
SubMix: Learning to Mix Graph Sampling Heuristics

Abstract

Sampling subgraphs for training Graph Neural Net-
works (GNNs) is receiving much attention from the
GNN community. While a variety of methods have
been proposed, each method samples the graph
according to its own heuristic. However, there has
been little work in mixing these heuristics in an
end-to-end trainable manner. In this work, we de-
sign a generative framework for graph sampling.
Our method, SubMix, parameterizes graph sam-
pling as a convex combination of heuristics. We
show that a continuous relaxation of the discrete
sampling process allows us to efficiently obtain
analytical gradients for training the sampling pa-
rameters. Our experimental results illustrate the
usefulness of learning graph sampling in three sce-
narios: (1) robust training of GNNs by automati-
cally learning to discard noisy edge sources; (2)
improving model performance by trainable and
online edge subset selection; and (3) by integrat-
ing our framework into state-of-the-art (SOTA)
decoupled GNN models, for homogeneous OGBN
datasets. Our method raises the SOTA on challeng-
ing ogbn-arxiv and ogbn-products, respectively, by
over 4 and 0.5 percentage points.

1 INTRODUCTION

Graph Neural Networks (GNNs) are frequently used as
machine learning models for relational data, e.g., in pre-
dicting node classes or relationships between nodes (a.k.a.

edges). The node and edge types are domain-specific. Ap-
plication domains include social, biochemical, and compu-
tational networks, e.g., where GNNs are used for recom-
mendation, predicting protein-protein interactions, or job
scheduling [Bruna et al., 2014, Kipf and Welling, 2017,
Monti et al., 2017, Veličković et al., 2018, Hamilton et al.,

2017, Battaglia et al., 2018, Chami et al., 2022].

Early GNNs were conceptually formulated and imple-
mented on the graph as a whole [Bruna et al., 2014, Kipf
and Welling, 2017]. As such, the entire graph is processed
at every training step. For training on larger graphs, re-
searchers resorted to a variety of directions, including (D.1)
subgraph sampling and (D.2) graph-decoupled training,
among others (§6).

Direction (D.1) repeatedly samples subgraphs from the
(larger) input graph. Each subgraph sample serves as one
training example for the GNN. The process of sampling
subgraphs–how to select a meaningful neighborhood for
a set of nodes–is usually based on a heuristic and is not
trainable. For instance, Chiang et al. [2019] partitions the in-
put graph into smaller subgraphs via an algorithm for graph
clustering such as METIS [Karypis and Kumar, 1998]. Once
the subgraphs are created, they are repeatedly used through-
out training (and inference). Zeng et al. [2020] try three
samplers: node-level, edge-level, and random walk-based
samplers, respectively, similar to [Chen et al., 2018], [Zou
et al., 2019] and [Hamilton et al., 2017, Markowitz et al.,
2021]. These methods all employ sampling heuristics, e.g.,
choose nodes with probability proportional to their degree
[Chen et al., 2018], or a few edges for every sampled node
[Hamilton et al., 2017, Ying et al., 2018, Markowitz et al.,
2021]. While these heuristics stem from reasonable induc-
tive biases, learning to combine them is under-explored.

Contributions: We propose a generative model of sub-
graphs (§3), which can be written as a mixture distribu-
tion of sampling heuristics, where the mixture weights are
learned. Given a node, each heuristic assigns a probability
distribution on its neighbors. We train parameters of the
mixture model to optimize the supervision objective, e.g.,
cross-entropy for node classification. To obtain analytical
gradients, we relax the discrete process of subgraph sam-
pling into the continuous domain. We evaluate our method in
three setups. First, if we use an adversary sampling heuris-
tic, always yielding non-edges, we find that our method
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Figure 1: Summary of our Method. (top-left). The input graph initializes our utilized heuristics only once. Each heuristic
maintains distribution Q(· | u) per node u. We show relative mass outgoing a node by edge color: red and blue, for QLOWDEG,
depict larger mass than grey edges. Once initialized, (left), user can request 5 edges outgoing from node u. Each heuristic j

then yields an ordered list of neighbors, sampled from Qj(· | u) with (or without) replacement. The (Trainable) Q�(j)
allocates the total budget of 5 among the heuristics where heuristic j can select bj = Q�(j)⇥ 5. (top right) Finally, the
sampled edges get combined into sampled subgraph. The discrete process is relaxed in §3.4.

assigns it weight ⇡ 0. Second, we cluster edges using fea-
tures of its connecting endpoint nodes. Our method can
choose which cluster to sample more frequently, generally
increasing model performance. Finally, we show how our
framework can be integrated into full-graph decoupled GNN
methods (D.2) This allows us to raise the SOTA performance
on ogbn-arxiv from 77.98% to 82.26% and performance on
ogbn-products from 87.98% to 88.59%, when comparing
only models that do not use external features. The perfor-
mance gains introduce no additional GNN parameters.

2 PRELIMINARIES

Let G = (V,E,A,X) denote a graph with node set V,
edge set E ✓ V⇥V, adjacency matrix A 2 {0, 1}|V|⇥|V|,
and node feature matrix X 2 R|V|⇥d containing a d-
dimensional feature vector for node u 2 V at row Xu. If the
directed edge u ! v exists then (u, v) 2 E and Auv = 1.
We denote the degree of u as �u =

P
v Auv. Let D be the

degree matrix with entries Duu = �u. If the graph is undi-
rected, i.e., A is symmetric, then let bA 2 R|V|⇥|V| denote
the symmetrically normalized A [Kipf and Welling, 2017]:
bA = (D+I)�

1
2 (A+I)(D+I)�

1
2 . Let N (u) denote the set

of out-neighbors of u with N (u) = {v | (u, v) 2 E}. We
apply our method to node classification tasks. Let Vtr ⇢ V
denote the set of training labeled nodes. For each u 2 Vtr,
let yu denote its label. Finally, we denote the output of a

GNN on graph G as h✓(G)
�
= h✓(A,X).

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs), as the name suggests, are
neural networks that operate on graphs. In their earliest in-
ceptions, they were written down in terms of the full graph.
There are many variants of GNNs, including ones that in-
corporate multiple hops [Abu-El-Haija et al., 2019], encode
distances [Li et al., 2020, Zhang and Chen, 2018], add skip-
connection between layers [Xu et al., 2018, Pham et al.,
2017, Chen et al., 2020], use multilayer perceptrons (MLPs)
between hops [Xu et al., 2019], among many others—see
[Chami et al., 2022] for a comprehensive survey. Nonethe-
less, we emphasize that while GNNs are central to our work,
they are not our main contribution: we use them as a “black
box”. It suffices to know that GNNs compute

h✓ : R|V|⇥|V|
⇥ R|V|⇥d

! R|V|⇥z
. (1)

Specifically, a GNN has trainable parameters ✓ and can map
adjacency A and node-features X, as h✓(A,X), onto z

dimensions per node. For example, in node classification
tasks z can be the number of classes. In our work, we use two
GNN variants: the Graph Convolutional Network (GCN) of
Kipf and Welling [2017] and EnGCN by Duan et al. [2022].
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GCN with 3 layers can be written as

h✓(A,X) = �

⇣
bA�

⇣
bA�

⇣
bAXW(1)

⌘
W(2)

⌘
W(3)

⌘

(2)
with ✓ =

�
W(1)

,W(2)
,W(3)

 
and �(·) is the element-

wise non-linearity.

2.2 LEVEL-BASED SUBGRAPH SAMPLING

Rather than invoking training and inference on the graph as
a whole, as described by earlier GNN formulations [Kipf
and Welling, 2017, Veličković et al., 2018, Abu-El-Haija
et al., 2019, Xu et al., 2019, , etc], instead, many sampling-
based methods feed subgraph samples into the GNN (§2.1)
for training and inference. The sampling can be described
as a generative process. First, sample seed nodes V

(0) =

{v
(0)
1 , v

(0)
2 , . . . } with V

(0)
✓ Vtr and initialize E

(0) = {}

as an empty set. Then, sample neighbors for every node
in V

(0). Let V (1) denote the set of all sampled neighbors.
The process can be repeated to construct V (2) containing
sampled neighbors for every v 2 V

(1), and so on, until a
desired sampling depth is reached. This can be described by
an iterative process:

(sample seed) V
(0)
 s(Vtr), (3)

(sample edges) E
(i+1)

 

[

v2V (i)

s(N (v)), (4)

(collect nodes) V
(i+1)

 

n
v | (u, v) 2 E

(i+1)
o
, (5)

(subgraph sample) eG 
 
[

i

V
(i)
,

[

i

E
(i)

!
, (6)

where Eqs. (4) & (5) are repeated, until a desired sampling
depth is reached. Function s(·) outputs a random subset of
its argument and eG denotes the final subgraph sample. Then,
one can run h✓( eG) for training or inference on eG.

Since s makes random choices, eG is a random variable eG ⇠
P(G). The work of Hamilton et al. [2017], Ying et al. [2018],
Markowitz et al. [2021], Ferludin et al. [2022] produce tree-
samples, with each tree rooted at a seed node 2 V

(0). The
choice of s(·) varies per method. For instance, Markowitz
et al. [2021] set s(·) to uniform (all neighbors have equal
probability to be sampled) while Chen et al. [2018], Zeng
et al. [2020], Zou et al. [2019] define s(·) such that each
node will be sampled with probability related to its degree.

3 PROBABILISTIC MODELS OF EDGES

We would like to no longer assume that the process for
generating eG is fixed. Instead, we set it to a learnable con-
vex combination of heuristics. Section §3.1 shows how we
parameterize the process and how we sample discrete sub-
graphs eG. Then, §3.4 shows how to learn the subgraph
sampling process.

We position our contribution by recalling empirical risk
minimization (ERM):

min
✓

R(✓) = min
✓

E
eG⇠P(G)

L

⇣
h✓( eG), y( eG)

⌘
, (7)

where L is a loss function (we use cross-entropy for classifi-
cation) between desired labels y and output of GNN h with
current parameters ✓. P can be characterized per Eqs. 3–6.

Our primary goal is to parameterize the sampling procedure
P and learn it. We write down our modified ERM:

min
✓,�

R(✓,�) = min
✓,�

E
eG⇠P�(G)

L

⇣
h✓( eG), y( eG)

⌘
(8)

where � denotes sampling parameters. Note that � is not
part of the GNN model h, but only part of the subgraph
sampling procedure.

3.1 SUBGRAPH SAMPLING ( eG)

Given the sampling process described in §2.2 (Equations
3–6), P can be written as product across sampling step i:

P�(G) = P (V (0))
Y

i

P�(E
(i+1)

| V
(i))P (V (i)

| E
(i))

�
= P (V (0))

Y

i

P�(E
(i+1)

| V
(i)). (9)

Note that we intentionally skip all P (V (i)
| E

(i)): once E(i)

is sampled, then V
(i) becomes deterministic. Further, we

emphasize that in our work, P (V (0)) is not parameterized.
Rather, it is set to the uniform distribution, i.e., we sample
batches of seed nodes uniformly at random.

Equations 4 and 5 sample V (i+1) given V
(i). Therefore, the

choice of s(·) specifies the conditional P (E(i+1)
| V

(i)).
While earlier subgraph sampling methods implicitly set
P (E(i+1)

| V
(i)) to a fixed distribution1, we define it as a

mixture:
P�(E

(i+1)
| V

(i)) =
X

jJ

Q�(E
(i+1)

, C
(i)=j | V

(i))

(10)

=
X

jJ

Q(E
(i+1)

| V
(i)
, C

(i)=j)Q�(C
(i)=j | V

(i))

(11)

= Ej⇠Q�

h
Qj(E

(i+1)

| V
(i))
i
, (12)

where j indexes J mixture components. The first term of
Eq. 11 denotes the component, abbrev: Qj(E

(i+1)

| V
(i)) =

Q(E
(i+1)

| V
(i)
, C

(i) = j), and the second term is the
component weight. In our present work, only Q� contains

1One can write down P (E(i+1) | V (i)) for Hamilton et al.
[2017], Markowitz et al. [2021]. Suppose V (i) = {u1} and if s
is uniformly sample k  |N (u1)| entries with equal probability,
then P (E(i+1) | V (i)) = 1

(|N(u1)|
k )

iff E(i+1) ✓ N (u1) and

|E(i+1)| = k, i.e., k-sized subset of u1’s neighbors. Equivalently,
each edge (u1, v) appears with probability = k

|N (u1)|
.
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trainable parameters � but Qj’s are fixed heuristics. Sections
§3.2 and §3.3 give examples for these.

We consider a few heuristics Qj . Most of these can be
factorized w.r.t. all input nodes as

Qj(E
(i+1)

| V
(i)) =

Y

(u,v)2E(i+1)

Qj(v | u), (13)

where Qj(v | u) equals the probability of choosing neighbor
v from N (u), as assigned by the j

th heuristic.

The Appendix also considers the case where Qj’s only fac-
torize on V

(i) but not on E
(i+1)

, yielding Qj with support
on subsets ✓

S
u2V (i) N (u).

3.2 PARAMETERIZING WEIGHTS Q�

To parameterize Q�, we try-out two versions, each making
its own assumptions. The first version assumes indepen-
dence: The distribution Q� is independent from node u that
we seek samples for. The second version makes the Markov-
chain assumption: Q� is conditioned on the heuristic that
gave rise to u, but not u itself. With these assumptions, we
parameterize Q� as:

Q�(C
(0)=j) = softmax(c)j

�
= cj (14)

Q�(C
(i+1)=j | C

(i)=k) = softmax(ck)j
�
= cjk (15)

where c, c1, c2, . . . , cJ 2 RJ are the trainable distribution
parameters, and J denotes the number of components. In
this case sampling parameters � are:

� = {c, c1, c2, . . . , cJ}. (16)
When operating under the independence assumption,
Q�(C(i)) = Q�(C(0)) = c and therefore � = {c}. Model-
ing parameters in Eq. 15 are needed when making Markov-
chain assumption. In general, nth order Markov-chain would
require O(J1+n) parameters.

3.3 PARAMETERIZING COMPONENTS Qj

While component weights are trainable (§3.2), the compo-
nents Qj’s are fixed sampling heuristics:

• Random sampler (QRAND): given node u, return subset
of its neighbors N (u) uniformly at random.

• Top-degree sampler (QTOPDEG): samples neighbor with
probability increasing with its degree.

QTOPDEG(v | u) / Auv log(↵+ �v). (17)
Here and below, we tried ↵ = 1 and ↵ = 2, without
noticing any significant difference in performance. In
practice, we tried sampling with and without replace-
ment, and the results are almost identical.

• Least-degree sampler (QLOWDEG): samples neighbor

with probability decreasing with its degree.
QLOWDEG(v | u) / Auv log(↵+ �max � �v), (18)

where the maximum node degree �max = maxu2V �u.

• PageRank (QPAGERANK): samples neighbor with proba-
bility increasing with its PageRank [Page et al., 1999].
QPAGERANK(v | u) / Auv log(↵+ PageRank(v)).

(19)

• Self-sampler (QSELF) that samples only itself:
QSELF(v | u) = 1 iff v = u. (20)

• Subset-based samplers, ones assigning probability to
edge-sets, rather than one-node-at-a-time, including:

QMAXCOVERX(E
(i+1)

| V
(i))

QMAXCOVERA(E
(i+1)

| V
(i))

QMAXCOVERAX(E
(i+1)

| V
(i))

for choosing edge-sets with destination nodes that are
far-apart, respectively, in the feature-space, the graph
topology, or a mixture of the two. For details see the
Appendix.

Now that we have specified how we design Q� and Qj , the
next steps include determining how to obtain r�R.

3.4 LEARNING � WHEN SUBGRAPH SAMPLING

A routine for level-based subgraph sampling typically takes
two sets of hyperparameters:

• Seed nodes V (0)
✓ Vtr, as discussed earlier.

• Sampling budgets b(1), b(2), · · · 2 Z+.

Then, the routine should, for each u 2 V
(0), sample b

(1) of
its neighbors, and for each of those neighbors, sample b

(2)

of its neighbors, and so on, until graph eG is composed.

For the sake of demonstration, consider only two sam-
plers [QLowDeg, QTopDeg] and a first hop sampling budget
of b(1) = 20. Also, suppose that the sampling budget is split
with proportion c = [0.2, 0.8] (defined in Eq.14). Then, to
sample E

(1)
⇠ P�(E(1)

| V
(0)), one can:

sample 4=0.2(20) = c1 ⇥ b
(1) �

= b
(1)
1 edges from QLowDeg;

sample 16=0.8(20) = c2 ⇥ b
(1) �

= b
(1)
2 edges from QTopDeg.

In general, sampler Qj gets a first-hop budget of:

b
(1)
j = cj ⇥ b

(1)
. (21)

Sampler Qj can double its own b
(1)
j by doubling the learn-

able cj = softmax(c)j , where c 2 �, cf. Eq.14. Subse-
quently, at the i

th-hop, when sampling edges for u 2 V
(i),

Qj receives budget

b
(i)
j = cjk ⇥ b

(i) (22)
where k 2 {1, . . . , J} is the mixture identity that sampled
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u 2 V
(i�1)

i.e., u was sampled from Qk (according to
Markovian assumption #2, Appendix §??)

In summary, training � determines the partitioning of (in-
tegral2) budgets, among J samplers, which compete for
budget via softmax transformation.

3.4.1 How are b
(i)
j utilized in GNN h?

From our parameters � we can obtain b
(i)
j . On the other

hand, the objective function L is measured on GNN h. To
reason about how � can be learned, we’d like to assess the
influence3 of b(i)j on L. The GNN model §2.1 can operate
on the adjacency Ä corresponding to sampled subgraph
eG. One can express Ä in terms of b(i)j . Let e(i)j (u) be a re-
ordering of N (u), that was sampled at step i, by repeatedly
selecting from ⇠ Qj(· | u), with or without replacement,
until N (u) is exhausted. With this, we can write:

E
(i) =

[

j2[J]

e
(i)
j (u)

[:b(i)j ]
(23)

Where notation [: b(j)j ] selects the first b(j)j of the ordered
sequence. Entry (u, v) of the adjacency matrix can now be
defined piece-wise:

Äuv =

(
1, if (u, v) 2

S
i E

(i)

0, otherwise.
(24)

The order of elements in e
(i)
j (u) is always respected – only

the first elements are chosen. This allows for expressing
sophisticated sampling heuristics that cannot be factorized
per edge, for example based on maximum coverage, mu-
tual information or other monotone submodular functions, a
class of functions widely used for data sampling and summa-
rization. For this class of functions, the well known Greedy
algorithm (Nemhauser and Wolsey [1978], Minoux [2005],
Mirzasoleiman et al. [2015]) produces an ordering in which
every prefix of size k (1 � 1/e)-approximates the size-k
subset of maximum objective value. Therefore, by producing
an ordering based on such greedy algorithms we can capture
a variety of data sampling methods with implicit Qj(· | u).

3.4.2 Backpropagation from h to �

GNN h is a function of Ä. The information flows from � to
the GNN h as �! {b

(i)
j }i,j ! {E

(i)
}i ! Ä! h. There-

fore, then it is natural to assess how to compute @L
@� from @L

@h ,
e.g., by backpropagation. However, this is not trivial. In par-
ticular, {E(i)

}i appear only in the branching condition for
piecewise Ä (Eq. 24). As such, Ä is not continuously dif-

2b(i)j ’s are not integral but one can do randomized rounding,
e.g., draw Y ⇠ Bernoulli(b(i)j � bb

(i)
j c) then b(i)j  bb

(i)
j +Yc.

3Influence should increase with @L
@b

(i)
j

.

Figure 2: Continous Relaxation. For budget b = 4, solid
line shows discrete step function, whereas dashed-lines show
our continuous relaxation (Eq. 25) each dashed line with a
choice of sharpness constant �. As � increases, the continu-
ous relaxation becomes closer to the discrete step function.

Table 1: Datasets.

Dataset Nodes Edges

Citeseer 3,327 articles 4,732 citations
Cora 2,708 articles 5,429 citations

Pubmed 19,717 articles 44,338 citations

ogbn-arxiv 169,343 papers 1.2M citations
ogbn-products 2.5M products 61.9M co-purchases

ferentiable w.r.t. b
(i)
2 Z+. Hence, the Jacobians

�
@A
@c

 
c2�

and therefore r�R are uninformative to compute.

We derive a continuous relaxation
...
A of Ä, such that the

values of
...
A are a function of b’s and therefore c’s. Moreover,...

A looks similar to piecewise Ä. Row Ä(j)
u of Eq. 24, when

re-ordered by ej(u) can be plotted as a step function, see
Fig. 2. To obtain a differentiable function, we propose to
relax the stepwise selection with:

...
A

(j)
uv = 1� �(�(rjuv � b

(j)
1 )), (25)

where rjuv equals the position r for which qj(u)r = v,
�(x) = (1 + e

�x)�1, and � is a sharpness hyperparameter
that we set � = 2. Re-ordering rows of

...
A

(j)
uv according to

ej(u) gives a reasonable approximation of the step function
that is continuously-differentiable w.r.t. c. See Fig. 2 for
visual comparison between Eq. 24 & 25. Subsequently, we
can calculate r�R. Constructing

...
A is detailed in Alg. 1.

4 EXPERIMENTAL EVALUATION

We conduct experiments using our method on five popular
node classification datasets, summarized in Table 1. We
utilize three datasets open-sourced by Yang et al. [2016]:
citeseer, cora and pubmed, partially-popularized by Kipf
and Welling [2017]. However, we use a larger training set
(we include both training and validation into training) – as
such we train our baselines. In addition, we use two datasets
by OGB [Hu et al., 2020] for node classification: ogbn-
arxiv and ogbn-products. For OGB datasets, we use the
official train:validate:test partitions.
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Figure 3: Robust against noise edge sources. Heuristic sampling negative edges gets ignored when learning � (see §4.1).

Figure 4: Q� distribution among edge clusters: each QRAND contains about 1
5 of the edges. We freeze the sampling parameters

� after 25% of training epochs. For pubmed, it is sufficient to train on only 1
5 of the edges while for citeseer and cora we

supplemented with all graph edges but sampled according to greedy algorithm for max graph coverage, per Appendix.

Table 2: Test accuracy of GNN models trained with (left)
subgraphs sampled uniformly at random, against (right)
subgraphs from clustered edge sources, per §4.2

GCN( eG)

Dataset baseline: eG ⇠ P our-§4.2: eG ⇠ P✓

Citeseer 74.08 ± 0.47 73.73 ± 0.50
Cora 84.74 ± 0.51 85.79 ± 0.64

Pubmed 83.90 ± 0.16 85.26 ± 0.29

Table 3: Node Classification on OGBN leaderboard.
Methods (a) use external data: text of abstract or product de-
scription, resp., for ogbn-arxiv and ogbn-products. Methods
(b) use only provided feature vectors. Last line is ours.

Method ogbn-arxiv ogbn-products

(a) GLEM+EnGCN 79.66 ± 0.06 90.14 ± 0.12
GIANT++ 76.37 ± 0.11 86.84 ± 0.05

(b) EnGCN 77.98 ± 0.07 87.98 ± 0.04
DRGAT 74.16 ± 0.07 82.30

DRGAT++ 76.33 ± 0.08 –
GAMPL++ – 85.20 ± 0.08

Ours: EnGCN(eA) 82.26 ± 0.09 88.59 ± 0.07

Algorithm 1 Samples sparse
...
A with continuous relaxation

1: Input: Seed: V (0); sampler heuristics {qj}jJ ; sam-
pling depth: B, per-step sampling budgets: [b1, . . . , bS ];

2: Output: Adjacency
...
A of sampled subgraph.

3: eV (0)
 [(null, u) for u 2 V

(0)]
4: for i 1 to S do
5: eV (i)

 [ ]
6: for (k, u) in eV (i�1) do
7: for j  1 to J do
8: for r  1 to bi do
9: v  qj(u)[r]

10: eV (i).append((j, v))

11: b
(i)
j  ckj ⇥ b

(i)

12:
...
Auv  

...
Auv + 1� �(�(r � b

(j)
i ))

13: end for
14: end for
15: end for
16: end for

4.1 AGAINST ADVERSARIAL EDGE SOURCES

In these experiments, we assume that we have one
QNOISE(·|u) that has uniform probability over all V , i.e.,
it is very likely that v /2 N (u) for v ⇠ QNOISE(·|u). Since
QNOISE favors negative edges, we would hope that our learn-
ing algorithm is able to down-weigh QNOISE. Specifically,
we hope to learn � = {c} with cNOISE ⇡ 0.

Setup: We train GCN of [Kipf and Welling, 2017], with
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training examples being subgraphs sampled according to
§3.1&§3.4, with sampling budgets b(1) = 20, b(2) = 10. We
use: {Qj}j = {QPAGERANK, QLOWDEG, QNOISE}. We attempt
Datasets: citeseer, cora, pubmed.

Discussion: We see that, as summarized in Fig. 3, subgraph
sampling parameters � learn to ignore edges coming from
QNOISE. In all cases, cNOISE goes towards 0. We run each
experiment ten times, and plot the average Q� through time,
shading up-to the standard deviation.

Hyperparameters: We use GCN model of [Kipf and Welling,
2017] with default hyperparameters, i.e., two GCN layers,
hidden dimension of 32, trained with dropout and Adam op-
timizer using learning rate of 0.01 (but 0.005 for pubmed).
The learning rate for � parameters is set to 0.05.

4.2 EMPHASIZING FAVORITE EDGES

We test if our method can choose edges that are preferred
for the node classification task. Specifically, we:

1. Partition edges E into Ep
1,E

p
2,E

p
3,E

p
4,E

p
5 – we exper-

iment only with 5 partitions. The partition is based on
the features of edge endpoints (details below).

2. We instantiate QECLUSTERm for partition Ep
m with:

QECLUSTERm(v | u) =
1

|(ṽ, u) 2 Ep
m|
1[(u, v) 2 Ep

m],

where 1[·] is the indicator function, evaluating to 1 if
its argument is true and otherwise to 0. Our learning
algorithm should pick among the 5 edge clusters: if
� = {c} was learned, such that, cm > c`, then, Ep

m

contains better edges than Ep
`, according to the objec-

tive function.

Partitioning algorithm: For each edge (u, v) 2 E, calculate
edge feature Xvu = Xuv 2 Rd as the Hadamard product
of node features: Xuv = Xu �Xv. Then, we run k-means
on {Xuv}(u,v)2E with k = 5. If k-means assigns cluster m
to feature vector Xuv , then edge (u, v) will be in Ep

m. Note
that E = [mEp

m and that Ep
m \Ep

` = ; for all m 6= `.

Datasets and Hyperparameters: same as §4.1.

Setup We compare two GCNs, both of them are trained
with sampling budgets b(1) = 20, b(2) = 10. The first GCN
is baseline, where training examples are subgraphs sam-
pled uniformly at random i.e., only QECLUSTER is used: given
a seed node, a random subtree is sampled by recursively
choosing from neighbors with equal probability. The sec-
ond GCN is our-§4.2, where training examples are sub-
graphs sampled according to §3.1&§3.4. For pubmed, we
use {Qj}j = {QRANDp

m
}
5
m=1. For cora and citeseer, we

additionally use QMAXCOVERA, which samples edges due to
greedy algorithm, as detailed in Appendix.

Discussion: According to Table 2, we see that over-

emphasizing edges, based on the cluster of the endpoint
features, helps for two of the three datasets. In addition,
Fig. 4 summarizes the learned c 2 �. We see that each graph
indeed chooses some edges to be over-repeated (assigning
remainder edge sources to ⇡ 0). For pubmed, we can get
reasonable results while ignoring most graph edges, i.e.,
� learns to discard all but one Ep.

5 MELD INTO DECOUPLED GNN

Many methods train node-wise multi-layer perceptron
MLP(X) : Rd

! Rz mapping node features into classes,
where the trainable transformation does not use the graph.
Instead, the graph is used in a non-trainable propagation
[Wu et al., 2019, Frasca et al., 2020, Gasteiger et al., 2019a,
Duan et al., 2022]. Most recently, EnGCN [Duan et al.,
2022] proposes to run the (full-graph) propagation only a
few times during training, e.g., once every 100 epochs on
node-wise MLP. Our generative framework can be utilized
in decoupled GNNs. Since the propagation step is allowed
to consider the full graph, we define a full-graph adjacency
eA 2 R|V |⇥|V |, based on §3, as:

eAuv = Ej⇠Q� [Qj(v | u)]
�
= Ej⇠Q�

⇥
A(j)uv

⇤
(26)

where A(j) reshapes Qj into a matrix.

We extend EnGCN [Duan et al., 2022] with our framework.
We use our �-parameterized eA instead of their proposed
propagation matrix of bA – Gasteiger et al. [2019b,a] show
other plausible choices for propagation matrix. EnGCN uses
propagation as a linear operator:

X(0)
 X; X(i+1)

 eAX(i) (27)

Naïvely feeding X(i)’s (Eq. 27) into MLP GNN, un-
fortunately, would cast the decoupled GNNs into graph-
consuming variants, as one would have to backpropagate
through the adjacancy values to getr�R. Nonetheless, we
maintain decoupling by considering linearity of expectation
and of the propagation operation.

X(i+1) = eAX(i) = Ej⇠Q�

h
A(j)X

(i)
i
. (28)

We then batch-compute: A(1)X
(i�1), . . . , A(J)X

(i�1). For
learning layer (i) and node-wise MLP : Rzi ! Rzi+1 , the
input features of MLP can be set to:

X(i) =
X

jJ

A(j)X
(i�1)

cj (29)

by reading batch-computed values. Now, obtaining r�R

becomes trivial as c entries appear in the summation. Yet,
the graph transformation (left-multiplying by A(j)) happens
in a fixed process, maintaining decoupling.

Unfortunately, we incur a cost for increasing the size of the
latent space (linear in O(J)). However, for inference i.e.,
once � = {c} is learned and fixed, one need only store one
vector per example.

7



5.1 EVALUATING OUR DECOUPLED GNNS

Datasets. OGB of Hu et al. [2020] open-source many graph
tasks. We run our methods on node classification tasks
(OGBN), specifically, homogeneous4 ones: ogbn-arxiv and
ogbn-products. Baselines. We copy baseline numbers from
the OGBN public leaderboard. We choose only top perform-
ers from each bucket: (a) using external data and (b) not
using external data. Table 3 summarizes the results. Details
of baselines can be found in [Sun and Wu, 2020, Zhang
et al., 2021a,b, 2023, Zhao et al., 2023]

Our model. we modify the code of EnGCN [Duan et al.,
2022] to import our contribution. We replace their propa-
gation operation, as described in this section.We inherit all
their hyper-parameters, as detailed in [Duan et al., 2022].

Discussion. Propagation function of decoupled GNNs, such
as EnGCN, benefits when mixing heuristics. We set the state-
of-the-art (SOTA) on ogbn-arxiv, even when competing
with methods that use external data. For ogbn-products, our
method is SOTA against methods that use no external data.

6 RELATED WORK

We broadly summarize methods from our directions of in-
terest: subgraph sampling and decoupled GNNs.

Subgraph Sampling: Chiang et al. [2019] partition input
graphs into subgrahs using algorithm for graph clustering
such as METIS [Karypis and Kumar, 1998]. The subgraphs
are computed once and re-used for training. Other methods
sample graphs on-the-fly. For instance, Chen et al. [2018]
sample nodes independently and an edge is only included
if both of its endpoints are sampled. Zou et al. [2019]
then propose to do conditional sampling: nodes sampled at
V

(i) would influence nodes sampled at V (i+1). This condi-
tional assumption is also implied by recursive subgraph sam-
pling, such that of [Hamilton et al., 2017, Ying et al., 2018,
Markowitz et al., 2021, Ferludin et al., 2022]. While we fit
into the last mentioned models, as our sampling is also tree-
based, in addition, we learn P(v | u) for all (u, v) 2 [iE(i),
as convex combination of {Qj(v | u)}jJ . This allows
our method to perform online edge subset selection, where
subsets can be pre-computed by clustering.

Learnable sampling. Yoon et al. [2021] also propose to learn
sampling parameters using gradients. However, they assume
(the original) discrete sampling process and they learn using
reinforcement-learning policy gradients. Instead, we obtain
analytical gradients by relaxing the discrete process. Wang
et al. [2021] also trains a sampler. However, they parame-
terize their sampler in terms of features. In our case, our
sampler mixes a number of heuristics. Our heuristics are
based on structural properties (e.g., node degree or PageR-

4Extending to heterogeneous settings is left as future work.

ank) rather than features.

Decoupled GNNs: One of the earliest decoupled GNNs is
SimpleGCN [Wu et al., 2019]. Before learning starts, graph
propagation is applied as a pre-processing step. Learning
only use the graph-transformed information but without us-
ing the graph. On the other hand, Gasteiger et al. [2019a]
also decouples the learned parameters from the graph prop-
agation, however, by applying the propagation after the
node-level model. While these two mentioned methods ap-
ply the fixed graph transformation once (after or before
node-level model), EnGCN [Duan et al., 2022] interleaves
node-level learning with graph propagation. In this work,
we modify EnGCN by replacing its fixed propagation func-
tion, by a function that conducts a variety of propagations
{A(j)} in parallel, each propagation j according to heuristic
j 2 [J ]. We learn convex combination of precomputed J

graph-transformed features.

For space constraints, we do not discuss other directions for
scaling-up learning of GNNs, including utilizing distributed
compute [Lerer et al., 2019] or using historical embeddings
[Chen et al., 2017, Fey et al., 2021].

7 CONCLUSION

In this work we introduced a method for learning graph sam-
pling while training Graph Neural Networks (GNNs). Our
proposed method parameterizes graph sampling as a convex
combination of different heuristics. We apply our method
in two popular regimes for learning GNNs: (D.1) training
on sampled subgraphs, and (D.2) decoupled GNN: graph
propagation step is fixed. For (1), we propose a continuous
relaxation of the discrete process. We evaluate our method
in three scenarios. (i) our method can learn to discard edge
sources that are noisy; (ii) if edges are clustered using their
endpoint features, then our method can learn favorite edge
clusters; finally, (iii) integrating our method with decou-
pled GNNs (D.2) achieves SOTA results on ogbn-arxiv and
ogbn-products.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on Learn-

ing Representations, 2018.

Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, and Philip
Yu. Dskreg: Differentiable sampling on knowledge graph
for recommendation with relational gnn, 08 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Weinberger. Simplifying graph con-
volutional networks. In International Conference on Ma-

chine Learning, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe,
Ken-ichi Kawarabayashi, and Stefanie Jegelka. Represen-
tation learning on graphs with jumping knowledge net-
works. In International Conference on Machine Learning,
ICML, pages 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? In Interna-

tional Conference on Learning Representations, ICLR,
2019.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov.
Revisiting semi-supervised learning with graph embed-
dings. In International Conference on Machine Learning,
2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,
William L. Hamilton, and Jure Leskovec. Graph con-
volutional neural networks for web-scale recommender
systems. In ACM SIGKDD international conference on

Knowledge discovery and data mining, 2018.

Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu,
Qi He, and Jaewon Yang. Performance-adaptive sampling
strategy towards fast and accurate graph neural networks.

In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery Data Mining, KDD ’21, pages
2046–2056, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Raj-
gopal Kannan, and Viktor Prasanna. GraphSAINT: Graph
sampling based inductive learning method. In Interna-

tional Conference on Learning Representations, 2020.

Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, and Jie
Tang. Improving the training of graph neural networks
with consistency regularization, 2021a.

Lei Zhang, Xiaodong Yan, Jianshan He, Ruopeng Li, and
Wei Chu. Drgcn: Dynamic evolving initial residual
for deep graph convolutional networks. arXiv preprint

arXiv:2302.05083, 2023.

Muhan Zhang and Yixin Chen. Link prediction based on
graph neural networks. In Neural Information Processing

Systems, 2018.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Wen Ouyang,
Xiaosen Li, Yangyu Tao, Zhi Yang, and Bin Cui.
Graph attention multi-layer perceptron. arXiv preprint

arXiv:2108.10097, 2021b.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu,
Rui Li, Xing Xie, and Jian Tang. Learning on large-
scale text-attributed graphs via variational inference. In
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=q0nmYciuuZN.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou
Sun, and Quanquan Gu. Few-shot representation learning
for out-of-vocabulary words. In Advances in Neural In-

formation Processing Systems 32: Annual Conference on

Neural Information Processing Systems, NeurIPS, 2019.

10

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://openreview.net/forum?id=q0nmYciuuZN
https://openreview.net/forum?id=q0nmYciuuZN

	Introduction
	Preliminaries
	Graph Neural Networks
	Level-based subgraph sampling

	Probabilistic Models of Edges
	Subgraph Sampling (G"0365G)
	Parameterizing Weights Q
	Parameterizing Components Qj
	Learning  when Subgraph Sampling
	How are bj(i) utilized in GNN h?
	Backpropagation from h to 


	Experimental Evaluation
	Against Adversarial Edge Sources
	Emphasizing Favorite Edges

	Meld into decoupled GNN
	Evaluating our Decoupled GNNs

	Related Work
	Conclusion
	Max Coverage Heuristics
	Max Coverage Heuristics


