
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DECISION TREE INDUCTION VIA SEMANTICALLY-
AWARE EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision trees are a crucial class of models offering robust predictive performance
and inherent interpretability across various domains, including healthcare, finance,
and logistics. However, current tree induction methods often face limitations
such as suboptimal solutions from greedy methods or prohibitive computational
costs and limited applicability of exact optimization approaches. To address these
challenges, we propose an evolutionary optimization method for decision tree
induction based on genetic programming (GP). Our key innovation is the integration
of semantic priors and domain-specific knowledge about the search space into the
optimization algorithm. To this end, we introduce LLEGO, a framework that
incorporates semantic priors into genetic search operators through the use of Large
Language Models (LLMs), thereby enhancing search efficiency and targeting
regions of the search space that yield decision trees with superior generalization
performance. This is operationalized through novel genetic operators that work
with structured natural language prompts, effectively utilizing LLMs as conditional
generative models and sources of semantic knowledge. Specifically, we introduce
fitness-guided crossover to exploit high-performing regions, and diversity-guided
mutation for efficient global exploration of the search space. These operators are
controlled by corresponding hyperparameters that enable a more nuanced balance
between exploration and exploitation across the search space. Empirically, we
demonstrate across various benchmarks that LLEGO evolves superior-performing
trees compared to existing tree induction methods, and exhibits significantly more
efficient search performance compared to conventional GP approaches.

1 INTRODUCTION

Decision trees are fundamental models which are widely utilized across various domains, including
finance, healthcare, and bioinformatics (Morgan & Sonquist, 1963; Che et al., 2011; Soleimanian
et al., 2012). These hierarchical models recursively partition the feature space, creating a tree-like
structure where internal nodes represent decision rules based on feature values, and leaf nodes
correspond to class labels or predicted values. Decision trees are particularly appealing as they
offer both predictive accuracy and interpretability, which have stood the test of time against recently
developed black-box predictive models (Borisov et al., 2022; Grinsztajn et al., 2022).

However, decision tree induction represents a challenging optimization problem. Finding the optimal
tree given a training dataset is NP-complete (Laurent & Rivest, 1976), often necessitating the use
of heuristic algorithms (Quinlan, 1986). While computationally efficient, these heuristics yield
approximate, locally greedy solutions that sacrifice some degree of performance and global optimality
(Rokach & Maimon, 2005). Exact optimization methods have been developed to address these
limitations, but they face their own constraints. Their computational complexity typically scales
exponentially with problem size, limiting their applicability to restricted search spaces (Verwer &
Zhang, 2019; Lin et al., 2020). Moreover, these approaches are often confined to specific problem
types, such as binary classification, which further restricts their practical utility.

Genetic programming (GP) is a class of evolutionary algorithms which offers a promising middle
ground for decision tree induction, balancing computational efficiency with global optimization
of the tree structure (Koza, 1994a;b). Inspired by principles of evolution, GP algorithms evolve a
population of candidate solutions through iterative application of genetic operators such as crossover

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝒫(")

… N

LLEGO!" 𝒫 # , 𝒞; 𝛼

LLEGO$%& 𝒫 # , 𝒞; 𝜏

Fit & Eval

Selection

𝒪!" XO
offspring

𝒟train

𝒟val

Task context
𝒞

Operation
instructions

Sample 𝜈 parents, 𝒮' =	 {(𝑡(, 𝑓(𝑡()}()*+ 	1

Compute desired fitness 𝑓∗ using 𝒮', 𝛼2

Generate offspring 𝑜(∼ LLM!" ⋅ 𝒮', 𝒞, 𝑓∗)3

Sample 𝜈 parents, 𝒮' =	 {(𝑡(, 𝑓(𝑡()}()*+ 	1

Sample offspring and corresponding
logprob (𝑜(5, 𝑠(𝑜7()) ∼ LLM$%&(𝒮', 𝒞)

2

Weighted offspring sampling using 𝑠(𝑜7(), 𝜏3

𝜅 ops

𝜅 ops

𝒪#$%
MUT

offspring

𝒟train

𝒫$ ('()) = 𝒫(') ∪ 𝒪!"
∪ 𝒪#$%

𝒫('()) = SEL 𝒫$ '() , 𝑁

Update population

Compute
fitness	𝑓 𝑜(

∀	𝑜(∈ {𝒪$%& , 𝒪!"}

Figure 1: Overview. In each generation g ∈ [G], a population of solutions P(g) is evolved through
crossover OMUT = LLEGOXO(P(g), C;α) and mutation OMUT = LLEGOMUT(P(g), C; τ). Subse-
quently, the offsprings {OXO,OMUT} are evaluated for fitness and ▶ selection preserves the top-N
solutions, P(g+1) ← SEL(P̃(g+1), N), where P̃(g) = P(g) ∪ OXO ∪ OMUT.

and mutation. They are particularly well-suited for optimizing combinatorial problems with discrete,
variable-length search spaces, as is the case in decision tree induction (Koza, 1990; Tanigawa & Zhao,
2000; Kuo et al., 2007; Lahovnik, 2024). While much research in GP has focused on developing
heuristic genetic operators to enhance search efficiency, these operators still encounter fundamental
limitations that hinder their effectiveness in exploring solution spaces. These limitations include a lack
of semantic priors and domain knowledge, unguided variation mechanisms and narrow operational
contexts which limit the information available for the generation of offspring.

Key considerations. Our crucial insight in this work is to employ large language models (LLMs)
and their encoded semantic priors to design efficient semantically-aware variation operators in GP.
LLMs are powerful and flexible generative models capable of learning distributions over discrete
and variable-length sequences given only few-shot examples (Radford et al., 2019; Brown et al.,
2020). Specifically, we utilize LLMs as the basis for crossover and mutation operators, leveraging
the extensive semantic priors of LLMs to reason over solution semantics and guide search. We
introduce a fitness-guided crossover operator and complement it with a diversity-guided mutation
operator for efficient exploration at the population level. These operators work in tandem to perform
an efficient exploration of the search space, contrasting with the unguided nature of conventional
variation operators. Furthermore, our approach represents decision trees in natural language, which
enables the use of broader contexts and higher arity operations. As we demonstrate in Section 5,
our approach consistently outperforms existing tree induction methods across a diverse range of
classification and regression datasets.

Contributions. 1 Conceptually, we propose a novel GP algorithm that leverages semantic priors
contained in LLMs to enhance search efficiency and performance on challenging decision tree
induction problems. 2 Technically, we introduce LLEGO (LLM-Enhanced Genetic Operators),
which uses LLMs to define two key search operators: fitness-guided crossover that steers the search
towards promising regions using a target fitness; and diversity-guided mutation that identifies and
evolves solutions in under-explored areas of the search space. 3 Empirically, we evaluate LLEGO
on a wide variety of tabular data benchmarks, demonstrating that it significantly improves search
efficiency and consistently produces superior trees compared to existing tree induction methods.

2 BACKGROUND

2.1 DECISION TREE INDUCTION

Decision tree induction is the problem of learning a decision tree t ∈ T from a training dataset
Dtrain = {(xi, yi)}ni=1, where xi ∈ X ⊆ Rd denotes a d-dimensional input and yi ∈ Y denotes
the output. Decision trees recursively partition the input space X into hierarchical, disjoint regions.
In this work, we focus on binary decision trees, where splits partition regions in two subregions.
These regions define a set of leaf nodes R = {R1, R2, ..., RL}, where each leaf Rl is assigned a
constant cl (Hastie et al., 2009). This in turn yields a predictor t : X → Y which is defined by

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

t(x) =
∑L

l=1 clI(x ∈ Rl), where I(·) is the indicator function. Constructing decision trees from a
training dataset is a challenging optimization problem, since full tree optimization has been proven
to be an NP-complete problem (Laurent & Rivest, 1976). Greedy algorithms like CART (Breiman
et al., 1984) build trees top-down, offering computational efficiency but sacrificing performance. In
contrast, exact optimization methods (Lin et al., 2020), while providing theoretical guarantees of
optimality, face substantial practical constraints. These methods scale exponentially with tree depth
and number of possible splits, apply only to classification tasks, and are limited to specific objective
functions. Due to these restrictions, their application remains confined to small-scale problems.

2.2 GENETIC PROGRAMMING

Genetic Programming (GP) is a class of evolutionary algorithms designed to navigate complex
combinatorial spaces and offers a flexible middle ground between greedy and exact optimization
methods. The fundamental objective of GP is to evolve solutions t ∈ T to maximize a fitness
function f : T → R, where T is the combinatorial space of solutions (Koza, 1994a) which are
represented as trees. This tree structure permits to encode the hierarchical and variable length nature
of solutions present in many applications of GP, such as decision tree induction (Tanigawa & Zhao,
2000; Kuo et al., 2007) or symbolic regression (Qian et al., 2022). In GP, each individual is described
by the tuple (t, f(t)) of its solution and its fitness. We denote this population of N individuals
P = {(t1, f(t1)), (t2, f(t2)), . . . , (tN , f(tN))}, with N ∈ N. The algorithm evolves the population
across G ∈ N generations. In each generation g ∈ [G], the population P(g) undergoes three key
genetic operations, i.e. selection, crossover and mutation:

Selection. The selection mechanism preserves performant individuals across generations, resulting in
selection pressure to enforce sufficient exploitation and ensure convergence (Goldberg, 1989). The
N -ary selection operator is defined as SEL : T N × RN → ∆(T N), where ∆(T N) represents the
probability simplex over T N . The selection operator implicitly creates a probability distribution over
T , wherein individuals with higher fitness are more likely to be preserved.

Crossover. The crossover operator combines the genetic material of multiple candidate solutions
to generate performant offspring (Langdon & Poli, 2013). Crossover is an ν-ary operator, denoted
XO : T ν → ∆(T), taking in ν parents to generate an offspring o ∈ T sampled as o ∼ PXO(· | S),
where S is usually a pair of parents (ν = 2) sampled uniformly from the population. The stochastic
perturbations permitted by XO induce the offspring distribution PXO, which can be interpreted as a
uniform distribution over all trees producible through crossover. A popular version of XO is subtree
crossover, where randomly selected subtrees from two parent trees are swapped (Koza, 1994a).

Mutation. The mutation operator promotes global search of the solution space, thus mitigating
premature convergence to local optima (Goldberg, 1989). An ν-ary mutation operator MUT : T ν →
∆(T) performs random modifications to individuals to sample an offspring o ∼ PMUT(· | S).
Traditionally, mutation operates on a single tree (ν = 1) and PMUT is uniform over the set of trees that
can be generated through mutation (e.g. random insertion or replacement of nodes).

Limitations. While these mechanisms are foundational to GP, the variation operators present notable
limitations that limit the algorithm’s search efficiency.

• Lack of semantic priors: Conventional variation operators perform search purely through random
perturbations to the solution structure, crucially lacking an understanding of the semantic impli-
cations of these changes. This is problematic as small changes in the syntactic space can lead to
disruptive changes in the semantics of solutions (Rothlauf et al., 2011).

• Unguided variation operators: The crossover operator is often agnostic to solution fitness and
performs local exploration, considering any structural interpolation between pairs of trees as equally
likely. This contrasts with gradient-based search methods, which take steps in the direction of
greatest improvement (Ruder, 2016). This lack of search direction in the variation operators can
lead to inefficient exploration and slower convergence to optimal solutions.

• Narrow context: The technical designs of existing operators often constrain the arity of allowed
operations (e.g. it is difficult to define valid operations on more than 2 trees). This restricts
offsprings to evolving locally, limiting diversity and global search performance.

A line of work has aimed to address some of these limitations. Notably, previous works in semantic
GP have attempted to address the first two limitations with variation operators which consider the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

semantics of solutions (Krawiec & Lichocki, 2009; Moraglio et al., 2012; Krawiec & Pawlak, 2013).
In the semantic GP literature, a solution’s semantics typically refers to the behavioural or functional
output of a solution, i.e. h(t) = [t(x1), t(x2), . . . , t(xn)] ∈ Rn. In contrast, our work uses the term to
describe domain knowledge about the solution space encoded in the LLM. However, works in semantic
GP are limited by domain-specific definitions that restrict their broader applicability. Crucially, no
comparable semantically-aware methods have been developed for decision tree induction.

3 LLEGO: GENETIC OPERATORS WITH SEMANTIC PRIORS

Addressing the challenges of genetic variation operators through conventional methods has proven
difficult. In this work, we build on the following key insight: LLMs are powerful and flexible
generative models which can perform semantically-aware variations to individuals in order to steer
exploration towards promising regions within the search space.

Indeed, large language models (LLMs) pretrained on Internet-scale sequence data, such as GPT4
(Achiam et al., 2023), Claude (Anthropic, 2024), and PALM2 (Anil et al., 2023), have demonstrated
marked proficiencies in many tasks involving sequential generation, including natural language
(Brown et al., 2020), and code programs (Chen et al., 2021). Especially of note, they are efficient
few-shot learners, able to identify patterns and generalize from sparse observations (Radford et al.,
2019; Brown et al., 2020). These properties make them particularly appealing when viewed from
the perspective of variation operators (Meyerson et al., 2023; Lehman et al., 2023). Firstly, they are
semantically aware, with the LLM capturing rich semantic knowledge about candidate solutions.
They are also able to reason over in-context examples to identify performant patterns to guide efficient
exploration. By utilizing in-context learning, we also can obtain natural language signals to guide
evolution towards desired regions (Xie et al., 2021; Dai et al., 2022). Lastly, their relatively large
context window facilitates utilization of wider context, increasing arity of feasible genetic operations.

Method overview. In this section, we introduce LLEGO, capitalizing on the aforementioned capa-
bilities of LLMs to improve search efficiency. At a high level, LLEGO represents solutions and
frames genetic operations in natural language. Specifically, each genetic operation is realized through
a distinct prompt which receives a subset of the current population as parents and generates a set
of offspring solutions. We introduce fitness-guided crossover LLEGOXO that performs in-context
learning over solutions and their fitness, and generates offspring conditioned on a desired fitness
f∗. Additionally, we propose diversity-guided mutation LLEGOMUT that generates diverse offspring
to efficiently explore the search space. We note that the level of fitness- or diversity-guidance is
intentionally controllable through two hyperparameters, α and τ that correspond to different degrees
of exploitation vs exploration. An overview of our method is visualized in Figure 1.

3.1 LLEGO PROMPT DESIGN

The genetic operations are performed through natural language queries to the LLM. While the specific
structure of each query differs, they are constructed from three essential components. For an extended
description of prompts and examples, please refer to Appendix B.

1. Task context. Denoted as C and includes information about the input space X , the output space
Y , and the characteristics of the dataset D, e.g. number of samples or features.

2. Parent solutions. This contains the solution representation and fitness of each parent, which are
serialized into natural language and provided as few-shot examples in each genetic operation.

3. Task-specific instructions. For each genetic operator, we include task-specific instructions on
offspring generation and guidelines on the format of the response.

3.2 Fitness-GUIDED CROSSOVER OPERATOR

Traditional crossover operators are not semantically aware, as they randomly select subtrees from
parents to be recombined into an offspring. This ignores patterns in the parents, introducing the
possibility for performant substructures to be destroyed through random perturbations. Additionally,
they do not make use of parent fitness explicitly to guide offspring generation (i.e. no fitness guidance),
foregoing any informative signals on correlations between fitness and solution structure. We seek
to address these factors in our fitness-guided crossover operator. More specifically, the crossover

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

operation includes three steps: (1) sampling a subset of parents, weighted by parent fitness, (2)
compute desired fitness f∗ based on parent fitness, (3) constructing the prompt and querying the
LLM to generate offsprings, conditioning on f∗ (see Figure 2).

Parent sampling. Each crossover operation is conditioned on parents, which are sampled from
the current population. We utilize a roulette-wheel mechanism (Blickle & Thiele, 1996) to favour
existing solutions with high fitness. Specifically, we aim to sample a set of ν ∈ N parents for each
crossover operation, where the sampling weights θ = (θ1, . . . , θN) are proportional to the solutions’
fitness. These weights define a categorical distribution CatN (θ), based on which we sample parents
without replacement. Intuitively, solutions with higher fitness are more likely to be involved in genetic
operations. We use Sk to represent the set of parents sampled for operation k ∈ [κ], where κ ∈ N is
the number of crossover operations performed.

t! t"

𝒮 = {𝑡!, 𝑡", 𝑡#}

LLM!" ⋅ 𝒮, 𝒞, f ∗ 	

o

o

o ∼ LLM#$
Sample from LLM

Fitness w
eighted

sampling fro
m 𝒫

LLEGO!"(𝒫, 𝒞, α)
t%

LLM#$ ⋅ 𝒮, 𝒞, f ∗
LLM conditional generative model with structured

prompt, 𝑓∗ = 𝑓%&' + 𝛼 𝑓%&' − 𝑓%()

t!, t"
, t% ∼

Cat'
θ

𝒫
Population of trees

Figure 2: LLEGOXO. For each operation,
the crossover operator 1) samples a set of
parents S weighted by their fitness, 2) com-
putes desired fitness f∗ using S and α, and
3) samples offspring via the LLM.

Crossover through fitness guidance. To perform
crossover, we utilize both the tree structures tj and
the fitness metric f(tj) to create few-shot prompts. For
each of the sampled parents in S, we serialize the tree
into natural language as a nested dictionary, which we
denote as tnl

j , where each intermediary key represents
the splitting condition (feature name and splitting value)
and the leaf item represents the value of the leaf node.
Please refer to Figure 10 for more description of this
representation. Each example is then constructed as

“fitness: f(tj), tree: tnl
j ” and we use Snl to represent

the serialized few-shot prompt. We further condition
the generation by specifying a desired fitness f∗ in the
prompt to steer the generation towards high-fitness re-
gions. This steering is controlled by a hyperparameter
α, where f∗ = fmax +α(fmax− fmin), with fmax and
fmin the best and worst fitness in S respectively. Intuitively, f∗ is defined relative to the best parent
fitness, with the improvement proportional to the observed variability. A positive α defines f∗ to
improve over the best fitness in the parent set, whereas −1 ≤ α < 0 results in a more conservative
target fitness that is within the observed fitness range.

We generate offsprings as oj ∼ LLMXO(· | Snl, C, f∗), by sampling from an LLM conditioned on the
parents Snl, the task context C, and target fitness f∗ controlled by α. We write the complete crossover
operation as OXO,k = LLEGOXO(P(g), C;α), where OXO,k is the set of offspring generated from
operation k ∈ [κ]. α controls the level of exploration, and we systematically investigate its effect in
Section 5.2. By framing crossover using natural language, our crossover operator naturally allows for
an arity ν strictly than 2, by including additional parents as in-context examples through Snl.

3.3 Diversity-GUIDED MUTATION OPERATOR

𝒮 = {t!, t", t#}

Cat!"(θ)

𝜃

o
o ∼ Cat!"(θ)

Sample from
weighted

distribution

LLEGO!"#(𝒫, 𝒞, τ)

(o) #, s(o) #)) = LLM$%& ⋅ 𝒮, 𝒞	
Conditional sampling of 𝜆(candidate offsprings

𝒪* = 	{(o.$, s(o.$))}$%!&' 	
t!

t"

t#

𝑜.#

𝑜."

𝑜.!

𝑜.(

t!, t"
, t# ∼

Uni 𝒫

Uniform
 sam

pling

from
 𝒫

𝒯
Space of trees

𝜃' =
exp	(𝑠(𝑜)')/𝜏)

∑ exp(𝑠(𝑜)()/𝜏))"
(

Compute log-probability based sampling weights
𝛉 = θ!, … , θ&'

Figure 3: LLEGOMUT mutation operator.
The mutation operator 1) samples a set
of candidate offspring and their associated
log probs (i.e. likelihood given parents), 2)
computes sampling weights inversely pro-
portional to log probs, controlled by tem-
perature hyperparameter τ , and 3) samples
mutation offspring accordingly.

On the other side of the coin is the mutation opera-
tor, where the objective is to efficiently traverse under-
explored areas in the search space to improve diversity
and escape local minima. Traditional mutation oper-
ators can be viewed as inducing a uniform distribu-
tion over the space of solutions one random mutation
away from the parent. However, this does not consider
whether such mutations are semantically meaningful.
To contextualize this, imagine the space one mutation
away from a decision tree; many of these mutations are
highly unlikely to be interesting or optimal given some
degree of domain knowledge, resulting in inefficient ex-
ploration. In this setting, our mutation operator uses its
semantic prior to effectively guide exploration, enabling
more efficient diversity-driven exploration.

Parent sampling. As before, each mutation operation is
conditioned on a set S of ν parents. However, whereas
for crossover, parents are sampled based on their fitness,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for mutation, parents are randomly sampled from the population to increase the diversity of S.
Specifically, S = {(tj , f(tj)) | j ∈ [ν], tj ∼ UniformN (P(g))}, where each solution has uniform
probability of being selected as a parent. Future works should consider more advanced sampling
schemes to increase diversity amongst the parents.

Mutation with diversity guidance. To perform mutation, we only include the tree structure tj to
create few-shot prompts: each parent is serialized as “tree: tnl

j ”, to create Snl. Subsequently, we
generate λ′ (where λ′ ≥ λ) candidate offsprings õj , and track the negative log probabilities of the
candidates obtained from the LLM, represented s(õj) = −p(õj | S). Intuitively, s(õj) reflects the
likelihood of the candidate offspring given the set of parents, with smaller values indicating that the
candidate offspring has low probability under the current population distribution and hence that its
integration can introduce more diversity at the population level. As such, the candidate sampling
step is represented as (õj , s(õj)) ∼ LLMMUT(· | Snl, C). Given this set of λ′ candidates, we select
λ offspring based on their log probabilities, i.e. OMUT = {(oj , f(oj) | j ∈ [λ], oj ∼ Catλ′(θ)},
where θ = (θ1, . . . , θλ′) and θj =

exp(s(õj)/τ)∑λ′
i=1 exp(s(õj)/τ)

. Here, τ is the sampling temperature, where

larger values of τ > 1 results in a more uniform distribution over the candidate offspring, and lower
values of 0 < τ ≤ 1 would put more weight on candidates with lower likelihood. As such, we use τ
and the log probabilities to guide the sampling of offspring with controllable levels of diversity. In
Section 5.2, we empirically investigate the effect of τ on offspring diversity. In summary, we define
the k-th mutation operation as OMUT,k = LLEGOMUT(P(g), C; τ).

3.4 END-TO-END ALGORITHM

Having detailed our LLM-based genetic operators, we now put together the end-to-end GP algorithm.
The search is initialized with a set of N solutions, P(0). In each generation, we sample N crossover
offspring, represented as O(g)

XO , and mutation offsprings, represented as O(g)
MUT. This is performed

through κ genetic operations, with each operation involving ν parents, and generating λ offsprings.
The fitness of each solution is then calculated against the training set Dtrain. For selection, we
consider the set of candidates as the union of the solutions from the previous generation and the newly
generated offsprings, i.e. P̃(g+1) = P(g) ∪ O(g)

XO ∪ O
(g)
MUT. We use the elitism selection to select the

top-N unique solutions from the candidate population to preserve the highest quality solutions across
generations (Goldberg, 1989). Here, top-N is selected based on training set fitness. More formally,
we denote this process as P(g+1) ← SEL(P̃(g+1);N). After G generations of evolution, we select
the solution with the highest validation fitness as the final solution.

4 RELATED WORKS

Our work relates to multiple strands of research, which we summarize in brief below. We provide an
extended literature survey in Appendix A.1.

Tree induction algorithms. Existing algorithms for decision tree induction can be broadly cate-
gorized into three main classes: greedy, globally optimal, and GP algorithms. Greedy algorithms
recursively construct a tree in a top-down approach, heuristically making locally optimal splits at each
node (Breiman et al., 1984; Quinlan, 1986; 1993). While computationaly efficient, these methods do
not pursue global optimality. Recent works have proposed exact combinatorial methods to construct
optimal decision trees (Verwer & Zhang, 2019; Hu et al., 2019; Lin et al., 2020; Aglin et al., 2020).
However, these methods face two key limitations: exponential complexity scaling with tree depth and
number of splits, and restricted applicability to specific objectives (primarily classification problems).

Genetic programming. GP approaches present a middle ground between search performance and
computational efficiency (Koza, 1990; Tanigawa & Zhao, 2000; Lahovnik, 2024). GP builds on
genetic operators such as crossover and mutation to evolve a population at each generation. However,
such operators can have disruptive effects because of the complex mapping between syntacting
representations and semantics (Rothlauf et al., 2011). This observation has motivated works on
semantic GP (Krawiec & Lichocki, 2009; Moraglio et al., 2012; Krawiec & Pawlak, 2013), aiming to
produce offspring that maintain semantic consistency with their parents. However, these approaches
are highly domain-specific, and have not extended to tree induction, which is the focus of our work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on classification tasks. Balanced accuracy (↑) on 7 datasets, reporting
mean(std) and emboldening best results. We also report average rank (↓) for comparing baselines.

Method Breast Compas Credit Diabetes Heart Liver Vehicle Rank (↓)
depth = 3

CART 0.941(0.008) 0.655(0.011) 0.668(0.019) 0.710(0.026) 0.734(0.061) 0.646(0.022) 0.903(0.018) 2.9(0.83)
C4.5 0.938(0.011) 0.650(0.008) 0.579(0.027) 0.687(0.040) 0.704(0.017) 0.569(0.042) 0.857(0.035) 4.6(0.79)
DL85 0.944(0.006) 0.666(0.006) 0.591(0.010) 0.655(0.018) 0.704(0.040) 0.565(0.028) 0.938(0.016) 3.5(2.05)
GOSDT 0.935(0.005) 0.641(0.003) 0.681(0.000) 0.698(0.011) 0.651(0.077) 0.656(0.016) 0.852(0.042) 4.3(2.05)
GATREE 0.942(0.008) 0.647(0.005) 0.648(0.040) 0.681(0.024) 0.669(0.028) 0.626(0.033) 0.922(0.020) 4.1(0.83)
LLEGO 0.946(0.010) 0.652(0.004) 0.677(0.004) 0.713(0.013) 0.736(0.021) 0.672(0.017) 0.937(0.015) 1.6(0.73)

depth = 4
CART 0.945(0.009) 0.660(0.010) 0.675(0.017) 0.704(0.023) 0.713(0.053) 0.632(0.056) 0.925(0.018) 3.1(0.78)
C4.5 0.942(0.012) 0.660(0.005) 0.622(0.038) 0.699(0.021) 0.714(0.028) 0.585(0.041) 0.921(0.010) 4.1(1.02)
DL85 0.941(0.011) 0.662(0.004) 0.586(0.015) 0.636(0.025) 0.744(0.037) 0.588(0.023) 0.931(0.009) 3.9(1.83)
GOSDT 0.938(0.006) 0.641(0.003) 0.680(0.002) 0.701(0.010) 0.677(0.025) 0.660(0.014) 0.885(0.017) 4.3(1.75)
GATREE 0.941(0.007) 0.650(0.006) 0.658(0.011) 0.675(0.034) 0.676(0.022) 0.633(0.042) 0.895(0.030) 4.6(0.87)
LLEGO 0.951(0.006) 0.662(0.003) 0.684(0.009) 0.731(0.004) 0.751(0.037) 0.676(0.019) 0.937(0.013) 1.1(0.17)

LLMs and optimization. Recent studies have explored LLMs for optimization tasks, with some
works employing LLMs as variation operators (Meyerson et al., 2023). Examples of applications
include code evolution (Lehman et al., 2023; Nasir et al., 2024; Brownlee et al., 2023), neural
architecture search (Nasir et al., 2024), and prompt optimization (Fernando et al., 2024; Guo et al.,
2024), where unguided variations at the individual level are produced using the LLMs’ instruction-
following capabilities (e.g. "cross over the following prompts and generate a new prompt" in (Guo
et al., 2024)). In contrast, LLEGO generates guided variations, and consider the dynamics of search at
the population level by controlling fitness and diversity with the hyperparameters α and τ , and utilizing
in-context learning of patterns in parent solutions. LLEGO is also distinct in uniquely addressing
the decision tree induction setting, a domain previously unexplored in LLM-based optimization
approaches.

5 EXPERIMENTS

Benchmark datasets. We empirically evaluate LLEGO’s ability to find performant decision trees
for 12 open-source tabular datasets from OpenML curated benchmarks (Vanschoren et al., 2014),
including 7 classification and 5 regression datasets. These datasets were selected based on the
number of features, samples and the presence of semantically meaningful feature names and descrip-
tions. Further details on this selection of datasets and preprocessing are provided in Appendix C.1.
Baselines. We compare LLEGO against a comprehensive set of competitive decision tree induction
methods across major categories: greedy induction (CART (Breiman, 2017) and C4.5 (Quinlan,
1993)), sparse optimal tree induction (GOSDT (Lin et al., 2020) and DL8.5 (Aglin et al., 2020)),
and a GP approach using conventional genetic operators (GATree (Lahovnik, 2024), which is an
implementation of GP for decision tree induction in Python). More details on these baselines, their
implementation, hyperparameters, and experimental details are given in Appendices C.2 and C.3. For
GP-based methods (LLEGO, GATree), we initialize the population with CART models bootstrapped
on 25% of the training data. We report results using G = 25, N = 25, and we use α = 0.1, τ = 10
and ν = 4 as the hyperparameters for the variation operators of LLEGO.

Evaluation. For classification tasks, we use balanced accuracy (ACC), and for regression tasks, mean
squared error (MSE), computed on a held-out test dataset Dtest. Each metric is averaged over 5 runs
with different random seeds, due to different dataset splits, and we present these averages with their
standard deviations. For LLEGO, we use gpt-3.5-turbo version 0301 as the underlying LLM.
For a fair comparison, each method is allowed 10 minutes of wall clock time per seeded run, which
includes time spent on hyperparameter tuning.

5.1 LLEGO-EVOLVED TREES ACHIEVE SUPERIOR GENERALIZATION PERFORMANCE

We first compare the performance of the complete LLEGO algorithm against baselines for decision
tree induction. We report in Table 1 and Table 2 generalization performance on classification and
regression datasets, respectively, for maximum tree depths of 3 and 4. For regression, we report the
results for CART and GATree since other baselines cannot optimize regression objectives. The results
demonstrate that LLEGO outperforms baselines comprehensively. We observe that this performance
advantage becomes more pronounced in the space of trees with depth 4, which is intuitive since

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance on regression tasks. MSE (↓)
across 5 regression datasets, best results emboldened.

Method Abalone Cars Cholesterol Wage Wine
depth = 3

CART 0.591(0.024) 0.250(0.025) 1.500(0.218) 1.036(0.130) 0.811(0.008)

GATREE 0.595(0.039) 0.198(0.035) 1.427(0.168) 1.150(0.133) 0.825(0.014)
LLEGO 0.573(0.015) 0.191(0.031) 1.324(0.125) 1.045(0.134) 0.814(0.009)

depth = 4
CART 0.561(0.016) 0.269(0.037) 1.552(0.205) 1.185(0.173) 0.807(0.004)

GATREE 0.586(0.032) 0.100(0.018) 1.343(0.141) 1.188(0.151) 0.847(0.015)
LLEGO 0.557(0.026) 0.100(0.020) 1.322(0.130) 1.066(0.203) 0.836(0.020)

5 10 15 20 25
0.7

0.8

0.9

1.0
Median Pop Fitness

LLEGO

GATREE

5 10 15 20 25
0.00

0.10

0.20

0.30

0.40

0.50
Median Pop Diversity

LLEGO

GATREE

Generations (G)

Figure 4: Search efficiency. Median fit-
ness and diversity across 25 generations.

it represents a substantially larger search space compared to the set of trees with depth 3. In the
more constrained space of trees with depth 3, sparse optimal induction methods such as DL85
and GOSDT demonstrate increased competitiveness. This suggests that LLEGO’s efficiency gains
are particularly evident when navigating more complex and expansive search spaces. Our method
consistently outperforms the GP baseline GATree, underscoring the significant impact of semantic
priors on search performance. Further analysis in Appendix D.3 demonstrates that LLEGO produces
superior trees even when compared to a GATree configuration utilizing substantially larger search
budgets. Notably, LLEGO achieves this superior performance while requiring fewer evaluations,
highlighting its efficiency and effectiveness. Takeaway: LLEGO optimizes decision trees that are
superior against a diverse benchmark of methods, while being more applicable to a wider range of
optimization objectives (e.g. regression).

Search efficiency. Having shown the superior generalization performance of LLEGO-evolved trees,
we now compare search efficiency between LLEGO and the GP baseline GATree. We evaluate
population dynamics via normalized population fitness and diversity between the two methods across
all classification datasets, when optimizing trees with depth 3. Fitness values (i.e. balanced accuracy)
were normalized to enable comparison across different seeds and datasets (refer to Appendix C.4 for
details). Figure 4 (Left) shows the median population fitness, where LLEGO demonstrates superior
search efficiency, finding fitter individuals more efficiently. Figure 4 (Right) shows that the populations
evolved by LLEGO exhibit decreasing diversity as the search progresses, whereas GATree maintains
roughly the same level of diversity in its population. This is expected, as LLEGO uses its semantic
priors to focus the search on semantically meaningful regions, which naturally reduces diversity. A
similar effect has been observed when employing semantically aware GP in other domains (Krawiec &
Pawlak, 2013). In comparison, GATree, which is semantically unaware, performs random structural
perturbations that maintain a certain level of diversity in the population. In Appendix D.4, we
investigate search efficiency on problems with depth 4 and show search dynamics on individual tasks
in Appendix D.10, observing the same effects at play. Takeaway: LLEGO leverages its semantic
priors for more efficient search convergence, although this can sacrifice population diversity, requiring
this trade-off to be carefully balanced by its operators.

5.2 UNDERSTANDING THE SOURCES OF GAIN

Having demonstrated enhanced search efficiency of LLEGO in the previous section, we now examine
the contributions of the crossover and mutation operators to this improvement. In what follows, we
analyze how offspring characteristics are influenced by different values of the hyperparameters α and
τ , which give control over the desired solution fitness and population diversity.

0.5

0.6

0.7

P
op

F
it

n
es

s

LLEGO

GATREE

−0.25 −0.10 0.10 0.25

α

0.2

0.4

P
op

D
iv

er
si

ty

LLEGO

GATREE

Figure 5: XO dynamics.

Results. (1) Crossover: We examine the effect of α ∈
{−0.25,−0.1, 0.1, 0.25} on offspring generation, where α de-
termines the target fitness f∗ that conditions the offspring gen-
eration. In Figure 5, we visualize the median population fitness
and diversity as a function of α. Offspring fitness improves
as α increases from −0.25 to 0.1, but regresses beyond this
point as the target fitness f∗ leads to extrapolation in less reli-
able regions. Interestingly, the best offspring fitness emerges
at α = 0.1, suggesting LLEGOXO’s ability to perform a rea-
sonable degree of extrapolation. Corresponding, diversity de-
creases with increasing α, reflecting sampling from progres-
sively smaller search regions. Hence, compared to GATree,
LLEGO produces higher quality offspring but with lower diver-
sity, which is consistent with our findings in Section 5.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 10 25 50

τ

0.40

0.42

0.44

0.46

P
op

D
iv

er
si

ty LLEGO

GATREE

Figure 6: MUT dynamics.

(2) Mutation: We investigate the role of LLEGOMUT in main-
taining diversity by considering a range of τ ∈ {5, 10, 25, 50}.
In Figure 6, we observe that lower values of τ increases pop-
ulation diversity, as they prioritize offspring that have low like-
lihood given parents. As such, the offspring introduce greater
diversity at the population level, which complements the dy-
namics of the crossover operator mentioned above, crucial in
balancing exploitation and exploration during search. Results
for individual datasets can be found in Appendix D.8.

5.3 ABLATION STUDY: ALL COMPONENTS CONTRIBUTE TO ENHANCED SEARCH EFFICIENCY

1 5 10 15 20 25

Generations (G)

0.40

0.50

0.60

0.70

0.80

M
ed

ia
n

P
op

F
it

n
es

s

LLEGO

LLEGOno xo

LLEGOno mut

LLEGOno prior

LLEGOν=2

Figure 7: Ablation study. Compar-
ing search efficiency of ablations.

Having demonstrated the superior performance of LLEGO
against existing baselines, we finally scrutinize the contribution
of each algorithmic component to its optimization performance.
Specifically, we aim to investigate the effects of (1) leveraging
the LLM’s semantic prior to evolve solutions, (2) the fitness-
guided crossover and diversity-guided mutation, and (3) the
higher arity of genetic operations. Now, we systematically
ablate each component: LLEGOno_prior removes any semantic
information from the prompts (see Appendix B.1 for detailed
description), constraining semantic reasoning; LLEGOno_xo re-
moves the fitness-guided crossover, using only the mutation
operator during search; LLEGOno_mut removes diversity-guided
mutation, using only crossover during search; and LLEGOν=2 restricts the context to 2 parents,
akin to traditional genetic operators. We evaluate search efficiency in Figure 7, observing that best
performance is obtained when both operators are used in tandem, likely as they balance exploration
of higher fitness regions (guided by f∗) and exploration of less visited regions (guided by τ). The
semantic prior leveraged by the operator also improves performance, although we note that even
without it, LLEGOno_prior performs very competitively, highlighting the strong few-shot learning
capabilities of LLMs. Finally, using binary operators in LLEGOν=2 is suboptimal, underlining the
often overlooked importance of using a wider context in genetic operations. We provide more
fine-grained ablation results in Appendix D.9. Takeaway: Our ablation experiment demonstrates
that all algorithmic components contribute to the enhanced optimization performance of LLEGO.

5.4 ADDITIONAL RESULTS.

In the interest of space, we relegated additional investigations to Appendix D. Specifically, we
addressed memorization concerns by evaluating generalization performance on datasets with removed
identifying information and context, as well as testing LLEGO on unseen proprietary datasets (detailed
in Appendix D.2). In Appendix D.1, we investigated LLEGO’s ability to mitigate negative bias by
optimizing fairness-regularized objectives. Further experiments in Appendix D offer comprehensive
analyses of LLEGO’s performance and its individual components.

6 DISCUSSION

In summary, we introduced LLEGO, a novel GP method for decision tree induction that integrates
semantic priors over the search space by using LLMs as variation operators. Our approach leverages
the semantic understanding and domain knowledge of LLMs to evolve decision trees through
innovative crossover and mutation operators, while incorporating fitness and diversity guidance and
flexible operation arity. Empirical results across diverse datasets demonstrate LLEGO’s superior
optimization efficiency, yielding high-performing decision trees compared to existing baselines.

Limitations and future works. However, our work is not without its limitations. Performing infer-
ence through LLMs incurs a larger computational footprint than conventional GP algorithms. Our
findings indicate that LLEGO trades off computational requirements for improved search efficiency
and generalization performance, making it particularly appealing in performance-sensitive domains
or problems where evaluation costs exceed search costs. Future works should prioritize reducing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

computational requirements while retaining performance, such as through inference acceleration
(Leviathan et al., 2023) and memory-efficient model architectures (Han et al., 2015). Additionally,
while LLEGO can operate effectively without semantic priors, its performance can be further im-
proved when such knowledge is available. Future works could explore finetuning strategies and
prompt augmentation strategies to incorporate semantic knowledge in specialized domains. Beyond
enhancing semantic priors, integrating advanced LLM-based reasoning capabilities, such as reflection
mechanisms (Ye et al., 2024) could further elevate performance. We also recognize that using
black-box LLMs could potentially lead to the propagation of negative biases into the solutions
returned by LLEGO—to this end, we presented initial steps to mitigate bias via the design of adequate
objective functions (see Appendix D.1). In the long run, we believe this work shows the promise of
employing LLM capabilities for enhancing efficiency and performance in complex combinatorial
optimization problems beyond decision tree induction.

Reproducibility statement. We provide all the details on the datasets, the implementation of
baselines and the LLM in Appendix C. Furthermore, we detail the prompts used by the crossover and
the mutation operators in Appendix B. Code will be released upon acceptance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Statlog (Heart). UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C57303.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3146–3153, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine bias. ProPublica:
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, May
2016.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian symposium on neural networks, pp. 173–178. IEEE, 2000.

Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilović, et al. Ai
fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM Journal of
Research and Development, 63(4/5):4–1, 2019.

ER Berndt. Determinants of wages from the 1985 current population survey. The practice of
econometrics: classic and contemporary, pp. 193–209, 1991.

Philip Bille. A survey on tree edit distance and related problems. Theoretical computer science, 337
(1-3):217–239, 2005.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Manto-
vani, Jan N. van Rijn, and Joaquin Vanschoren. Openml benchmarking suites. arXiv:1708.03731v2
[stat.ML], 2019.

Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolutionary algorithms.
Evolutionary Computation, 4(4):361–394, 1996.

Marko Bohanec. Car Evaluation. UCI Machine Learning Repository, 1997. DOI:
https://doi.org/10.24432/C5JP48.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Leo Breiman. Classification and regression trees. Routledge, 2017.

Leo Breiman, Jerome Friedman, Charles J Stone, and RA Olshen. Classification and Regression
Trees. CRC Press, 1984.

Cliford Broni-Bediako, Yuki Murata, Luiz HB Mormille, and Masayasu Atsumi. Evolutionary nas
with gene expression programming of cellular encoding. In 2020 IEEE symposium series on
computational intelligence (SSCI), pp. 2670–2676. IEEE, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Alexander EI Brownlee, James Callan, Karine Even-Mendoza, Alina Geiger, Carol Hanna, Justyna
Petke, Federica Sarro, and Dominik Sobania. Enhancing genetic improvement mutations using
large language models. In International Symposium on Search Based Software Engineering, pp.
153–159. Springer, 2023.

Dongsheng Che, Qi Liu, Khaled Rasheed, and Xiuping Tao. Decision tree and ensemble learning
algorithms with their applications in bioinformatics. Software tools and algorithms for biological
systems, pp. 191–199, 2011.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
Repository, 2009. DOI: https://doi.org/10.24432/C56S3T.

CUTRACT. Cutract. https://prostatecanceruk.org, 2019.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In Forty-first
International Conference on Machine Learning, 2024.

Sebastian Felix Fischer, Matthias Feurer, and Bernd Bischl. Openml-ctr23–a curated tabular regres-
sion benchmarking suite. In AutoML Conference 2023 (Workshop), 2023.

DE Goldberg. Genetic algorithms in search, optimization, and machine learning, 1989.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Alexandre Guillaume, Seugnwon Lee, Yeou-Fang Wang, Hua Zheng, Robert Hovden, Savio Chau, Yu-
Wen Tung, and Richard J Terrile. Deep space network scheduling using evolutionary computational
methods. In 2007 IEEE Aerospace Conference, pp. 1–6. IEEE, 2007.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement learning
by genetic programming. Engineering Applications of Artificial Intelligence, 76:158–169, 2018.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in Neural
Information Processing Systems, 32, 2019.

Northpointe Inc. Compas risk scales, 2016. URL
https://www.propublica.org/datastore/dataset/
compas-recidivism-risk-score-data-and-analysis. Accessed: 2023-10-
01.

12

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Detrano Robert. Heart Disease. UCI
Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository.
https://archive.ics.uci.edu.

John R Koza. Concept formation and decision tree induction using the genetic programming paradigm.
In International Conference on Parallel Problem Solving from Nature, pp. 124–128. Springer,
1990.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87–112, 1994a.

John R Koza. Genetic programming II: automatic discovery of reusable programs. MIT press, 1994b.

Krzysztof Krawiec and Pawel Lichocki. Approximating geometric crossover in semantic space. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 987–994,
2009.

Krzysztof Krawiec and Tomasz Pawlak. Approximating geometric crossover by semantic backpropa-
gation. In Proceedings of the 15th annual conference on Genetic and evolutionary computation,
pp. 941–948, 2013.

Chan-Sheng Kuo, Tzung-Pei Hong, and Chuen-Lung Chen. Applying genetic programming technique
in classification trees. Soft Computing, 11:1165–1172, 2007.

Tadej Lahovnik. Gatree — gatree 0.1.4 documentation. https://gatree.readthedocs.io/
en/latest/, 2024. (Accessed on 05/19/2024).

William B Langdon and Riccardo Poli. Foundations of genetic programming. Springer Science &
Business Media, 2013.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15–17, 1976.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331–366.
Springer, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable
optimal sparse decision trees. In International Conference on Machine Learning, pp. 6150–6160.
PMLR, 2020.

Vadim Liventsev, Anastasiia Grishina, Aki Härmä, and Leon Moonen. Fully autonomous program-
ming with large language models. In Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1146–1155, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. ACM Transactions
on Programming Languages and Systems (TOPLAS), 2(1):90–121, 1980.

Sascha Marton, Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. Gradtree: Learning
axis-aligned decision trees with gradient descent. arXiv preprint arXiv:2305.03515, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

13

https://gatree.readthedocs.io/en/latest/
https://gatree.readthedocs.io/en/latest/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and the effects of
noise. Complex systems, 9(3):193–212, 1995.

Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. Geometric semantic genetic pro-
gramming. In Parallel Problem Solving from Nature-PPSN XII: 12th International Conference,
Taormina, Italy, September 1-5, 2012, Proceedings, Part I 12, pp. 21–31. Springer, 2012.

James N Morgan and John A Sonquist. Problems in the analysis of survey data, and a proposal.
Journal of the American statistical association, 58(302):415–434, 1963.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C55C7W.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: Neural architecture search via large language models and quality diversity optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024.

Mowforth Pete and Barry Shepherd. Statlog (Vehicle Silhouettes). UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5HG6N.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:202845, 2016.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

J Ross Quinlan. C4. 5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

John E Roemer and Alain Trannoy. Equality of opportunity. In Handbook of income distribution,
volume 2, pp. 217–300. Elsevier, 2015.

Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4):476–487,
2005.

Franz Rothlauf et al. Design of modern heuristics: principles and application, volume 8. Springer,
2011.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings
of the annual symposium on computer application in medical care, pp. 261. American Medical
Informatics Association, 1988.

Farhad Soleimanian, Peyman Mohammadi, and Parvin Hakimi. Application of decision tree algorithm
for data mining in healthcare operations: a case study. Int J Comput Appl, 52(6):21–26, 2012.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position: Leverage foundational models for black-box optimization. In Forty-first International
Conference on Machine Learning, 2024.

W Nick Street, William H Wolberg, and Olvi L Mangasarian. Nuclear feature extraction for breast
tumor diagnosis. In Biomedical image processing and biomedical visualization, volume 1905, pp.
861–870. SPIE, 1993.

Colin Sullivan, Mo Tiwari, and Sebastian Thrun. Maptree: Beating “optimal” decision trees with
bayesian decision trees. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 9019–9026, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Toru Tanigawa and Qiangfu Zhao. A study on efficient generation of decision trees using genetic
programming. In Proceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation, pp. 1047–1052, 2000.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret. Using centroidal
voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE
Transactions on Evolutionary Computation, 22(4):623–630, 2017.

Sahil Verma and Julia Rubin. Fairness definitions explained. In Proceedings of the international
workshop on software fairness, pp. 1–7, 2018.

Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear program
formulation. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp.
1625–1632, 2019.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

Chih M Wong, Nathaniel M Hawkins, Mark C Petrie, Pardeep S Jhund, Roy S Gardner, Cono A Ariti,
Katrina K Poppe, Nikki Earle, Gillian A Whalley, Iain B Squire, et al. Heart failure in younger
patients: the meta-analysis global group in chronic heart failure (maggic). European heart journal,
35(39):2714–2721, 2014.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
03409.

Haoran Ye, Jiarui Wang, Zhiguang Cao, and Guojie Song. Reevo: Large language models as
hyper-heuristics with reflective evolution. ArXiv, abs/2402.01145, 2024. URL https://api.
semanticscholar.org/CorpusID:267406792.

Huimin Zhao. A multi-objective genetic programming approach to developing pareto optimal decision
trees. Decision Support Systems, 43(3):809–826, 2007.

Arman Zharmagambetov, Suryabhan Singh Hada, Magzhan Gabidolla, and Miguel A Carreira-
Perpinán. Non-greedy algorithms for decision tree optimization: An experimental comparison. In
2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

15

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://api.semanticscholar.org/CorpusID:267406792
https://api.semanticscholar.org/CorpusID:267406792

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL DISCUSSIONS

A.1 EXTENDED RELATED WORKS

Tree induction algorithms. Greedy algorithms sequentially grow trees by optimizing a given
objective myopically. Popular methods in this class of algorithms are CART (Breiman et al., 1984),
ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993). These algorithms differ in the predictive tasks in
which they can be applied. These algorithms mainly differ in the criterion used to split the nodes at
each local node, including Gini impurity (Breiman et al., 1984) or information gain (Quinlan, 1993).
Owing to their greedy nature, they are computationally efficient in searching the combinatorial space.
In contrast, a branch of work employs exact combinatorial optimization techniques to search for
sparse, optimal trees, e.g. branch and bound (Lin et al., 2020) and dynamic programming (Aglin
et al., 2020). Notable works include BinOCT (Verwer & Zhang, 2019), DL85 (Aglin et al., 2020),
OSDT (Hu et al., 2019), and GOSDT (Lin et al., 2020). These approaches are fundamentally limited
by the NP -hardness of the tree induction problem, and struggle to scale to larger size problems.
Additionally, they have exclusively focused on the classification setting, and are limited in the types
of feature (e.g. binary or continuous features) and objective functions that can be optimized. We
compare LLEGO with representative tree induction methods in Table 3.

Table 3: Comparison with the related works. LLEGO provides a general framework for global
optimization of decision trees, contrasting with prior works along several dimensions: computational
complexity, support for different objective and regularization functions, task types, and incorporation
of structural and semantic priors.

Method Algorithm Worst-case
complexity

Objective
function

Arbitrary
regularization

Task Priors
Classification Regression Structural Semantic

CART
(Breiman
et al.,
1984)

Greedy O(2h) Gini impurity/MSE ✗ ✓ ✓ ✓ ✗

C4.5
(Quinlan,
1993)

Greedy O(2h) Information gain ✗ ✓ ✗ ✓ ✗

DL8.5
(Aglin
et al.,
2020)

DP O(d!) Additive functions ✗ ✓ ✗ ✓ ✗

GOSDT
(Lin et al.,
2020)

DP O(d!) Monotonic functions ✗ ✓ ✗ ✓ ✗

LLEGO GP O(GN) Any ✓ ✓ ✓ ✓ ✓

Genetic programming. GP is an evolutionary optimization framework, particularly effective for
a variety of combinatorial optimization problems, since it only requires the provision of a fitness
function to evaluate and evolve a population of solutions to find optimal solutions (Koza, 1994a).
As such, GP has been used in diverse tasks including tree induction (Tanigawa & Zhao, 2000; Kuo
et al., 2007; Zhao, 2007; Koza, 1990), discovery symbolic mathematical expressions (Augusto &
Barbosa, 2000; Qian et al., 2022), scheduling problems (Guillaume et al., 2007), neural architecture
search (Broni-Bediako et al., 2020), and policy design (Hein et al., 2018). While the design of
genetic operators differ significantly across domains, genetic operators share several limitations,
being agnostic to the solution semantics, relying on stochastic perturbations without any search
directionality, and narrow contexts. Several works in semantic genetic programming have considered
the first two limitations and proposed variation operators (Krawiec & Pawlak, 2013; Moraglio
et al., 2012) or rejection sampling mechanisms (Krawiec & Lichocki, 2009) to obtain semantic
consistency between the offspring and their parents. However, these methods are domain-specific:
for example, (Krawiec & Pawlak, 2013) considers convex combinations in the particular case of
symbolic expressions. This limits their generalizability, and we note that no semantic operator has
been designed for the tree induction setting which is the focus of our work.

LLM and optimization. Recent studies have explored LLMs for optimization tasks, exploiting their
domain priors to enhance optimization efficiency (Song et al., 2024). Notable applications include
prompt (Yang et al., 2024), reward-function (Ma et al., 2024), and code optimization (Liventsev
et al., 2023). Particularly relevant is research employing LLMs as variation operators. (Lehman
et al., 2023; Nasir et al., 2024; Brownlee et al., 2023) use LLMs as mutation operators for code

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

evolution, sampling mutation instructions from predefined sets. LLMs also have been utilized as
variation operators for prompt optimization (Fernando et al., 2024), where task prompts contain
explicit directives for generating variations. These approaches generate unguided variations, primarily
utilizing LLMs’instruction-following capabilities. For example, in (Guo et al., 2024), crossover is
performed using the prompt template: "Cross over the following prompts and generate a new prompt".
Recent works have also considered the integration of LLMs with advanced evolutionary frameworks,
namely quality-diversity algorithms (Pugh et al., 2016), to evolve both neural architectures and
variation prompts (Nasir et al., 2024). In contrast, LLEGO generates guided variations, utilizing in-
context learning of patterns in parent solutions to generate intelligent variations. Specifically, LLEGO
steers offspring towards high-fitness regions by conditioning on desired fitness, while LLEGO controls
diversity and exploration with the hyperparameter to define the offspring sampling distribution.
Finally, recent work (Ye et al., 2024) has proposed using LLM for meta-heuristic optimization. It
differs from LLEGO as it focuses on finding general meta-heuristics for a set of optimization tasks
rather than tailoring the search with dataset-specific characteristics and relevant domain knowledge
as LLEGO does.

A.2 DISCUSSIONS ON NO FREE LUNCH

The No Free Lunch theorem for optimization (Wolpert & Macready, 1997) asserts that no universally
superior optimization algorithm exists. This principle applies to LLEGO, implying that its performance
will vary across different problem domains. Owing to its design principles, we expect LLEGO to
excel in domains with the following characteristics:

1. Natural language representation: Problems where solutions are expressible in natural language,
enabling LLEGO to employ the LLM’s semantic and contextual understanding for effective
variations.

2. Complex genotype-phenotype mapping: Tasks with low locality, where LLEGO’s semantic prior
enhances variation efficacy.

3. Contextual knowledge: Domains benefiting from broader knowledge, where contextual knowl-
edge (e.g. clinical guidelines for risk scoring) can be flexibly incorporated via prompt design (C).
This integration remains non-trivial for traditional evolutionary algorithms.

4. Challenging operator design: Areas where conventional semantic operators are difficult to craft
(e.g. preserving semantics in program synthesis). LLEGO offers broadly applicable and flexibly
customizable semantic variation operators.

These characteristics are prevalent in many applications, including decision trees, mathematical
equations, and symbolic programs. In these contexts, LLEGO harnesses the rich semantic prior and
contextual understanding capabilities of LLMs to create broadly applicable and effective genetic
operators.

B COMPLETE PROMPTS

Prompt design. In this section, we describe the details of the prompts. To recap, each of the genetic
operations is realized through natural language queries to the LLM. Each prompt is constructed of
three essential elements:

1. Task context. This includes information about the input space X , the output space Y , and the
characteristics of the dataset D, e.g. number of samples, categorical features, continuous features.

2. Parent trees. This contains the tree structure of each parent and possibly the fitness metric (in the
case of crossover). These are translated to natural language and provided as few-shot examples to
perform ICL in each genetic operation.

3. Task-specific instructions. For each genetic operator, we include task-specific instructions on
offspring generations and guidelines on the format of the response.

The structured prompt for mutation is described in Figure 8. Descriptions enclosed in {}, such as
{task_description} represent placeholder values that are populated dynamically at run-time. For a
concrete example of this, the mutation prompt on credit dataset is shown in full in Listing 1.
Similarly, the structured prompt for crossover is described in Figure 9 with a concrete example shown
in Listing 2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

{task_description}. The dataset contains {n_samples} samples and {n_attributes} features, of
which {n_numerical} are numerical and {n_categorical} are categorical. The target variable
is {target_name}, it is {target_type}, {label_information}. The features and their ranges are:
{feature_semantics}. You should generate a diverse decision tree that is more interpretable. Please
generate decision trees in the desired JSON format, you can use any of the features, but are only
allowed to use operators [<, >, <=, >=]. Return only the JSON in the format ## tree ##.

Figure 8: Prompt structure for mutation operation.

{task_description}. The dataset contains {n_samples} samples and {n_attributes} features, of
which {n_numerical} are numerical and {n_categorical} are categorical. The target variable
is {target_name}, it is {target_type}, {label_information}. The features and their ranges are:
{feature_semantics}. Generate a different, interpretable decision tree which should have the
improved fitness. Please generate decision trees in the desired JSON format, you can use any of
the features, but are only allowed to use operators [<, >, <=, >=]. Return only the JSON in the
format ## tree ##.

Figure 9: Prompt structure for crossover operation.

The task is to classify people described by a set of attributes as good
or bad credit risks. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is class, it is binary, the label distribution is
[0: 29.17%, 1: 70.83%]. The features and their ranges are:
[checking_status (int) [0, 3], duration (float) [5.00, 60.00],
credit_history (int) [0, 4], purpose (int) [0, 9], credit_amount
(float) [276.00, 15672.00], savings_status (int) [0, 4], employment
(int) [0, 4], installment_commitment (float) [1.00, 4.00],
personal_status (int) [0, 3], other_parties (int) [0, 2],
residence_since (float) [1.00, 4.00], property_magnitude (int) [0,
3], age (float) [19.00, 74.00], other_payment_plans (int) [0, 2],
housing (int) [0, 2], existing_credits (float) [1.00, 4.00], job
(int) [0, 3], num_dependents (float) [1.00, 2.00], own_telephone
(int) [0, 1], foreign_worker (int) [0, 1]]. You should generate a
diverse decision tree that is more interpretable. Please generate
decision trees in the desired JSON format, you can use any of the
features, but are only allowed to use operators [<, >, <=, >=].
Return only the JSON in the format ## tree ##.

Expression: ## {’credit_history’: {’<= 1.5000’: {’property_magnitude’:
{’<= 0.5000’: {’employment’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’:
{’value’: 0}}}, ’> 0.5000’: {’value’: 0}}}, ’> 1.5000’:
{’savings_status’: {’<= 3.5000’: {’property_magnitude’: {’<=
0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’> 3.5000’:
{’employment’: {’<= 2.5000’: {’value’: 1}, ’> 2.5000’: {’value’:
1}}}}}}} ##

Expression: ## {’other_payment_plans’: {’<= 1.5000’:
{’property_magnitude’: {’<= 1.5000’: {’own_telephone’: {’<= 0.5000’:
{’value’: 0}, ’> 0.5000’: {’value’: 0}}}, ’> 1.5000’:
{’num_dependents’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’:
0}}}}}, ’> 1.5000’: {’purpose’: {’<= 6.5000’: {’residence_since’:
{’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 1}}}, ’> 6.5000’:
{’housing’: {’<= 0.5000’: {’value’: 1}, ’> 0.5000’: {’value’:
1}}}}}}} ##

Expression: ## {’credit_history’: {’<= 3.5000’: {’duration’: {’<=
34.5000’: {’checking_status’: {’<= 1.5000’: {’value’: 1}, ’>
1.5000’: {’value’: 1}}}, ’> 34.5000’: {’credit_amount’: {’<=
10552.5000’: {’value’: 1}, ’> 10552.5000’: {’value’: 0}}}}}, ’>
3.5000’: {’credit_amount’: {’<= 9597.5000’: {’employment’: {’<=

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 1}}}, ’> 9597.5000’:
{’value’: 0}}}}} ##

Expression: ## {’property_magnitude’: {’<= 0.5000’: {’duration’: {’<=
33.0000’: {’housing’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’:
{’value’: 0}}}, ’> 33.0000’: {’employment’: {’<= 0.5000’: {’value’:
0}, ’> 0.5000’: {’value’: 0}}}}}, ’> 0.5000’: {’employment’: {’<=
0.5000’: {’credit_amount’: {’<= 3359.5000’: {’value’: 0}, ’>
3359.5000’: {’value’: 1}}}, ’> 0.5000’: {’purpose’: {’<= 5.5000’:
{’value’: 1}, ’> 5.5000’: {’value’: 1}}}}}}} ##

Expression: ##

Listing 1: Example mutation prompt. On credit dataset.

The task is to classify people described by a set of attributes as good
or bad credit risks. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is class, it is binary, the label distribution is
[0: 29.17%, 1: 70.83%]. The features and their ranges are:
[checking_status (int) [0, 3], duration (float) [5.00, 60.00],
credit_history (int) [0, 4], purpose (int) [0, 9], credit_amount
(float) [276.00, 15672.00], savings_status (int) [0, 4], employment
(int) [0, 4], installment_commitment (float) [1.00, 4.00],
personal_status (int) [0, 3], other_parties (int) [0, 2],
residence_since (float) [1.00, 4.00], property_magnitude (int) [0,
3], age (float) [19.00, 74.00], other_payment_plans (int) [0, 2],
housing (int) [0, 2], existing_credits (float) [1.00, 4.00], job
(int) [0, 3], num_dependents (float) [1.00, 2.00], own_telephone
(int) [0, 1], foreign_worker (int) [0, 1]]. Generate a different,
interpretable decision tree which should have the improved fitness.
Please generate decision trees in the desired JSON format, you can
use any of the features, but are only allowed to use operators [<,
>, <=, >=]. Return only the JSON in the format ## tree ##.

fitness: 0.5882, Expression: ## {’purpose’: {’<= 5.5000’: {’housing’:
{’<= 0.5000’: {’residence_since’: {’<= 2.5000’: {’value’: 0}, ’>
2.5000’: {’value’: 1}}}, ’> 0.5000’: {’job’: {’<= 1.5000’: {’value’:
0}, ’> 1.5000’: {’value’: 1}}}}}, ’> 5.5000’: {’duration’: {’<=
25.5000’: {’credit_history’: {’<= 3.5000’: {’value’: 1}, ’> 3.5000’:
{’value’: 1}}}, ’> 25.5000’: {’residence_since’: {’<= 3.5000’:
{’value’: 1}, ’> 3.5000’: {’value’: 0}}}}}}} ##

fitness: 0.5930, Expression: ## {’savings_status’: {’<= 2.5000’:
{’credit_amount’: {’<= 9597.5000’: {’credit_history’: {’<= 0.5000’:
{’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’> 9597.5000’: {’value’:
0}}}, ’> 2.5000’: {’checking_status’: {’<= 0.5000’:
{’property_magnitude’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 1}}}, ’> 0.5000’: {’residence_since’: {’<= 2.5000’:
{’value’: 1}, ’> 2.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6162, Expression: ## {’property_magnitude’: {’<= 0.5000’:
{’duration’: {’<= 33.0000’: {’housing’: {’<= 1.5000’: {’value’: 1},
’> 1.5000’: {’value’: 0}}}, ’> 33.0000’: {’employment’: {’<=
0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 0}}}}}, ’> 0.5000’:
{’employment’: {’<= 0.5000’: {’credit_amount’: {’<= 3359.5000’:
{’value’: 0}, ’> 3359.5000’: {’value’: 1}}}, ’> 0.5000’: {’purpose’:
{’<= 5.5000’: {’value’: 1}, ’> 5.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6815, Expression: ## {’checking_status’: {’<= 1.5000’:
{’property_magnitude’: {’<= 1.5000’: {’other_parties’: {’<= 0.5000’:
{’value’: 0}, ’> 0.5000’: {’value’: 0}}}, ’> 1.5000’: {’duration’:
{’<= 20.5000’: {’value’: 1}, ’> 20.5000’: {’value’: 1}}}}}, ’>
1.5000’: {’credit_history’: {’<= 2.5000’: {’num_dependents’: {’<=
1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 0}}}, ’> 2.5000’:
{’other_payment_plans’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’:
{’value’: 1}}}}}}} ##

fitness: 0.6908, Expression:

Listing 2: Example crossover prompt. On credit dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Tree representation. We represent trees in natural language as a nested dictionary. This dictionary
represents a decision tree where each key is a feature and the subsequent nested dictionaries corre-
spond to decision rules and their outcomes. An example is illustrated in Figure 10 on the iris dataset.
In this example, if ‘petal width (cm)’ is less than or equal to 0.80, the classification is 0; otherwise,
further splits are made on ‘petal width (cm)’ at 1.75, leading to classifications of 1 or 2 depending on
the condition.

gini = 0.168
samples = 54

value = [0, 49, 5]
class = versicolor

gini = 0.043
samples = 46

value = [0, 1, 45]
class = virginica

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

petal width (cm) <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

petal width (cm) <= 0.8
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

{
"petal width (cm)": {
"<= 0.80": {"value": 0},
"> 0.80": {

"petal width (cm)": {
"<= 1.75": {"value": 1},
"> 1.75": {"value": 2}

}
}

}
}

Figure 10: Example decision tree. And its corresponding natural language representation as a nested
dictionary.

B.1 ABLATION PROMPTS

In our ablation study, we removed all semantic information from the prompts, with examples
illustrated in Listing 3 and 4. Here, we remove the semantic description of the task, and replace its
features names with Xi.

The task is to generate interpretable and high-performing decision trees
given a set of attributes. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is y, it is binary, the label distribution is [0:
29.17%, 1: 70.83%]. The features and their ranges are: [X_0 (int)
[0, 3], X_1 (float) [5.00, 60.00], X_2 (int) [0, 4], X_3 (int) [0,
9], X_4 (float) [276.00, 15672.00], X_5 (int) [0, 4], X_6 (int) [0,
4], X_7 (float) [1.00, 4.00], X_8 (int) [0, 3], X_9 (int) [0, 2],
X_10 (float) [1.00, 4.00], X_11 (int) [0, 3], X_12 (float) [19.00,
74.00], X_13 (int) [0, 2], X_14 (int) [0, 2], X_15 (float) [1.00,
4.00], X_16 (int) [0, 3], X_17 (float) [1.00, 2.00], X_18 (int) [0,
1], X_19 (int) [0, 1]]. You should generate a diverse decision tree
that is more interpretable. Please generate decision trees in the
desired JSON format, you can use any of the features, but are only
allowed to use operators [<, >, <=, >=]. Return only the JSON in the
format ## tree ##.

Expression: ## {’X_16’: {’<= 1.5000’: {’X_12’: {’<= 38.5000’: {’X_4’:
{’<= 2443.0000’: {’value’: 1}, ’> 2443.0000’: {’value’: 0}}}, ’>
38.5000’: {’X_1’: {’<= 21.0000’: {’value’: 0}, ’> 21.0000’:
{’value’: 1}}}}}, ’> 1.5000’: {’X_0’: {’<= 1.5000’: {’X_3’: {’<=
5.5000’: {’value’: 0}, ’> 5.5000’: {’value’: 1}}}, ’> 1.5000’:
{’X_1’: {’<= 19.0000’: {’value’: 1}, ’> 19.0000’: {’value’: 1}}}}}}}
##

Expression: ## {’X_0’: {’<= 0.5000’: {’X_4’: {’<= 976.5000’: {’X_3’:
{’<= 3.5000’: {’value’: 0}, ’> 3.5000’: {’value’: 0}}}, ’>
976.5000’: {’X_5’: {’<= 1.5000’: {’value’: 0}, ’> 1.5000’: {’value’:
1}}}}}, ’> 0.5000’: {’X_4’: {’<= 13765.5000’: {’X_12’: {’<=
22.5000’: {’value’: 0}, ’> 22.5000’: {’value’: 1}}}, ’> 13765.5000’:
{’value’: 0}}}}} ##

Expression: ## {’X_5’: {’<= 2.5000’: {’X_4’: {’<= 9597.5000’: {’X_2’:
{’<= 0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’>
9597.5000’: {’value’: 0}}}, ’> 2.5000’: {’X_0’: {’<= 0.5000’:
{’X_11’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’: {’value’: 1}}}, ’>
0.5000’: {’X_10’: {’<= 2.5000’: {’value’: 1}, ’> 2.5000’: {’value’:
1}}}}}}} ##

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Expression: ## {’X_2’: {’<= 0.5000’: {’X_12’: {’<= 23.5000’: {’value’:
1}, ’> 23.5000’: {’value’: 0}}}, ’> 0.5000’: {’X_5’: {’<= 3.5000’:
{’X_12’: {’<= 25.5000’: {’value’: 0}, ’> 25.5000’: {’value’: 1}}},
’> 3.5000’: {’X_4’: {’<= 1034.5000’: {’value’: 0}, ’> 1034.5000’:
{’value’: 1}}}}}}} ##

Expression: ##

Listing 3: Example mutation prompt with semantics removed. On credit dataset.

The task is to generate interpretable and high-performing decision trees
given a set of attributes. The dataset contains 360 samples and 20
features, of which 7 are numerical and 13 are categorical. The
target variable is y, it is binary, the label distribution is [0:
29.17%, 1: 70.83%]. The features and their ranges are: [X_0 (int)
[0, 3], X_1 (float) [5.00, 60.00], X_2 (int) [0, 4], X_3 (int) [0,
9], X_4 (float) [276.00, 15672.00], X_5 (int) [0, 4], X_6 (int) [0,
4], X_7 (float) [1.00, 4.00], X_8 (int) [0, 3], X_9 (int) [0, 2],
X_10 (float) [1.00, 4.00], X_11 (int) [0, 3], X_12 (float) [19.00,
74.00], X_13 (int) [0, 2], X_14 (int) [0, 2], X_15 (float) [1.00,
4.00], X_16 (int) [0, 3], X_17 (float) [1.00, 2.00], X_18 (int) [0,
1], X_19 (int) [0, 1]]. Generate a different, interpretable decision
tree which should have the improved fitness. Please generate
decision trees in the desired JSON format, you can use any of the
features, but are only allowed to use operators [<, >, <=, >=].
Return only the JSON in the format ## tree ##.

fitness: 0.5882, Expression: ## {’X_3’: {’<= 5.5000’: {’X_14’: {’<=
0.5000’: {’X_10’: {’<= 2.5000’: {’value’: 0}, ’> 2.5000’: {’value’:
1}}}, ’> 0.5000’: {’X_16’: {’<= 1.5000’: {’value’: 0}, ’> 1.5000’:
{’value’: 1}}}}}, ’> 5.5000’: {’X_1’: {’<= 25.5000’: {’X_2’: {’<=
3.5000’: {’value’: 1}, ’> 3.5000’: {’value’: 1}}}, ’> 25.5000’:
{’X_10’: {’<= 3.5000’: {’value’: 1}, ’> 3.5000’: {’value’: 0}}}}}}}
##

fitness: 0.5930, Expression: ## {’X_5’: {’<= 2.5000’: {’X_4’: {’<=
9597.5000’: {’X_2’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 1}}}, ’> 9597.5000’: {’value’: 0}}}, ’> 2.5000’: {’X_0’:
{’<= 0.5000’: {’X_11’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 1}}}, ’> 0.5000’: {’X_10’: {’<= 2.5000’: {’value’: 1}, ’>
2.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6162, Expression: ## {’X_11’: {’<= 0.5000’: {’X_1’: {’<=
33.0000’: {’X_14’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’:
0}}}, ’> 33.0000’: {’X_6’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’:
{’value’: 0}}}}}, ’> 0.5000’: {’X_6’: {’<= 0.5000’: {’X_4’: {’<=
3359.5000’: {’value’: 0}, ’> 3359.5000’: {’value’: 1}}}, ’> 0.5000’:
{’X_3’: {’<= 5.5000’: {’value’: 1}, ’> 5.5000’: {’value’: 1}}}}}}} ##

fitness: 0.6815, Expression: ## {’X_0’: {’<= 1.5000’: {’X_11’: {’<=
1.5000’: {’X_9’: {’<= 0.5000’: {’value’: 0}, ’> 0.5000’: {’value’:
0}}}, ’> 1.5000’: {’X_1’: {’<= 20.5000’: {’value’: 1}, ’> 20.5000’:
{’value’: 1}}}}}, ’> 1.5000’: {’X_2’: {’<= 2.5000’: {’X_17’: {’<=
1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 0}}}, ’> 2.5000’:
{’X_13’: {’<= 1.5000’: {’value’: 1}, ’> 1.5000’: {’value’: 1}}}}}}}
##

fitness: 0.6908, Expression:

Listing 4: Example crossover prompt with semantics removed. On credit dataset.

C DETAILS OF EXPERIMENTAL PROCEDURES

In this section, we outline the benchmark datasets employed in our evaluations, as well as implemen-
tation details of our method and considered baselines.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.1 DATASET DETAILS

We employ a total of 12 datasets for our evaluation, of which 7 are classification tasks, and 5 are
regression tasks. Additionaly, we consider 2 propriety datasets in Appendix D.2, for which the LLM
would not have seen during pretraining, and thus used to check for any memorization concerns.

Open-source datasets. The 12 open-source tabular datasets are sourced from OpenML (Vanschoren
et al., 2014). The classification datasets were selected from the curated suite OpenML-CC18 (Bischl
et al., 2019) with the following criteria: ≤ 20 features, ≤ 10000 samples, binary labels and no
missing data. This stems from the fact that optimal tree induction methods scale exponentially
with the number of features and samples, and some baselines only support binary classification.
Additionally, we excluded datasets lacking semantically meaningful feature names and descriptions,
required by LLEGO. Regression datasets were selected from OpenML-CTR23 (Fischer et al., 2023)
with identical criteria. We detail dataset characteristics, including OpenML ID, number of attributes,
number of samples and label distribution in Table 4. These datasets can be loaded by querying their
OpenML IDs. The datasets describe:

• credit (Kelly et al.): This dataset classifies people as good or bad credit risks.
• diabetes (Smith et al., 1988): This dataset classifies patients based on WHO definition of diabetes.
• compas (Inc., 2016): Contains criminal history, jail and prison time, demographics, and is used to

predict two year recidivism.
• heart (hea): Prediction of heart disease in patients.
• liver (Kelly et al.): This data set contains 416 liver patient records and 167 non liver patient

records.The data set was collected from north east of Andhra Pradesh, India. The class label divides
the patients into 2 groups (liver patient or not). This data set contains 441 male patient records and
142 female patient records.

• heart (Street et al., 1993): Features are computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. The
target feature records the prognosis (malignant or benign).

• vehicle (Pete & Shepherd): The dataset classifies a given silhouette as one of four types of vehicle,
using a set of features extracted from the silhouette. The target label is re-relabelled, where the
majority class as positive (’P’) and all others as negative (’N’).

• cholesterol (Janosi et al., 1988): The dataset predicts the cholesterol level among patients diagnosed
with heart disease.

• wine (Cortez et al., 2009): The task is to predict quality of white and red wine.
• wage (Berndt, 1991): The task is to predict individual wages using the Current Population Survey

(CPS), used to supplement census information between census years.
• abalone (Nash et al., 1995): Predicting the age of abalone from physical measurements. The age

of abalone is determined by cutting the shell through the cone, staining it, and counting the number
of rings through a microscope – a boring and time-consuming task.

• cars (Bohanec, 1997): Dataset of the suggested retail prices (column Price) and various character-
istics of each car.

Table 4: Open-source datasets. Details of open-source datasets from OpenML (Vanschoren et al.,
2014). # Cat: number of categorical attributes, # Num: number of numerical attributes, Label dist:
label distribution.

Dataset ID # Samples # Attributes # Num # Cat Label Label distr
credit 31 1000 20 7 13 binary 0: 29.17%, 1: 70.83%
diabetes 37 768 8 8 0 binary 0: 66.30%, 1: 33.70%
compas 42192 5278 13 5 8 binary 0: 52.50%, 1: 47.50%
heart 53 270 13 5 8 binary 0: 52.58%, 1: 47.42%
liver 1480 583 10 9 1 binary 0: 67.94%, 1: 32.06%
breast 15 699 9 9 0 binary 0: 65.34%, 1: 34.66%
vehicle 994 846 18 18 0 binary 0: 73.03%, 1: 26.97%
cholesterol 204 303 13 6 7 continuous -
wine 287 6497 11 11 0 continuous -
wage 534 534 10 3 7 continuous -
abalone 44956 4177 8 7 1 continuous -
cars 44994 804 17 1 16 continuous -

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Dataset preprocessing. We preprocess the dataset using a train-validation-test split ratio of
[0.2, 0.4, 0.4]. The low training split is used to accentuate the difference in performance as given
sufficient training data, all methods perform comparably. For each run, we only vary the seed used for
data splitting, such that for seed 0, we use train_test_split(seed=0). For any algorithms
that have inherent randomness (i.e. CART and GATree), we seed them with seed=42. As such, the
randomness reported is induced only by different datasets.

We do not apply any additional preprocessing to continuous features. For categorical features, we
follow the recommendations provided in §9.2.4 of (Hastie et al., 2009), where we rank each category
of the predictor by calculating the proportion of observations that fall into the outcome class 1 (Hastie
et al., 2009). This results in a ranking of the categories based on these proportions. No additional
preprocessing is applied to categorical or continuous labels.

C.2 IMPLEMENTATION DETAILS

Baselines. To assess the performance of LLEGO, we compare it against a comprehensive set of
state-of-the-art algorithms, covering representative methods from main categories of tree induction.
Specifically, CART and C4.5 are greedy tree induction methods, GOSDT and DL8.5 are optimal
tree induction methods, and GATree is a genetic programming based approach:

• CART (Classification and Regression Trees) (Breiman et al., 1984): CART is a decision tree algo-
rithm that splits data into subsets based on feature values, creating a binary tree for classification or
regression tasks using measures like Gini impurity or mean squared error. We use the implemen-
tation provided in sklearn.tree, https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html.

• C4.5 (Quinlan, 1993): C4.5 is an extension of the ID3 algorithm that generates decision trees by
handling both categorical and continuous data, and uses information gain ratio to choose splits.
We use the implementation provided in the PyPI package c45-decision-tree, https:
//pypi.org/project/c45-decision-tree/.

• GOSDT (Lin et al., 2020): GOSDT constructs decision trees by optimizing a trade-off be-
tween accuracy and complexity, ensuring sparsity and interpretability through global opti-
mization techniques. We use the implementation provided by the original authors https:
//github.com/ubc-systopia/gosdt-guesses.

• DL8.5 (Aglin et al., 2020): DL8.5 is a decision tree learning algorithm that focuses on constructing
optimal decision trees given specific constraints, using dynamic programming to find the best tree
structure. We use the implemented provided in the PyPI package dl8.5, https://github.
com/ubc-systopia/gosdt-guesses.

• GATree (Lahovnik, 2024): GATree is a Python library designed for implementing evolution-
ary decision trees using a genetic algorithm approach. We use the official implementation
https://gatree.readthedocs.io/en/latest/ and keep the defaults settings of the
implementation (i.e. tournament selection, subtree crossover and subtree mutation).

Hyperparameter search ranges. Next, we detail the hyperparameters of each method, and their
respective search ranges. Across experiments, we keep max_depth fixed to enable fair comparison,
the details of tunable hyperparameters are detailed in Table 5.

Hyperparameter tuning. We use Optuna (Akiba et al., 2019) and the default Tree-Parzen Estimator
for hyperparameter tuning (HPT) (Watanabe, 2023). For all baselines, we permit wall-clock time to a
maximum of 10 minutes. This allows 50 iterations of HPT for CART and C4.5, and 10 iterations
for the computationally more intensive DL8.5, GOSDT, and GATree. In each iteration of HPT, we
evaluate the objective on the validation set, selecting the best configuration to evaluate on the test set.

Computer resources. We run all experiments on an AMD EPYC 7V13 64-Core Processor.

C.3 LLEGO IMPLEMENTATION DETAILS

For our instantiation of LLEGO in Section 5, we use N = 25 and G = 25. We seed the algorithm
with a population of trees generated by CART, where each tree is fitted on 25% of the Dtrain. We
use the same population to initialize GATree. In each iteration, we generate 25 crossover offspring
and 25 mutation offspring, using a rejection mechanism where invalid solutions are discarded (in
Section 5, ∼ 86% of crossover and ∼ 88% of mutation offspring are syntactically valid). We use

23

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://pypi.org/project/c45-decision-tree/
https://pypi.org/project/c45-decision-tree/
https://github.com/ubc-systopia/gosdt-guesses
https://github.com/ubc-systopia/gosdt-guesses
https://github.com/ubc-systopia/gosdt-guesses
https://github.com/ubc-systopia/gosdt-guesses
https://gatree.readthedocs.io/en/latest/

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameter search ranges. Hyperparameter search ranges for all baselines.

CART

min_samples_split [int, 2, 16]
min_samples_split [int, 1, 16]
max_depth fixed
splitter best
criterion [’squared_error’ (reg), ’gini’ (clas)]

C4.5
min_samples_split [int, 2, 16]
min_samples_split [int, 1, 16]
max_depth fixed

DL8.5 min_sup [int, 1, 10]
max_depth fixed

GOSDT regularization [float, 0.001, 1]
max_depth fixed

GATree

population_size [int, 10, 50]
mutation_prob [float, 0.1, 0.5]
crossover_prob [float, 0.1, 0.95]
max_iterations 100
tournament size 2
max_depth fixed

elitism selection to preserve the top 25 trees after merging the offspring of the crossover and the
mutation. To compute the desired fitness, we use α = 0.1, based on observations in Section 5.2 as
the value that balanced diversity and fitness. We use τ = 10 for diversity guidance. For each genetic
operation, we use λ = 4 parent trees. For our experiments, we use gpt-35-turbo, version 0301
with default hyperparameters temperature = 0.7 and top_p = 0.95.

Function and terminal set. For both LLEGO and GATree, the function set is {<,>,≤,≥} and the
terminal set includes numerical constants based on target feature values.

In Section 5.2, we perform 3 steps of crossover starting from the initial population, for both LLEGO
and GATree to obtain Figure 5. We similarly perform 3 steps of mutation starting from the initial
population to obtain Figure 6.

C.4 EVALUATION METRICS

MSE. For regression dataset, we report MSE (sklearn.metrics.mean_squared_error):

MSE(D, f) = 1

N

N∑
n=1

||f(xn)− yn||2

Balanced accuracy. For classification datasets, we report balanced accu-
racy, which is equivalent to accuracy with class-balanced sample weights
(sklearn.metrics.balanced_accuracy_score). This has the effect of giving
equal importance to both the positive and negative classes, thereby mitigating the impact of class
imbalance and providing a more reliable assessment of the classifier’s performance across all classes:

balanced-accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
Difference in equal opportunity. When evaluating fairness, we consider difference in equal opportu-
nity (DEO). This score measures the difference in recall between unprivileged and privileged groups,
where a value of DEO = 0 indicates equality of opportunity.

DEO = |p(ŷ = 1 | group = 1, y = 1)− p(ŷ = 1 | group = 0, y = 1)|

We utilize the implementation aif360.sklearn.metrics.equal_opportunity_difference
provided in https://aif360.readthedocs.io/ (Bellamy et al., 2019; Roemer & Trannoy,
2015).

24

https://aif360.readthedocs.io/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Population Fitness. In order to assess the fitness of the populations evolved by the GP-based
algorithms, we compute for a given population P:

Fitness = Median({f ′(t) | t ∈ P})

where f ′(t) denotes the normalized accuracy, calculated as f(t)−mint∈P f(t)
maxt∈P′ f(t)−mint∈P′ f(t)

, where f(t)

here denotes the accuracy. P ′ is the union of all individuals produced by all methods for a particular
seeded run on a particular dataset. In other words, the best accuracy obtained by any method on a
particular seed for a particular dataset will have f ′(t) = 1 and the worst will have f ′(t) = 0. This
normalization allows accuracy results from different datasets, seeds, and methods to be compared.

Population diversity. In order to assess the diversity of the populations evolved by the GP-based
algorithms, we compute for a given population P:

Diversity = Median({||φ(t)− φ(t′)||1 | (t, t′) ∈ P2 })
where φ(t) denotes the functional signature of t, i.e. the vector (t(x1), ..., t(xn)).

D ADDITIONAL RESULTS

In this section of the appendix, we provide additional empirical results. Specifically:

1. In Appendix D.1, we investigate the potential for bias and the flexibility of LLEGO in optimizing
for fairness-regularized objectives.

2. In Appendix D.2, we report generalization performance on tasks with all semantics removed. The
objectives of this experiment are to (1) check for memorization and (2) evaluate the contribution
of semantic priors to search efficiency. We also evaluate LLEGO on proprietary datasets.

3. In Appendix D.4, we provide additional search efficiency plots, comparing our results against
GATree.

4. In Appendix D.3, we compare LLEGO against a version of GATree running with larger population
sizes and more generations than LLEGO.

5. In Appendix D.5, we report the runtimes of LLEGO and the baselines.
6. In Appendix D.6, we perform statistical tests to compare the performance of LLEGO against CART

and GATree.
7. In Appendix D.7, we compare the crossover dynamics between LLEGO and GATreewith uniform

parent sampling.
8. In Appendix D.8, we provide the mutation dynamics plots for each individual classification

dataset.
9. In Appendix D.9, we present additional ablation results for different depths.

10. Finally, in Appendix D.10, we visualize optimization traces for all tasks.

D.1 ADDRESSING BIAS VIA REGULARIZATION

As illustrated in the previous experiments, the genetic operators in LLEGO benefit from the properties
of LLMs (i.e. semantic priors and wide context). It is then natural to wonder if, conversely, negative
artifacts of LLMs may propagate to the decision trees found by LLEGO.

Table 6: Fairness aware objective.

Method FA? Compas(race)
ACC (↑) DEO (↓)

CART ✗ 0.651(0.012) 0.255(0.016)
C4.5 ✗ 0.650(0.008) 0.258(0.014)
DL85 ✗ 0.666(0.006)0.264(0.008)
GOSDT ✗ 0.641(0.003) 0.187(0.019)
LLEGO ✗ 0.652(0.004) 0.308(0.070)
LLEGO ✓ 0.651(0.002) 0.161(0.071)

Setup. In this experiment, we focus in particular on bias.
More precisely, we assess group fairness (Verma & Ru-
bin, 2018) by computing the Difference in Equality of
Opportunity (DEO) metric, defined as the difference in
recall between unprivileged and privileged groups (cf. Ap-
pendix C.4 for an exact definition). We show an illustrative
example on the dataset COMPAS, which is known to be
biased on the sensitive attribute race African American
(Angwin et al., 2016). Our objective is to mitigate bias
with a DEO-based regularization, by defining LLEGO’s
new fitness function, i.e. f ′(t) = f(t)+βDEO(t) for any
t ∈ T .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Results. As can be seen in Table 6, LLEGO does not natively return fair decision trees when the
fitness functions are based purely on accuracy. However, the DEO regularization permits LLEGO to
find decision trees with less bias compared to the other baselines. This highlights the flexibility
of LLEGO, which can handle composite search objectives unlike the other baselines. LLEGO also
returns a population of individuals, which makes it possible to trade-off predictive performance
with fairness metrics. We show this in Figure 11, where one can choose individuals returned by
LLEGO with acceptable tradeoffs.

0.10 0.15 0.20 0.25 0.30
0.62

0.63

0.64

0.65

0.66

0.67

A
C

C
(↑

)

Depth = 3

0.05 0.10 0.15 0.20 0.25
0.58

0.60

0.62

0.64

0.66

0.68
Depth = 4

CART C45 DL85 GOSDT Pareto front

DEO (↓)

Figure 11: Accuracy-fairness tradeoff. On compas dataset.

D.2 GUARDING AGAINST MEMORIZATION

As with any LLM application, there is a concern about LLM memorization. Although it is highly
unlikely that the LLM has encountered the optimal trees for the considered datasets—especially
given that high-performing solutions can vary significantly across different training splits, seeds,
and preprocessing steps—we empirically investigate this concern. This is done by removing any
dataset-specific metadata or semantic information that could identify the underlying data. For prompts
with semantics removed, please refer to Appendix B.1. We refer to this setting as LLEGOno_prior
and compare its performance against LLEGO with semantics included in Table 7. We observe that
LLEGOno_prior achieves similar performance, even outperforming LLEGO on two of the tasks.

Table 7: Performance on classification tasks. Comparing LLEGO with LLEGOno_prior (i.e. all
semantic information removed). Best results are emboldened.

Method Compas Credit Diabetes Heart Liver
depth = 3

LLEGOno_prior 0.654(0.010) 0.683(0.012) 0.700(0.033) 0.726(0.030) 0.643(0.033)
LLEGO 0.652(0.004) 0.677(0.004) 0.713(0.013) 0.736(0.021) 0.672(0.017)

depth = 4
LLEGOno_prior 0.659(0.011) 0.667(0.024) 0.701(0.013) 0.716(0.038) 0.651(0.025)
LLEGO 0.662(0.003) 0.684(0.009) 0.731(0.004) 0.751(0.037) 0.676(0.019)

To further verify that LLEGO’s superior performance does not rely on memorization, we evaluate it
on two proprietary datasets (requiring authorized access, and hence extremely unlikely to be in the
LLM training corpus): MAGGIC (heart failure, (Wong et al., 2014)) and CUTRACT (prostate cancer,
(CUTRACT, 2019)). We report the results against CART and GATree for depth = 4 in Table 8,
showing that LLEGO achieves superior performance on these private datasets, further demonstrating
that it relies on generalized semantic priors rather than dataset-specific memorization.

D.3 ADDITIONAL COMPARISON WITH GATREE

We extend our comparisons against GATree by increasing the population size to N = 100 and the
number of generations to G = 200, while keeping LLEGO’s default hyperparameters. We report the
results for the classification and regression tasks in Table 9 and Table 10. Despite GATree’s larger
number of evaluations, LLEGO evolved superior trees. This underscores the importance of LLEGO’s

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 8: Performance on proprietary datasets. Comparing LLEGO with CART and GATree, with
depth = 4. Best results are emboldened.

Method MAGGIC CUTRACT
CART 0.610(0.014) 0.694(0.038)
GATree 0.619(0.015) 0.706(0.024)
LLEGO 0.623(0.007) 0.710(0.009)

integration of semantic priors, search guidance, and broader context to enhance search efficiency.
This superior search efficiency is especially important in settings where evaluation costs significantly
exceed search costs (e.g. complex simulations, hardware optimizations, robotics control).

Table 9: Comparison against GATree. Balanced accuracy (↑) on classification tasks (depth d = 4).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
GATREE (N = 100, G = 200) 0.948(0.011) 0.658(0.003) 0.667(0.009) 0.684(0.013) 0.738(0.028) 0.635(0.019) 0.939(0.017)
LLEGO (N = 25, G = 25) 0.951(0.006) 0.662(0.003) 0.684(0.009) 0.731(0.004) 0.751(0.037) 0.676(0.019) 0.937(0.013)

Table 10: Comparison against GATree. MSE (↓) on regression tasks (depth d = 4).

Method Abalone Cars Cholesterol Wage Wine
GATREE (N = 100, G = 200) 0.566(0.022) 0.099(0.012) 1.395(0.202) 1.143(0.147) 0.829(0.027)

LLEGO (N = 25, G = 25) 0.557(0.026) 0.100(0.020) 1.322(0.130) 1.066(0.203) 0.836(0.020)

D.4 ADDITIONAL CONVERGENCE PLOTS

We provide separate convergence plots in this subsection, obtained when optimizing trees of depths 3
and 4, under the experimental setup described in Section 5.1. The results are reported in Figure 12a
and Figure 12b. In these two settings, LLEGO leads to a more efficient search compared to GATree.
This improved efficiency also comes with a reduced diversity, showing that LLEGO concentrates its
populations in the later generations in high-fitness regions.

10 20
0.7

0.8

0.9

1.0
Median Pop Fitness

LLEGO

GATREE

10 20
0.94

0.96

0.98

1.00
Max Pop Fitness

LLEGO

GATREE

10 20
0.00

0.10

0.20

0.30

0.40

0.50
Median Pop Diversity

LLEGO

GATREE

Generations (G)

(a) Depth = 3.

10 20
0.80

0.85

0.90

0.95

1.00
Median Pop Fitness

LLEGO

GATREE

10 20
0.95

0.96

0.97

0.98

0.99

1.00
Max Pop Fitness

LLEGO

GATREE

10 20
0.00

0.10

0.20

0.30

0.40

0.50
Median Pop Diversity

LLEGO

GATREE

Generations (G)

(b) Depth = 4.

Figure 12: Convergence dynamics. Comparing LLEGO with GATREE.

D.5 RUN-TIME COMPARISONS

We provide the total runtimes for the different methods in Table 11, averaged across the 7 classification
datasets used in Section 5.1. We also report in Table 12 the detailed timings for LLEGO and
GATREE with varying population sizes (P ∈ {25, 100}) and generations (G ∈ {25, 100, 200}), and
also report the number of functional evaluations. These results along with the ones presented in
Section 5.1, highlight that LLEGO evolves superior trees compared to GATREE while necessitating
less functional evaluations and wall-clock time. Nevertheless, we acknowledge that there is room for
improvement for the runtime of LLEGO. Potential solutions include (1) reducing runtime through
inference acceleration techniques such as speculative decoding and vLLM serving (Leviathan et al.,
2023) and (2) reducing memory requirements through specialized fine-tuned models or quantization
(Han et al., 2015).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 11: Runtime comparisons (all methods). Total runtime (in seconds), averaged across 7
classification datasets.

CART C4.5 DL85 GOSDT GATREE LLEGO
Total run time (depth d = 3) 0.0022 0.08 22.10 261.14 15.50 407.66
Total run time (depth d = 4) 0.0023 0.13 172.70 234.44 15.77 430.32

Table 12: Runtime comparisons (GP methods). Per-generation, total runtime (in seconds), and
total number of fitness evaluations (depth d = 4, averaged across 7 classification datasets).

Per-generation runtime Total run-time # Functional evaluations
GATREE (N = 25, G = 25) 0.63 15.77 620
GATREE (N = 100, G = 100) 2.65 264.95 9600
GATREE (N = 100, G = 200) 3.86 772.97 19200
LLEGO (N = 25, G = 25) 17.22 430.32 1250

D.6 STATISTICAL SIGNIFICANCE TEST OF PERFORMANCE IMPROVEMENTS

We perform t-tests to compare LLEGO against CART (the best baseline in Section 5.1) and GATree.
We report the p-values in Table 13, showing statistical significance at the level α = 0.05 for 8/12
datasets when comparing against CART and also 8/12 datasets when comparing against GATree.

Table 13: Statistical significance. p-values for statistical comparison of performances between
LLEGO and competing baselines CART and GATree. Bold values indicate statistical significance at
α = 0.05.

Dataset p-value
(against CART)

p-value
(against GATree) Dataset p-value

(against CART)
p-value

(against GATree)
Breast 0.0567 0.0038 Vehicle 0.0345 0.0014
Compas 0.2798 0.0002 Abalone 0.3442 0.0266
Credit 0.0261 0.0001 Cars 0.0000 0.5000
Diabetes 0.0000 0.0003 Cholesterol 0.0075 0.3686
Heart 0.0236 0.0002 Wage 0.0959 0.0808
Liver 0.0003 0.0081 Wine 0.0007 0.0988

D.7 ADDITIONAL RESULTS ON CROSSOVER DYNAMICS

In Figure 5, we compared the crossover dynamics between LLEGOXO with ν = 4 parents and
roulette wheel selection, and GATreeXO with ν = 2 parents and uniform parent sampling. In
Figure 13 (Left), we compare LLEGOXO with ν = 2 parents and uniform parent sampling against
GATreeXO with ν = 2 parent and uniform parent sampling. In Figure 13 (Right), we compare
LLEGOXO with ν = 4 parents and uniform parent sampling against GATreeXO with ν = 2 parent
and uniform parent sampling.

We observe similar dynamics as in Figure 5, where varying α enables to control the population fitness
and diversity. Additionally, ν = 4 leads to significantly improved offspring fitness at the cost of a
lower diversity, highlighting the nuanced impact of higher arity on search efficiency (corroborating
the ablation results in Figure 7).

−0.25 −0.10 0.10 0.25

0.2

0.4

0.6

P
op

F
it

n
es

s

LLEGO

GATREE

−0.25 −0.10 0.10 0.25

0.1

0.2

0.3

0.4

P
op

D
iv

er
si

ty

LLEGO

GATREE

α

−0.25 −0.10 0.10 0.25

0.2

0.4

0.6

P
op

F
it

n
es

s

LLEGO

GATREE

−0.25 −0.10 0.10 0.25

0.1

0.2

0.3

0.4

P
op

D
iv

er
si

ty

LLEGO

GATREE

α
Figure 13: XO dynamics. Effect of fitness guidance (α) on population and diversity using uniformly
sampled parents. (Left) ν = 2 parents, (Right) ν = 4 parents

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.8 ADDITIONAL RESULTS ON MUTATION DYNAMICS

We provide the mutation dynamics for each individual dataset in Figure 14, showing that τ meaning-
fully controls the diversity in the population for 5 of the 7 classification datasets, where the diversity
metrics are computed between parents and offspring (Top) and among the offspring (Bottom).

1 5 10 25 50

0.13

0.14

0.15

Breast

1 5 10 25 50

0.42

0.43

0.44

Compas

1 5 10 25 50

0.46

0.48

Credit

1 5 10 25 50

0.41

0.42

0.43

0.44

Diabetes

1 5 10 25 50

0.42

0.44

0.46

Heart

1 5 10 25 50

0.46

0.47

0.48

Liver

1 5 10 25 50

0.45

0.46

0.47

0.48

Vehicle

1 5 10 25 50

0.19

0.20

0.21

0.22

1 5 10 25 50

0.46

0.47

0.48

1 5 10 25 50
0.49

0.49

0.49

0.50

0.50

1 5 10 25 50

0.46

0.47

0.48

1 5 10 25 50

0.48

0.49

0.49

0.50

1 5 10 25 50

0.48

0.49

0.49

0.50

1 5 10 25 50

0.48

0.49

0.50

M
ed

ia
n

P
-O

D
is

ta
n

ce
M

ed
ia

n
O

D
is

ta
n

ce

Diversity guidance (τ)

Figure 14: MUT dynamics. Effect of diversity guidance (τ) on (Top) median parent-offspring
distance and (Bottom) median offspring distance.

D.9 ADDITIONAL RESULTS ON ABLATION STUDY

We report the ablation study results for depth 3 and 4 in Figure 15 and Figure 16. These results
align with the observations made in Section 5.3, highlighting the importance of using crossover
and mutation in tandem, the importance of incorporating more than 2 parents for the operators and
using semantic information. With a higher maximum depth, the space of possible trees becomes
more complex, and accentuates the need for both exploration and exploitation, which explains why
the mutation only (LLEGOno_xo) and crossover only (LLEGOno_mut) baselines perform worse than
LLEGO.

1 5 10 15 20 25

Generations (G)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ed

ia
n

P
op

F
it

n
es

s

LLEGO

LLEGOno xo

LLEGOno mut

LLEGOno prior

LLEGOν=2

(a) Median population fitness.

1 5 10 15 20 25

Generations (G)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ax

P
op

F
it

n
es

s

LLEGO

LLEGOno xo

LLEGOno mut

LLEGOno prior

LLEGOν=2

(b) Max population fitness.

Figure 15: Additional ablation results. Depth = 3.

D.10 SEARCH RESULTS ON INDIVIDUAL TASKS

Convergence plots comparing LLEGO and GATree for individual tasks are given in Figure 17 and
Figure 18. They show that LLEGO consistently leads to better search efficiency compared to GAtree.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1 5 10 15 20 25

Generations (G)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ed

ia
n

P
op

F
it

n
es

s

LLEGO

LLEGOno xo

LLEGOno mut

LLEGOno prior

LLEGOν=2

(a) Median population fitness.

1 5 10 15 20 25

Generations (G)

0.78

0.80

0.82

0.85

0.88

0.90

0.93

0.95

0.97

M
ax

P
op

F
it

n
es

s

LLEGO

LLEGOno xo

LLEGOno mut

LLEGOno prior

LLEGOν=2

(b) Max population fitness.

Figure 16: Additional ablation results. Depth = 4.

1 5 10 15 20 25

0.95

0.96

0.97

M
ea

n
P

op
F

it
n

es
s

breast

LLEGO

GATREE

1 5 10 15 20 25

0.61

0.62

0.63

0.64

0.65

0.66

0.67

compas

LLEGO

GATREE

1 5 10 15 20 25

0.600

0.625

0.650

0.675

0.700

credit-g

LLEGO

GATREE

1 5 10 15 20 25

0.61

0.62

0.63

0.64

0.65

0.66

0.67

M
ea

n
P

op
F

it
n

es
s

compas

LLEGO

GATREE

1 5 10 15 20 25

0.68

0.70

0.72

0.74

0.76

0.78

diabetes

LLEGO

GATREE

1 5 10 15 20 25

0.80

0.82

0.84

0.86

heart-statlog

LLEGO

GATREE

1 5 10 15 20 25

0.62

0.64

0.66

0.68

0.70

0.72

M
ea

n
P

op
F

it
n

es
s

liver

LLEGO

GATREE

1 5 10 15 20 25

0.83

0.85

0.88

0.90

0.93

0.95

vehicle

LLEGO

GATREE

Generations (G)

Figure 17: Convergence plots. Mean population fitness (↑) of LLEGO and GATREE on individual
tasks across 25 generations (depth=3).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

1 5 10 15 20 25

0.95

0.96

0.97

0.98

M
ea

n
P

op
F

it
n

es
s

breast

LLEGO

GATREE

1 5 10 15 20 25

0.62

0.63

0.64

0.65

0.66

0.67

compas

LLEGO

GATREE

1 5 10 15 20 25

0.64

0.66

0.68

0.70

credit-g

LLEGO

GATREE

1 5 10 15 20 25

0.62

0.63

0.64

0.65

0.66

0.67

M
ea

n
P

op
F

it
n

es
s

compas

LLEGO

GATREE

1 5 10 15 20 25
0.70

0.72

0.74

0.76

0.78

0.80

diabetes

LLEGO

GATREE

1 5 10 15 20 25
0.80

0.82

0.84

0.86

0.88

heart-statlog

LLEGO

GATREE

1 5 10 15 20 25

0.64

0.66

0.68

0.70

0.72

0.74

M
ea

n
P

op
F

it
n

es
s

liver

LLEGO

GATREE

1 5 10 15 20 25

0.88

0.90

0.92

0.94

vehicle

LLEGO

GATREE

Generations (G)

Figure 18: Convergence plots. Mean population fitness (↑) of LLEGO and GATREE on individual
tasks across 25 generations (depth=4).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E ADDITIONAL REBUTTAL RESULTS

E.1 ADDITIONAL RESULTS FOR TREES OF DEPTH 5

Generalization performance. We compare LLEGO with DL85 and GOSDT for depth d = 5. We
report the test performance (balanced accuracy) in Table 14. Entries marked as ∗ indicate the runs
which did not terminate due to memory constraints (maximum recursion depth exceeded). Overall,
we see that LLEGO consistently outperforms both DL85 and GOSDT.

Termination. We report in Table 15 the number of instances in which DL85 and GOSDT terminate
within a time budget of 10 minutes, showing that DL85 completes 3/7 of its runs and GOSDT
consistently times out or exceeds memory limits. These results illustrate the computational challenges
of optimal induction methods, which are exacerbated by an increasing search space complexity.

Table 14: Performance on depth d = 5. Test balanced accuracy (↑) on classification tasks (d = 5, 3
seeds), reporting mean(std). Entries marked with * denote non-termination due to memory constraints.

Method Breast Compas Credit Diabetes Heart Liver Vehicle
DL85 0.932(0.015) 0.654(0.003) 0.563(0.013) 0.639(0.018) 0.686(0.019) 0.525(0.023) 0.918(0.011)
GOSDT ∗ 0.553(0.000) ∗ ∗ 0.632(0.012) 0.610(0.000) ∗
LLEGO 0.951(0.004) 0.662(0.002) 0.639(0.016) 0.666(0.011) 0.727(0.015) 0.647(0.030) 0.937(0.002)

Table 15: Termination of optimal induction methods on depth d = 5. We report the number of
successful terminations within a 10-minute computational budget, for 3 seeds.

Method Breast Compas Credit Diabetes Heart Liver Vehicle
DL85 3/3 3/3 0/3 0/3 3/3 0/3 3/3
GOSDT 0/3 0/3 0/3 0/3 0/3 0/3 0/3

E.2 ADDITIONAL ABLATION RESULTS

Experimental setting. We compare LLEGO to LLEGOnaive, a variant which removes the crossover
operator and changes the mutation prompt to an "improve the solution"-type of prompt.

Results. We report the results in Table 16, where we see that LLEGO consistently outperforms
LLEGOnaive. This demonstrates the importance of explicit fitness-guidance via the hyperparameter α
in order to steer the search towards high-fitness regions.

Table 16: Performance of naive prompting. Test balanced accuracy (↑) on classification tasks
(depth d = 4, 3 seeds), reporting mean(std).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
LLEGOnaive 0.942(0.006) 0.660(0.011) 0.670(0.003) 0.708(0.019) 0.714(0.051) 0.629(0.033) 0.943(0.015)
LLEGO 0.952(0.006) 0.664(0.001) 0.678(0.006) 0.735(0.000) 0.759(0.047) 0.680(0.021) 0.940(0.014)

E.3 TRAINING ACCURACIES

We report the training performance (balanced accuracy) of all the baselines in Table 17.

Observations. We observe that optimal methods generally excel in training performance. DL85,
being a globally optimal induction method, achieves superior training performance across almost
all the classification datasets compared to other baselines. However, LLEGO demonstrates consis-
tently superior generalization performance. The training-generalization gap becomes particularly
pronounced as tree depths increase from 3→ 5, where deeper trees are more susceptible to overfitting.
This aligns with empirical observations in recent works (Zharmagambetov et al., 2021; Marton et al.,
2023; Sullivan et al., 2024). We note, however, that the generalization performance of trees obtained
with optimal induction methods remains an active research question.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 17: Training performance on classification tasks. Training balanced accuracy (↑) on 7
datasets, reporting mean(std). Entries marked with ∗ denote non-termination due to memory limits.

Method Breast Compas Credit Diabetes Heart Liver Vehicle
depth = 3

CART 0.964(0.015) 0.676(0.009) 0.739(0.017) 0.778(0.012) 0.869(0.035) 0.734(0.023) 0.935(0.021)
C4.5 0.964(0.024) 0.670(0.010) 0.641(0.033) 0.744(0.043) 0.833(0.027) 0.630(0.074) 0.890(0.040)
DL85 0.990(0.007) 0.692(0.005) 0.711(0.021) 0.803(0.013) 0.927(0.026) 0.776(0.026) 0.984(0.002)

GOSDT 0.962(0.019) 0.650(0.004) 0.685(0.012) 0.747(0.027) 0.753(0.129) 0.709(0.019) 0.858(0.061)
GATREE 0.978(0.006) 0.663(0.007) 0.696(0.016) 0.762(0.014) 0.863(0.025) 0.713(0.034) 0.942(0.012)
LLEGO 0.981(0.007) 0.675(0.006) 0.713(0.016) 0.784(0.017) 0.871(0.023) 0.732(0.018) 0.956(0.009)

depth = 4
CART 0.973(0.017) 0.686(0.008) 0.765(0.015) 0.805(0.012) 0.895(0.050) 0.755(0.038) 0.961(0.017)
C4.5 0.969(0.027) 0.684(0.008) 0.699(0.032) 0.783(0.011) 0.837(0.043) 0.679(0.039) 0.957(0.017)
DL85 0.998(0.003) 0.705(0.004) 0.789(0.011) 0.827(0.035) 0.951(0.041) 0.836(0.027) 0.990(0.006)

GOSDT 0.974(0.011) 0.649(0.005) 0.692(0.022) 0.740(0.027) 0.810(0.015) 0.707(0.025) 0.903(0.016)
GATREE 0.985(0.005) 0.673(0.007) 0.704(0.010) 0.772(0.020) 0.873(0.028) 0.704(0.023) 0.948(0.017)
LLEGO 0.984(0.005) 0.678(0.007) 0.722(0.016) 0.807(0.003) 0.894(0.020) 0.761(0.028) 0.954(0.014)

depth = 5
DL85 1.000(0.000) 0.723(0.003) 0.755(0.011) 0.863(0.019) 1.000(0.000) 0.807(0.028) 1.000(0.000)

GOSDT ∗ 0.553(0.000) ∗ ∗ 0.632(0.012) 0.610(0.000) ∗

E.4 EVALUATING DIFFERENT LLMS

A key property of LLEGO’s design is that it is LLM-agnostic. To demonstrate the advantage of this
flexibility, we evaluate LLEGO’s performance using gpt-4, comparing it to gpt-3.5. We report
the results in Table 18 for all the classification datasets, for depth 4 problems, across 3 seeds. We
see that the gpt-4 variant of LLEGO achieves superior performance than its gpt-3.5 counterpart.
These results have two significant implications, as they indicate that (1) LLEGO’s effectiveness is
robust across LLM architectures, and importantly that (2) its performance can scale with advances in
capabilities of the underlying LLMs.

Table 18: Performance of different LLMs. Test balanced accuracy (↑) on classification tasks (depth
d = 4, 3 seeds), reporting mean(std).

Method Breast Compas Credit Diabetes Heart Liver Vehicle
LLEGO (gpt-35) 0.952(0.006) 0.664(0.001) 0.678(0.006) 0.735(0.000) 0.759(0.047) 0.680(0.021) 0.940(0.014)
LLEGO (gpt-4) 0.957(0.005) 0.671(0.011) 0.684(0.008) 0.741(0.023) 0.751(0.017) 0.640(0.025) 0.951(0.015)

E.5 EVALUATING DIFFERENT PARENT SELECTION MECHANISMS

In this section, we investigate alternative parent selection mechanisms for both the crossover and the
mutation operator of LLEGO.

E.5.1 TOURNAMENT SELECTION FOR CROSSOVER

The objective of this experiment is to analyze the impact of an alternative selection mechanism on the
balance between population fitness and diversity in the crossover operator.

Experimental setting. Specifically, we replace the roulette wheel selection (fitness-proportionate)
mechanism with a tournament selection mechanism (Miller et al., 1995) with varying tournament
sizes k ∈ {1, 2, 3, 5}. We then compute the median offspring fitness and diversity as a function of k,
following the experimental setup described in Section 5.2.

Observations. The results, shown in Figure 19, demonstrate a clear trade-off between fitness and
diversity which is modulated by the tournament size. As shown in Figure 19a, larger tournament
sizes consistently yield higher population fitness, while Figure 19b shows a corresponding decrease
in population diversity. Indeed, larger values of k intensify selection pressure by increasing the
probability that highly fit individuals win multiple tournaments, thereby reducing population diversity.
Conversely, smaller values of k lead to an increased population diversity. For example, when k = 1,
tournament selection corresponds to random sampling, which maximizes diversity at the cost of
fitness performance. In comparison to tournament selection, the roulette wheel selection mechanism

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

employed in LLEGO achieves a good middle-ground by striking a balance between fitness and
diversity.

1 2 3 4 5

Tournament size

0.400

0.425

0.450

0.475

0.500

0.525

0.550

P
op

F
it

n
es

s

Tournament

Roulette wheel

(a) Offspring fitness.

1 2 3 4 5

Tournament size

0.05

0.10

0.15

0.20

P
op

D
iv

er
si

ty

Tournament

Roulette wheel

(b) Population diversity.

Figure 19: Crossover dynamics with tournament selection. (a) Population fitness increases
monotonically with tournament size, demonstrating enhanced selective pressure. (b) Population
diversity exhibits an inverse relationship with tournament size, with smaller tournaments preserving
higher diversity at the cost of reduced fitness.

E.5.2 QUALITY-DIVERSITY SELECTION FOR MUTATION

In this experiment, we investigate an alternative choice for the selection mechanism in LLEGO’s
mutation operator.

Experimental setting. We replace the random parent selection in the mutation operator with the
quality-diversity algorithm CVT-MAP-Elites (Vassiliades et al., 2017), which requires defining a
behavioral space. Given n training samples, we define the behavioral space for classification tasks as
H = [0, 1]n, encompassing the trees’ functional signatures. The CVT-MAP-Elites algorithm then
partitions H into M niches using uniformly distributed centroids found with k-means clustering.
We then select parents for the mutation operator by uniformly sampling ν niches and selecting the
best individual in the sampled niches. Finally, we compute the offspring diversity, similarly as in
Section 5.2.

Observations. We report the results in Figure 20, averaged across the classification datasets. We
see that the total number of niches M serves as a control parameter for offspring diversity, with an
increasing relationship between diversity and the number of niches M . When M = 1, the process
reduces to repeatedly sampling the population’s best individual, resulting in minimal diversity for the
generated offspring. Conversely, when solutions are spread into distinct niches, the sampling process
becomes equivalent to uniform sampling without replacement from the population, yielding high
diversity. Furthermore, we see in Figure 20 that the random selection of parents employed in LLEGO
comparatively yields high diversity, justifying its use in the diversity-guided mutation operator.

E.6 EVALUATING EFFECTS OF POPULATION INITIALIZATION

In this experiment, we investigate the impact of a different population initialization on the search
performance of LLEGO.

Experimental setting. Specifically, we compare two variants of LLEGO. The baseline variant,
LLEGOInit. 1 corresponds to the instanciation of LLEGO described in Section 5, which initializes the
population with CART models trained on bootstrap samples comprising 25% of the training data. In
contrast, LLEGOInit. 2 initializes trees using CART models trained on minimal random subsets of just
two training samples, resulting in weaker initial decision trees.

Observations. Figure 21 illustrates the convergence of the mean population fitness across genera-
tions, aggregated and normalized over all classification datasets for one random seed. The results
demonstrate that LLEGOInit. 2 exhibits slower convergence compared to LLEGOInit. 1, which shows
the role of effective population initialization in improving search efficiency and faster discovery of

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

1 5 10 20

Number of niches

0.0

0.2

0.4

P
op

D
iv

er
si

ty

Quality-Diversity

Random

Figure 20: Mutation dynamics with Quality-Diversity selection. Offspring diversity increases with
the number of niches employed in CVT-MAP-Elites for parent selection.

0 5 10 15 20 25

Generations (G)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
P

op
F

it
n

es
s

LLEGOinit.1

LLEGOinit.2

Figure 21: Ablation on the population initialization. LLEGOInit. 1 initializes populations using
CART models trained on 25% bootstrap samples, while LLEGOInit. 2 uses minimal training subsets of
size 2. Results are aggregated across all classification datasets for one seed.

high-quality solutions. Nevertheless, we remark that LLEGOInit. 2 still achieves good performance
in the later stages of the search (after G = 20 generations), showing the effectiveness of LLEGO’s
variation operators in steering the search towards promising regions, independent of the initialization
scheme.

E.7 CORRELATION BETWEEN LOG-PROBABILITIES AND TREE EDIT DISTANCE

We show in this experiment that the log-probabilities of the offspring trees (utilized in LLEGO’s
mutation operator) are negatively correlated with the structural distances between parent and offspring
solutions.

Experimental setting. We generate 1000 offspring trees using the LLEGO’s mutation operator with
a single parent tree. For each offspring individual, we assess its structural distance to the parent tree
by computing the Tree Edit Distance (TED) (Bille, 2005) between this individual and the parent.

Observations. As shown in Figure 22, we observe a strong negative correlation (correlation coeffi-
cient = −0.85) between log-probabilities of the offspring and TED values. This relationship indicates
that offspring with lower log-probabilities tend to exhibit greater structural differences from their
parent, as measured by the TED. This demonstrates that LLEGO’s log-probability-based selection
mechanism inherently promotes diversity in the population by favoring mutations which introduce
varied structural changes.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8

Tree Edit Distance

−60

−50

−40

−30

−20

−10

0

L
og

P
ro

b
ab

il
it

y

Correlation = -0.85

Figure 22: Correlation between log-probabilities and stuctural distances. There is a strong
negative correlation between log-probabilities of the offspring and their TED values with respect to
the parent tree.

E.8 EXTENDING LLEGO TO OTHER FUNCTION INDUCTION TASKS

In principle, LLEGO’s core idea of using LLMs as semantically-aware operators could be adapted for
other symbolic discovery tasks, such as symbolic regression (Koza, 1994a) and program synthesis
(Manna & Waldinger, 1980). In what follows, we present a general recipe of how our method can be
extended to other function induction domains. The main components required are:

1. Natural language representation. LLEGO requires a way to represent solutions in natural
language that the LLM can understand and manipulate. For decision trees, we used a nested
dictionary format (see Listing 1). For symbolic regression, expressions could be represented in
standard mathematical notation, while for program synthesis, solutions could be described using
pseudocode or natural language descriptions of program behavior.

2. Offspring validation and parsing. The framework needs mechanisms to (1) validate whether
LLM-generated strings represent valid solutions and (2) parse valid strings back into executable form.
For symbolic regression, this involves checking mathematical validity and operator precedence, while
for program synthesis, it requires syntax checking and compilation into executable code.

3. Fitness function definition. LLEGO requires a fitness function to evaluate solution quality.
While we used predictive performance for decision trees, other tasks would use domain-appropriate
metrics. For example, symbolic regression might use mean squared error between predicted and
true values, while program synthesis might consider both correctness on test cases and program
complexity.

4. Domain-specific prompts. The prompt structure should be modified to leverage relevant domain
knowledge. For instance, in symbolic regression, prompts might include information about expected
function properties (e.g., monotonicity, periodicity) to guide the search.

36

	Introduction
	Background
	Decision Tree Induction
	Genetic Programming

	LLEGO: Genetic Operators with Semantic Priors
	LLEGO Prompt Design
	Fitness-guided Crossover Operator
	Diversity-guided Mutation Operator
	End-to-End Algorithm

	Related Works
	Experiments
	LLEGO-Evolved Trees Achieve Superior Generalization Performance
	Understanding the Sources of Gain
	Ablation Study: All Components Contribute to Enhanced Search Efficiency
	Additional results.

	Discussion
	Additional Discussions
	Extended Related Works
	Discussions on No Free Lunch

	Complete Prompts
	Ablation Prompts

	Details of Experimental Procedures
	Dataset Details
	Implementation Details
	LLEGO Implementation Details
	Evaluation Metrics

	Additional Results
	Addressing Bias via Regularization
	Guarding Against Memorization
	Additional Comparison With GATree
	Additional Convergence Plots
	Run-time Comparisons
	Statistical Significance Test of Performance Improvements
	Additional Results on Crossover Dynamics
	Additional Results on Mutation Dynamics
	Additional Results on Ablation Study
	Search Results on Individual Tasks

	Additional Rebuttal Results
	Additional Results for Trees of Depth 5
	Additional Ablation Results
	Training Accuracies
	Evaluating Different LLMs
	Evaluating Different Parent Selection Mechanisms
	Tournament Selection for Crossover
	Quality-Diversity Selection for Mutation

	Evaluating Effects of Population Initialization
	Correlation Between Log-probabilities and Tree Edit Distance
	 Extending LLEGO to Other Function Induction Tasks

