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ABSTRACT

Decision trees are a crucial class of models offering robust predictive performance
and inherent interpretability across various domains, including healthcare, finance,
and logistics. However, current tree induction methods often face limitations
such as suboptimal solutions from greedy methods or prohibitive computational
costs and limited applicability of exact optimization approaches. To address these
challenges, we propose an evolutionary optimization method for decision tree
induction based on genetic programming (GP). Our key innovation is the integration
of semantic priors and domain-specific knowledge about the search space into the
optimization algorithm. To this end, we introduce LLEGO, a framework that
incorporates semantic priors into genetic search operators through the use of Large
Language Models (LLMs), thereby enhancing search efficiency and targeting
regions of the search space that yield decision trees with superior generalization
performance. This is operationalized through novel genetic operators that work
with structured natural language prompts, effectively utilizing LLMs as conditional
generative models and sources of semantic knowledge. Specifically, we introduce
fitness-guided crossover to exploit high-performing regions, and diversity-guided
mutation for efficient global exploration of the search space. These operators are
controlled by corresponding hyperparameters that enable a more nuanced balance
between exploration and exploitation across the search space. Empirically, we
demonstrate across various benchmarks that LLEGO evolves superior-performing
trees compared to existing tree induction methods, and exhibits significantly more
efficient search performance compared to conventional GP approaches.

1 INTRODUCTION

Decision trees are fundamental models which are widely utilized across various domains, including
finance, healthcare, and bioinformatics (Morgan & Sonquist, 1963; Che et al., 2011; Soleimanian
et al., 2012). These hierarchical models recursively partition the feature space, creating a tree-like
structure where internal nodes represent decision rules based on feature values, and leaf nodes
correspond to class labels or predicted values. Decision trees are particularly appealing as they
offer both predictive accuracy and interpretability, which have stood the test of time against recently
developed black-box predictive models (Borisov et al., 2022; Grinsztajn et al., 2022).

However, decision tree induction represents a challenging optimization problem. Finding the optimal
tree given a training dataset is NP-complete (Laurent & Rivest, 1976), often necessitating the use
of heuristic algorithms (Quinlan, 1986). While computationally efficient, these heuristics yield
approximate, locally greedy solutions that sacrifice some degree of performance and global optimality
(Rokach & Maimon, 2005). Exact optimization methods have been developed to address these
limitations, but they face their own constraints. Their computational complexity typically scales
exponentially with problem size, limiting their applicability to restricted search spaces (Verwer &
Zhang, 2019; Lin et al., 2020). Moreover, these approaches are often confined to specific problem
types, such as binary classification, which further restricts their practical utility.

Genetic programming (GP) is a class of evolutionary algorithms which offers a promising middle
ground for decision tree induction, balancing computational efficiency with global optimization
of the tree structure (Koza, 1994a;b). Inspired by principles of evolution, GP algorithms evolve a
population of candidate solutions through iterative application of genetic operators such as crossover

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝒫(")

… N

LLEGO!" 𝒫 # , 𝒞; 𝛼

LLEGO$%& 𝒫 # , 𝒞; 𝜏

Fit & Eval

Selection

𝒪!" XO 
offspring

𝒟train

𝒟val

Task context
𝒞

Operation 
instructions

Sample 𝜈 parents, 𝒮' =	 {(𝑡(, 𝑓(𝑡()}()*+ 	1

Compute desired fitness 𝑓∗ using 𝒮', 𝛼2

Generate offspring 𝑜( ∼ LLM!" ⋅ 𝒮', 𝒞, 𝑓∗)3

Sample 𝜈 parents, 𝒮' =	 {(𝑡(, 𝑓(𝑡()}()*+ 	1

Sample offspring and corresponding 
logprob (𝑜(5, 𝑠(𝑜7()) ∼ LLM$%&(𝒮', 𝒞)

2

Weighted offspring sampling using 𝑠(𝑜7(), 𝜏3

𝜅 ops

𝜅 ops

𝒪#$%
MUT

offspring

𝒟train

𝒫$ ('()) = 𝒫(') ∪ 𝒪!"
∪ 𝒪#$%

𝒫('()) = SEL 𝒫$ '() , 𝑁

Update population

Compute 
fitness	𝑓 𝑜(

∀	𝑜( ∈ {𝒪$%& , 𝒪!"}

Figure 1: Overview. In each generation g ∈ [G], a population of solutions P(g) is evolved through
crossover OMUT = LLEGOXO(P(g), C;α) and mutation OMUT = LLEGOMUT(P(g), C; τ). Subse-
quently, the offsprings {OXO,OMUT} are evaluated for fitness and ▶ selection preserves the top-N
solutions, P(g+1) ← SEL(P̃(g+1), N), where P̃(g) = P(g) ∪ OXO ∪ OMUT.

and mutation. They are particularly well-suited for optimizing combinatorial problems with discrete,
variable-length search spaces, as is the case in decision tree induction (Koza, 1990; Tanigawa & Zhao,
2000; Kuo et al., 2007; Lahovnik, 2024). While much research in GP has focused on developing
heuristic genetic operators to enhance search efficiency, these operators still encounter fundamental
limitations that hinder their effectiveness in exploring solution spaces. These limitations include a lack
of semantic priors and domain knowledge, unguided variation mechanisms and narrow operational
contexts which limit the information available for the generation of offspring.

Key considerations. Our crucial insight in this work is to employ large language models (LLMs)
and their encoded semantic priors to design efficient semantically-aware variation operators in GP.
LLMs are powerful and flexible generative models capable of learning distributions over discrete
and variable-length sequences given only few-shot examples (Radford et al., 2019; Brown et al.,
2020). Specifically, we utilize LLMs as the basis for crossover and mutation operators, leveraging
the extensive semantic priors of LLMs to reason over solution semantics and guide search. We
introduce a fitness-guided crossover operator and complement it with a diversity-guided mutation
operator for efficient exploration at the population level. These operators work in tandem to perform
an efficient exploration of the search space, contrasting with the unguided nature of conventional
variation operators. Furthermore, our approach represents decision trees in natural language, which
enables the use of broader contexts and higher arity operations. As we demonstrate in Section 5,
our approach consistently outperforms existing tree induction methods across a diverse range of
classification and regression datasets.

Contributions. 1 Conceptually, we propose a novel GP algorithm that leverages semantic priors
contained in LLMs to enhance search efficiency and performance on challenging decision tree
induction problems. 2 Technically, we introduce LLEGO (LLM-Enhanced Genetic Operators),
which uses LLMs to define two key search operators: fitness-guided crossover that steers the search
towards promising regions using a target fitness; and diversity-guided mutation that identifies and
evolves solutions in under-explored areas of the search space. 3 Empirically, we evaluate LLEGO
on a wide variety of tabular data benchmarks, demonstrating that it significantly improves search
efficiency and consistently produces superior trees compared to existing tree induction methods.

2 BACKGROUND

2.1 DECISION TREE INDUCTION

Decision tree induction is the problem of learning a decision tree t ∈ T from a training dataset
Dtrain = {(xi, yi)}ni=1, where xi ∈ X ⊆ Rd denotes a d-dimensional input and yi ∈ Y denotes
the output. Decision trees recursively partition the input space X into hierarchical, disjoint regions.
In this work, we focus on binary decision trees, where splits partition regions in two subregions.
These regions define a set of leaf nodes R = {R1, R2, ..., RL}, where each leaf Rl is assigned a
constant cl (Hastie et al., 2009). This in turn yields a predictor t : X → Y which is defined by
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t(x) =
∑L

l=1 clI(x ∈ Rl), where I(·) is the indicator function. Constructing decision trees from a
training dataset is a challenging optimization problem, since full tree optimization has been proven
to be an NP-complete problem (Laurent & Rivest, 1976). Greedy algorithms like CART (Breiman
et al., 1984) build trees top-down, offering computational efficiency but sacrificing performance. In
contrast, exact optimization methods (Lin et al., 2020), while providing theoretical guarantees of
optimality, face substantial practical constraints. These methods scale exponentially with tree depth
and number of possible splits, apply only to classification tasks, and are limited to specific objective
functions. Due to these restrictions, their application remains confined to small-scale problems.

2.2 GENETIC PROGRAMMING

Genetic Programming (GP) is a class of evolutionary algorithms designed to navigate complex
combinatorial spaces and offers a flexible middle ground between greedy and exact optimization
methods. The fundamental objective of GP is to evolve solutions t ∈ T to maximize a fitness
function f : T → R, where T is the combinatorial space of solutions (Koza, 1994a) which are
represented as trees. This tree structure permits to encode the hierarchical and variable length nature
of solutions present in many applications of GP, such as decision tree induction (Tanigawa & Zhao,
2000; Kuo et al., 2007) or symbolic regression (Qian et al., 2022). In GP, each individual is described
by the tuple (t, f(t)) of its solution and its fitness. We denote this population of N individuals
P = {(t1, f(t1)), (t2, f(t2)), . . . , (tN , f(tN ))}, with N ∈ N. The algorithm evolves the population
across G ∈ N generations. In each generation g ∈ [G], the population P(g) undergoes three key
genetic operations, i.e. selection, crossover and mutation:

Selection. The selection mechanism preserves performant individuals across generations, resulting in
selection pressure to enforce sufficient exploitation and ensure convergence (Goldberg, 1989). The
N -ary selection operator is defined as SEL : T N × RN → ∆(T N ), where ∆(T N ) represents the
probability simplex over T N . The selection operator implicitly creates a probability distribution over
T , wherein individuals with higher fitness are more likely to be preserved.

Crossover. The crossover operator combines the genetic material of multiple candidate solutions
to generate performant offspring (Langdon & Poli, 2013). Crossover is an ν-ary operator, denoted
XO : T ν → ∆(T ), taking in ν parents to generate an offspring o ∈ T sampled as o ∼ PXO(· | S),
where S is usually a pair of parents (ν = 2) sampled uniformly from the population. The stochastic
perturbations permitted by XO induce the offspring distribution PXO, which can be interpreted as a
uniform distribution over all trees producible through crossover. A popular version of XO is subtree
crossover, where randomly selected subtrees from two parent trees are swapped (Koza, 1994a).

Mutation. The mutation operator promotes global search of the solution space, thus mitigating
premature convergence to local optima (Goldberg, 1989). An ν-ary mutation operator MUT : T ν →
∆(T ) performs random modifications to individuals to sample an offspring o ∼ PMUT(· | S).
Traditionally, mutation operates on a single tree (ν = 1) and PMUT is uniform over the set of trees that
can be generated through mutation (e.g. random insertion or replacement of nodes).

Limitations. While these mechanisms are foundational to GP, the variation operators present notable
limitations that limit the algorithm’s search efficiency.

• Lack of semantic priors: Conventional variation operators perform search purely through random
perturbations to the solution structure, crucially lacking an understanding of the semantic impli-
cations of these changes. This is problematic as small changes in the syntactic space can lead to
disruptive changes in the semantics of solutions (Rothlauf et al., 2011).

• Unguided variation operators: The crossover operator is often agnostic to solution fitness and
performs local exploration, considering any structural interpolation between pairs of trees as equally
likely. This contrasts with gradient-based search methods, which take steps in the direction of
greatest improvement (Ruder, 2016). This lack of search direction in the variation operators can
lead to inefficient exploration and slower convergence to optimal solutions.

• Narrow context: The technical designs of existing operators often constrain the arity of allowed
operations (e.g. it is difficult to define valid operations on more than 2 trees). This restricts
offsprings to evolving locally, limiting diversity and global search performance.

A line of work has aimed to address some of these limitations. Notably, previous works in semantic
GP have attempted to address the first two limitations with variation operators which consider the
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semantics of solutions (Krawiec & Lichocki, 2009; Moraglio et al., 2012; Krawiec & Pawlak, 2013).
In the semantic GP literature, a solution’s semantics typically refers to the behavioural or functional
output of a solution, i.e. h(t) = [t(x1), t(x2), . . . , t(xn)] ∈ Rn. In contrast, our work uses the term to
describe domain knowledge about the solution space encoded in the LLM. However, works in semantic
GP are limited by domain-specific definitions that restrict their broader applicability. Crucially, no
comparable semantically-aware methods have been developed for decision tree induction.

3 LLEGO: GENETIC OPERATORS WITH SEMANTIC PRIORS

Addressing the challenges of genetic variation operators through conventional methods has proven
difficult. In this work, we build on the following key insight: LLMs are powerful and flexible
generative models which can perform semantically-aware variations to individuals in order to steer
exploration towards promising regions within the search space.

Indeed, large language models (LLMs) pretrained on Internet-scale sequence data, such as GPT4
(Achiam et al., 2023), Claude (Anthropic, 2024), and PALM2 (Anil et al., 2023), have demonstrated
marked proficiencies in many tasks involving sequential generation, including natural language
(Brown et al., 2020), and code programs (Chen et al., 2021). Especially of note, they are efficient
few-shot learners, able to identify patterns and generalize from sparse observations (Radford et al.,
2019; Brown et al., 2020). These properties make them particularly appealing when viewed from
the perspective of variation operators (Meyerson et al., 2023; Lehman et al., 2023). Firstly, they are
semantically aware, with the LLM capturing rich semantic knowledge about candidate solutions.
They are also able to reason over in-context examples to identify performant patterns to guide efficient
exploration. By utilizing in-context learning, we also can obtain natural language signals to guide
evolution towards desired regions (Xie et al., 2021; Dai et al., 2022). Lastly, their relatively large
context window facilitates utilization of wider context, increasing arity of feasible genetic operations.

Method overview. In this section, we introduce LLEGO, capitalizing on the aforementioned capa-
bilities of LLMs to improve search efficiency. At a high level, LLEGO represents solutions and
frames genetic operations in natural language. Specifically, each genetic operation is realized through
a distinct prompt which receives a subset of the current population as parents and generates a set
of offspring solutions. We introduce fitness-guided crossover LLEGOXO that performs in-context
learning over solutions and their fitness, and generates offspring conditioned on a desired fitness
f∗. Additionally, we propose diversity-guided mutation LLEGOMUT that generates diverse offspring
to efficiently explore the search space. We note that the level of fitness- or diversity-guidance is
intentionally controllable through two hyperparameters, α and τ that correspond to different degrees
of exploitation vs exploration. An overview of our method is visualized in Figure 1.

3.1 LLEGO PROMPT DESIGN

The genetic operations are performed through natural language queries to the LLM. While the specific
structure of each query differs, they are constructed from three essential components. For an extended
description of prompts and examples, please refer to Appendix B.

1. Task context. Denoted as C and includes information about the input space X , the output space
Y , and the characteristics of the dataset D, e.g. number of samples or features.

2. Parent solutions. This contains the solution representation and fitness of each parent, which are
serialized into natural language and provided as few-shot examples in each genetic operation.

3. Task-specific instructions. For each genetic operator, we include task-specific instructions on
offspring generation and guidelines on the format of the response.

3.2 Fitness-GUIDED CROSSOVER OPERATOR

Traditional crossover operators are not semantically aware, as they randomly select subtrees from
parents to be recombined into an offspring. This ignores patterns in the parents, introducing the
possibility for performant substructures to be destroyed through random perturbations. Additionally,
they do not make use of parent fitness explicitly to guide offspring generation (i.e. no fitness guidance),
foregoing any informative signals on correlations between fitness and solution structure. We seek
to address these factors in our fitness-guided crossover operator. More specifically, the crossover
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operation includes three steps: (1) sampling a subset of parents, weighted by parent fitness, (2)
compute desired fitness f∗ based on parent fitness, (3) constructing the prompt and querying the
LLM to generate offsprings, conditioning on f∗ (see Figure 2).

Parent sampling. Each crossover operation is conditioned on parents, which are sampled from
the current population. We utilize a roulette-wheel mechanism (Blickle & Thiele, 1996) to favour
existing solutions with high fitness. Specifically, we aim to sample a set of ν ∈ N parents for each
crossover operation, where the sampling weights θ = (θ1, . . . , θN ) are proportional to the solutions’
fitness. These weights define a categorical distribution CatN (θ), based on which we sample parents
without replacement. Intuitively, solutions with higher fitness are more likely to be involved in genetic
operations. We use Sk to represent the set of parents sampled for operation k ∈ [κ], where κ ∈ N is
the number of crossover operations performed.

t! t"

𝒮 = {𝑡!, 𝑡", 𝑡#}

LLM!" ⋅ 𝒮, 𝒞, f ∗ 	
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Figure 2: LLEGOXO. For each operation,
the crossover operator 1) samples a set of
parents S weighted by their fitness, 2) com-
putes desired fitness f∗ using S and α, and
3) samples offspring via the LLM.

Crossover through fitness guidance. To perform
crossover, we utilize both the tree structures tj and
the fitness metric f(tj) to create few-shot prompts. For
each of the sampled parents in S, we serialize the tree
into natural language as a nested dictionary, which we
denote as tnl

j , where each intermediary key represents
the splitting condition (feature name and splitting value)
and the leaf item represents the value of the leaf node.
Please refer to Figure 10 for more description of this
representation. Each example is then constructed as

“fitness: f(tj), tree: tnl
j ” and we use Snl to represent

the serialized few-shot prompt. We further condition
the generation by specifying a desired fitness f∗ in the
prompt to steer the generation towards high-fitness re-
gions. This steering is controlled by a hyperparameter
α, where f∗ = fmax +α(fmax− fmin), with fmax and
fmin the best and worst fitness in S respectively. Intuitively, f∗ is defined relative to the best parent
fitness, with the improvement proportional to the observed variability. A positive α defines f∗ to
improve over the best fitness in the parent set, whereas −1 ≤ α < 0 results in a more conservative
target fitness that is within the observed fitness range.

We generate offsprings as oj ∼ LLMXO(· | Snl, C, f∗), by sampling from an LLM conditioned on the
parents Snl, the task context C, and target fitness f∗ controlled by α. We write the complete crossover
operation as OXO,k = LLEGOXO(P(g), C;α), where OXO,k is the set of offspring generated from
operation k ∈ [κ]. α controls the level of exploration, and we systematically investigate its effect in
Section 5.2. By framing crossover using natural language, our crossover operator naturally allows for
an arity ν strictly than 2, by including additional parents as in-context examples through Snl.

3.3 Diversity-GUIDED MUTATION OPERATOR
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Figure 3: LLEGOMUT mutation operator.
The mutation operator 1) samples a set
of candidate offspring and their associated
log probs (i.e. likelihood given parents), 2)
computes sampling weights inversely pro-
portional to log probs, controlled by tem-
perature hyperparameter τ , and 3) samples
mutation offspring accordingly.

On the other side of the coin is the mutation opera-
tor, where the objective is to efficiently traverse under-
explored areas in the search space to improve diversity
and escape local minima. Traditional mutation oper-
ators can be viewed as inducing a uniform distribu-
tion over the space of solutions one random mutation
away from the parent. However, this does not consider
whether such mutations are semantically meaningful.
To contextualize this, imagine the space one mutation
away from a decision tree; many of these mutations are
highly unlikely to be interesting or optimal given some
degree of domain knowledge, resulting in inefficient ex-
ploration. In this setting, our mutation operator uses its
semantic prior to effectively guide exploration, enabling
more efficient diversity-driven exploration.

Parent sampling. As before, each mutation operation is
conditioned on a set S of ν parents. However, whereas
for crossover, parents are sampled based on their fitness,
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for mutation, parents are randomly sampled from the population to increase the diversity of S.
Specifically, S = {(tj , f(tj)) | j ∈ [ν], tj ∼ UniformN (P(g))}, where each solution has uniform
probability of being selected as a parent. Future works should consider more advanced sampling
schemes to increase diversity amongst the parents.

Mutation with diversity guidance. To perform mutation, we only include the tree structure tj to
create few-shot prompts: each parent is serialized as “tree: tnl

j ”, to create Snl. Subsequently, we
generate λ′ (where λ′ ≥ λ) candidate offsprings õj , and track the negative log probabilities of the
candidates obtained from the LLM, represented s(õj) = −p(õj | S). Intuitively, s(õj) reflects the
likelihood of the candidate offspring given the set of parents, with smaller values indicating that the
candidate offspring has low probability under the current population distribution and hence that its
integration can introduce more diversity at the population level. As such, the candidate sampling
step is represented as (õj , s(õj)) ∼ LLMMUT(· | Snl, C). Given this set of λ′ candidates, we select
λ offspring based on their log probabilities, i.e. OMUT = {(oj , f(oj) | j ∈ [λ], oj ∼ Catλ′(θ)},
where θ = (θ1, . . . , θλ′) and θj =

exp(s(õj)/τ)∑λ′
i=1 exp(s(õj)/τ)

. Here, τ is the sampling temperature, where

larger values of τ > 1 results in a more uniform distribution over the candidate offspring, and lower
values of 0 < τ ≤ 1 would put more weight on candidates with lower likelihood. As such, we use τ
and the log probabilities to guide the sampling of offspring with controllable levels of diversity. In
Section 5.2, we empirically investigate the effect of τ on offspring diversity. In summary, we define
the k-th mutation operation as OMUT,k = LLEGOMUT(P(g), C; τ).

3.4 END-TO-END ALGORITHM

Having detailed our LLM-based genetic operators, we now put together the end-to-end GP algorithm.
The search is initialized with a set of N solutions, P(0). In each generation, we sample N crossover
offspring, represented as O(g)

XO , and mutation offsprings, represented as O(g)
MUT. This is performed

through κ genetic operations, with each operation involving ν parents, and generating λ offsprings.
The fitness of each solution is then calculated against the training set Dtrain. For selection, we
consider the set of candidates as the union of the solutions from the previous generation and the newly
generated offsprings, i.e. P̃(g+1) = P(g) ∪ O(g)

XO ∪ O
(g)
MUT. We use the elitism selection to select the

top-N unique solutions from the candidate population to preserve the highest quality solutions across
generations (Goldberg, 1989). Here, top-N is selected based on training set fitness. More formally,
we denote this process as P(g+1) ← SEL(P̃(g+1);N). After G generations of evolution, we select
the solution with the highest validation fitness as the final solution.

4 RELATED WORKS

Our work relates to multiple strands of research, which we summarize in brief below. We provide an
extended literature survey in Appendix A.1.

Tree induction algorithms. Existing algorithms for decision tree induction can be broadly cate-
gorized into three main classes: greedy, globally optimal, and GP algorithms. Greedy algorithms
recursively construct a tree in a top-down approach, heuristically making locally optimal splits at each
node (Breiman et al., 1984; Quinlan, 1986; 1993). While computationaly efficient, these methods do
not pursue global optimality. Recent works have proposed exact combinatorial methods to construct
optimal decision trees (Verwer & Zhang, 2019; Hu et al., 2019; Lin et al., 2020; Aglin et al., 2020).
However, these methods face two key limitations: exponential complexity scaling with tree depth and
number of splits, and restricted applicability to specific objectives (primarily classification problems).

Genetic programming. GP approaches present a middle ground between search performance and
computational efficiency (Koza, 1990; Tanigawa & Zhao, 2000; Lahovnik, 2024). GP builds on
genetic operators such as crossover and mutation to evolve a population at each generation. However,
such operators can have disruptive effects because of the complex mapping between syntacting
representations and semantics (Rothlauf et al., 2011). This observation has motivated works on
semantic GP (Krawiec & Lichocki, 2009; Moraglio et al., 2012; Krawiec & Pawlak, 2013), aiming to
produce offspring that maintain semantic consistency with their parents. However, these approaches
are highly domain-specific, and have not extended to tree induction, which is the focus of our work.
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Table 1: Performance on classification tasks. Balanced accuracy (↑) on 7 datasets, reporting
mean(std) and emboldening best results. We also report average rank (↓) for comparing baselines.

Method Breast Compas Credit Diabetes Heart Liver Vehicle Rank (↓)
depth = 3

CART 0.941(0.008) 0.655(0.011) 0.668(0.019) 0.710(0.026) 0.734(0.061) 0.646(0.022) 0.903(0.018) 2.9(0.83)
C4.5 0.938(0.011) 0.650(0.008) 0.579(0.027) 0.687(0.040) 0.704(0.017) 0.569(0.042) 0.857(0.035) 4.6(0.79)
DL85 0.944(0.006) 0.666(0.006) 0.591(0.010) 0.655(0.018) 0.704(0.040) 0.565(0.028) 0.938(0.016) 3.5(2.05)
GOSDT 0.935(0.005) 0.641(0.003) 0.681(0.000) 0.698(0.011) 0.651(0.077) 0.656(0.016) 0.852(0.042) 4.3(2.05)
GATREE 0.942(0.008) 0.647(0.005) 0.648(0.040) 0.681(0.024) 0.669(0.028) 0.626(0.033) 0.922(0.020) 4.1(0.83)
LLEGO 0.946(0.010) 0.652(0.004) 0.677(0.004) 0.713(0.013) 0.736(0.021) 0.672(0.017) 0.937(0.015) 1.6(0.73)

depth = 4
CART 0.945(0.009) 0.660(0.010) 0.675(0.017) 0.704(0.023) 0.713(0.053) 0.632(0.056) 0.925(0.018) 3.1(0.78)
C4.5 0.942(0.012) 0.660(0.005) 0.622(0.038) 0.699(0.021) 0.714(0.028) 0.585(0.041) 0.921(0.010) 4.1(1.02)
DL85 0.941(0.011) 0.662(0.004) 0.586(0.015) 0.636(0.025) 0.744(0.037) 0.588(0.023) 0.931(0.009) 3.9(1.83)
GOSDT 0.938(0.006) 0.641(0.003) 0.680(0.002) 0.701(0.010) 0.677(0.025) 0.660(0.014) 0.885(0.017) 4.3(1.75)
GATREE 0.941(0.007) 0.650(0.006) 0.658(0.011) 0.675(0.034) 0.676(0.022) 0.633(0.042) 0.895(0.030) 4.6(0.87)
LLEGO 0.951(0.006) 0.662(0.003) 0.684(0.009) 0.731(0.004) 0.751(0.037) 0.676(0.019) 0.937(0.013) 1.1(0.17)

LLMs and optimization. Recent studies have explored LLMs for optimization tasks, with some
works employing LLMs as variation operators (Meyerson et al., 2023). Examples of applications
include code evolution (Lehman et al., 2023; Nasir et al., 2024; Brownlee et al., 2023), neural
architecture search (Nasir et al., 2024), and prompt optimization (Fernando et al., 2024; Guo et al.,
2024), where unguided variations at the individual level are produced using the LLMs’ instruction-
following capabilities (e.g. "cross over the following prompts and generate a new prompt" in (Guo
et al., 2024)). In contrast, LLEGO generates guided variations, and consider the dynamics of search at
the population level by controlling fitness and diversity with the hyperparameters α and τ , and utilizing
in-context learning of patterns in parent solutions. LLEGO is also distinct in uniquely addressing
the decision tree induction setting, a domain previously unexplored in LLM-based optimization
approaches.

5 EXPERIMENTS

Benchmark datasets. We empirically evaluate LLEGO’s ability to find performant decision trees
for 12 open-source tabular datasets from OpenML curated benchmarks (Vanschoren et al., 2014),
including 7 classification and 5 regression datasets. These datasets were selected based on the
number of features, samples and the presence of semantically meaningful feature names and descrip-
tions. Further details on this selection of datasets and preprocessing are provided in Appendix C.1.
Baselines. We compare LLEGO against a comprehensive set of competitive decision tree induction
methods across major categories: greedy induction (CART (Breiman, 2017) and C4.5 (Quinlan,
1993)), sparse optimal tree induction (GOSDT (Lin et al., 2020) and DL8.5 (Aglin et al., 2020)),
and a GP approach using conventional genetic operators (GATree (Lahovnik, 2024), which is an
implementation of GP for decision tree induction in Python). More details on these baselines, their
implementation, hyperparameters, and experimental details are given in Appendices C.2 and C.3. For
GP-based methods (LLEGO, GATree), we initialize the population with CART models bootstrapped
on 25% of the training data. We report results using G = 25, N = 25, and we use α = 0.1, τ = 10
and ν = 4 as the hyperparameters for the variation operators of LLEGO.

Evaluation. For classification tasks, we use balanced accuracy (ACC), and for regression tasks, mean
squared error (MSE), computed on a held-out test dataset Dtest. Each metric is averaged over 5 runs
with different random seeds, due to different dataset splits, and we present these averages with their
standard deviations. For LLEGO, we use gpt-3.5-turbo version 0301 as the underlying LLM.
For a fair comparison, each method is allowed 10 minutes of wall clock time per seeded run, which
includes time spent on hyperparameter tuning.

5.1 LLEGO-EVOLVED TREES ACHIEVE SUPERIOR GENERALIZATION PERFORMANCE

We first compare the performance of the complete LLEGO algorithm against baselines for decision
tree induction. We report in Table 1 and Table 2 generalization performance on classification and
regression datasets, respectively, for maximum tree depths of 3 and 4. For regression, we report the
results for CART and GATree since other baselines cannot optimize regression objectives. The results
demonstrate that LLEGO outperforms baselines comprehensively. We observe that this performance
advantage becomes more pronounced in the space of trees with depth 4, which is intuitive since
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Table 2: Performance on regression tasks. MSE (↓)
across 5 regression datasets, best results emboldened.

Method Abalone Cars Cholesterol Wage Wine
depth = 3

CART 0.591(0.024) 0.250(0.025) 1.500(0.218) 1.036(0.130) 0.811(0.008)

GATREE 0.595(0.039) 0.198(0.035) 1.427(0.168) 1.150(0.133) 0.825(0.014)
LLEGO 0.573(0.015) 0.191(0.031) 1.324(0.125) 1.045(0.134) 0.814(0.009)

depth = 4
CART 0.561(0.016) 0.269(0.037) 1.552(0.205) 1.185(0.173) 0.807(0.004)

GATREE 0.586(0.032) 0.100(0.018) 1.343(0.141) 1.188(0.151) 0.847(0.015)
LLEGO 0.557(0.026) 0.100(0.020) 1.322(0.130) 1.066(0.203) 0.836(0.020)
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Figure 4: Search efficiency. Median fit-
ness and diversity across 25 generations.

it represents a substantially larger search space compared to the set of trees with depth 3. In the
more constrained space of trees with depth 3, sparse optimal induction methods such as DL85
and GOSDT demonstrate increased competitiveness. This suggests that LLEGO’s efficiency gains
are particularly evident when navigating more complex and expansive search spaces. Our method
consistently outperforms the GP baseline GATree, underscoring the significant impact of semantic
priors on search performance. Further analysis in Appendix D.3 demonstrates that LLEGO produces
superior trees even when compared to a GATree configuration utilizing substantially larger search
budgets. Notably, LLEGO achieves this superior performance while requiring fewer evaluations,
highlighting its efficiency and effectiveness. Takeaway: LLEGO optimizes decision trees that are
superior against a diverse benchmark of methods, while being more applicable to a wider range of
optimization objectives (e.g. regression).

Search efficiency. Having shown the superior generalization performance of LLEGO-evolved trees,
we now compare search efficiency between LLEGO and the GP baseline GATree. We evaluate
population dynamics via normalized population fitness and diversity between the two methods across
all classification datasets, when optimizing trees with depth 3. Fitness values (i.e. balanced accuracy)
were normalized to enable comparison across different seeds and datasets (refer to Appendix C.4 for
details). Figure 4 (Left) shows the median population fitness, where LLEGO demonstrates superior
search efficiency, finding fitter individuals more efficiently. Figure 4 (Right) shows that the populations
evolved by LLEGO exhibit decreasing diversity as the search progresses, whereas GATree maintains
roughly the same level of diversity in its population. This is expected, as LLEGO uses its semantic
priors to focus the search on semantically meaningful regions, which naturally reduces diversity. A
similar effect has been observed when employing semantically aware GP in other domains (Krawiec &
Pawlak, 2013). In comparison, GATree, which is semantically unaware, performs random structural
perturbations that maintain a certain level of diversity in the population. In Appendix D.4, we
investigate search efficiency on problems with depth 4 and show search dynamics on individual tasks
in Appendix D.10, observing the same effects at play. Takeaway: LLEGO leverages its semantic
priors for more efficient search convergence, although this can sacrifice population diversity, requiring
this trade-off to be carefully balanced by its operators.

5.2 UNDERSTANDING THE SOURCES OF GAIN

Having demonstrated enhanced search efficiency of LLEGO in the previous section, we now examine
the contributions of the crossover and mutation operators to this improvement. In what follows, we
analyze how offspring characteristics are influenced by different values of the hyperparameters α and
τ , which give control over the desired solution fitness and population diversity.
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Figure 5: XO dynamics.

Results. (1) Crossover: We examine the effect of α ∈
{−0.25,−0.1, 0.1, 0.25} on offspring generation, where α de-
termines the target fitness f∗ that conditions the offspring gen-
eration. In Figure 5, we visualize the median population fitness
and diversity as a function of α. Offspring fitness improves
as α increases from −0.25 to 0.1, but regresses beyond this
point as the target fitness f∗ leads to extrapolation in less reli-
able regions. Interestingly, the best offspring fitness emerges
at α = 0.1, suggesting LLEGOXO’s ability to perform a rea-
sonable degree of extrapolation. Corresponding, diversity de-
creases with increasing α, reflecting sampling from progres-
sively smaller search regions. Hence, compared to GATree,
LLEGO produces higher quality offspring but with lower diver-
sity, which is consistent with our findings in Section 5.1.
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Figure 6: MUT dynamics.

(2) Mutation: We investigate the role of LLEGOMUT in main-
taining diversity by considering a range of τ ∈ {5, 10, 25, 50}.
In Figure 6, we observe that lower values of τ increases pop-
ulation diversity, as they prioritize offspring that have low like-
lihood given parents. As such, the offspring introduce greater
diversity at the population level, which complements the dy-
namics of the crossover operator mentioned above, crucial in
balancing exploitation and exploration during search. Results
for individual datasets can be found in Appendix D.8.

5.3 ABLATION STUDY: ALL COMPONENTS CONTRIBUTE TO ENHANCED SEARCH EFFICIENCY
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Figure 7: Ablation study. Compar-
ing search efficiency of ablations.

Having demonstrated the superior performance of LLEGO
against existing baselines, we finally scrutinize the contribution
of each algorithmic component to its optimization performance.
Specifically, we aim to investigate the effects of (1) leveraging
the LLM’s semantic prior to evolve solutions, (2) the fitness-
guided crossover and diversity-guided mutation, and (3) the
higher arity of genetic operations. Now, we systematically
ablate each component: LLEGOno_prior removes any semantic
information from the prompts (see Appendix B.1 for detailed
description), constraining semantic reasoning; LLEGOno_xo re-
moves the fitness-guided crossover, using only the mutation
operator during search; LLEGOno_mut removes diversity-guided
mutation, using only crossover during search; and LLEGOν=2 restricts the context to 2 parents,
akin to traditional genetic operators. We evaluate search efficiency in Figure 7, observing that best
performance is obtained when both operators are used in tandem, likely as they balance exploration
of higher fitness regions (guided by f∗) and exploration of less visited regions (guided by τ ). The
semantic prior leveraged by the operator also improves performance, although we note that even
without it, LLEGOno_prior performs very competitively, highlighting the strong few-shot learning
capabilities of LLMs. Finally, using binary operators in LLEGOν=2 is suboptimal, underlining the
often overlooked importance of using a wider context in genetic operations. We provide more
fine-grained ablation results in Appendix D.9. Takeaway: Our ablation experiment demonstrates
that all algorithmic components contribute to the enhanced optimization performance of LLEGO.

5.4 ADDITIONAL RESULTS.

In the interest of space, we relegated additional investigations to Appendix D. Specifically, we
addressed memorization concerns by evaluating generalization performance on datasets with removed
identifying information and context, as well as testing LLEGO on unseen proprietary datasets (detailed
in Appendix D.2). In Appendix D.1, we investigated LLEGO’s ability to mitigate negative bias by
optimizing fairness-regularized objectives. Further experiments in Appendix D offer comprehensive
analyses of LLEGO’s performance and its individual components.

6 DISCUSSION

In summary, we introduced LLEGO, a novel GP method for decision tree induction that integrates
semantic priors over the search space by using LLMs as variation operators. Our approach leverages
the semantic understanding and domain knowledge of LLMs to evolve decision trees through
innovative crossover and mutation operators, while incorporating fitness and diversity guidance and
flexible operation arity. Empirical results across diverse datasets demonstrate LLEGO’s superior
optimization efficiency, yielding high-performing decision trees compared to existing baselines.

Limitations and future works. However, our work is not without its limitations. Performing infer-
ence through LLMs incurs a larger computational footprint than conventional GP algorithms. Our
findings indicate that LLEGO trades off computational requirements for improved search efficiency
and generalization performance, making it particularly appealing in performance-sensitive domains
or problems where evaluation costs exceed search costs. Future works should prioritize reducing
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computational requirements while retaining performance, such as through inference acceleration
(Leviathan et al., 2023) and memory-efficient model architectures (Han et al., 2015). Additionally,
while LLEGO can operate effectively without semantic priors, its performance can be further im-
proved when such knowledge is available. Future works could explore finetuning strategies and
prompt augmentation strategies to incorporate semantic knowledge in specialized domains. Beyond
enhancing semantic priors, integrating advanced LLM-based reasoning capabilities, such as reflection
mechanisms (Ye et al., 2024) could further elevate performance. We also recognize that using
black-box LLMs could potentially lead to the propagation of negative biases into the solutions
returned by LLEGO—to this end, we presented initial steps to mitigate bias via the design of adequate
objective functions (see Appendix D.1). In the long run, we believe this work shows the promise of
employing LLM capabilities for enhancing efficiency and performance in complex combinatorial
optimization problems beyond decision tree induction.

Reproducibility statement. We provide all the details on the datasets, the implementation of
baselines and the LLM in Appendix C. Furthermore, we detail the prompts used by the crossover and
the mutation operators in Appendix B. Code will be released upon acceptance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Statlog (Heart). UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C57303.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3146–3153, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine bias. ProPublica:
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, May
2016.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian symposium on neural networks, pp. 173–178. IEEE, 2000.

Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilović, et al. Ai
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A ADDITIONAL DISCUSSIONS

A.1 EXTENDED RELATED WORKS

Tree induction algorithms. Greedy algorithms sequentially grow trees by optimizing a given
objective myopically. Popular methods in this class of algorithms are CART (Breiman et al., 1984),
ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993). These algorithms differ in the predictive tasks in
which they can be applied. These algorithms mainly differ in the criterion used to split the nodes at
each local node, including Gini impurity (Breiman et al., 1984) or information gain (Quinlan, 1993).
Owing to their greedy nature, they are computationally efficient in searching the combinatorial space.
In contrast, a branch of work employs exact combinatorial optimization techniques to search for
sparse, optimal trees, e.g. branch and bound (Lin et al., 2020) and dynamic programming (Aglin
et al., 2020). Notable works include BinOCT (Verwer & Zhang, 2019), DL85 (Aglin et al., 2020),
OSDT (Hu et al., 2019), and GOSDT (Lin et al., 2020). These approaches are fundamentally limited
by the NP -hardness of the tree induction problem, and struggle to scale to larger size problems.
Additionally, they have exclusively focused on the classification setting, and are limited in the types
of feature (e.g. binary or continuous features) and objective functions that can be optimized. We
compare LLEGO with representative tree induction methods in Table 3.

Table 3: Comparison with the related works. LLEGO provides a general framework for global
optimization of decision trees, contrasting with prior works along several dimensions: computational
complexity, support for different objective and regularization functions, task types, and incorporation
of structural and semantic priors.

Method Algorithm Worst-case
complexity

Objective
function

Arbitrary
regularization

Task Priors
Classification Regression Structural Semantic

CART
(Breiman
et al.,
1984)

Greedy O(2h) Gini impurity/MSE ✗ ✓ ✓ ✓ ✗

C4.5
(Quinlan,
1993)

Greedy O(2h) Information gain ✗ ✓ ✗ ✓ ✗

DL8.5
(Aglin
et al.,
2020)

DP O(d!) Additive functions ✗ ✓ ✗ ✓ ✗

GOSDT
(Lin et al.,
2020)

DP O(d!) Monotonic functions ✗ ✓ ✗ ✓ ✗

LLEGO GP O(GN) Any ✓ ✓ ✓ ✓ ✓

Genetic programming. GP is an evolutionary optimization framework, particularly effective for
a variety of combinatorial optimization problems, since it only requires the provision of a fitness
function to evaluate and evolve a population of solutions to find optimal solutions (Koza, 1994a).
As such, GP has been used in diverse tasks including tree induction (Tanigawa & Zhao, 2000; Kuo
et al., 2007; Zhao, 2007; Koza, 1990), discovery symbolic mathematical expressions (Augusto &
Barbosa, 2000; Qian et al., 2022), scheduling problems (Guillaume et al., 2007), neural architecture
search (Broni-Bediako et al., 2020), and policy design (Hein et al., 2018). While the design of
genetic operators differ significantly across domains, genetic operators share several limitations,
being agnostic to the solution semantics, relying on stochastic perturbations without any search
directionality, and narrow contexts. Several works in semantic genetic programming have considered
the first two limitations and proposed variation operators (Krawiec & Pawlak, 2013; Moraglio
et al., 2012) or rejection sampling mechanisms (Krawiec & Lichocki, 2009) to obtain semantic
consistency between the offspring and their parents. However, these methods are domain-specific:
for example, (Krawiec & Pawlak, 2013) considers convex combinations in the particular case of
symbolic expressions. This limits their generalizability, and we note that no semantic operator has
been designed for the tree induction setting which is the focus of our work.

LLM and optimization. Recent studies have explored LLMs for optimization tasks, exploiting their
domain priors to enhance optimization efficiency (Song et al., 2024). Notable applications include
prompt (Yang et al., 2024), reward-function (Ma et al., 2024), and code optimization (Liventsev
et al., 2023). Particularly relevant is research employing LLMs as variation operators. (Lehman
et al., 2023; Nasir et al., 2024; Brownlee et al., 2023) use LLMs as mutation operators for code
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evolution, sampling mutation instructions from predefined sets. LLMs also have been utilized as
variation operators for prompt optimization (Fernando et al., 2024), where task prompts contain
explicit directives for generating variations. These approaches generate unguided variations, primarily
utilizing LLMs’instruction-following capabilities. For example, in (Guo et al., 2024), crossover is
performed using the prompt template: "Cross over the following prompts and generate a new prompt".
Recent works have also considered the integration of LLMs with advanced evolutionary frameworks,
namely quality-diversity algorithms (Pugh et al., 2016), to evolve both neural architectures and
variation prompts (Nasir et al., 2024). In contrast, LLEGO generates guided variations, utilizing in-
context learning of patterns in parent solutions to generate intelligent variations. Specifically, LLEGO
steers offspring towards high-fitness regions by conditioning on desired fitness, while LLEGO controls
diversity and exploration with the hyperparameter to define the offspring sampling distribution.
Finally, recent work (Ye et al., 2024) has proposed using LLM for meta-heuristic optimization. It
differs from LLEGO as it focuses on finding general meta-heuristics for a set of optimization tasks
rather than tailoring the search with dataset-specific characteristics and relevant domain knowledge
as LLEGO does.

A.2 DISCUSSIONS ON NO FREE LUNCH

The No Free Lunch theorem for optimization (Wolpert & Macready, 1997) asserts that no universally
superior optimization algorithm exists. This principle applies to LLEGO, implying that its performance
will vary across different problem domains. Owing to its design principles, we expect LLEGO to
excel in domains with the following characteristics:

1. Natural language representation: Problems where solutions are expressible in natural language,
enabling LLEGO to employ the LLM’s semantic and contextual understanding for effective
variations.

2. Complex genotype-phenotype mapping: Tasks with low locality, where LLEGO’s semantic prior
enhances variation efficacy.

3. Contextual knowledge: Domains benefiting from broader knowledge, where contextual knowl-
edge (e.g. clinical guidelines for risk scoring) can be flexibly incorporated via prompt design (C).
This integration remains non-trivial for traditional evolutionary algorithms.

4. Challenging operator design: Areas where conventional semantic operators are difficult to craft
(e.g. preserving semantics in program synthesis). LLEGO offers broadly applicable and flexibly
customizable semantic variation operators.

These characteristics are prevalent in many applications, including decision trees, mathematical
equations, and symbolic programs. In these contexts, LLEGO harnesses the rich semantic prior and
contextual understanding capabilities of LLMs to create broadly applicable and effective genetic
operators.

B COMPLETE PROMPTS

Prompt design. In this section, we describe the details of the prompts. To recap, each of the genetic
operations is realized through natural language queries to the LLM. Each prompt is constructed of
three essential elements:

1. Task context. This includes information about the input space X , the output space Y , and the
characteristics of the dataset D, e.g. number of samples, categorical features, continuous features.

2. Parent trees. This contains the tree structure of each parent and possibly the fitness metric (in the
case of crossover). These are translated to natural language and provided as few-shot examples to
perform ICL in each genetic operation.

3. Task-specific instructions. For each genetic operator, we include task-specific instructions on
offspring generations and guidelines on the format of the response.

The structured prompt for mutation is described in Figure 8. Descriptions enclosed in {}, such as
{task_description} represent placeholder values that are populated dynamically at run-time. For a
concrete example of this, the mutation prompt on credit dataset is shown in full in Listing 1.
Similarly, the structured prompt for crossover is described in Figure 9 with a concrete example shown
in Listing 2.
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{task_description}. The dataset contains {n_samples} samples and {n_attributes} features, of
which {n_numerical} are numerical and {n_categorical} are categorical. The target variable
is {target_name}, it is {target_type}, {label_information}. The features and their ranges are:
{feature_semantics}. You should generate a diverse decision tree that is more interpretable. Please
generate decision trees in the desired JSON format, you can use any of the features, but are only
allowed to use operators [<, >, <=, >=]. Return only the JSON in the format ## tree ##.

Figure 8: Prompt structure for mutation operation.

{task_description}. The dataset contains {n_samples} samples and {n_attributes} features, of
which {n_numerical} are numerical and {n_categorical} are categorical. The target variable
is {target_name}, it is {target_type}, {label_information}. The features and their ranges are:
{feature_semantics}. Generate a different, interpretable decision tree which should have the
improved fitness. Please generate decision trees in the desired JSON format, you can use any of
the features, but are only allowed to use operators [<, >, <=, >=]. Return only the JSON in the
format ## tree ##.

Figure 9: Prompt structure for crossover operation.

The task is to classify people described by a set of attributes as good
or bad credit risks. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is class, it is binary, the label distribution is
[0: 29.17%, 1: 70.83%]. The features and their ranges are:
[checking_status (int) [0, 3], duration (float) [5.00, 60.00],
credit_history (int) [0, 4], purpose (int) [0, 9], credit_amount
(float) [276.00, 15672.00], savings_status (int) [0, 4], employment
(int) [0, 4], installment_commitment (float) [1.00, 4.00],
personal_status (int) [0, 3], other_parties (int) [0, 2],
residence_since (float) [1.00, 4.00], property_magnitude (int) [0,
3], age (float) [19.00, 74.00], other_payment_plans (int) [0, 2],
housing (int) [0, 2], existing_credits (float) [1.00, 4.00], job
(int) [0, 3], num_dependents (float) [1.00, 2.00], own_telephone
(int) [0, 1], foreign_worker (int) [0, 1]]. You should generate a
diverse decision tree that is more interpretable. Please generate
decision trees in the desired JSON format, you can use any of the
features, but are only allowed to use operators [<, >, <=, >=].
Return only the JSON in the format ## tree ##.

Expression: ## {’credit_history’: {’<= 1.5000’: {’property_magnitude’:
{’<= 0.5000’: {’employment’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’:
{’value’: 0}}}, ’> 0.5000’: {’value’: 0}}}, ’> 1.5000’:
{’savings_status’: {’<= 3.5000’: {’property_magnitude’: {’<=
0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’> 3.5000’:
{’employment’: {’<= 2.5000’: {’value’: 1}, ’> 2.5000’: {’value’:
1}}}}}}} ##

Expression: ## {’other_payment_plans’: {’<= 1.5000’:
{’property_magnitude’: {’<= 1.5000’: {’own_telephone’: {’<= 0.5000’:
{’value’: 0}, ’> 0.5000’: {’value’: 0}}}, ’> 1.5000’:
{’num_dependents’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’:
0}}}}}, ’> 1.5000’: {’purpose’: {’<= 6.5000’: {’residence_since’:
{’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 1}}}, ’> 6.5000’:
{’housing’: {’<= 0.5000’: {’value’: 1}, ’> 0.5000’: {’value’:
1}}}}}}} ##

Expression: ## {’credit_history’: {’<= 3.5000’: {’duration’: {’<=
34.5000’: {’checking_status’: {’<= 1.5000’: {’value’: 1}, ’>
1.5000’: {’value’: 1}}}, ’> 34.5000’: {’credit_amount’: {’<=
10552.5000’: {’value’: 1}, ’> 10552.5000’: {’value’: 0}}}}}, ’>
3.5000’: {’credit_amount’: {’<= 9597.5000’: {’employment’: {’<=
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1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 1}}}, ’> 9597.5000’:
{’value’: 0}}}}} ##

Expression: ## {’property_magnitude’: {’<= 0.5000’: {’duration’: {’<=
33.0000’: {’housing’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’:
{’value’: 0}}}, ’> 33.0000’: {’employment’: {’<= 0.5000’: {’value’:
0}, ’> 0.5000’: {’value’: 0}}}}}, ’> 0.5000’: {’employment’: {’<=
0.5000’: {’credit_amount’: {’<= 3359.5000’: {’value’: 0}, ’>
3359.5000’: {’value’: 1}}}, ’> 0.5000’: {’purpose’: {’<= 5.5000’:
{’value’: 1}, ’> 5.5000’: {’value’: 1}}}}}}} ##

Expression: ##

Listing 1: Example mutation prompt. On credit dataset.

The task is to classify people described by a set of attributes as good
or bad credit risks. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is class, it is binary, the label distribution is
[0: 29.17%, 1: 70.83%]. The features and their ranges are:
[checking_status (int) [0, 3], duration (float) [5.00, 60.00],
credit_history (int) [0, 4], purpose (int) [0, 9], credit_amount
(float) [276.00, 15672.00], savings_status (int) [0, 4], employment
(int) [0, 4], installment_commitment (float) [1.00, 4.00],
personal_status (int) [0, 3], other_parties (int) [0, 2],
residence_since (float) [1.00, 4.00], property_magnitude (int) [0,
3], age (float) [19.00, 74.00], other_payment_plans (int) [0, 2],
housing (int) [0, 2], existing_credits (float) [1.00, 4.00], job
(int) [0, 3], num_dependents (float) [1.00, 2.00], own_telephone
(int) [0, 1], foreign_worker (int) [0, 1]]. Generate a different,
interpretable decision tree which should have the improved fitness.
Please generate decision trees in the desired JSON format, you can
use any of the features, but are only allowed to use operators [<,
>, <=, >=]. Return only the JSON in the format ## tree ##.

fitness: 0.5882, Expression: ## {’purpose’: {’<= 5.5000’: {’housing’:
{’<= 0.5000’: {’residence_since’: {’<= 2.5000’: {’value’: 0}, ’>
2.5000’: {’value’: 1}}}, ’> 0.5000’: {’job’: {’<= 1.5000’: {’value’:
0}, ’> 1.5000’: {’value’: 1}}}}}, ’> 5.5000’: {’duration’: {’<=
25.5000’: {’credit_history’: {’<= 3.5000’: {’value’: 1}, ’> 3.5000’:
{’value’: 1}}}, ’> 25.5000’: {’residence_since’: {’<= 3.5000’:
{’value’: 1}, ’> 3.5000’: {’value’: 0}}}}}}} ##

fitness: 0.5930, Expression: ## {’savings_status’: {’<= 2.5000’:
{’credit_amount’: {’<= 9597.5000’: {’credit_history’: {’<= 0.5000’:
{’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’> 9597.5000’: {’value’:
0}}}, ’> 2.5000’: {’checking_status’: {’<= 0.5000’:
{’property_magnitude’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 1}}}, ’> 0.5000’: {’residence_since’: {’<= 2.5000’:
{’value’: 1}, ’> 2.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6162, Expression: ## {’property_magnitude’: {’<= 0.5000’:
{’duration’: {’<= 33.0000’: {’housing’: {’<= 1.5000’: {’value’: 1},
’> 1.5000’: {’value’: 0}}}, ’> 33.0000’: {’employment’: {’<=
0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 0}}}}}, ’> 0.5000’:
{’employment’: {’<= 0.5000’: {’credit_amount’: {’<= 3359.5000’:
{’value’: 0}, ’> 3359.5000’: {’value’: 1}}}, ’> 0.5000’: {’purpose’:
{’<= 5.5000’: {’value’: 1}, ’> 5.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6815, Expression: ## {’checking_status’: {’<= 1.5000’:
{’property_magnitude’: {’<= 1.5000’: {’other_parties’: {’<= 0.5000’:
{’value’: 0}, ’> 0.5000’: {’value’: 0}}}, ’> 1.5000’: {’duration’:
{’<= 20.5000’: {’value’: 1}, ’> 20.5000’: {’value’: 1}}}}}, ’>
1.5000’: {’credit_history’: {’<= 2.5000’: {’num_dependents’: {’<=
1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 0}}}, ’> 2.5000’:
{’other_payment_plans’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’:
{’value’: 1}}}}}}} ##

fitness: 0.6908, Expression:

Listing 2: Example crossover prompt. On credit dataset.
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Tree representation. We represent trees in natural language as a nested dictionary. This dictionary
represents a decision tree where each key is a feature and the subsequent nested dictionaries corre-
spond to decision rules and their outcomes. An example is illustrated in Figure 10 on the iris dataset.
In this example, if ‘petal width (cm)’ is less than or equal to 0.80, the classification is 0; otherwise,
further splits are made on ‘petal width (cm)’ at 1.75, leading to classifications of 1 or 2 depending on
the condition.

gini = 0.168
samples = 54

value = [0, 49, 5]
class = versicolor

gini = 0.043
samples = 46

value = [0, 1, 45]
class = virginica

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

petal width (cm) <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

petal width (cm) <= 0.8
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

{
"petal width (cm)": {
"<= 0.80": {"value": 0},
"> 0.80": {

"petal width (cm)": {
"<= 1.75": {"value": 1},
"> 1.75": {"value": 2}

}
}

}
}

Figure 10: Example decision tree. And its corresponding natural language representation as a nested
dictionary.

B.1 ABLATION PROMPTS

In our ablation study, we removed all semantic information from the prompts, with examples
illustrated in Listing 3 and 4. Here, we remove the semantic description of the task, and replace its
features names with Xi.

The task is to generate interpretable and high-performing decision trees
given a set of attributes. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is y, it is binary, the label distribution is [0:
29.17%, 1: 70.83%]. The features and their ranges are: [X_0 (int)
[0, 3], X_1 (float) [5.00, 60.00], X_2 (int) [0, 4], X_3 (int) [0,
9], X_4 (float) [276.00, 15672.00], X_5 (int) [0, 4], X_6 (int) [0,
4], X_7 (float) [1.00, 4.00], X_8 (int) [0, 3], X_9 (int) [0, 2],
X_10 (float) [1.00, 4.00], X_11 (int) [0, 3], X_12 (float) [19.00,
74.00], X_13 (int) [0, 2], X_14 (int) [0, 2], X_15 (float) [1.00,
4.00], X_16 (int) [0, 3], X_17 (float) [1.00, 2.00], X_18 (int) [0,
1], X_19 (int) [0, 1]]. You should generate a diverse decision tree
that is more interpretable. Please generate decision trees in the
desired JSON format, you can use any of the features, but are only
allowed to use operators [<, >, <=, >=]. Return only the JSON in the
format ## tree ##.

Expression: ## {’X_16’: {’<= 1.5000’: {’X_12’: {’<= 38.5000’: {’X_4’:
{’<= 2443.0000’: {’value’: 1}, ’> 2443.0000’: {’value’: 0}}}, ’>
38.5000’: {’X_1’: {’<= 21.0000’: {’value’: 0}, ’> 21.0000’:
{’value’: 1}}}}}, ’> 1.5000’: {’X_0’: {’<= 1.5000’: {’X_3’: {’<=
5.5000’: {’value’: 0}, ’> 5.5000’: {’value’: 1}}}, ’> 1.5000’:
{’X_1’: {’<= 19.0000’: {’value’: 1}, ’> 19.0000’: {’value’: 1}}}}}}}
##

Expression: ## {’X_0’: {’<= 0.5000’: {’X_4’: {’<= 976.5000’: {’X_3’:
{’<= 3.5000’: {’value’: 0}, ’> 3.5000’: {’value’: 0}}}, ’>
976.5000’: {’X_5’: {’<= 1.5000’: {’value’: 0}, ’> 1.5000’: {’value’:
1}}}}}, ’> 0.5000’: {’X_4’: {’<= 13765.5000’: {’X_12’: {’<=
22.5000’: {’value’: 0}, ’> 22.5000’: {’value’: 1}}}, ’> 13765.5000’:
{’value’: 0}}}}} ##

Expression: ## {’X_5’: {’<= 2.5000’: {’X_4’: {’<= 9597.5000’: {’X_2’:
{’<= 0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’>
9597.5000’: {’value’: 0}}}, ’> 2.5000’: {’X_0’: {’<= 0.5000’:
{’X_11’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’>
0.5000’: {’X_10’: {’<= 2.5000’: {’value’: 1}, ’> 2.5000’: {’value’:
1}}}}}}} ##
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Expression: ## {’X_2’: {’<= 0.5000’: {’X_12’: {’<= 23.5000’: {’value’:
1}, ’> 23.5000’: {’value’: 0}}}, ’> 0.5000’: {’X_5’: {’<= 3.5000’:
{’X_12’: {’<= 25.5000’: {’value’: 0}, ’> 25.5000’: {’value’: 1}}},
’> 3.5000’: {’X_4’: {’<= 1034.5000’: {’value’: 0}, ’> 1034.5000’:
{’value’: 1}}}}}}} ##

Expression: ##

Listing 3: Example mutation prompt with semantics removed. On credit dataset.

The task is to generate interpretable and high-performing decision trees
given a set of attributes. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is y, it is binary, the label distribution is [0:
29.17%, 1: 70.83%]. The features and their ranges are: [X_0 (int)
[0, 3], X_1 (float) [5.00, 60.00], X_2 (int) [0, 4], X_3 (int) [0,
9], X_4 (float) [276.00, 15672.00], X_5 (int) [0, 4], X_6 (int) [0,
4], X_7 (float) [1.00, 4.00], X_8 (int) [0, 3], X_9 (int) [0, 2],
X_10 (float) [1.00, 4.00], X_11 (int) [0, 3], X_12 (float) [19.00,
74.00], X_13 (int) [0, 2], X_14 (int) [0, 2], X_15 (float) [1.00,
4.00], X_16 (int) [0, 3], X_17 (float) [1.00, 2.00], X_18 (int) [0,
1], X_19 (int) [0, 1]]. Generate a different, interpretable decision
tree which should have the improved fitness. Please generate
decision trees in the desired JSON format, you can use any of the
features, but are only allowed to use operators [<, >, <=, >=].
Return only the JSON in the format ## tree ##.

fitness: 0.5882, Expression: ## {’X_3’: {’<= 5.5000’: {’X_14’: {’<=
0.5000’: {’X_10’: {’<= 2.5000’: {’value’: 0}, ’> 2.5000’: {’value’:
1}}}, ’> 0.5000’: {’X_16’: {’<= 1.5000’: {’value’: 0}, ’> 1.5000’:
{’value’: 1}}}}}, ’> 5.5000’: {’X_1’: {’<= 25.5000’: {’X_2’: {’<=
3.5000’: {’value’: 1}, ’> 3.5000’: {’value’: 1}}}, ’> 25.5000’:
{’X_10’: {’<= 3.5000’: {’value’: 1}, ’> 3.5000’: {’value’: 0}}}}}}}
##

fitness: 0.5930, Expression: ## {’X_5’: {’<= 2.5000’: {’X_4’: {’<=
9597.5000’: {’X_2’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 1}}}, ’> 9597.5000’: {’value’: 0}}}, ’> 2.5000’: {’X_0’:
{’<= 0.5000’: {’X_11’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 1}}}, ’> 0.5000’: {’X_10’: {’<= 2.5000’: {’value’: 1}, ’>
2.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6162, Expression: ## {’X_11’: {’<= 0.5000’: {’X_1’: {’<=
33.0000’: {’X_14’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’:
0}}}, ’> 33.0000’: {’X_6’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 0}}}}}, ’> 0.5000’: {’X_6’: {’<= 0.5000’: {’X_4’: {’<=
3359.5000’: {’value’: 0}, ’> 3359.5000’: {’value’: 1}}}, ’> 0.5000’:
{’X_3’: {’<= 5.5000’: {’value’: 1}, ’> 5.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6815, Expression: ## {’X_0’: {’<= 1.5000’: {’X_11’: {’<=
1.5000’: {’X_9’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’: {’value’:
0}}}, ’> 1.5000’: {’X_1’: {’<= 20.5000’: {’value’: 1}, ’> 20.5000’:
{’value’: 1}}}}}, ’> 1.5000’: {’X_2’: {’<= 2.5000’: {’X_17’: {’<=
1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 0}}}, ’> 2.5000’:
{’X_13’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 1}}}}}}}
##

fitness: 0.6908, Expression:

Listing 4: Example crossover prompt with semantics removed. On credit dataset.

C DETAILS OF EXPERIMENTAL PROCEDURES

In this section, we outline the benchmark datasets employed in our evaluations, as well as implemen-
tation details of our method and considered baselines.
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C.1 DATASET DETAILS

We employ a total of 12 datasets for our evaluation, of which 7 are classification tasks, and 5 are
regression tasks. Additionaly, we consider 2 propriety datasets in Appendix D.2, for which the LLM
would not have seen during pretraining, and thus used to check for any memorization concerns.

Open-source datasets. The 12 open-source tabular datasets are sourced from OpenML (Vanschoren
et al., 2014). The classification datasets were selected from the curated suite OpenML-CC18 (Bischl
et al., 2019) with the following criteria: ≤ 20 features, ≤ 10000 samples, binary labels and no
missing data. This stems from the fact that optimal tree induction methods scale exponentially
with the number of features and samples, and some baselines only support binary classification.
Additionally, we excluded datasets lacking semantically meaningful feature names and descriptions,
required by LLEGO. Regression datasets were selected from OpenML-CTR23 (Fischer et al., 2023)
with identical criteria. We detail dataset characteristics, including OpenML ID, number of attributes,
number of samples and label distribution in Table 4. These datasets can be loaded by querying their
OpenML IDs. The datasets describe:

• credit (Kelly et al.): This dataset classifies people as good or bad credit risks.
• diabetes (Smith et al., 1988): This dataset classifies patients based on WHO definition of diabetes.
• compas (Inc., 2016): Contains criminal history, jail and prison time, demographics, and is used to

predict two year recidivism.
• heart (hea): Prediction of heart disease in patients.
• liver (Kelly et al.): This data set contains 416 liver patient records and 167 non liver patient

records.The data set was collected from north east of Andhra Pradesh, India. The class label divides
the patients into 2 groups (liver patient or not). This data set contains 441 male patient records and
142 female patient records.

• heart (Street et al., 1993): Features are computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. The
target feature records the prognosis (malignant or benign).

• vehicle (Pete & Shepherd): The dataset classifies a given silhouette as one of four types of vehicle,
using a set of features extracted from the silhouette. The target label is re-relabelled, where the
majority class as positive (’P’) and all others as negative (’N’).

• cholesterol (Janosi et al., 1988): The dataset predicts the cholesterol level among patients diagnosed
with heart disease.

• wine (Cortez et al., 2009): The task is to predict quality of white and red wine.
• wage (Berndt, 1991): The task is to predict individual wages using the Current Population Survey

(CPS), used to supplement census information between census years.
• abalone (Nash et al., 1995): Predicting the age of abalone from physical measurements. The age

of abalone is determined by cutting the shell through the cone, staining it, and counting the number
of rings through a microscope – a boring and time-consuming task.

• cars (Bohanec, 1997): Dataset of the suggested retail prices (column Price) and various character-
istics of each car.

Table 4: Open-source datasets. Details of open-source datasets from OpenML (Vanschoren et al.,
2014). # Cat: number of categorical attributes, # Num: number of numerical attributes, Label dist:
label distribution.

Dataset ID # Samples # Attributes # Num # Cat Label Label distr
credit 31 1000 20 7 13 binary 0: 29.17%, 1: 70.83%
diabetes 37 768 8 8 0 binary 0: 66.30%, 1: 33.70%
compas 42192 5278 13 5 8 binary 0: 52.50%, 1: 47.50%
heart 53 270 13 5 8 binary 0: 52.58%, 1: 47.42%
liver 1480 583 10 9 1 binary 0: 67.94%, 1: 32.06%
breast 15 699 9 9 0 binary 0: 65.34%, 1: 34.66%
vehicle 994 846 18 18 0 binary 0: 73.03%, 1: 26.97%
cholesterol 204 303 13 6 7 continuous -
wine 287 6497 11 11 0 continuous -
wage 534 534 10 3 7 continuous -
abalone 44956 4177 8 7 1 continuous -
cars 44994 804 17 1 16 continuous -
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Dataset preprocessing. We preprocess the dataset using a train-validation-test split ratio of
[0.2, 0.4, 0.4]. The low training split is used to accentuate the difference in performance as given
sufficient training data, all methods perform comparably. For each run, we only vary the seed used for
data splitting, such that for seed 0, we use train_test_split(seed=0). For any algorithms
that have inherent randomness (i.e. CART and GATree), we seed them with seed=42. As such, the
randomness reported is induced only by different datasets.

We do not apply any additional preprocessing to continuous features. For categorical features, we
follow the recommendations provided in §9.2.4 of (Hastie et al., 2009), where we rank each category
of the predictor by calculating the proportion of observations that fall into the outcome class 1 (Hastie
et al., 2009). This results in a ranking of the categories based on these proportions. No additional
preprocessing is applied to categorical or continuous labels.

C.2 IMPLEMENTATION DETAILS

Baselines. To assess the performance of LLEGO, we compare it against a comprehensive set of
state-of-the-art algorithms, covering representative methods from main categories of tree induction.
Specifically, CART and C4.5 are greedy tree induction methods, GOSDT and DL8.5 are optimal
tree induction methods, and GATree is a genetic programming based approach:

• CART (Classification and Regression Trees) (Breiman et al., 1984): CART is a decision tree algo-
rithm that splits data into subsets based on feature values, creating a binary tree for classification or
regression tasks using measures like Gini impurity or mean squared error. We use the implemen-
tation provided in sklearn.tree, https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html.

• C4.5 (Quinlan, 1993): C4.5 is an extension of the ID3 algorithm that generates decision trees by
handling both categorical and continuous data, and uses information gain ratio to choose splits.
We use the implementation provided in the PyPI package c45-decision-tree, https:
//pypi.org/project/c45-decision-tree/.

• GOSDT (Lin et al., 2020): GOSDT constructs decision trees by optimizing a trade-off be-
tween accuracy and complexity, ensuring sparsity and interpretability through global opti-
mization techniques. We use the implementation provided by the original authors https:
//github.com/ubc-systopia/gosdt-guesses.

• DL8.5 (Aglin et al., 2020): DL8.5 is a decision tree learning algorithm that focuses on constructing
optimal decision trees given specific constraints, using dynamic programming to find the best tree
structure. We use the implemented provided in the PyPI package dl8.5, https://github.
com/ubc-systopia/gosdt-guesses.

• GATree (Lahovnik, 2024): GATree is a Python library designed for implementing evolution-
ary decision trees using a genetic algorithm approach. We use the official implementation
https://gatree.readthedocs.io/en/latest/ and keep the defaults settings of the
implementation (i.e. tournament selection, subtree crossover and subtree mutation).

Hyperparameter search ranges. Next, we detail the hyperparameters of each method, and their
respective search ranges. Across experiments, we keep max_depth fixed to enable fair comparison,
the details of tunable hyperparameters are detailed in Table 5.

Hyperparameter tuning. We use Optuna (Akiba et al., 2019) and the default Tree-Parzen Estimator
for hyperparameter tuning (HPT) (Watanabe, 2023). For all baselines, we permit wall-clock time to a
maximum of 10 minutes. This allows 50 iterations of HPT for CART and C4.5, and 10 iterations
for the computationally more intensive DL8.5, GOSDT, and GATree. In each iteration of HPT, we
evaluate the objective on the validation set, selecting the best configuration to evaluate on the test set.

Computer resources. We run all experiments on an AMD EPYC 7V13 64-Core Processor.

C.3 LLEGO IMPLEMENTATION DETAILS

For our instantiation of LLEGO in Section 5, we use N = 25 and G = 25. We seed the algorithm
with a population of trees generated by CART, where each tree is fitted on 25% of the Dtrain. We
use the same population to initialize GATree. In each iteration, we generate 25 crossover offspring
and 25 mutation offspring, using a rejection mechanism where invalid solutions are discarded (in
Section 5, ∼ 86% of crossover and ∼ 88% of mutation offspring are syntactically valid). We use
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Table 5: Hyperparameter search ranges. Hyperparameter search ranges for all baselines.

CART

min_samples_split [int, 2, 16]
min_samples_split [int, 1, 16]
max_depth fixed
splitter best
criterion [’squared_error’ (reg), ’gini’ (clas)]

C4.5
min_samples_split [int, 2, 16]
min_samples_split [int, 1, 16]
max_depth fixed

DL8.5 min_sup [int, 1, 10]
max_depth fixed

GOSDT regularization [float, 0.001, 1]
max_depth fixed

GATree

population_size [int, 10, 50]
mutation_prob [float, 0.1, 0.5]
crossover_prob [float, 0.1, 0.95]
max_iterations 100
tournament size 2
max_depth fixed

elitism selection to preserve the top 25 trees after merging the offspring of the crossover and the
mutation. To compute the desired fitness, we use α = 0.1, based on observations in Section 5.2 as
the value that balanced diversity and fitness. We use τ = 10 for diversity guidance. For each genetic
operation, we use λ = 4 parent trees. For our experiments, we use gpt-35-turbo, version 0301
with default hyperparameters temperature = 0.7 and top_p = 0.95.

Function and terminal set. For both LLEGO and GATree, the function set is {<,>,≤,≥} and the
terminal set includes numerical constants based on target feature values.

In Section 5.2, we perform 3 steps of crossover starting from the initial population, for both LLEGO
and GATree to obtain Figure 5. We similarly perform 3 steps of mutation starting from the initial
population to obtain Figure 6.

C.4 EVALUATION METRICS

MSE. For regression dataset, we report MSE (sklearn.metrics.mean_squared_error):

MSE(D, f) = 1

N

N∑
n=1

||f(xn)− yn||2

Balanced accuracy. For classification datasets, we report balanced accu-
racy, which is equivalent to accuracy with class-balanced sample weights
(sklearn.metrics.balanced_accuracy_score). This has the effect of giving
equal importance to both the positive and negative classes, thereby mitigating the impact of class
imbalance and providing a more reliable assessment of the classifier’s performance across all classes:

balanced-accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
Difference in equal opportunity. When evaluating fairness, we consider difference in equal opportu-
nity (DEO). This score measures the difference in recall between unprivileged and privileged groups,
where a value of DEO = 0 indicates equality of opportunity.

DEO = |p(ŷ = 1 | group = 1, y = 1)− p(ŷ = 1 | group = 0, y = 1)|

We utilize the implementation aif360.sklearn.metrics.equal_opportunity_difference
provided in https://aif360.readthedocs.io/ (Bellamy et al., 2019; Roemer & Trannoy,
2015).
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Population Fitness. In order to assess the fitness of the populations evolved by the GP-based
algorithms, we compute for a given population P:

Fitness = Median({f ′(t) | t ∈ P})

where f ′(t) denotes the normalized accuracy, calculated as f(t)−mint∈P f(t)
maxt∈P′ f(t)−mint∈P′ f(t)

, where f(t)

here denotes the accuracy. P ′ is the union of all individuals produced by all methods for a particular
seeded run on a particular dataset. In other words, the best accuracy obtained by any method on a
particular seed for a particular dataset will have f ′(t) = 1 and the worst will have f ′(t) = 0. This
normalization allows accuracy results from different datasets, seeds, and methods to be compared.

Population diversity. In order to assess the diversity of the populations evolved by the GP-based
algorithms, we compute for a given population P:

Diversity = Median({||φ(t)− φ(t′)||1 | (t, t′) ∈ P2 })
where φ(t) denotes the functional signature of t, i.e. the vector (t(x1), ..., t(xn)).

D ADDITIONAL RESULTS

In this section of the appendix, we provide additional empirical results. Specifically:

1. In Appendix D.1, we investigate the potential for bias and the flexibility of LLEGO in optimizing
for fairness-regularized objectives.

2. In Appendix D.2, we report generalization performance on tasks with all semantics removed. The
objectives of this experiment are to (1) check for memorization and (2) evaluate the contribution
of semantic priors to search efficiency. We also evaluate LLEGO on proprietary datasets.

3. In Appendix D.4, we provide additional search efficiency plots, comparing our results against
GATree.

4. In Appendix D.3, we compare LLEGO against a version of GATree running with larger population
sizes and more generations than LLEGO.

5. In Appendix D.5, we report the runtimes of LLEGO and the baselines.
6. In Appendix D.6, we perform statistical tests to compare the performance of LLEGO against CART

and GATree.
7. In Appendix D.7, we compare the crossover dynamics between LLEGO and GATreewith uniform

parent sampling.
8. In Appendix D.8, we provide the mutation dynamics plots for each individual classification

dataset.
9. In Appendix D.9, we present additional ablation results for different depths.

10. Finally, in Appendix D.10, we visualize optimization traces for all tasks.

D.1 ADDRESSING BIAS VIA REGULARIZATION

As illustrated in the previous experiments, the genetic operators in LLEGO benefit from the properties
of LLMs (i.e. semantic priors and wide context). It is then natural to wonder if, conversely, negative
artifacts of LLMs may propagate to the decision trees found by LLEGO.

Table 6: Fairness aware objective.

Method FA? Compas(race)
ACC (↑) DEO (↓)

CART ✗ 0.651(0.012) 0.255(0.016)
C4.5 ✗ 0.650(0.008) 0.258(0.014)
DL85 ✗ 0.666(0.006)0.264(0.008)
GOSDT ✗ 0.641(0.003) 0.187(0.019)
LLEGO ✗ 0.652(0.004) 0.308(0.070)
LLEGO ✓ 0.651(0.002) 0.161(0.071)

Setup. In this experiment, we focus in particular on bias.
More precisely, we assess group fairness (Verma & Ru-
bin, 2018) by computing the Difference in Equality of
Opportunity (DEO) metric, defined as the difference in
recall between unprivileged and privileged groups (cf. Ap-
pendix C.4 for an exact definition). We show an illustrative
example on the dataset COMPAS, which is known to be
biased on the sensitive attribute race African American
(Angwin et al., 2016). Our objective is to mitigate bias
with a DEO-based regularization, by defining LLEGO’s
new fitness function, i.e. f ′(t) = f(t)+βDEO(t) for any
t ∈ T .
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Results. As can be seen in Table 6, LLEGO does not natively return fair decision trees when the
fitness functions are based purely on accuracy. However, the DEO regularization permits LLEGO to
find decision trees with less bias compared to the other baselines. This highlights the flexibility
of LLEGO, which can handle composite search objectives unlike the other baselines. LLEGO also
returns a population of individuals, which makes it possible to trade-off predictive performance
with fairness metrics. We show this in Figure 11, where one can choose individuals returned by
LLEGO with acceptable tradeoffs.

0.10 0.15 0.20 0.25 0.30
0.62

0.63

0.64

0.65

0.66

0.67

A
C

C
(↑

)

Depth = 3

0.05 0.10 0.15 0.20 0.25
0.58

0.60

0.62

0.64

0.66

0.68
Depth = 4

CART C45 DL85 GOSDT Pareto front

DEO (↓)

Figure 11: Accuracy-fairness tradeoff. On compas dataset.

D.2 GUARDING AGAINST MEMORIZATION

As with any LLM application, there is a concern about LLM memorization. Although it is highly
unlikely that the LLM has encountered the optimal trees for the considered datasets—especially
given that high-performing solutions can vary significantly across different training splits, seeds,
and preprocessing steps—we empirically investigate this concern. This is done by removing any
dataset-specific metadata or semantic information that could identify the underlying data. For prompts
with semantics removed, please refer to Appendix B.1. We refer to this setting as LLEGOno_prior
and compare its performance against LLEGO with semantics included in Table 7. We observe that
LLEGOno_prior achieves similar performance, even outperforming LLEGO on two of the tasks.

Table 7: Performance on classification tasks. Comparing LLEGO with LLEGOno_prior (i.e. all
semantic information removed). Best results are emboldened.

Method Compas Credit Diabetes Heart Liver
depth = 3

LLEGOno_prior 0.654(0.010) 0.683(0.012) 0.700(0.033) 0.726(0.030) 0.643(0.033)
LLEGO 0.652(0.004) 0.677(0.004) 0.713(0.013) 0.736(0.021) 0.672(0.017)

depth = 4
LLEGOno_prior 0.659(0.011) 0.667(0.024) 0.701(0.013) 0.716(0.038) 0.651(0.025)
LLEGO 0.662(0.003) 0.684(0.009) 0.731(0.004) 0.751(0.037) 0.676(0.019)

To further verify that LLEGO’s superior performance does not rely on memorization, we evaluate it
on two proprietary datasets (requiring authorized access, and hence extremely unlikely to be in the
LLM training corpus): MAGGIC (heart failure, (Wong et al., 2014)) and CUTRACT (prostate cancer,
(CUTRACT, 2019)). We report the results against CART and GATree for depth = 4 in Table 8,
showing that LLEGO achieves superior performance on these private datasets, further demonstrating
that it relies on generalized semantic priors rather than dataset-specific memorization.

D.3 ADDITIONAL COMPARISON WITH GATREE

We extend our comparisons against GATree by increasing the population size to N = 100 and the
number of generations to G = 200, while keeping LLEGO’s default hyperparameters. We report the
results for the classification and regression tasks in Table 9 and Table 10. Despite GATree’s larger
number of evaluations, LLEGO evolved superior trees. This underscores the importance of LLEGO’s
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Table 8: Performance on proprietary datasets. Comparing LLEGO with CART and GATree, with
depth = 4. Best results are emboldened.

Method MAGGIC CUTRACT
CART 0.610(0.014) 0.694(0.038)
GATree 0.619(0.015) 0.706(0.024)
LLEGO 0.623(0.007) 0.710(0.009)

integration of semantic priors, search guidance, and broader context to enhance search efficiency.
This superior search efficiency is especially important in settings where evaluation costs significantly
exceed search costs (e.g. complex simulations, hardware optimizations, robotics control).

Table 9: Comparison against GATree. Balanced accuracy (↑) on classification tasks (depth d = 4).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
GATREE (N = 100, G = 200) 0.948(0.011) 0.658(0.003) 0.667(0.009) 0.684(0.013) 0.738(0.028) 0.635(0.019) 0.939(0.017)
LLEGO (N = 25, G = 25) 0.951(0.006) 0.662(0.003) 0.684(0.009) 0.731(0.004) 0.751(0.037) 0.676(0.019) 0.937(0.013)

Table 10: Comparison against GATree. MSE (↓) on regression tasks (depth d = 4).

Method Abalone Cars Cholesterol Wage Wine
GATREE (N = 100, G = 200) 0.566(0.022) 0.099(0.012) 1.395(0.202) 1.143(0.147) 0.829(0.027)

LLEGO (N = 25, G = 25) 0.557(0.026) 0.100(0.020) 1.322(0.130) 1.066(0.203) 0.836(0.020)

D.4 ADDITIONAL CONVERGENCE PLOTS

We provide separate convergence plots in this subsection, obtained when optimizing trees of depths 3
and 4, under the experimental setup described in Section 5.1. The results are reported in Figure 12a
and Figure 12b. In these two settings, LLEGO leads to a more efficient search compared to GATree.
This improved efficiency also comes with a reduced diversity, showing that LLEGO concentrates its
populations in the later generations in high-fitness regions.
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Figure 12: Convergence dynamics. Comparing LLEGO with GATREE.

D.5 RUN-TIME COMPARISONS

We provide the total runtimes for the different methods in Table 11, averaged across the 7 classification
datasets used in Section 5.1. We also report in Table 12 the detailed timings for LLEGO and
GATREE with varying population sizes (P ∈ {25, 100}) and generations (G ∈ {25, 100, 200}), and
also report the number of functional evaluations. These results along with the ones presented in
Section 5.1, highlight that LLEGO evolves superior trees compared to GATREE while necessitating
less functional evaluations and wall-clock time. Nevertheless, we acknowledge that there is room for
improvement for the runtime of LLEGO. Potential solutions include (1) reducing runtime through
inference acceleration techniques such as speculative decoding and vLLM serving (Leviathan et al.,
2023) and (2) reducing memory requirements through specialized fine-tuned models or quantization
(Han et al., 2015).
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Table 11: Runtime comparisons (all methods). Total runtime (in seconds), averaged across 7
classification datasets.

CART C4.5 DL85 GOSDT GATREE LLEGO
Total run time (depth d = 3) 0.0022 0.08 22.10 261.14 15.50 407.66
Total run time (depth d = 4) 0.0023 0.13 172.70 234.44 15.77 430.32

Table 12: Runtime comparisons (GP methods). Per-generation, total runtime (in seconds), and
total number of fitness evaluations (depth d = 4, averaged across 7 classification datasets).

Per-generation runtime Total run-time # Functional evaluations
GATREE (N = 25, G = 25) 0.63 15.77 620
GATREE (N = 100, G = 100) 2.65 264.95 9600
GATREE (N = 100, G = 200) 3.86 772.97 19200
LLEGO (N = 25, G = 25) 17.22 430.32 1250

D.6 STATISTICAL SIGNIFICANCE TEST OF PERFORMANCE IMPROVEMENTS

We perform t-tests to compare LLEGO against CART (the best baseline in Section 5.1) and GATree.
We report the p-values in Table 13, showing statistical significance at the level α = 0.05 for 8/12
datasets when comparing against CART and also 8/12 datasets when comparing against GATree.

Table 13: Statistical significance. p-values for statistical comparison of performances between
LLEGO and competing baselines CART and GATree. Bold values indicate statistical significance at
α = 0.05.

Dataset p-value
(against CART)

p-value
(against GATree) Dataset p-value

(against CART)
p-value

(against GATree)
Breast 0.0567 0.0038 Vehicle 0.0345 0.0014
Compas 0.2798 0.0002 Abalone 0.3442 0.0266
Credit 0.0261 0.0001 Cars 0.0000 0.5000
Diabetes 0.0000 0.0003 Cholesterol 0.0075 0.3686
Heart 0.0236 0.0002 Wage 0.0959 0.0808
Liver 0.0003 0.0081 Wine 0.0007 0.0988

D.7 ADDITIONAL RESULTS ON CROSSOVER DYNAMICS

In Figure 5, we compared the crossover dynamics between LLEGOXO with ν = 4 parents and
roulette wheel selection, and GATreeXO with ν = 2 parents and uniform parent sampling. In
Figure 13 (Left), we compare LLEGOXO with ν = 2 parents and uniform parent sampling against
GATreeXO with ν = 2 parent and uniform parent sampling. In Figure 13 (Right), we compare
LLEGOXO with ν = 4 parents and uniform parent sampling against GATreeXO with ν = 2 parent
and uniform parent sampling.

We observe similar dynamics as in Figure 5, where varying α enables to control the population fitness
and diversity. Additionally, ν = 4 leads to significantly improved offspring fitness at the cost of a
lower diversity, highlighting the nuanced impact of higher arity on search efficiency (corroborating
the ablation results in Figure 7).
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Figure 13: XO dynamics. Effect of fitness guidance (α) on population and diversity using uniformly
sampled parents. (Left) ν = 2 parents, (Right) ν = 4 parents
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D.8 ADDITIONAL RESULTS ON MUTATION DYNAMICS

We provide the mutation dynamics for each individual dataset in Figure 14, showing that τ meaning-
fully controls the diversity in the population for 5 of the 7 classification datasets, where the diversity
metrics are computed between parents and offspring (Top) and among the offspring (Bottom).
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Figure 14: MUT dynamics. Effect of diversity guidance (τ ) on (Top) median parent-offspring
distance and (Bottom) median offspring distance.

D.9 ADDITIONAL RESULTS ON ABLATION STUDY

We report the ablation study results for depth 3 and 4 in Figure 15 and Figure 16. These results
align with the observations made in Section 5.3, highlighting the importance of using crossover
and mutation in tandem, the importance of incorporating more than 2 parents for the operators and
using semantic information. With a higher maximum depth, the space of possible trees becomes
more complex, and accentuates the need for both exploration and exploitation, which explains why
the mutation only (LLEGOno_xo) and crossover only (LLEGOno_mut) baselines perform worse than
LLEGO.
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Figure 15: Additional ablation results. Depth = 3.

D.10 SEARCH RESULTS ON INDIVIDUAL TASKS

Convergence plots comparing LLEGO and GATree for individual tasks are given in Figure 17 and
Figure 18. They show that LLEGO consistently leads to better search efficiency compared to GAtree.
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Figure 16: Additional ablation results. Depth = 4.
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Figure 17: Convergence plots. Mean population fitness (↑) of LLEGO and GATREE on individual
tasks across 25 generations (depth=3).
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Figure 18: Convergence plots. Mean population fitness (↑) of LLEGO and GATREE on individual
tasks across 25 generations (depth=4).
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E ADDITIONAL REBUTTAL RESULTS

E.1 ADDITIONAL RESULTS FOR TREES OF DEPTH 5

Generalization performance. We compare LLEGO with DL85 and GOSDT for depth d = 5. We
report the test performance (balanced accuracy) in Table 14. Entries marked as ∗ indicate the runs
which did not terminate due to memory constraints (maximum recursion depth exceeded). Overall,
we see that LLEGO consistently outperforms both DL85 and GOSDT.

Termination. We report in Table 15 the number of instances in which DL85 and GOSDT terminate
within a time budget of 10 minutes, showing that DL85 completes 3/7 of its runs and GOSDT
consistently times out or exceeds memory limits. These results illustrate the computational challenges
of optimal induction methods, which are exacerbated by an increasing search space complexity.

Table 14: Performance on depth d = 5. Test balanced accuracy (↑) on classification tasks (d = 5, 3
seeds), reporting mean(std). Entries marked with * denote non-termination due to memory constraints.

Method Breast Compas Credit Diabetes Heart Liver Vehicle
DL85 0.932(0.015) 0.654(0.003) 0.563(0.013) 0.639(0.018) 0.686(0.019) 0.525(0.023) 0.918(0.011)
GOSDT ∗ 0.553(0.000) ∗ ∗ 0.632(0.012) 0.610(0.000) ∗
LLEGO 0.951(0.004) 0.662(0.002) 0.639(0.016) 0.666(0.011) 0.727(0.015) 0.647(0.030) 0.937(0.002)

Table 15: Termination of optimal induction methods on depth d = 5. We report the number of
successful terminations within a 10-minute computational budget, for 3 seeds.

Method Breast Compas Credit Diabetes Heart Liver Vehicle
DL85 3/3 3/3 0/3 0/3 3/3 0/3 3/3
GOSDT 0/3 0/3 0/3 0/3 0/3 0/3 0/3

E.2 ADDITIONAL ABLATION RESULTS

Experimental setting. We compare LLEGO to LLEGOnaive, a variant which removes the crossover
operator and changes the mutation prompt to an "improve the solution"-type of prompt.

Results. We report the results in Table 16, where we see that LLEGO consistently outperforms
LLEGOnaive. This demonstrates the importance of explicit fitness-guidance via the hyperparameter α
in order to steer the search towards high-fitness regions.

Table 16: Performance of naive prompting. Test balanced accuracy (↑) on classification tasks
(depth d = 4, 3 seeds), reporting mean(std).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
LLEGOnaive 0.942(0.006) 0.660(0.011) 0.670(0.003) 0.708(0.019) 0.714(0.051) 0.629(0.033) 0.943(0.015)
LLEGO 0.952(0.006) 0.664(0.001) 0.678(0.006) 0.735(0.000) 0.759(0.047) 0.680(0.021) 0.940(0.014)

E.3 TRAINING ACCURACIES

We report the training performance (balanced accuracy) of all the baselines in Table 17.

Observations. We observe that optimal methods generally excel in training performance. DL85,
being a globally optimal induction method, achieves superior training performance across almost
all the classification datasets compared to other baselines. However, LLEGO demonstrates consis-
tently superior generalization performance. The training-generalization gap becomes particularly
pronounced as tree depths increase from 3→ 5, where deeper trees are more susceptible to overfitting.
This aligns with empirical observations in recent works (Zharmagambetov et al., 2021; Marton et al.,
2023; Sullivan et al., 2024). We note, however, that the generalization performance of trees obtained
with optimal induction methods remains an active research question.
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Table 17: Training performance on classification tasks. Training balanced accuracy (↑) on 7
datasets, reporting mean(std). Entries marked with ∗ denote non-termination due to memory limits.

Method Breast Compas Credit Diabetes Heart Liver Vehicle
depth = 3

CART 0.964(0.015) 0.676(0.009) 0.739(0.017) 0.778(0.012) 0.869(0.035) 0.734(0.023) 0.935(0.021)
C4.5 0.964(0.024) 0.670(0.010) 0.641(0.033) 0.744(0.043) 0.833(0.027) 0.630(0.074) 0.890(0.040)
DL85 0.990(0.007) 0.692(0.005) 0.711(0.021) 0.803(0.013) 0.927(0.026) 0.776(0.026) 0.984(0.002)

GOSDT 0.962(0.019) 0.650(0.004) 0.685(0.012) 0.747(0.027) 0.753(0.129) 0.709(0.019) 0.858(0.061)
GATREE 0.978(0.006) 0.663(0.007) 0.696(0.016) 0.762(0.014) 0.863(0.025) 0.713(0.034) 0.942(0.012)
LLEGO 0.981(0.007) 0.675(0.006) 0.713(0.016) 0.784(0.017) 0.871(0.023) 0.732(0.018) 0.956(0.009)

depth = 4
CART 0.973(0.017) 0.686(0.008) 0.765(0.015) 0.805(0.012) 0.895(0.050) 0.755(0.038) 0.961(0.017)
C4.5 0.969(0.027) 0.684(0.008) 0.699(0.032) 0.783(0.011) 0.837(0.043) 0.679(0.039) 0.957(0.017)
DL85 0.998(0.003) 0.705(0.004) 0.789(0.011) 0.827(0.035) 0.951(0.041) 0.836(0.027) 0.990(0.006)

GOSDT 0.974(0.011) 0.649(0.005) 0.692(0.022) 0.740(0.027) 0.810(0.015) 0.707(0.025) 0.903(0.016)
GATREE 0.985(0.005) 0.673(0.007) 0.704(0.010) 0.772(0.020) 0.873(0.028) 0.704(0.023) 0.948(0.017)
LLEGO 0.984(0.005) 0.678(0.007) 0.722(0.016) 0.807(0.003) 0.894(0.020) 0.761(0.028) 0.954(0.014)

depth = 5
DL85 1.000(0.000) 0.723(0.003) 0.755(0.011) 0.863(0.019) 1.000(0.000) 0.807(0.028) 1.000(0.000)

GOSDT ∗ 0.553(0.000) ∗ ∗ 0.632(0.012) 0.610(0.000) ∗

E.4 EVALUATING DIFFERENT LLMS

A key property of LLEGO’s design is that it is LLM-agnostic. To demonstrate the advantage of this
flexibility, we evaluate LLEGO’s performance using gpt-4, comparing it to gpt-3.5. We report
the results in Table 18 for all the classification datasets, for depth 4 problems, across 3 seeds. We
see that the gpt-4 variant of LLEGO achieves superior performance than its gpt-3.5 counterpart.
These results have two significant implications, as they indicate that (1) LLEGO’s effectiveness is
robust across LLM architectures, and importantly that (2) its performance can scale with advances in
capabilities of the underlying LLMs.

Table 18: Performance of different LLMs. Test balanced accuracy (↑) on classification tasks (depth
d = 4, 3 seeds), reporting mean(std).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
LLEGO (gpt-35) 0.952(0.006) 0.664(0.001) 0.678(0.006) 0.735(0.000) 0.759(0.047) 0.680(0.021) 0.940(0.014)
LLEGO (gpt-4) 0.957(0.005) 0.671(0.011) 0.684(0.008) 0.741(0.023) 0.751(0.017) 0.640(0.025) 0.951(0.015)

E.5 EVALUATING DIFFERENT PARENT SELECTION MECHANISMS

In this section, we investigate alternative parent selection mechanisms for both the crossover and the
mutation operator of LLEGO.

E.5.1 TOURNAMENT SELECTION FOR CROSSOVER

The objective of this experiment is to analyze the impact of an alternative selection mechanism on the
balance between population fitness and diversity in the crossover operator.

Experimental setting. Specifically, we replace the roulette wheel selection (fitness-proportionate)
mechanism with a tournament selection mechanism (Miller et al., 1995) with varying tournament
sizes k ∈ {1, 2, 3, 5}. We then compute the median offspring fitness and diversity as a function of k,
following the experimental setup described in Section 5.2.

Observations. The results, shown in Figure 19, demonstrate a clear trade-off between fitness and
diversity which is modulated by the tournament size. As shown in Figure 19a, larger tournament
sizes consistently yield higher population fitness, while Figure 19b shows a corresponding decrease
in population diversity. Indeed, larger values of k intensify selection pressure by increasing the
probability that highly fit individuals win multiple tournaments, thereby reducing population diversity.
Conversely, smaller values of k lead to an increased population diversity. For example, when k = 1,
tournament selection corresponds to random sampling, which maximizes diversity at the cost of
fitness performance. In comparison to tournament selection, the roulette wheel selection mechanism
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employed in LLEGO achieves a good middle-ground by striking a balance between fitness and
diversity.
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(a) Offspring fitness.
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Figure 19: Crossover dynamics with tournament selection. (a) Population fitness increases
monotonically with tournament size, demonstrating enhanced selective pressure. (b) Population
diversity exhibits an inverse relationship with tournament size, with smaller tournaments preserving
higher diversity at the cost of reduced fitness.

E.5.2 QUALITY-DIVERSITY SELECTION FOR MUTATION

In this experiment, we investigate an alternative choice for the selection mechanism in LLEGO’s
mutation operator.

Experimental setting. We replace the random parent selection in the mutation operator with the
quality-diversity algorithm CVT-MAP-Elites (Vassiliades et al., 2017), which requires defining a
behavioral space. Given n training samples, we define the behavioral space for classification tasks as
H = [0, 1]n, encompassing the trees’ functional signatures. The CVT-MAP-Elites algorithm then
partitions H into M niches using uniformly distributed centroids found with k-means clustering.
We then select parents for the mutation operator by uniformly sampling ν niches and selecting the
best individual in the sampled niches. Finally, we compute the offspring diversity, similarly as in
Section 5.2.

Observations. We report the results in Figure 20, averaged across the classification datasets. We
see that the total number of niches M serves as a control parameter for offspring diversity, with an
increasing relationship between diversity and the number of niches M . When M = 1, the process
reduces to repeatedly sampling the population’s best individual, resulting in minimal diversity for the
generated offspring. Conversely, when solutions are spread into distinct niches, the sampling process
becomes equivalent to uniform sampling without replacement from the population, yielding high
diversity. Furthermore, we see in Figure 20 that the random selection of parents employed in LLEGO
comparatively yields high diversity, justifying its use in the diversity-guided mutation operator.

E.6 EVALUATING EFFECTS OF POPULATION INITIALIZATION

In this experiment, we investigate the impact of a different population initialization on the search
performance of LLEGO.

Experimental setting. Specifically, we compare two variants of LLEGO. The baseline variant,
LLEGOInit. 1 corresponds to the instanciation of LLEGO described in Section 5, which initializes the
population with CART models trained on bootstrap samples comprising 25% of the training data. In
contrast, LLEGOInit. 2 initializes trees using CART models trained on minimal random subsets of just
two training samples, resulting in weaker initial decision trees.

Observations. Figure 21 illustrates the convergence of the mean population fitness across genera-
tions, aggregated and normalized over all classification datasets for one random seed. The results
demonstrate that LLEGOInit. 2 exhibits slower convergence compared to LLEGOInit. 1, which shows
the role of effective population initialization in improving search efficiency and faster discovery of
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Figure 20: Mutation dynamics with Quality-Diversity selection. Offspring diversity increases with
the number of niches employed in CVT-MAP-Elites for parent selection.
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Figure 21: Ablation on the population initialization. LLEGOInit. 1 initializes populations using
CART models trained on 25% bootstrap samples, while LLEGOInit. 2 uses minimal training subsets of
size 2. Results are aggregated across all classification datasets for one seed.

high-quality solutions. Nevertheless, we remark that LLEGOInit. 2 still achieves good performance
in the later stages of the search (after G = 20 generations), showing the effectiveness of LLEGO’s
variation operators in steering the search towards promising regions, independent of the initialization
scheme.

E.7 CORRELATION BETWEEN LOG-PROBABILITIES AND TREE EDIT DISTANCE

We show in this experiment that the log-probabilities of the offspring trees (utilized in LLEGO’s
mutation operator) are negatively correlated with the structural distances between parent and offspring
solutions.

Experimental setting. We generate 1000 offspring trees using the LLEGO’s mutation operator with
a single parent tree. For each offspring individual, we assess its structural distance to the parent tree
by computing the Tree Edit Distance (TED) (Bille, 2005) between this individual and the parent.

Observations. As shown in Figure 22, we observe a strong negative correlation (correlation coeffi-
cient = −0.85) between log-probabilities of the offspring and TED values. This relationship indicates
that offspring with lower log-probabilities tend to exhibit greater structural differences from their
parent, as measured by the TED. This demonstrates that LLEGO’s log-probability-based selection
mechanism inherently promotes diversity in the population by favoring mutations which introduce
varied structural changes.
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Figure 22: Correlation between log-probabilities and stuctural distances. There is a strong
negative correlation between log-probabilities of the offspring and their TED values with respect to
the parent tree.

E.8 EXTENDING LLEGO TO OTHER FUNCTION INDUCTION TASKS

In principle, LLEGO’s core idea of using LLMs as semantically-aware operators could be adapted for
other symbolic discovery tasks, such as symbolic regression (Koza, 1994a) and program synthesis
(Manna & Waldinger, 1980). In what follows, we present a general recipe of how our method can be
extended to other function induction domains. The main components required are:

1. Natural language representation. LLEGO requires a way to represent solutions in natural
language that the LLM can understand and manipulate. For decision trees, we used a nested
dictionary format (see Listing 1). For symbolic regression, expressions could be represented in
standard mathematical notation, while for program synthesis, solutions could be described using
pseudocode or natural language descriptions of program behavior.

2. Offspring validation and parsing. The framework needs mechanisms to (1) validate whether
LLM-generated strings represent valid solutions and (2) parse valid strings back into executable form.
For symbolic regression, this involves checking mathematical validity and operator precedence, while
for program synthesis, it requires syntax checking and compilation into executable code.

3. Fitness function definition. LLEGO requires a fitness function to evaluate solution quality.
While we used predictive performance for decision trees, other tasks would use domain-appropriate
metrics. For example, symbolic regression might use mean squared error between predicted and
true values, while program synthesis might consider both correctness on test cases and program
complexity.

4. Domain-specific prompts. The prompt structure should be modified to leverage relevant domain
knowledge. For instance, in symbolic regression, prompts might include information about expected
function properties (e.g., monotonicity, periodicity) to guide the search.
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