781292152981
https://elibrary.pearson.de/book/99.150005/9781292152981

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hendrik F Hamann, Thomas Brunschwiler, Blazhe Gjorgiev, Leonardo SA Martins, Alban Puech,
Anna Varbella, Jonas Weiss, Juan Bernabe-Moreno, Alexandre Blondin Massé, Seong Choi, et al.
A perspective on foundation models for the electric power grid. arXiv preprint arXiv:2407.09434,
2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Weng Khuen Ho, OP Gan, Ee Beng Tay, and EL Ang. Performance and gain and phase margins
of well-known pid tuning formulas. IEEE Transactions on Control Systems Technology, 4(4):
473–477, 1996.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. ACM Transactions on Software Engineering and Methodology, 2023.

Mengshuo Jia, Zeyu Cui, and Gabriela Hug. Enabling large language models to perform power sys-
tem simulations with previously unseen tools: A case of daline. arXiv preprint arXiv:2406.17215,
2024.

Martin Josifoski, Lars Klein, Maxime Peyrard, Nicolas Baldwin, Yifei Li, Saibo Geng, Julian Paul
Schnitzler, Yuxing Yao, Jiheng Wei, Debjit Paul, et al. Flows: Building blocks of reasoning and
collaborating ai. arXiv preprint arXiv:2308.01285, 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Darioush Kevian, Usman Syed, Xingang Guo, Aaron Havens, Geir Dullerud, Peter Seiler, Lianhui
Qin, and Bin Hu. Capabilities of large language models in control engineering: A benchmark
study on gpt-4, claude 3 opus, and gemini 1.0 ultra. arXiv preprint arXiv:2404.03647, 2024.

JO Krah and C Klarenbach. Fast and high precision motor control for high performance servo drives.
In PCIM Conference, pp. 326–333, 2010.

Benjamin C Kuo. Automatic control systems. Prentice Hall PTR, 1987.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping
Luo. Analogcoder: Analog circuit design via training-free code generation. arXiv preprint
arXiv:2405.14918, 2024.

Olivier Lequin, Michel Gevers, Magnus Mossberg, Emmanuel Bosmans, and Lionel Triest. Iterative
feedback tuning of pid parameters: comparison with classical tuning rules. Control Engineering
Practice, 11(9):1023–1033, 2003.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

Chengjie Liu, Weiyu Chen, Anlan Peng, Yuan Du, Li Du, and Jun Yang. Ampagent: An llm-
based multi-agent system for multi-stage amplifier schematic design from literature for process
and performance porting. arXiv preprint arXiv:2409.14739, 2024a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tao Liu, Xue Z Wang, and Junghui Chen. Robust pid based indirect-type iterative learning control
for batch processes with time-varying uncertainties. Journal of Process Control, 24(12):95–106,
2014.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Rea-
son for future, act for now: A principled architecture for autonomous llm agents. In Forty-first
International Conference on Machine Learning, 2023a.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei Yang, Zuxin Liu, Juntao Tan, Prafulla K
Choubey, Tian Lan, Jason Wu, Huan Wang, et al. Agentlite: A lightweight library for build-
ing and advancing task-oriented llm agent system. arXiv preprint arXiv:2402.15538, 2024b.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023b.

Jiaxing Lu, Heran Li, Fangwei Ning, Yixuan Wang, Xinze Li, and Yan Shi. Constructing mechanical
design agent based on large language models. arXiv preprint arXiv:2408.02087, 2024.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, pp. 1–11, 2024.

Subir Majumder, Lin Dong, Fatemeh Doudi, Yuting Cai, Chao Tian, Dileep Kalathil, Kevin Ding,
Anupam A Thatte, Na Li, and Le Xie. Exploring the capabilities and limitations of large language
models in the electric energy sector. Joule, 8(6):1544–1549, 2024.

GKI Mann, B-G Hu, and RG Gosine. Time-domain based design and analysis of new pid tuning
rules. IEE Proceedings-Control Theory and Applications, 148(3):251–261, 2001.

MathWorks. Control System Toolbox. The MathWorks, Inc., Natick, Massachusetts, United States,
2023. URL https://www.mathworks.com/products/control.html.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Llm agent
operating system. arXiv preprint arXiv:2403.16971, 2024.

M. Morari and E. Zafiriou. Robust Process Control. Prentice Hall, 1989.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

David Nielsen, Stephen SB Clarke, and Krishna M Kalyanam. Towards an aviation large language
model by fine-tuning and evaluating transformers. In 43rd AIAA/digital avionics systems confer-
ence (DASC), 2024.

Norman S Nise. Control systems engineering. John Wiley & Sons, 2020.

Aidan O’dwyer. Handbook of PI and PID controller tuning rules. World Scientific, 2009.

Katsuhiko Ogata. Modern control engineering. Pearson, 2009.

K. Ohnishi. Robust motion control by disturbance observer. Journal of Robotics and Mechatronics,
8(3):218–226, 1996.

Daniel Ossmann, Peter Seiler, Christopher Milliren, and Alan Danker. Field testing of multi-variable
individual pitch control on a utility-scale wind turbine. Renewable Energy, 170:1245–1256, 2021.

Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, Jiawei Han, and Lianhui Qin. Structured
chemistry reasoning with large language models. arXiv preprint arXiv:2311.09656, 2023.

Fabrizio Padula and Antonio Visioli. Tuning rules for optimal pid and fractional-order pid con-
trollers. Journal of process control, 21(1):69–81, 2011.

14

https://www.mathworks.com/products/control.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Rames C Panda. Synthesis of pid tuning rule using the desired closed-loop response. Industrial &
engineering chemistry research, 47(22):8684–8692, 2008.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Souradip Poddar, Youngmin Oh, Yao Lai, Hanqing Zhu, Bosun Hwang, and David Z Pan. In-
sight: Universal neural simulator for analog circuits harnessing autoregressive transformers. arXiv
preprint arXiv:2407.07346, 2024.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 6, 2023.

Daniel E Rivera, Manfred Morari, and Sigurd Skogestad. Internal model control: Pid controller
design. Industrial & engineering chemistry process design and development, 25(1):252–265,
1986.

Shankar Sastry. Nonlinear systems: analysis, stability, and control, volume 10. Springer Science &
Business Media, 2013.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Peter Seiler, Andrew Packard, and Pascal Gahinet. An introduction to disk margins [lecture notes].
IEEE Control Systems Magazine, 40(5):78–95, 2020.

M.M. Seron, J.H. Braslavsky, and G.C. Goodwin. Fundamental limitations in filtering and control.
Springer Science & Business Media, 2012.

Sigurd Skogestad. Probably the best simple pid tuning rules in the world. In AIChE Annual Meeting,
Reno, Nevada, volume 77, pp. 276h. Citeseer, 2001.

Sigurd Skogestad. Simple analytic rules for model reduction and pid controller tuning. Journal of
process control, 13(4):291–309, 2003.

G. Stein. Respect the unstable. IEEE Control Systems Magazine, 23(4):12–25, 2003.

Usman Syed, Ethan Light, Xingang Guo, Huan Zhang, Lianhui Qin, Yanfeng Ouyang, and Bin Hu.
Benchmarking the capabilities of large language models in transportation system engineering:
Accuracy, consistency, and reasoning behaviors. arXiv preprint arXiv:2408.08302, 2024.

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv preprint arXiv:2306.03314, 2023.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng,
Yejin Choi, Thomas L Griffiths, and Faeze Brahman. Thinking out-of-the-box: A comparative
investigation of human and llms in creative problem-solving. In ICML 2024 Workshop on LLMs
and Cognition.

Amalie Trewartha, Nicholas Walker, Haoyan Huo, Sanghoon Lee, Kevin Cruse, John Dagdelen,
Alexander Dunn, Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. Quantifying the ad-
vantage of domain-specific pre-training on named entity recognition tasks in materials science.
Patterns, 3(4), 2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Control Tutorials for MATLAB University of Michigan and Simulink. Aircraft pitch: System
modeling. URL https://ctms.engin.umich.edu/CTMS/index.php?example=
AircraftPitch§ion=SystemModeling.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu. Lan-
guage models meet world models: Embodied experiences enhance language models. Advances
in neural information processing systems, 36, 2024.

Boyan Xu, Liang Wen, Zihao Li, Yuxing Yang, Guanlan Wu, Xiongpeng Tang, Yu Li, Zihao Wu,
Qingxian Su, Xueqing Shi, et al. Unlocking the potential: Benchmarking large language models
in water engineering and research. arXiv preprint arXiv:2407.21045, 2024.

Jian-Xin Xu, Deqing Huang, and Srinivas Pindi. Optimal tuning of pid parameters using iterative
learning approach. SICE Journal of Control, Measurement, and System Integration, 1(2):143–
154, 2008.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Efficient
training of llm policy with divergent thinking. arXiv preprint arXiv:2406.05673, 2024.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

Kemin Zhou and John Comstock Doyle. Essentials of robust control, volume 104. Prentice hall
Upper Saddle River, NJ, 1998.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann,
Kazuki Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language agents as optimizable graphs, 2024.

John G Ziegler and Nathaniel B Nichols. Optimum settings for automatic controllers. Transactions
of the American society of mechanical engineers, 64(8):759–765, 1942.

16

https://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SystemModeling
https://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SystemModeling

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A CONTROLAGENT: FUTURE OUTLOOK

In this section, we explore the future prospects of ControlAgent. We believe that ControlAgent
represents a foundational initial step toward automated control system design using LLMs. Further
research is necessary to expand its capabilities, enabling it to tackle more complex and realistic
control challenges.

A.1 EXPANSION TO NONLINEAR SYSTEMS AND ADVANCED CONTROL STRATEGIES

The current scope of ControlAgent is limited to Linear Time-Invariant (LTI) systems and conven-
tional control strategies, which, although widely used in many industrial applications, restrict its
applicability to a subset of control problems. However, in real-world scenarios, many systems ex-
hibit nonlinear behavior, time-varying dynamics, or other complexities that are not sufficiently cap-
tured by LTI models. Future research should aim to incorporate advanced control strategies, such
as nonlinear control methods (Sastry, 2013) (e.g., Lyapunov control, sliding mode control, back-
stepping, etc.), as well as adaptive and robust control frameworks (Zhou & Doyle, 1998). Expand-
ing ControlAgent to handle these complex dynamics would significantly broaden its applicability
to industries requiring sophisticated control solutions, such as robotics, aerospace, and automo-
tive engineering. Additionally, leveraging the creative potential of LLMs could lead to innovative
control strategies beyond the scope of traditional human-designed approaches (Tian et al.; Gómez-
Rodrı́guez & Williams, 2023).

A.2 MODULAR INTEGRATION OF DIFFERENT LLMS

The architecture of ControlAgent currently relies on a single base LLM for both central LLM agent
and task-specific LLM agent. A promising research direction involves the modular integration of
various LLMs based on their specific expertise. For example, specialized LLMs fine-tuned for
mathematical reasoning, optimization, or control theory could be assigned to different roles within
the overall framework of ControlAgent. This modular approach could leverage smaller, more fo-
cused models to handle niche aspects of control design. In addition, using open-source LLMs for
non-critical tasks would reduce the reliance on proprietary models, making ControlAgent more ac-
cessible and adaptable.

A.3 EXTENDING THE CONTROLEVAL DATASET FOR COMPREHENSIVE VALIDATION

ControlEval includes various control tasks that predominantly feature LTI systems. Extending Con-
trolEval to include more complex tasks, such as real-world control systems and hardware-in-the-loop
simulations, would provide a more robust validation of ControlAgents capabilities. Additionally, in-
cluding scenarios that test the robustness and adaptability of ControlAgent to external disturbances,
model uncertainties, and unmodeled dynamics would further establish its practical utility and readi-
ness for real-world deployment.

B MORE DISCUSSIONS ON RELATED WORK AND CONTROL BACKGROUND

B.1 MORE RELATED WORK

Classic Control Design: PID controllers have been a cornerstone of control system design. The
widespread adoption of PID controllers is attributed to their simplicity, robustness, and effective-
ness in managing a wide range of dynamic systems. Theoretical advancements have focused on
optimizing PID parameters to achieve a desired performance, with methods such as Ziegler-Nichols
tuning rules (Ziegler & Nichols, 1942) providing a heuristic-based starting point for controller tun-
ing. Over the years, a range of adaptive and robust PID tuning techniques have been proposed,
extending the PID controller’s applicability to nonlinear, time-varying, and uncertain systems (Ang
et al., 2005; Åström & Murray, 2021).

Loop shaping is another powerful approach to control system design, rooted in frequency domain
techniques and aimed at shaping the open-loop transfer function to achieve specific performance
and robustness goals (Ogata, 2009). The central idea behind loop shaping is to design controllers

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

that provide sufficient bandwidth, disturbance rejection, and stability margins by directly manipu-
lating the system’s frequency response. Loop shaping approaches use tools like Bode plots to tailor
the system’s gain and phase characteristics (Doyle et al., 2013). The importance of loop shaping
is evident in its continued application across various industrial domains, including process control
(Morari & Zafiriou, 1989), aerospace (Blight et al., 1994), and mechatronics (Ohnishi, 1996), show-
casing its effectiveness in addressing real-world control challenges. Nevertheless, all the existing
control design methods still heavily rely on the domain expertise and human intuition. ControlA-
gent makes an meaningful initial step towards automating the control system design by integrating
LLM agents and human expert knowledge.

LLMs for Engineering Design: LLMs are increasingly being explored across various engineering
domains due to their versatility and capacity for solving complex tasks. In the domain of elec-
tric grids, for instance, GridFM (Hamann et al., 2024) has been introduced as a foundation model
capable of addressing a wide range of challenges, such as power flow estimation, grid expansion
planning, and electricity price forecasting. Similarly, an agent-based framework proposed in (Jia
et al., 2024) leverages techniques such as Chain-of-Thought (CoT) and Retrieval-Augmented Gen-
eration (RAG) to enhance LLMs’ ability to perform power system simulations using previously
unseen tools. In software engineering, LLM4SE (Hou et al., 2023) provides a comprehensive sur-
vey on the application of LLMs in this domain, showcasing their achievements so far while also
identifying open challenges and promising future research directions. For materials science, models
like MatBERT (Trewartha et al., 2022), a variant of the BERT architecture, and MatSciBERT (Gupta
et al., 2022), trained on a vast corpus of materials science literature, have set new benchmarks in
the field. Moreover, Mechanical Design Agent (MDA) (Lu et al., 2024) demonstrates the use of
LLMs for generating CAD models directly from text commands, highlighting advancements in au-
tomated design processes. In aviation, the RoBERT model, fine-tuned for domain-specific tasks, has
achieved an impressive 82.8% accuracy in knowledge tasks (Nielsen et al., 2024), demonstrating the
potential of LLMs in highly specialized fields.

LLM Agents The existing research on LLM-based agents can be categorised into single-agent and
multi-agent systems. The single-agent systems utilize a single LLM for various applications such as
task planning (Ge et al., 2024; Deng et al., 2024), API tool using (Schick et al., 2024; Parisi et al.,
2022; Tang et al., 2023), web browsing (Nakano et al., 2021; Deng et al., 2024), and reasoning (Yao
et al., 2024; Hao et al., 2023; Xiang et al., 2024; Yu et al., 2024; Ouyang et al., 2023). On the other
hand, multi-agent systems such as Generative Agents (Park et al., 2023) simulates human behaviors
by creating a town of 25 agents to study social understanding. CAMEL (Li et al., 2023) employs
role-play techniques to study the behaviors and capabilities of a agents society. Some works ex-
plore the competitive multi-agent systems that involves agents debate, negotiate and competition to
improve its performance in negotiation skills, question-answering (Fu et al., 2023; Du et al., 2023;
Chan et al., 2023; Liang et al., 2023). ChatDev (Qian et al., 2023) developed a chat-powered soft-
ware development framework in which specialized agents driven by large language models (LLMs).

B.2 MORE BACKGROUND ON CLASSIC CONTROL

First, we give a detailed review of various standard control design objectives mentioned in our main
paper.

• Stability: A poorly designed system can cause a system to go unstable, i.e. signals can
grow unbounded. The practical consequence is that the system or device can be destroyed
leading to financial loss or even loss of life. To avoid this, the controller C(s) should be
designed so that the feedback system is stable.

• Fast Reference Tracking: The controller should be designed so that the system output
tracks the desired reference command. This involves various performance metrics but
mainly the system should respond quickly to changes in the reference command.

• Disturbance Rejection: Disturbances d(t) are external signals that affect the plant dynam-
ics. For example, the a car with a cruise control system is affected by forces due to wind
gusts and hills. The controller should be designed so that disturbances have small effect on
tracking, i.e. result in small errors.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Actuator Limits: The input signal generated by the controller should remain within al-
lowable levels. For example the throttle (accelerator) on a car can only move by a certain
amount. The command from the controller must remain within these allowable bounds.

• Noise Rejection: The feedback controller relies on a measurement. It is typically required
that any measurement inaccuracies, e.g. noise, have small effect on tracking. Moreover,
the noise should have a small effect on the control effort.

• Robustness to Model Uncertainty: As noted above, there exist some gaps between the
model used for control design and the true systems that the controller is deployed on. The
controller must be robust, i.e. insensitive, to model errors introduced by such gaps. Model
uncertainty typically includes errors due to parameter variations and unmodeled dynamics.

Next, we review a few control-theoretic concepts that are crucial for classic control design. A fun-
damental requirement in most control engineering applications is closed-loop stability (Goodwin
et al., 2001; Boyd & Barratt, 1991). For an LTI system with a transfer function G(s), it is consid-
ered to be stable if all poles of the transfer function (i.e., the roots of the denominator) have negative
real parts. The closed-loop stability means that the closed-loop transfer function from the reference
signal r(t) to the output signal y(t) has to be stable. In the control language, the sensitivity func-
tion and the complementary sensitivity function are both required to be stable. Mathematically, we
require all the roots of 1 +G(s)C(s) = 0 to have strictly negative real parts.

B.3 PERFORMANCE METRIC: SETTLING TIME

For a stable LTI system, the settling time Ts is the time for the output to converge within ±2%
of the steady-state value given that the input is a step function. Slightly different definitions are
sometimes used, e.g. 5% or 1% settling times. Since PIDtune uses the 2% settling time as default,
we also adopt 2% settling time in our study. The settling time is one main measure for the system
speed of response. A shorter settling time typically indicates a faster response, which is desirable in
many applications where rapid stabilization is critical (e.g., robotics, automotive systems, or process
control). However, excessively fast responses can lead to undesirable side effects, such as overshoot
or instability. Therefore, in ControlEval evaluation benchmark, we introduce three different response
modes (fast, moderate, and slow) for first-order stable systems and second-order stable systems by
requiring the settling time of the designed system within the reasonable predefined range. Currently,
the settling time has been a standard evaluation metric for real control system design, and it can be
effectively calculated through step info command in Python control package.

B.4 PERFORMANCE METRIC: PHASE MARGIN

For a stable LTI system, the phase margin is the amount of allowable variation in the phase of
the plant before the closed-loop becomes unstable, and the gain margin is the amount of allowable
variation in the gain of the plant before the closed-loop becomes unstable. As shown in Figure 4,
phase margin can be determined from Bode plots. Phase margin is typically viewed as the most
important robustness metric for classic control design. Since in real-world systems, phase shifts
may occur due to delays, modeling inaccuracies, or external disturbances. Phase margin quantifies
how much phase lag the system can withstand before instability arises. If the phase margin is too
small (close to 0◦), the system is on the verge of instability and may exhibit oscillatory behavior.
A larger phase margin (e.g., 30◦ to 60◦) typically indicates a more robust and stable system. Phase
margin can be effectively calculated through margin command in Python control package.

B.5 EXACT GUARANTEES IN CONTROLAGENT

To ensure the design of ControlAgent is indeed guaranteed to satisfy the requirements, we have
employed a computation agent to perform exact and accurate evaluations (i.e., settling time and
phase margin) and provide the feedback based on the evaluations for next iteration if the design is not
successful. Therefore, once a design is successful, it has to pass the verification of the computation
agent and the success is guaranteed.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C CONTROLAGENT WITH REAL-LIFE APPLICATIONS

To address the complexity of higher-order system control, we manually designed 50 stable and
unstable higher-order systems along with their associated control requirements for ControlEval. The
design process follows two structured methodologies:

1. Mimicking Real-Life Applications: Starting with the transfer functions of real-life sys-
tems, we designed higher-order systems by beginning with a dominant subsystem (e.g.,
first-order or second-order dynamics). We then introduced additional poles faster than the
dominant poles to simulate higher-order dynamics such as unmodeled or negligible dynam-
ics.

2. Diverse Pole Configurations: In this setting, we included systems where no single pole is
dominant, achieved by randomly sampling pole positions such that all poles significantly
contribute to the system’s behavior. In this case, human experts ensured that the resulting
systems remained controllable and adhered to practical design requirements, such as there
existing a controller for the designed system to achieve desired settling time and phase
margin.

This dual design approach ensures that the higher-order systems in ControlEval are representative
of a wide range of real-world applications. To further enhance ControlEval’s representativeness,
we have added a new category of 10 higher-order tasks derived from real-life application contexts
along with their evaluation results in Section C.1. Additionally, we apply the ControlAgent to imple-
ment a controller for an actual hardware system (DC motor) C.2, showcasing how the ControlAgent
successfully meets hardware requirements and facilitates effective controller design.

C.1 CONTROLAGENT WITH REAL-LIFE APPLICATIONS

To demonstrate the practical utility of ControlAgent in real-world applications, we present ten rep-
resentative dynamical systems. The models for these systems are sourced from existing literature,
with detailed descriptions available in the respective references. The design specifications for these
systems are generated randomly, guided by established heuristics commonly used in control system
design. These heuristics include 50o ≤ PM ≤ 90o and nominal settling time obtained from the
system parameters such as damping ratio and natural frequency. We have tested the ControlAgent
for the following practical systems 3:

1. Laser Printer Positioning system (Dorf & Bishop, 2007): A laser printer prints using
the precise position control of a laser onto the printing surface based on the input from
the computer. The system dynamics for the laser printer position control is specified as
follows:

T (s) =
4(s+ 50)

s2 + 30s+ 200
Given the nature of the application, the reasonable design specs needs to be very demand-
ing. In our study, we use the settling time, Ts ≤ 0.36 and minimum phase margin of
74.24o.

2. Space Station Orientation Control system (Dorf & Bishop, 2007): The space station
orientation control system can be modeled as a second order system given as follows:

T (s) =
20

s2 + 20s+ 100

The design requirements were set at 76.22o as minimum phase margin and Ts ≤ 0.64.
3. Vehicle Steering Control system (Dorf & Bishop, 2007): One of the most commonly

utilized system in real-world is the vehicle steering control problem. The vehicle steering
control system can be represented as follows:

T (s) =
1

s(s+ 12)

3The dynamical systems for different real-life applications are scaled in different time units, the exact set-
tling time unit for each dynamical system can be found in the corresponding references.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The safety critical nature of this system requires a robust design specifications and fast
response resulting in the minimum phase margin requirement of 56.98o and settling time
Ts ≤ 0.58.

4. Antenna Azimuth Control system (Nise, 2020): Often times large antennas are deployed
to receive satellite signals and they must accurately track the satellite as it moves across the
sky. One such system can be modeled as follows:

T (s) =
20.83

s2 + 101.7s+ 171

with the required design specification given by a minimum phase margin of 82.95o to en-
sure stability to disturbances such as wind gusts along side a reasonable settling time re-
quirement of Ts ≤ 1.57.

5. Autonomous Submersible Control system (Kuo, 1987): The depth control system for an
autonomous underwater vehicle is modeled as follows:

T (s) =
−0.13(s+ 0.44)

s2 + 0.23s+ 0.02

The settling time requirements for such systems falls under the category of slow systems
reported in this work. The controller design specs for this system were Ts ≤ 41.49 and the
minimum phase margin of 69.49◦.

6. Aircraft Pitch Control System (University of Michigan & Simulink): The pitch dynam-
ics of a commercial Boeing aircraft are given by the following transfer function:

T (s) =
1.151s+ 0.1774

s3 + 0.739s2 + 0.921s

The commercial aircraft is stable by design and thus typically falls in the category of large
settling times. The design requirements are thus selected to be Ts ≤ 33.58 and the mini-
mum phase margin of 53.92◦.

7. Missile yaw control system (Dorf & Bishop, 2007): The yaw acceleration control system
for a bank-to-turn missile is given by the following transfer function:

T (s) =
−0.5(s2 + 2500)

(s− 3)(s2 + 50s+ 1000)

The design requirements are thus selected to be Ts ≤ 3.95 and the minimum phase margin
of 63.43◦.

8. Helicopter Pitch Control system (Dorf & Bishop, 2007): The dynamics of a helicopter
control system that utilizes an automatic control loop alongside a pilot stick control is given
as follows:

T (s) =
25(s+ 0.03)

(s+ 0.4)(s2 − 0.36s+ 0.16)

The design specifications use for the pitch control are Ts ≤ 30.36 and the minimum phase
margin of 66.81◦.

9. Speed Control of a Hard Disk Drive: In a hard disk drive, data is stored in tracks on
spinning magnetic disks. A voice coil motor (VCM) moves the read/write head to the
desired track and maintains its position during read/write operations. The dynamic behavior
of the system, from the voltage input u to the position y of the read/write head relative to
the track center, can be approximated by the following fourth-order transfer function:

T (s) =
−0.1808s4 − 0.5585s3 + 0.4249s2 − 8.625s+ 135.1

s4 + 0.2046s3 + 8.932s2 + 0.1148s+ 0.007285

The design specifications use for the hard disk drive control are Ts ≤ 88.11 and phase
margin larger than 52.22◦.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Methods Success Rate (SR, %)

Zero-shot 10
Zero-shot CoT 0
Few-shot 20
Few-shot CoT 0
PIDtune 50
ControlAgent 100

Table 5: Success Rate (SR, %) of baseline methods and ControlAgent on the real-world systems.
The best result is highlighted in bold. The results show that ControlAgent outperforms all other
LLM-based and toolbox-based baselines, demonstrating its effectiveness and robustness in handling
diverse real-world systems.

10. High speed train control system (Dorf & Bishop, 2007): Consider a high speed train
similar to the French Train á Grande Vitesse (TGV) which speeds up to 186 miles per hour.
In order to achieve such high speeds on tight curves, it uses a tilt control mechanism. The
transfer function of the tilt mechanism is given as follows:

T (s) =
12

s(s+ 10)(s+ 70)

with the desired specifications for its control given by the settling time Ts ≤ 2.08 and a
minimum phase margin of 74.40o.

C.2 CONTROLAGENT WITH HARDWARE IN THE LOOP

The usage of the ControlAgent is further demonstrated by its practical application for the position
control of a DC motor. We consider the following nominal model of the DC motor:

T (s) =
K

s ((Las+Ra)(Js+ b) +KτKv)

where the nominal values for these parameters can be found in Table 6.

Parameter K Kτ Kv La Ra J b

Value 0.2036 0.0533 0.0533 0.000975 4.465 0.0001227 0.00005

Table 6: Parameter values for DC motor model.

We provide a nominal third order model of the motor to ControlAgent along with the design specs of
Ts ≤ 1.2 4 and PM of 55o to design a feasible loop shaping PID controller for the motor. Utilizing
the iterative procedure, ControlAgent outputs the loop gains for a successful design. The proposed
controller in then passed to the interface module which utilizes Matlab and Simulink frameworks
to deploy the controller to the physical motor. The interface module simultaneously deploys the
controller and also collects the feedback in real time thus achieving a hardware in loop architec-
ture, an industry standard procedure for designing controllers for real world systems. The complete
framework and the DC motor setup is represented in Fig. 7.

A performance comparison of the controllers generated by ControlAgent and the PIDTune baseline
as well as the LLM based baselines was carried out for the DC motor setup. Given the motor model
and the design specification of settling time and phase margin, the only controller competitive to the
ControlAgent was generated by the PIDTune framework. The ControlAgent based controller results
in the overshoot of 7.49% and the settling time of Ts = 1.1253 against the overshoot of 7.342% and
Ts = 3.0093 for the PIDTune based controller. Clearly, the PIDTune generated controller fails to
meet the design requirement for the settling time Ts.

A comparison of the trajectory tracking performance is showcased in Fig. 8. Here it is important to
note that ControlAgent generated the desired controller without any additional information whereas

4For DC motor, the unit for the settling time is in second.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Hardware System:
DC motor and user

requirements:
!! ≤ #. %	'(),+" ≥ -.#

DC MotorControlAgent

DC motor

(a): ControlAgent with DC motor in real-life application

(b): DC motor at Lab

Figure 7: Implementation of ControlAgent on DC Motor Setup.

in case of PIDTune, in order to achieve a reasonable performance, we additionally provided the
crossover frequency of the system. Here, we supplied the same crossover frequency to PIDTune as
used by the ControlAgent loopshaping procedure. Additionally, observe that the real-world systems
such as the DC motor does suffer from sensor noise issues as evident from the zoom-in of the motor
trajectories in Fig. 8. A comparison of the control inputs generated by ControlAgent and PIDTune
is provided in Fig. 10 which suggests that the control input computed by the two approaches re-
mains with-in the saturation bounds and are comparable for the two controllers. A comparison of
the feasible controllers generated by LLM based baselines is provided in Fig. 9. Clearly, none of the
baselines managed to produce a controller that meets the design specifications. All the baselines not
only fail the settling time requirements but also results in significant steady-state errors. This com-
parative study thus effectively highlight the usefulness of ControlAgent for real-world applications.

D MORE ON EXPERIMENTAL STUDY

D.1 MORE ON THE EXPERIMENTAL SETUP

LLM-based Baselines. We evaluate four LLM-based baseline approaches: zero-shot prompting,
zero-shot Chain-of-Thought (CoT), few-shot, and few-shot CoT. For the few-shot baselines, we
provide two demonstration examples tailored to the specific task type. For instance, in the case of
first-order unstable system design, the few-shot setting includes two examples demonstrating suc-
cessful controller designs for unstable first-order systems, along with the associated control design
criteria. In the few-shot CoT setting, we further include detailed reasoning steps to illustrate the
process of designing a successful controller for the given demonstration examples. A complete
example of the few-shot CoT prompt is provided in Appendix E.2. All LLM-based baselines are
implemented using GPT-4o, with model hyperparameter settings detailed in Table 7.

Control Toolbox-based Baseline. We use the widely employed control design toolbox PIDtune
as a baseline, which provides various settings for tuning PID controllers for linear and higher-order

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 8: Comparison of ControlAgent with the baselines for the position control of DC Motor:
ControlAgent vs the PIDTune baseline.

Figure 9: Comparison of ControlAgent with the baselines for the position control of DC Motor:
ControlAgent vs the LLM based baselines.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Voltage inputs for ControlAgent and PIDTune

systems. To ensure a fair comparison, we incorporate control domain knowledge to specify appro-
priate inputs, such as phase margin and crossover frequency, to PIDtune, enabling it to achieve the
desired control design criteria in a single step. Specifically, we use two distinct configurations to
establish PIDtune as a baseline:

For first and second-order systems (both stable and unstable), PIDtune is configured with the desired
phase margin and open-loop crossover frequency. The phase margin is directly derived from the task
requirements, while the crossover frequency is determined as C/Ts, where C ∈ [3, 5] is a constant,
and Ts is the required settling time. For each trial, C and Ts are randomly sampled within their
specified ranges to align with the design specifications.

For higher-order systems, the relationship between the crossover frequency and the settling time Ts

is not clear in general. As a result, only the phase margin requirement is supplied to PIDtune to
optimize the PID gains.

Parameter Setup for ControlAgent. In ControlAgent, the maximum number of iterations is con-
figured based on the difficulty of the task. For relatively straightforward tasks, such as stable first-
order and stable second-order systems, the maximum number of iterations is set to 10. For more
challenging tasks, including first-order systems with delay, unstable first-order systems, and unsta-
ble second-order systems, the maximum iteration count is increased to 20. Finally, for the most
difficult tasks, such as higher-order systems, the maximum number of iterations is set to 30 to allow
for additional refinement and ensure that the desired control criteria are met.

LLM hyperparameters. Table 7 presents the hyperparameter settings used for each LLM model
in this study, including model versions, temperature settings, and maximum token limits.

D.2 EVALUATION METRIC

Average Successful Rate Suppose for each control task, our evaluation dataset consists of N
sample systems and the associated predefined criteria, such as stability, phase margin, settling time.
Let Si,j denote the outcome of the j-th trial for the i-th system, where Si,j = 1 if the design is

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Model Hyperparameters

GPT-4o model = gpt-4o-0806, temperature = 0, max tokens = 1024

GPT-4-turbo model = gpt-4-turbo, temperature = 0, max tokens = 1024

GPT-3.5-turbo model = gpt-3.5-turbo-0125, temperature = 0, max tokens = 1024

Claude-3.5 model = claude-3-5-sonnet-20240620, temperature = 1, max tokens = 1024

Gemini Pro 1.5 model = gemini-1.5-pro, temperature = 1, max tokens = 8192

Table 7: Hyperparameter configurations for each LLM model used in this study.

successful and Si,j = 0 otherwise. The averaged successful rate for trial j is computed as

ASRj =
1

N

N∑
i=1

Si,j ,

and the overall ASR across all T trials is given by

ASR =
1

T

T∑
j=1

Sj .

This metric provides insight into the average performance of the controller design over multiple
trials for each system, reflecting its consistency.

Aggregate Successful Rate This metric evaluates success on a system-by-system basis, where a
system is considered successfully designed if at least one of the T independent trials results in a
successful design. Specifically, the aggregated success for system i is:

AgSRi =

{
1 if

∑T
j=1 Si,j > 0,

0 otherwise .
(3)

The overall AgSR across all systems is then computed as

AgSR =
1

N

N∑
i=1

AgSRi.

This metric is generally higher than the ASR since it only requires one successful trial per system
for the entire system to be considered a success. It reflects the best controller design for each system,
providing a more lenient evaluation of the controllers overall performance.

In the experimental study, for each control task, we have N = 50 and we ran each control tasks for
five trails (T = 5) for both ControlAgent and baseline methods.

Metric pass@k To provided a more robust evaluations metric, we employed pass@k metric in-
troduced in (Chen et al., 2021). Specifically, we ran ControlAgent n ≥ k trials per task, count the
successful designs c ≤ n which satisfy the pre-defined requirements, and calcualte the following
unbiased estimator:

pass@k := Etrials

[
1−

(
n−c
k

)(
n
k

)]
. (4)

In this work, we choose n = 5 and k = {1, 3, 5}. Noticing that when k = n, this metric is the same
the AgSR metric defined above.

D.3 MORE DETAILS ON THE MEMORY MODULE

In ControlAgent, we address these limitations by selectively storing and providing only the essential
historical information to the LLMs. Specifically, we retain key data such as design parameters,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 1: Iterative Controller Design Process of ControlAgent
Input: User requirementsR, Maximum iterations Nmax
Output: Designed controller C
Initialize memory buffer:M← ∅;
Initialize feedback: F0 = {};
Task Assignment: Ac assigns the task to Aspec based onR: Aspec ← AssignTask(Ac,R)
for k = 1 to Nmax do

Generate input prompt: Pk ← GenPrompt(Espec,R,M,Fk−1);
LLM agent generates controller: Ck ← Aspec(Pk);
Update memory buffer:M←M∪ {Ck};
Python agent Ap evaluates Ck and computes performance Pk;
if Pk satisfies R then

return Successfully designed controller Ck;
else

Generate feedback: Fk ← GenFeedback(Pk, R);

return No successful controller is found;

performance metrics, and feedback from previous iterations, while excluding unnecessary details
from the LLMs responses. This ensures that the memory buffer remains compact and efficient. For
example, here is an illustration of two historical designs stored in the memory buffer for one specific
task:

ControlAgent Memory Module Demonstration

Design 1
Parameters: omega L=5.5, beta b=3.162, beta l=3.162
Performance: phase margin=15.89, settling time = 3.20, steadystate error=0.0
Feedback: Phase margin should be at least 52.82 degrees.

Design 2
Parameters: omega L=6.5, beta b=4.0, beta l=4.0
Performance: phase margin=30.06, settling time=3.60, steadystate error=0.0
Feedback: Phase margin should be at least 52.82 degrees.

Only the above summarized history is fed into the LLM for the next iteration. This strategy allows
the LLM to focus on refining the design based on the key feedback and performance metrics, without
exceeding the context window limitations. From our observations, this approach effectively prevents
context window overflow while maintaining the iterative design process. Additionally, it ensures
memory efficiency by retaining only the critical information required to improve upon previous
designs.

D.4 MORE EXPERIMENTAL RESULTS

D.4.1 CONTROLAGENT WITH OPEN-SOURCE MODEL

In this section, we evaluate the performance of ControlAgent on a more accessible open source
LLM backbone, Llama-3.1-70b (Dubey et al., 2024). In particular, we implemented ControlAgent
with Llama-3.1-70b on four tasks: first-order stable systems with fast, moderate, and slow response
modes, and another harder control problem with higher-order system design. We report pass@k
with k = {1, 3, 5} and the average number of iterations per task in Table 8.

From Table 8, it can be seen that ControlAgent with Llama-3.1-70b is also effective for simpler, first-
order control tasks but faces challenges with more complex, higher-order systems. The pass@1 rate
is only 0.300, indicating that the model struggles to solve the problem on the first attempt. The
pass@3 and pass@5 rates improve to 0.446 and 0.480, respectively, but still remain below 50%,
suggesting that the task is considerably more challenging for the model.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

System Type 1st-ord stb fast 1st-ord stb moderate 1st-ord stb slow Hgr-ord

pass@1 0.927 1.000 0.996 0.300
pass@3 1.000 1.000 1.000 0.446
pass@5 1.000 1.000 1.000 0.480
iteration # 3.053 2.016 2.824 24.5

Table 8: Performance of ControlAgent with Llama-3.1-70b.

In addition, the average number of iterations required for first-order stable systems is relatively low,
with moderate response mode requiring the fewest iterations (2.016), followed by slow (2.824) and
fast (3.053). In contrast, the higher-order system requires a significantly higher average number of
iterations (24.5), reflecting the increased complexity and difficulty of the task.

The results suggest that while the ControlAgent with Llama-3.1-70b performs well on simpler, first-
order stable systems, it struggles with more complex, higher-order control problems. This indicates a
performance gap between Llama-3.1-70b and current state-of-the-art models such as GPT-4o, which
may be more adept at handling such complex tasks.

D.4.2 EVALUATION RESULTS WITH METRIC pass@k

In this section, we report the metric pass@k with k = {1, 3, 5} of ControlAgent with GPT-4o as the
LLM backbone. The results are shown in Table 9.

System Type 1st-ord stb 2nd-ord stb 1st-ord ustb 2nd-ord ustb w/ dly Hgr-ord

Response Mode fast moderate slow fast moderate slow (-) (-) (-) (-)

pass@1 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.97 0.82
pass@3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.95
pass@5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96

Table 9: Metric pass@k of ControlAgent with GPT-4o as LLM backbone.

It can be seen that ControlAgent is able to achieve high pass@k rates, even for complex tasks,
highlights its robustness and effectiveness in handling diverse control problems.

D.4.3 MORE RESULTS ON THE ITERATION NUMBER

In Table 10, we present the average number of iteration number (sample size) for each type of control
problem:

System Type 1st-ord stb 2nd-ord stb 1st-ord ustb 2nd-ord ustb w/ dly Hgr-ord

Response Mode fast moderate slow fast moderate slow (-) (-) (-) (-)

iteration # 2.74 1.78 2.19 2.37 2.64 3.72 3.90 5.72 9.91 9.56

Table 10: Metric pass@k of ControlAgent with GPT-4o as LLM backbone.

The results in Table 10 provide an estimate of the sample efficiency of ControlAgent. It is evident
that ControlAgent demonstrates considerable efficiency across all control problems, with fewer than
10 iterations required on average.

D.4.4 MORE RESULTS ON THE ROBUSTNESS OF CONTROLAGENT

ControlAgent addresses uncertainty through the core design principle via loop-shaping. To demon-
strate this, we evaluated the disk margins of the designed controllers from ControlAgent. Disk mar-
gins provide a comprehensive robustness measure by simultaneously addressing both gain margin
and phase margin uncertainties, encapsulating the effects of non-parametric unmodeled dynamics
(Seiler et al., 2020). These margins are particularly suitable for ensuring robust performance under
a wide range of operating conditions.

Table 11 demonstrates the averaged disk margins (including gain margins and phase margins) for
controllers designed by ControlAgent, showing robust stability across various control problems.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

System Type Disk Margin Phase Margin Gain Margin

1st-ord stb fast 1.6184 ± 0.0238 [-77.7608, 77.7608] [0.1074, Inf]
1st-ord stb moderate 1.9833 ± 0.0046 [-89.4855, 89.4855] [0.0045, Inf]
1st-ord stb slow 2 ± 0 [-90, 90] [0, Inf]
2nd-ord stb fast 1.2553 ± 0.0255 [-63.9961, 63.9961] [0.2317, 4.6367]
2nd-ord stb moderate 1.2852 ± 0.0304 [-65.1729, 65.1729] [0.2211, 4.9703]
2nd-ord stb slow 1.4498 ± 0.0134 [-71.7560, 71.7560] [0.1609, 6.5571]
1st-ord ustb 1.0695 ± 0.0976 [-55.3823, 55.3823] [0.3157 4.4090]
2nd-ord ustb 0.9646 ± 0.0257 [-51.2628, 51.2628] [0.3532, 2.9645]
w/ dly 0.6628 ± 0.2021 [-35.2660, 35.2660] [0.5492, 2.3591]
Hgr-ord 1.1058 ± 0.0693 [-56.8894, 56.8894] [0.3014, Inf]

Table 11: Disk Margin ControlAgent.

These results show that ControlAgent maintains adequate robustness margins even under varying
conditions, reinforcing its capability to handle non-parametric uncertainties effectively.

D.4.5 FAILURE MODES ANALYSIS

In this section, we identified several failure modes in ControlAgent for higher-order system design,
each revealing challenges in reasoning and parameter adjustment strategies:

1. Calculation Errors: One notable failure occurred with a marginally unstable system fea-
turing a double integrator. The LLM incorrectly calculated the minimum loop bandwidth
as ”The fastest unstable pole is at 0, so we initially chose ωL = 2.5 × 0 = 2.5.” This
calculation was incorrect and did not align with proper design principles.

2. Incomplete Parameter Adjustments: The LLM often adjusted only two parameters (ωL

and βl), neglecting βb, which is crucial for balancing the settling time and phase margin.
For example, in one design, the final parameters were ωL = 60, βb = 0.8, and βl =
1000, with βb remaining unchanged throughout iterations. This limited adjustment scope
hindered optimal design.

3. Hallucination Errors: Another failure involved misidentifying the dominant pole. In one
instance, the LLM incorrectly identified -50 as the dominant pole instead of the actual
dominant poles at −2.1 ± 2.142: ”The poles at -50 and −2.1 ± 2.14242853j suggest a
relatively fast response due to the dominant pole at -50.” This misunderstanding led to
incorrect design decisions.

These examples highlight key areas where the LLM’s reasoning and parameter optimization strate-
gies need improvement. Addressing these failure modes is a priority for future iterations of the
framework.

D.4.6 MORE RESULTS ON AGSR

Table 12 shows the AgSR of ControlAgent and various baseline methods on the ControlEval bench-
mark. The best results for each task are highlighted in bold. Our key observations are given below.

ControlAgent consistently outperforms all baseline methods. ControlAgent achieves signifi-
cantly higher AgSR across all control tasks compared to both LLM-based and traditional toolbox-
based baselines. This superior performance is evident not only for simpler first-order and second-
order stable systems but also for more complex cases, such as unstable and higher-order systems.
While PIDtune performs well for first-order and second-order stable systems, as well as first-order
systems with time delay, it struggles in more challenging scenarios like first-order unstable, second-
order unstable, and higher-order systems. In these cases, ControlAgent’s effectiveness becomes
more apparent, especially as the complexity of the problem increases.

Its important to note that because of the inherent randomness in the answers generated by LLMs,
individual runs of ControlAgent may yield different outcomes. However, when looking at aggregate
results across multiple iterations, ControlAgent achieves 100% success across all design problems
except for higher-order systems, where it still achieves an impressive 96%. While this falls short
of 100%, it is a significantly better result than any other toolbox-based method and LLM-based
baselines, and given the difficulty of higher-order system design, this accuracy is very promising.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

System Type 1st-ord stb 2nd-ord stb 1st-ord ustb 2nd-ord ustb w/ dly Hgr-ord

Response Mode fast moderate slow fast moderate slow (-) (-) (-) (-)

Zero-shot 36.0 56.0 32.0 36.0 46.0 26.0 14.0 2.0 48.0 6.0
Zero-shot CoT 66.0 12.0 2.0 34.0 48.0 40.0 14.0 2.0 38.0 24.0
Few-shot 32.0 58.0 50.0 44.0 38.0 38.0 28.0 52.0 36.0 28.0
Few-shot CoT 36.0 66.0 68.0 26.0 40.0 60.0 18.0 62.0 60.0 36.0
PIDtune 94.0 100.0 100.0 98.0 100.0 100.0 68.0 42.0 100.0 50.0
ControlAgent 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.0

Table 12: AgSR (%) of baseline methods and ControlAgent.

D.4.7 ASR VS ASGR

In Figure 11, we present the ASR and AgSR results for ControlAgent and other baseline methods
across first-order and second-order stable systems. ControlAgent consistently outperforms all other
methods in both ASR and AgSR metrics. While PIDTune delivers results comparable to ControlA-
gent in these cases, all other methods show significantly lower ASR values. However, their AgSR
is noticeably higher than their ASR, which can be attributed to the inherent randomness in LLM-
generated responses. This highlights the benefit of aggregate success, where the variability of LLM
outputs improves performance over multiple iterations.

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

Su
cc

es
sf

ul
 R

at
e

(%
)

First-order Stable Systems Second-order Stable Systems

Figure 11: ASR and AgSR for different methods on first-order and second-order stable systems
(averaged successful rate for three response speed types).

As we shift to more challenging unstable systems, Figure 12 further illustrates ControlAgent’s in-
creasing effectiveness. In these cases, the performance of the other methods declines sharply com-
pared to their results on stable systems, as the complexity of the control design increases. Inter-
estingly, this is where the limitations of randomness in LLMs become evidentboth ASR and AgSR
remain low for other methods, as even multiple iterations fail to improve their performance mean-
ingfully. In contrast, few-shot-cot outperforms PIDTune in these harder scenarios, showcasing the
potential of in-context learning when dealing with complex control tasks.

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

Su
cc

es
sf

ul
 R

at
e

(%
)

First-order Unstable Systems Second-order Unstable Systems

Figure 12: ASR and AgSR for different methods on first-order and second-order unstable systems
(averaged successful rate for three response speed types).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

In Figure 13, we examine first-order systems with delay and higher-order systems. For the first-
order systems with delay, the performance trends mirror those of stable systems, with ControlAgent
and PIDtune maintaining their strong lead. However, for higher-order systems, the accuracy of all
methods, except ControlAgent, drops significantly. Despite the increased complexity of higher-order
systems, ControlAgent continues to demonstrate impressive performance, highlighting its ability to
handle even the most difficult control design problems. This underscores ControlAgent’s robustness
and adaptability, making it a clear leader among the tested methods.

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

ControlAgent
Zero-Shot

Zero-Shot CoT
Few-Shot

Few-shot CoT
PIDTune

Su
cc

es
sf

ul
 R

at
e

(%
)

First-order with Delay Systems Higher-order Systems

Figure 13: ASR and AgSR for different methods on first-order with delay and higher order systems.

D.5 GAIN MARGIN CONSIDERATION

It is also important to highlight that control design can be evaluated using various metrics, with set-
tling time and phase margin being two of the key ones we used. In this section, we further explore
the effectiveness of ControlAgent by evaluating another important robustness metric: gain margin.
For this analysis, we focus on comparing the designs produced by ControlAgent and PIDtuneour
two best-performing methodsboth of which already satisfy the settling time and phase margin re-
quirements. We then examine how well their designs perform in terms of gain margin.

Typically, a good control design should have a gain margin within ±6 dB to ensure robustness
against model uncertainty. As shown in Table 14, ControlAgent consistently outperforms PIDtune
across nearly all scenarios, with the only exception being the first-order system with time delay. No-
tably, when comparing Table 14 with Table 2, we observe an interesting trend: every ControlAgent
design that meets the settling time and phase margin requirements also inherently satisfies the gain
margin criterion. This is a crucial result, as gain margin is typically another requirement that control
engineers strive to achieve for robust designs.

In contrast, PIDtune’s performance drops significantly when evaluated by gain margin, especially in
more complex systems such as unstable and higher-order systems. This widening performance gap
underscores ControlAgent’s superior ability not only to meet the basic design requirements but also
to inherently balance robustness, making its designs more resilient to model uncertainties.

System Type 1st-ord stb 2nd-ord stb 1st-ord ustb 2nd-ord ustb w/ dly Hgr-ord

Response Mode fast moderate slow fast moderate slow (-) (-) (-) (-)

PIDtune 56.0 90.4 86.4 65.2 54.8 75.2 0.0 0.0 100.0 16.0
ControlAgent 100.0 100.0 100.0 100.0 98.8 90.8 97.2 96.8 97.2 82.0

Table 14: ASR of PIDtune and ControlAgent on ControlEval for various system types with gain
margin as an extra requirement.

D.6 EVOLUTION OF CONTROLAGENT DESIGN

In this subsection, we analyze how ControlAgent’s performance evolves over iterations to achieve
the desired design. Figure 14 illustrates the simplest case, where ControlAgent is tasked with con-
trolling first-order stable systems. Initially, all three response modes experience substantial settling
time errors. However, these errors decrease rapidly, particularly in the slow scenario, which is the
easiest to manage. This is because a slower system response reduces sensitivity to phase margin

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

violations, making it easier to meet performance requirements. The moderate scenario, however,
requires a few additional iterations to reach the design objectives. As shown in the right plot of
Figure 14, the fast scenario presents the most challenge, with a significant phase margin error early
on. However, as the iterations progress, ControlAgent successfully reduces both the phase margin
and settling time errors, demonstrating its ability to optimize system performance even in scenarios
where there is a clear trade-off between performance and robustness.

2 4 6 8 10
Number of Iteration

10 2

10 1

100

101

102

103

Se
ttl

in
g

Ti
m

e
Er

ro
r (

%
)

2 4 6 8 10
Number of Iteration

10 3

10 2

10 1

100

Ph
as

e
M

ar
gi

n
Er

ro
r (

%
)

First-order Stable Systems
Fast Moderate Slow

Figure 14: The behavior of ControlAgent across iterations for first-order stable systems. The left
figure shows the change in settling time error, while the right figure tracks the phase margin error,
both improving over iterations.

For each scenario, the design requires that the settling time Ts falls within a specified range, Ts ∈
[Tsmin

, Tsmax
], and that the phase margin ϕ meets or exceeds a minimum threshold, ϕ ≥ ϕmin.

During each iteration, if the settling time is within this range, the steady-state error is set to zero.
Similarly, if the designed phase margin exceeds the required minimum, the phase margin error is set
to zero. However, if the designed settling time Ts exceeds Tsmax

, the steady-state error is computed
as:

Settling Time Error (%) =
Ts − Tsmax

tsmax − Tsmin

× 100

Conversely, if the settling time is below Tsmin
, the error is calculated as:

Settling Time Error (%) =
Tsmin

− Ts

Tsmax
− Tsmin

× 100

If the designed phase margin falls below ϕmin, the phase margin error is determined as:

Phase Margin Error (%) =
ϕ− ϕmin

ϕmin
× 100

Moving on to more complex systems, Figure 15 shows how ControlAgent’s performance evolves
when dealing with first-order unstable systems. In this case, both steady-state and phase margin
errors start out large but gradually decrease as the agent iterates. Since unstable systems are more
difficult to design for, ControlAgent is given up to 20 iterations to find a solution. This extended
process highlights the agents ability to progressively refine system performance and robustness, im-
proving both settling time and phase margin simultaneously, even in more challenging environments.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

2 4 6 8 10 12 14 16 18 20
Number of Iteration

100

101

102
Se

ttl
in

g
Ti

m
e

Er
ro

r (
%

)

2 4 6 8 10 12 14 16 18 20
Number of Iteration

10 2

10 1

100

101

Ph
as

e
M

ar
gi

n
Er

ro
r (

%
)

First-order Unstable Systems

Figure 15: The behavior of ControlAgent across iterations for first-order unstable systems. The left
figure shows the change in settling time error, while the right figure tracks the phase margin error,
both improving over iterations.

The complexity increases further when ControlAgent tackles second-order stable systems, as shown
in Figure 16. In the fast scenario, while the agent reduces settling time error within the first four it-
erations, this comes at the cost of a temporary increase in phase margin error, reflecting the trade-off
between performance and robustness. However, with additional refinement, ControlAgent manages
to bring the phase margin back within acceptable limits while still maintaining system performance.
A similar trend is seen in the moderate scenario. However, unlike with first-order stable systems,
the slow scenario poses the greatest challenge for second-order systems.This is because slower dy-
namics, while generally making a system more stable, reduce the systems responsiveness to control
inputs. As a result, the system can become less robust over time, making it harder for the controller
to maintain the required phase margin.

2 4 6 8 10
Number of Iteration

10 1

100

101

102

Se
ttl

in
g

Ti
m

e
Er

ro
r (

%
)

2 4 6 8 10
Number of Iteration

10 2

10 1

100

Ph
as

e
M

ar
gi

n
Er

ro
r (

%
)

Second-order Stable Systems
Fast Moderate Slow

Figure 16: The behavior of ControlAgent across iterations for second-order stable systems. The left
figure shows the change in settling time error, while the right figure tracks the phase margin error,
both improving over iterations.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E PROMPT DESIGN

E.1 FULL PROMPTS FOR CONTROLAGENT

In this section, we provide the full prompt for ControlAgent, including the prompt for central agent
to distribute the control tasks and a sample prompt for the task-specific agent for designing con-
trollers of first-order stable system.

Central Agent Prompt

You are an expert control engineer tasked with analyzing the provided control task and as-
signing it to the most suitable task-specific agent, each specializing in designing controllers
for specific system types.

First, analyze the dynamic system to identify its type, such as a first-order stable system,
second-order unstable system, first-order with time delay, higher-order system, etc. Based
on this analysis, assign the task to the corresponding task-specific agent that specializes in
the identified system type.

Here are the available task-specific agents:

- Agent 1: First-order stable system

- Agent 2: First-order unstable system

- Agent 3: Second-order stable system

- Agent 4: Second-order unstable system

- Agent 5: First-order system with time delay

- Agent 6: Higher-order system

Ensure the selected agent can effectively tailor the control design process.

Central Agent Response Instruction

Response Instructions:

Your response should strictly follow the JSON format below, containing three keys: ’Task
Requirement’ and ’Task Analysis’, and ’Agent Number’:
- Task Requirement: Summarize the task requirements, including the system dynamics and
performance criteria provided by the user.
- Task Analysis: Provide a brief analysis of the system and justify the selection of the task-
specific agent.
- Agent Number: Specify the task-specific agent number (choose from 1 to 6).
Example of the expected JSON format:

{
"Task Requirement": "[Summarize the system dynamics and

performance criteria provided by the user]",
"Task Analysis": "[High level task analysis]",
"Agent": "[Task-specific agent number: 1, 2, 3, 4, 5, or 6]"

}

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Task-Specific Agent Prompt (First-order Stable)

You are a control engineer expert, and your goal is to design a controller K(s) for a system
with transfer function G(s) using loop shaping method. The loop transfer function is
L(s) = G(s)K(s) and here are the basic loop shaping steps:

[Step1] Choose a proper loop bandwidth ωL for the given plant G(s).
Note: Increasing ωL will make the response faster, therefore smaller settling time. On the
other hand, decreasing ωL corresponds to larger settling time.

[Step2] Compute the proportional gain Kp to set the desired loop bandwidth ωL, where
Kp = ±1/|G(jωL)|.

[Step3] Design an integral boost to increase the low frequency loop gain thus improv-
ing both tracking and disturbance rejection at low frequencies. Specifically, select
Ki(s) = (βbs+ ωL)/(s

√
β2
b + 1) with β ≥ 0. A reasonable initial choice of βb is

√
10.

Note: Decreasing beta will: (i) increase the low frequency gain and reduce the high
frequency gain thus improving both tracking and noise rejection performance, and (ii)
reduce the phase at loop crossover thus degrading robustness. Hence a smaller βb should
only be used if the loop can tolerate the reduced phase. On the other hand, increasing beta
will increase the phase margin.

Thus the final controller is then: K = KpKi(s). There are two key design parameters for
loop shaping: ωL and βb. Your goal is to find a proper combination of these two parameters
such that the designed controller achieves satisfactory performance, such as phase margin
and settling time requirements.
You will also be provided by a list of your history design and the corresponding performance
if there is any. And you should improve your previous design based on the user request.
Note: If you could not see an improvement within 3 rounds, to make the tuning process more
efficient, please be more aggressive and try to increase design step based on the previous
designs.

In the above, we have provide a guideline to design a loop-shaping controller for the first-order
stable systems along with the parameter tuning instructions (highlighted in purple) to help LLM
agent perform tuning task.

Task-Specific Agent Response Instruction

Response Instructions:
Please provide the controller design to the given plant G(s). Your response should strictly
adhere to the following JSON format, which includes two keys: ’design’ and ’parameter’.
The ’design’ key can contain design steps and rationale about the parameters choice or the
reason to update specific parameter based on the previous design and performance, and the
’parameter’ key should ONLY provide a list of numerical values of the chosen parameters.

Example of the expected JSON format:

{
"design": "[Detailed design steps and rationale behind

parameters choice]",
"parameter": "[List of Parameters]"

}

E.2 FULL PROMPTS FOR BASELINES

In this section, we present the full prompt used to measure baseline approaches. We evaluate the
designed controller by requesting specific output format so that we can extract the controller param-
eters.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Zero-shot prompt CoT

You are a control engineer expert, and your goal is to design a controller K(s) for a system
with transfer function G(s). Please design the controller for the following system:

G(s) =
19.95

s+ 0.4
.

Design the controller to meet the following specifications:
Phase margin greater or equal 71.54 degrees,
Settling time greater or equal 0.0048 sec,
Settling time should also be less or equal to 3.7264 sec,
Steady state error less or equal 0.0001.

Please perform the design process step by step.

Zero-shot prompt is almost identical to the zero-shot CoT without asking the LLM to perform the
design process step by step explicitly.

Few-shot CoT prompt

You are a control engineer expert, and your goal is to design a controller K(s) for a system
with transfer function G(s).

To help you complete the task, we provide the following demonstration example:

Example 1
Design a controller for the first-order system G(s) = 7/(s+ 3).
Design the controller to meet the following specifications:
Phase margin greater or equal 90 degrees,
Settling time greater or equal 3 sec,
Settling time should also be less or equal to 6 sec,
Steady state error less or equal 0.0001.
A successful controller design is K(s) = (1.917s+ 1.818)/3.317s.

Let’s design the controller step by step: The plant G(s) has a pole at s = 3 rad/ sec. To
meet the specified requirements of phase margin, settling time, and steady state error. We
first select a crossover frequency ωL = 3 rad/ sec to achieve desired response. Then the
controller gain is selected as Kg = 1/|G(jωL)| = 0.6. Then we choose the integral boost
Kb(s) = (βbs + ωb)/

√
β2
b + 1s with βb =

√
10 and ωb = ωL = 15. Therefore, the final

controller K(s) = KgKb(s) = (1.917s+ 1.818)/3.317s.

Example 2 ...

Now please design the controller for the following system:

G(s) =
19.95

s+ 0.4
.

Design the controller to meet the following specifications:
Phase margin greater or equal 71.54 degrees,
Settling time greater or equal 0.0048 sec,
Settling time should also be less or equal to 3.7264 sec,
Steady state error less or equal 0.0001.

Please perform the design process step by step.

Few-shot prompt is almost identical to the few-shot CoT without detailed reasoning steps and asking
the LLM to perform the design process step by step explicitly.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

F MORE DETAILS ON CONTROLEVAL

In this section, we present more details on the construction of ControlEval. We first discuss the
dynamical models considered in ControlEval in Section F.1, then the associated performance criteria
is discussed in Section F.2. Finally, we discuss the dataset construction in Section F.3.

F.1 DYNAMICAL SYSTEM MODELS

This section provides a detailed overview of the various types of dynamical system models included
in ControlEval, such as stable and unstable first-order systems, stable and unstable second-order
systems, first-order systems with time delay, and higher-order systems. As mentioned in the main
paper, a general transfer function for a dynamical system can be expressed as:

G(s) =
Y (s)

U(s)
=

bmsm + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
, (5)

where Y (s) and U(s) are output and input, s is the complex frequency variable in Laplace domain.
The system is considered stable if all roots of the characteristic equation U(s) = 0 have negative
real parts. Depending on the form of U(s) and Y (s), we classify the dynamical system models as
follows:

First-order systems. A first-order system is characterized by a first-order polynomial in s for
U(s). The corresponding transfer function is

G(s) =
K

τs+ 1
,

where K is a constant gain, and τ is the time constant of the first-order system.

Second-order systems. Stable second-order systems can be expressed as:

G(s) =
a

s2 + 2ζωns+ ω2
n

, (6)

where ωn is the natural frequency and ζ is the damping ratio.

First-order systems with time delay. First-order systems with time delay incorporate a delay
parameter θ into the transfer function:

G(s) =
Ke−θs

τs+ 1
,

where θ > 0 is the time delay parameter, K is the system gain, and τ is the system time constant.
The presence of e−θs in the numerator introduces phase lag, which can significantly impact the
system’s stability and response.

Higher-order system. Higher-order systems refer to systems where the order of U(s) is three or
greater. Higher-order systems can exhibit more complex dynamics, such as multiple resonant peaks
or oscillatory behavior, making their stability analysis and control design more challenging.

F.2 PERFORMANCE CRITERIA

In linear control system design, key performance criteria include stability, phase margin, and settling
time, which are essential for ensuring both the functionality and robustness of the system.

Stability is a fundamental requirement in control systems. Formally, as discussed above, a LTI
system is stable if all the poles of its transfer function lie in the left half of the complex s-plane,
meaning their real parts are negative. If any pole has a real part greater than or equal to zero, the
system is either marginally stable or unstable. Stability ensures that the system’s output will return
to its equilibrium state after a disturbance, without unbounded oscillations or divergence.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Phase margin ϕm is a measure of how close a system is to instability. It is defined as the difference
between the phase angle of the system’s open-loop transfer function L(jω) = G(jω)C(jω) and
−180◦ at the gain crossover frequency ωgc , which is the frequency where the magnitude of the
open-loop transfer function is equal to 1 (or 0 dB). Formally, the phase margin PM is given by:

PM = 180◦ + arg(L(jωgc)). (7)

A positive phase margin indicates a stable system, with typical design criteria recommending phase
margins between 45◦ and 90◦ for adequate robustness. Phase margin provides insight into how
much additional phase lag the system can tolerate before becoming unstable.

Settling time Ts is a critical metric for evaluating the transient response of a control system. It is
defined as the time required for the system’s output to remain within a specified percentage (typically
2% or 5%) of its final steady-state value following a step input. Depending on the specific dynamical
system, the required settling time can vary significantlyranging from fast to slow responsesbased on
factors such as system type, stability requirements, and the presence of unmodeled dynamics. To
account for these variations, we consider three distinct response modes for stable first-order and
second-order systems in ControlEval.

F.3 CONTROLEVAL GENERATION DETAILS

In this section, we explain the details on the construction of ControlEval.

F.3.1 REQUIREMENTS FOR DIFFERENT TYPE OF DYNAMICAL MODELS.

First-order Stable Systems For first-order stable systems, we sample K ∼ U(0.005, 200), i.e.,
we uniform sample K from range [0.005, 200], and τ ∼ U(0.05, 10). In addition, we require the
settling time to be within some range Ts ∈ [tmin, tmax] for three different response modes: fast,
moderate, and slow relative to the time constant τ :

• Fast mode: We have tmin ∼ U(0, 0.001τ) and tmax ∼ U(0.3τ, 0.5τ).
• Moderate mode: We have tmin ∼ U(0.1τ, 0.5τ) and tmax ∼ U(τ, 5τ).
• Slow mode: We have tmin ∼ U(5τ, 10τ) and tmax ∼ U(20τ, 30τ).

The minimum required phase margin is also randomly seleted by ϕm ∈ [45, 90].

Second-Order Stable Systems. For second-order stable systems, we sample ζ ∼ U(0.1, 0.99)
to consider underdamped second-order system, ωn ∼ U(0.1, 5), and a ∼ U(0.1, 20). In addition,
we require the settling time to be within some range Ts ∈ [tmin, tmax] for three different response
modes: fast, moderate, and slow relative to the time constant τ ≈ 4

ζωn
:

• Fast mode: We have tmin ∼ U(0, 0.005τ) and tmax ∼ U(τ, 1.5τ).
• Moderate mode: We have tmin ∼ U(2τ, 2.5τ) and tmax ∼ U(3τ, 4τ).
• Slow mode: We have tmin ∼ U(4τ, 5τ) and tmax ∼ U(6τ, 10τ).

The minimum required phase margin is also randomly seleted by ϕm ∈ [45, 65].

Second-Order Unstable Systems. For the second-order unstable systems, half of the dataset is
generated using the following transfer function structure:

G(s) =
a

s2 − 2ζωns+ ω2
n

, (8)

where the damping ratio ζ is sampled from a uniform distribution ζ ∼ U(0.1, 0.99), ensuring the
system has two unstable poles. The natural frequency ωn is sampled from ωn ∼ U(0.1, 5), and
the gain a is drawn from a ∼ U(0.1, 20). Additionally, the settling time Ts is constrained to lie
within the range Ts ∈ [tmin, tmax], where tmin ∼ U(0, 0.05τ) and tmax ∼ U(τ, 1.5τ), with the
time constant τ ≈ 4

ζωn
. The minimum required phase margin ϕm is randomly selected from ϕm ∼

U(45, 65)◦.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

The second half of the dataset is designed using the following transfer function structure:

G(s) =
a

(τ1s+ 1)(τ2s+ 1)
, (9)

where the gain a is sampled from a ∼ U(−2000,−0.00025), and the time constants τ1 and τ2
are drawn from τ1 ∼ U(0.05, 10) and τ2 ∼ U(−10,−0.05), respectively. The time constant τ is
approximated as τ ≈ 3min{τ1, |τ2|}. As with the first half of the dataset, the settling time Ts is
required to be within the range Ts ∈ [tmin, tmax], with tmin ∼ U(0, 0.05τ) and tmax ∼ U(τ, 1.5τ).
The reason for using these two different structures is to ensure that half of the dataset consists
of systems with one unstable pole, while the other half contains systems with two unstable poles,
providing a balanced variety of unstable system dynamics.

First-Order Systems with Time Delay. For first-order system with a time delay θ, we choose
the delay parameter randomly as θ ∼ U(θmin, θmax), where θmin = 0.1τ and θmax = 0.2τ . For
the settling time requirements, we require Ts ∈ [tmin, tmax] with tmin ∼ U(4τ, 5τ) and tmax ∼
U(40τ, 50τ). The minimum required phase margin is also randomly selected by ϕm ∈ [45, 65].

Higher-order Systems. For higher-order systems, there is no standardized method to automati-
cally generate both the dynamical system and its corresponding performance requirements simul-
taneously. To address this, we have manually designed 50 higher-order systems along with their
performance criteria, ensuring that the specified requirements are indeed achievable. Among these
samples, 25 are stable higher-order systems, while the remaining 25 are unstable. Based on feed-
back from human experts, designing a controller for higher-order systems is challenging, requires
multiple rounds of parameter tuning even for human. Nevertheless, these higher-order tasks present
unique challenges for ControlAgent, and our results demonstrate promising performance in address-
ing these complex scenarios.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

F.3.2 SAMPLE CODE FOR GENERATING CONTROLEVAL

The following is a sample code snap for generating first-order systems:

def generate_first_order_system_dataset(num_samples):
dataset = []

for i in range(num_samples):
K = random.uniform(0.1, 20)
B = random.uniform(0.1, 20)
tau = 3/B

phase_margin_min = random.uniform(45, 90)
settling_time_min_fast = random.uniform(0, 0.001 * tau)
settling_time_max_fast = random.uniform(0.3* tau, 0.5 * tau)
settling_time_min_moderate = random.uniform(0.1*tau, 0.5*tau)
settling_time_max_moderate = random.uniform(tau, 5 * tau)
settling_time_min_slow = random.uniform(5 * tau, 10 * tau)
settling_time_max_slow = random.uniform(20 * tau, 30 * tau)
steadystate_error_max = 0.0001
metadata = "First order system with different response speed

requirements."

system_data = {
"id": i,
"num": [K],
"den": [1, B],
"phase_margin_min": phase_margin_min,
"settling_time_min_fast": settling_time_min_fast,
"settling_time_max_fast": settling_time_max_fast,
"settling_time_min_moderate": settling_time_min_moderate,
"settling_time_max_moderate": settling_time_max_moderate,
"settling_time_min_slow": settling_time_min_slow,
"settling_time_max_slow": settling_time_max_slow,
"steadystate_error_max": steadystate_error_max,
"metadata": metadata

}

dataset.append(system_data)

return dataset

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

The following is a sample code snap for generating second-order unstable systems:

def generate_unstable_second_order_system_dataset(num_samples):
dataset = []

for i in range(num_samples):
if i % 2 == 0:

zeta = random.uniform(0.1, 0.99)
omega = random.uniform(0.1, 5)
A = random.uniform(0.1,20)
sT = 4/(omega*zeta)

phase_margin_min = random.uniform(45, 65)
settling_time_min = random.uniform(0, 0.05 * sT)
settling_time_max = random.uniform(sT, 1.5 * sT)
overshoot_max = random.uniform(5, 20)
steadystate_error_max = 0.0001
metadata = "Second order unstable system with different

response speed
requirements."

system_data = {
"id": i,
"num": [A],
"den": [1, -2*zeta*omega, omega*omega],
"phase_margin_min": phase_margin_min,
"settling_time_min": settling_time_min,
"settling_time_max": settling_time_max,
"steadystate_error_max": steadystate_error_max,
"metadata": metadata

}

else:

A = random.uniform(0.1,20)
B = random.uniform(0.1, 20)
C = random.uniform(0,-20)
sT = 3/min(B,abs(C))

phase_margin_min = random.uniform(45, 65)
settling_time_min = random.uniform(0, 0.05 * sT)
settling_time_max = random.uniform(sT, 1.5 * sT)
overshoot_max = random.uniform(5, 20)
steadystate_error_max = 0.0001
metadata = "Second order unstable system with different

response speed
requirements."

system_data = {
"id": i,
"num": [A],
"den": [1, B+C, B*C],
"phase_margin_min": phase_margin_min,
"settling_time_min": settling_time_min_fast,
"settling_time_max": settling_time_max_fast,
"steadystate_error_max": steadystate_error_max,
"metadata": metadata

}

dataset.append(system_data)

return dataset

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

G A DEMO OF THE DESIGN PROCESS

In this section, we present a step-by-step demo of the ControlAgent design process for an illustrative
control task. The goal is to design a controller for a given dynamical system that satisfies specific
performance requirements, including settling time and phase margin. The design process begins by
providing ControlAgent with the initial system models and desired performance criteria. The central
agent first performs high-level task analysis and assign the task to a task-specific LLM agent, who
then iteratively refines its controller design. At each iteration, ControlAgent evaluates the proposed
design against the desired criteria and, if necessary, adjusts the controller parameters based on the
observed performance. The iterative refinement continues until a design that meets all requirements
is achieved or the maximum iteration number is achieved. Table 15 shows a breakdown of LLM
agents in ControlAgent.

LLM Agents Role

Central Agent High-level task analysis and task distribution
Task-Specific Agent 1 Controller design for first-order stable system
Task-Specific Agent 2 Controller design for first-order unstable system
Task-Specific Agent 3 Controller design for second-order stable system
Task-Specific Agent 4 Controller design for second-order unstable system
Task-Specific Agent 5 Controller design for first-order system with time delay
Task-Specific Agent 6 Controller design for higher-order system

Table 15: Overview of the LLM agents and their roles in ControlAgent.

User Input

Please design the controller for the following system:

G(s) =
19.95

s+ 0.3897
.

Design the controller to meet the following specifications:
• The system should be stable and steady state error less or equal 0.0001.
• Phase margin greater or equal 71.542 degrees,
• Settling time greater or equal 0.005 sec,
• Settling time should also be less or equal to 3.726 sec.

Central Agent Output

Task Requirement: The system provided is a first-order stable system represented by the
transfer function 19.95

(s+0.3897) . The control design must ensure a phase margin of at least
71.542 degrees, a settling time between 0.005 sec and 3.726 sec, and a steady state error of
less than or equal to 0.0001.

Task Analysis: The given transfer function, 19.95
(s+0.3897) , clearly indicates a first-order system

due to the presence of a single s term in the denominator. The positive coefficient of s
(0.3897) in the denominator suggests that the system is stable. The requirements for phase
margin, settling time, and steady state error are specific performance criteria that need to be
met through appropriate controller design. Given the nature of the system as first-order and
stable, Agent 1, who specializes in first-order stable systems, is the most suitable choice for
designing the required controller.

Agent: Agent 1 for first-order stable systems controller design.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

In the outputs of the central agent, one can see that the central agent is able to perform an accurate
high-level task analysis and assign the task to the corresponding task-specific agent accurately.

Task-Specific Agent Output

Iteration 1:
To design the controller K(s) for the given plant G(s) = 19.95/(s+0.3897), we will follow
the loop shaping method. First, we need to choose a proper loop bandwidth ωL. Given the
settling time requirements, we aim for a moderate ωL to balance between fast response and
robustness. Let’s start with ωL = 1 rad/s, which is a reasonable initial choice for a system
with a pole at s = −0.3897. Next, we calculate the proportional gain Kp to set the desired
loop bandwidth. At ωL = 1, |G(j1)| = 19.95/

√
12 + 0.38972 = 19.95/1.073 = 18.6.

Therefore, Kp = 1/18.6 = 0.0538. For the integral boost, we select βb =
√
10 ≈ 3.1623

to start with, which provides a good balance between low-frequency gain and phase margin.
The integral boost Ki(s) is then (3.1623s + 1)/(s

√
3.16232 + 1). The final controller is

K(s) = KpKi(s). This initial design aims to meet the phase margin and settling time
requirements while ensuring a low steady-state error.

In the first iteration, Task-specific agent 1 is able to follow the design instruction and come up with
a reasonable initial controller.

Task-Specific Agent Output

Iteration 2:
In the first design, the settling time was too long, exceeding the maximum requirement of
3.726 seconds. To reduce the settling time, we need to increase the loop bandwidth ωL. This
will make the system response faster. Let’s increase ωL to 2, which should help in reducing
the settling time. We will keep βb at 3.1623 initially to maintain a good balance between
low-frequency gain and phase margin. After adjusting ωL, we will calculate the proportional
gain Kp to set the desired loop bandwidth. The integral boost Ki will be designed using the
updated ωL and the initial βb value.

For iteration 2, the agent is able to identifying the issues in the previous design and come up with a
correct tuning direction, i.e., increasing ωL to reduce the settling time.

Task-Specific Agent Output

Iteration 3:
In the previous designs, the settling time was too long, exceeding the maximum requirement
of 3.726 seconds. To reduce the settling time, we need to increase the loop bandwidth ωL.
In Design 2, ωL was set to 2, resulting in a settling time of approximately 3.993 seconds. To
further reduce the settling time, I will increase ωL to 3. This should help bring the settling
time within the desired range. The βb parameter, which affects the phase margin, was previ-
ously set to 3.1623. Since the phase margin in Design 2 was 83.4768 degrees, which is well
above the required 71.5421 degrees, we can afford to slightly reduce βb to 2.5 to maintain a
good balance between phase margin and settling time. This adjustment should help achieve
the desired performance specifications.

The agent further increases ωL to reduce the settling time. Additionally, upon evaluating the previous
design, the agent observes that it adequately satisfies the phase margin. Consequently, it can fine-
tune βb to maintain an optimal balance between system performance and robustness. After iteration
3, the task-specific agent produces a successful controller design, which is verified by the Python
computation agent. The final controller is returned to the user as the output of ControlAgent.

43

	blueIntroduction
	Related Work
	Preliminary
	ControlAgent
	ControlEval
	Experimental Results
	Main Results
	Ablation Study

	Limitations and Future Work
	ControlAgent: Future Outlook
	Expansion to Nonlinear Systems and Advanced Control Strategies
	Modular Integration of Different LLMs
	Extending the ControlEval Dataset for Comprehensive Validation

	More Discussions on Related Work and Control Background
	More Related Work
	More Background on Classic Control
	bluePerformance Metric: settling time
	bluePerformance Metric: phase margin
	blueExact Guarantees in ControlAgent

	ControlAgent with Real-life Applications
	ControlAgent with real-life applications
	ControlAgent with Hardware in the Loop

	More on Experimental Study
	More on the Experimental Setup
	Evaluation Metric
	More details on the memory module
	More Experimental Results
	ControlAgent with Open-source Model
	Evaluation results with metric pass@k
	More results on the Iteration Number
	More results on the Robustness of ControlAgent
	Failure modes analysis
	More Results on AgSR
	ASR vs AsGR

	Gain Margin Consideration
	Evolution of ControlAgent Design

	Prompt Design
	Full Prompts for ControlAgent
	Full Prompts for Baselines

	More Details on ControlEval
	Dynamical System Models
	Performance Criteria
	ControlEval Generation Details
	Requirements for different type of dynamical models.
	Sample code for generating ControlEval

	A demo of the design process

