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Abstract
Though successful, federated learning presents new challenges for machine1

learning, especially when the issue of data heterogeneity, also known as Non-IID2

data, arises. To cope with the statistical heterogeneity, previous works incorporated3

a proximal term in local optimization or modified the model aggregation scheme4

at the server side or advocated clustered federated learning approaches where the5

central server groups agent population into clusters with jointly trainable data6

distributions to take the advantage of a certain level of personalization. While7

effective, they lack a deep elaboration on what kind of data heterogeneity and8

how the data heterogeneity impacts the accuracy performance of the participating9

clients. In contrast to many of the prior federated learning approaches, we10

demonstrate not only the issue of data heterogeneity in current setups is not11

necessarily a problem but also in fact it can be beneficial for the FL participants.12

Our observations are intuitive: (1) Dissimilar labels of clients (label skew) are not13

necessarily considered data heterogeneity, and (2) the principal angle between14

the agents’ data subspaces spanned by their corresponding principal vectors15

of data is a better estimate of the data heterogeneity. Our code is available at16

https://github.com/anonresearcher1/alg-neuripsw22.17

1 Introduction18

Deep learning has emerged as a fast development technique in computer vision, natural language19

processing, and conversational AI. Though successful, the efficacy of machine learning and deep20

learning algorithms relies on large quantities of data. However, in areas such as health care, the21

data may be distributed across numerous hospitals or data centers and cannot be accessed by a22

central server or cloud due to privacy constraints. For instance, hospitals may have only a few of23

images of a particular cancer and must be kept private. A lot of works on privacy preserving data24

management and data mining [1] in a centralized setting have been proposed so far, however, they25

cannot tackle the cases of distributed databases. Driven by such realistic requirements, in order to26

conduct data mining/machine learning, it is necessary to exploit data from such distributed databases27

while preserving data privacy. Federated learning (FL) [2] rise to this challenge due to its ability to28

collectively train neural networks while preserving data privacy. One of the standard FL algorithms is29

FedAvg [2]. In each round of FedAvg, clients train models with their local datasets independently,30

and then the server aggregates the locally trained models, and finally, the parameters of local models31

are averaged element-wise by the server to obtain a shared Global model [3]. FL however introduces32

distinct issues not present in classical distributed learning. One of the challenges that currently33

confine the applicability of existing FL methods to real-world datasets is the data heterogeneity in the34

data distribution between participating clients [4, 5].35

There have been a plethora of works proposing solutions to FL under Non-IID data in recent years.36

They can be categorized into four groups: 1) alleviating non-guaranteed and weight divergence [6,37

7, 8, 9, 10, 11], where the local objectives of the clients is modified such that the local model is38

consistent with the global model to some extent; 2) Modifying the aggregation scheme at the server39
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side [12, 13, 14, 15, 10]; 3) data sharing [16, 17, 18, 19], where the server shares a small subset of an40

auxiliary dataset with the clients to help construct a more balanced and IID data distribution on the41

client; personalized federated learning [20, 21, 4, 22, 23, 24, 25], take the advantage of a certain level42

of personalization in training the individual clients models rather than training a single global model.43

After aggregating results across 45 papers addressing data heterogeneity in FL, we believe the right44

approach to tackling data heterogeneity is a highly non-trivial question on which the FL community45

has barely scratched the surface. In particular, the challenge comes from various facets, including46

but not limited to:47

1. The FL community lacks a true notion of data heterogeneity without which the provided solutions48

may not be effective.49

2. The community suffers from a lack of standardized benchmarks on which all proposed algorithms50

be compared. There has been several heterogeneity benchmarks including Non-IID (2), Non-IID51

(1), Dir(.), and rotated datasets [23, 26, 27] and even more to say. Firstly, not all proposed52

algorithms compared their method with others on a unique Non-IID setup and secondly, we will53

show in Section 2.4, and B.3 that the above-mentioned Non-IID setups are more like IID.54

3. It is still not well understood in the community whether and under which conditions clients benefit55

from collaboration under data heterogeneity setting.56

To address this situation, we identify issues with current practices, suggest concrete remedies by57

defining a new notion of data heterogeneity framework in FL which further facilitates standardized58

evaluations and comparison of methods. Through extensive studies, we have several key findings:59

• It is not clear how the existing FL algorithms tackle the data heterogeneity while they lack60

systematically understanding the data heterogeneity.61

• Many of the prior works have emphasized that the statistical data heterogeneity in FL has harmful62

effects and can lead to poor convergence [20, 4, 28] which necessitate personalization [28, 7]. In63

contrast, we found that the current data partitioning strategies may not necessarily bring significant64

challenges in learning accuracy of FL algorithms. Refer to Sections 2.3, 2.4, B.3, and B.4.65

• Under the new notion of heterogeneity that will be proposed herein, data heterogeneity can have66

detrimental effects such that for some of the clients it is not justified to participate in federation.67

Refer to Table 4 and Section 5.68

• None of the existing state-of-the-art (SOTA) FL algorithms beats the others according to the new69

notion of data heterogeneity that will be presented in this paper. Refer to Table 4.70

1.1 Current Non-IID Setups71

Current practices [3, 14, 27, 20, 16, 21, 23, 26] have very rigid data partitioning strategies among72

parties, which are hardly representative and thorough. In the experiments of existing studies, data73

heterogeneity have been simply modeled as Non-IID label skew (20%), Non-IID label skew (30%),74

and Dir(α), or has been generated by augmenting the datasets using rotation [23].75

For Non-IID label skew (20%) and (30%), 20% and 30% of the total classes in a dataset is randomly76

assigned to each client, respectively [21]. Then, the samples of each class is randomly and equally77

partitioned and distributed amongst the clients who own that particular class. For Non-IID Dir(α),78

we get random samples for class c from Dirichlet distribution according to pc ∼ Dir(α) and give79

each client j random samples of class c according to pc,j proportion. In this setup, heterogeneity can80

be controlled by the parameter α of Dirichlet distribution [26, 13, 16, 5, 27].81

These partitioning strategies cannot design a real and comprehensive view of Non-IID data distribution.82

As will be delineated later on, the above-mentioned Non-IID partitions that the prior algorithms83

has been tested on is more like an IID partition because the data distributions of clients are the84

sub-distributions of a unique dataset such as CIFAR-10. Besides, all clients have a high percentage85

of label overlap which mimics IID. That’s why it is a common belief that users can benefit from86

heterogeneity by federation. While in practice, the union of the clients data may not be a only one87

dataset. For instance, in mobile phones, or recommendation systems, clients may own very different88

categories of images like animals, celebrities, nature, paintings; advertisement platforms might need89

to send different categories of ad to the customers. Therefore, due to the small intra-class distance90

(similarity between distribution of the classes) in the used benchmark datasets, all baselines benefited91
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highly from federation. This is the reason that heterogeneity has never been a challenge. More92

discussion on this will be provided in the rest of paper. We break the barrier of experiments on93

Non-IID data distribution challenges in FL by proposing a new look into data heterogeneity. This94

approach addresses a broad range of data heterogeneity issues beyond simpler forms of Non-IIDness95

like label skews. Here we formally introduce our proposed paradigm, where the goal is to define a96

new notion of data heterogeneity and suggest standard and real Non-IID setups. We hope that this97

notion, along with introduced setups, be an standard and inspire the federated learning community.98

2 Overview99

2.1 Preliminaries100

Principal angles between two subspaces. Let U = span{u1, ...,up} and W = span{w1, ...,wq}101

be p and q-dimensional subspaces of Rn where {u1, ...,up} and {w1, ...,wq} are orthonormal, with102

1 ≤ p ≤ q. There exists a sequence of p angles 0 ≤ Θ1 ≤ Θ2 ≤ ... ≤ Θp ≤ π/2 called the principal103

angles. The sequence of p principal angle between them is defined as104

Θ(U ,W) = min
u∈U,w∈W

(
arccos

( ∣∣uTw
∣∣

∥u∥ ∥w∥

)
|u ∈ U ,w ∈ W,u⊥uj ,w⊥wj

)
(1)

where ∥.∥ is the induced norm. The smallest principal angle is Θ1 (u1,w1) where the vectors u1 and105

w1 are the corresponding principal vectors. The rest of Preliminaries appear in Appendix A.106

2.2 Methodology107

In our approach the data heterogeneity/homogeneity should be identified by analyzing the principal108

angles between the client data subspaces. More particularly, each client in FL applies a truncated109

SVD step on its own local data in a single-shot manner to derive a small set of principal vectors,110

which form the principal bases of the underlying data. These principal bases provide a signature111

that succinctly captures the main characteristics the underlying distribution. These principal bases112

efficiently identifies distribution heterogeneity/homogeneity among clients by comparing the principal113

angles between the client data subspaces spanned by the provided principal vectors. The greater the114

difference in data heterogeneity between two clients, the more orthogonal their subspaces.115

up

u1

up

up

u1

up

u1
u1

Figure 1: There must be a translation protocol enabling the server to understand similarity and dissimilarity in
the distribution of data across clients without sharing data. These 2D figures intuitively demonstrate how the
principal angle between the client data subspaces captures the statistical heterogeneity. In particular, it shows the
subspaces spanned by the Ups of four different datasets (left to right: CIFAR-10, SVHN, FMNIST, and USPS).
As can be seen the principal angle between the corresponding u vectors of CIFAR-10 and SVHN is smaller than
that of CIFAR-10 and USPS. Table 2.2 shows the exact principal angles between every pairs of these subspaces.

To measure the statistical heterogeneity among different users’ domains, in this paper, we leverage the116

angle between clients data subspaces spanned by the most significant left singular vectors of clients117

data. To begin, we introduce the data heterogeneity via the new notion presented in this paper and118

then we will generate Non-IID data partitioning across the clients using the proposed method. For a119

dataset, D, we put the data of each class Ci in the columns of its corresponding matrix Qi. We then,120

perform truncated SVD on Qi and obtain Ui
p = [u1,u2, ...,up], (p ≪ rank (Dk)). These Ups span121

the class subspace and provide a useful signature for distinguishing the underlying distributions of122

each class in D because these principal bases characterize the main trends in the data of clients (like123

eigenfaces). Then according to the principal angle in between of the class subspaces, we understand124

how similar/dissimilar two classes are based on which we can generate Non-IID data partitioning.125

The more orthogonal two subspaces are the more heterogeneous the data of two classes will be.126

Having the data signature of all classes of dataset D, in hand, we can obtain a proximity matrix A127

either as in Eq. (2) whose entries are the smallest principle angle between the pairs of Ui
p or as in128

Eq. (3) whose entries are the summation over the angle in between of the corresponding u vectors (in129

identical order) in each pairs of Ui
p (where tr (.) is the trace operator).130
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Ai,j = Θ1

(
Ui

p,U
j
p

)
, i, j = 1, ..., |C| (2)

131 Ai,j = tr
(
arccos

(
Ui

p ∗Uj
p

))
, i, j = 1, ..., |C| (3)

where C is the total number of classes of D. Either of Eq. 2 and Eq. 3 can be employed in practice,132

however, theoretically Eq. 3 is more rigorous. Now, in order to capture the similarity/dissimilarity of133

different classes of D, we could form disjoint clusters of classes. For forming disjoint clusters, we134

can perform agglomerative hierarchical clustering [29] on the proximity matrix A. The best number135

of clusters can easily be determined just by analyzing the proximity matrix. Each cluster contain136

classes which are roughly identically distributed.137

Figure 2: UMAP visualization of four
different datasets including CIFAR-10
(orange), SVHN (blue), FMNIST (green),
USPS (red).

Dataset CIFAR-10 SVHN FMNIST USPS
CIFAR-10 0 (0) 6.13 (12.3) 45.79 (91.6) 66.26 (132.5)

SVHN 6.13 (12.3) 0 (0) 43.42 (86.8) 64.86 (129.7)
FMNIST 45.79 (91.6) 43.42 (86.8) 0 (0) 43.36 (86.7)

USPS 66.26 (132.5) 64.86 (129.7) 43.36 (86.7) 0 (0)

Table 1: An example showing how distribution similarities
among different datasets can be accurately estimated by the
principal angles between the datasets subspaces. This table
shows the proximity matrix of four datasets whose UMAP
visualization was shown in Fig. 3 (c). Entries are x(y), where
x and y are obtained from Eq. 2, and Eq. 3, respectively. We
let of p in Up be 2.

138

(b) (c) (d)

cat, dog,
bird, deer, 
horse, frog

car, plane, 
ship, truck

(a)

Figure 3: The main goal of this figure is to understand the cluster structure of different datasets based on
which the Non-IID data partitioning of different datasets can be suggested. (a) depicts the UMAP visualization
of CIFAR-10 classes. As can be seen, CIFAR-10 naturally has two super clusters, namely animals (cat, dog,
bird, deer, horse, frog) and vehicles (car, plane, ship, truck), which are shown in the purple and green regions,
respectively. This means that within each super cluster, the distance between the distribution of the classes is
small. While the distance between the distributions of the two super clusters are quite huge. Since the union of
clients data is CIFAR-10, two cluster is enough to handle the Non-IIDness across clients. (b) We obtained the
proximity matrix A as in Eq. 2 and sketched it. The entries of A are the smallest principle angle between all
pairs of classes of CIFAR-10. This concurs with (a) showing the cluster structure of CIFAR-10. (c) The data of
FMNIST is naturally clustered into three clusters. The structure of the three clusters is also perfectly suggested
by our new proposed notion of heterogeneity for this dataset. (d) We did the same thing as in (b) for FMNIST as
well and sketched the matrix.

Before providing more details about the application of the proposed method in defining new Non-IID139

partition, we elucidate how the proposed method perfectly distinguishes different datasets based140

on their hidden data distribution by inspecting the angle between their data subspaces spanned by141

their first p left singular vectors. For a visual illustration of the result, we refer to Fig. 1, Fig. 2, and142

Table 2.2, where the similarity and dissimilarity of the four different datasets have been evaluated by143

the proposed measure in Eq. 2, and Eq. 3. Table 2.2 further confirmed with UMAP [30] visualization144

in Fig. 2. As can be seen from Fig. 2 CIFAR-10 is more similar to SVHN than USPS which reflected145

in a smaller principal angle between the subspaces of CIFAR-10 and SVHN than that of CIFAR-10146

and USPS. It is noteworthy that the smallest principal angle between each pairs of classes is different147

as well. For instance, on FMNIST, by setting p of Up to 3, the smallest principal angle between148

Trouser and Dress classes is 22.47◦ while that of Trouser and Bag clasees is 51.7◦ which stems from149

more similarity between the distribution of (Trouser, Dress) compared to that of (Trouser, Bag).150

Making use of the the proposed approach for measuring the similarity/dissimilarity of clients data151

and invoking the proximity matrix of all clients data under the current Non-IID portioning method,152

we will uncover that the existing data partition strategies represent more like an IID partitioning or at153

most a light Non-IID that may not necessarily be considered as a challenge. Therefore, this motivates154

us to propose a new partitioning method using our metric, that leads to the following section.155
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2.3 New Non-IID Partitioning Method156

Now we are in position to define a new Non-IID partitioning. We say that a federated network is157

heterogeneous if each client owns data only from one of super clusters of a dataset. In particular,158

we partition all the training samples in each super cluster into shards of n examples and randomly159

assign two shards to each client only from one of the super clusters. Such Non-IID (2) partitioning160

is reasonable to expect in heterogeneous federated networks, due to the drastic disparities in the161

distribution of each client data. In contrast, the data partitioning proposed in previous papers [16, 4],162

may assign data from all the clusters.163

Consider an example. In Table 2, we show the average final top-1 test accuracy of all clients on164

CIFAR-10 for FedAvg under IID (2), the conventional Non-IID (C-NIID) label skew (2), and our165

proposed Non-IID partitioning which we name it as super cluster based Non-IID (SC-NIID). As can166

be seen from Table 2, the C-NIID data partitioning yield accuracy results close to IID data partitioning167

while our proposed SC-NIID partitioning accuracy results are far less than that of IID. This shows168

that the C-NIID data partitioning is not a severe Non-IID and it rather tends to be similar to IID.169

We will compare the performance of various global and personalized baselines under these Non-IID170

partitioning methods later on Experiment Section along with some intuitions and remarks.171

Table 2: Test accuracy comparison on CIFAR-10 across different data partitioning methods. For each partitioning
method, the average of final local test accuracy over all clients is reported. We run the FedAVg baseline for each
partition 3 times for 100 communication rounds with 10 local epochs and a local batch size of 10.

Dataset IID (2) C-NIID (2) SC-NIID (2)
CIFAR-10 88.15± 0.47 83.63± 1.27 75.53± 3.83

We provide another empirical example to show that our proposed method can effectively produce a172

more challenging Non-IID data partitioning by leveraging the principal angle between of the data173

subspaces spanned by the first p significant left singular vectors of the data. In particular, as shown in174

Table 3, we compare the average distance between the data of each partitioning method including IID,175

C-NIID, and our proposed SC-NIID. We employ the well-known distance measures including Earth176

Mover’s Distance (EMD) [31], Centered Kernel Alignment (CKA) [32], and our proposed method as177

in Eq. 2, and Eq. 3 in inspecting the distance between the data of each Non-IID partitioning method.178

In all of these measures, the smaller the entry is the more IID the data of the partition is. As can be179

seen, the entries of C-NIID is smaller than that of SC-NIID and are closer to that of IID. Table 2,180

and 3 together reveal that firstly the C-NIID is more like an IID partitioning or at least it is not a181

challenging and severe Non-IID and secondly, they demonstrate that our proposed method as in Eq. 2182

and Eq. 3 can accurately capture the similarity/dissimilarity between two distributions and its results183

are consistent with that of the well-known distance measures.184
Table 3: The average distance, which
is evaluated by the well-known distance
measures, between all 100 participant clients
data under different partitioning methods.

Measure IID C-NIID (2) SC-NIID (2)
EMD 0.042 0.17 0.29
Eq. 2 0.072 0.202 0.274
Eq. 3 0.16 0.28 0.338
CKA 0.94 0.889 0.825

The UMAP [30] visualization in Fig. 3(a) confirms that the185

images of CIFAR-10 can naturally be clustered into two186

super clusters, i.e., cluster of animals (cat, dog, deer, frog,187

horse, bird) and cluster of vehicles (airplane, automobile,188

ship and truck). This shows that the two clusters is the189

best case for training the local models on partitions of190

CIFAR-10 dataset in a Non-IID fashion. Fig 3(b) also191

depicts the proximity matrix of CIFAR-10 dataset, whose entries are the principal angle between192

the subspace of every pairs of 10 classes (labels). This further confirms that our proposed notion193

perfectly captures the heterogeneity, thereby finding the best number of super clusters in each dataset.194

In particular, our experiments demonstrate that the clients that have the sub-classes of these two big195

classes have common features and can improve the performance of other clients that own sub-classes196

of the same big class if they be assigned to the same cluster. A similar discussion can be made about197

other datasets. In contrast, in almost all of the prior works [16, 21, 7, 8, 3], the data samples with the198

same label are divided into subsets and each client is only assigned two subsets with different labels199

which produces a very light Non-IID partition as discussed above. Similar settings has been used200

where each party only has data samples with a single label [3].201

Another method that has been adopted in the literature to simulate Non-IID label skew is allocating a202

proportion of the data of each label/class according to Dirichlet distribution (Dir(α)). In particular,203

random samples for class c from Dirichlet distribution according to pc ∼ Dir(α) is selected from the204

whole dataset and to each client j random samples of class c according to pc,j proportion is assigned.205

While Dir(α) label skew can simulate label imbalance in the network, it fails to simulate a real data206

heterogeneity across clients because the assigned samples are randomly selected from the whole207
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dataset and they are not necessarily from only one of the super clusters of that dataset. We rather208

suggest random samples for each class be selected from each super-cluster on a dataset according to209

Dirichlet distribution. This will provide a more severe and challenging Non-IIDness. We postpone210

the experiments on this new Dir(α) Non-IID setup to sections B.1, B.2, and B.3 in the Appendix.211

It is noteworthy that the number of formed super clusters in each dataset can be controlled by212

the distance threshold (linkage) which is a hyperparameter in hierarchical clustering. The smaller213

the clustering threshold the larger number of super clusters will be formed and in turn the more214

heterogeneous the partitioning will be. Therefore, the level of data heterogeneity across clients can215

be easily controlled by the clustering threshold.216

2.4 A Closer Look at FL Under Heterogeneity217

To understand which of the Non-IID setups is a better benchmark to be considered in heterogeneous218

FL scenarios, we perform an experimental study on heterogeneous local models. We choose CIFAR-219

10 with 10 clients and LeNet-5 as convolutional neural network with 5 layers. We then train the model220

two times independently with the same random seeds with FedAvg, where in the first training we221

partition the data according to the C-NIID (2) and in the second time we partition the data according222

to our new notion of Non-IID-ness i.e., SC-NIID (2). We train both cases for 100 rounds and each223

client optimizes for 10 local epochs at each round. For each layer in the models, we use CKA [32]224

and our proposed measure in Eq. 2 to evaluate the similarity of the output features between two local225

models, given the same input testing samples for each of the cases independently. CKA outputs a226

similarity score between 0 (not similar at all) and 1 (identical).227

Figure 4: Similarities of the outputted feature representation of three different layers of different partitions
obtained by CKA (left) and by our proposed measure as in Eq. 2 (right) when trained on CIFAR-10. This plot is
sketched once federation finished.
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Figure 5: The means of the similarities of different layers in different local models obtained by CKA (left) and
by our proposed measure as in Eq. 2 (middle) and Eq. 3 (right).

We first show the pairwise CKA features similarity of the first three layers of LeNet-5 across local228

models in Fig. 4. Interestingly, as can be seen, we find that features outputted from IID data and our229

proposed Non-IID setup show lower CKA similarity compared to that of the C-NIID. It indicates that,230

our proposed benchmark provide a more severe heterogeneity across different clients. By averaging231

the pairwise CKA features similarity in Fig. 4, we can obtain a single value to approximately represent232

the similarity of the feature outputs by each layer across different clients for IID, C-NIID and our233

SC-NIID setups. We demonstrated the approximated layer-wise features similarity in Fig. 5. These234

results witness that the models trained on our proposed Non-IID setup consistently produced features235

across clients for all layers which are less similar to IID in comparison to that of C-NIID.236

3 Conclusion237

We proposed a new notion and framework for Non-IID partitioning in FL setups. A dataset is first238

divided into several super clusters by analyzing the principal angles between subspaces of different239

classes. To distribute heterogeneous data to all clients, the training data in each super cluster is240

partitioned to different shards. Each client is assigned a certain number of shards from only one of241

the super clusters. The proposed method addresses a broad range of data heterogeneity issues beyond242

simpler forms of Non-IIDness like label skews.243
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Appendix341

The Appendix is organized as follows. Section A provides additional preliminaries; Section B342

elaborate upon more experiments to delineate the performance of the proposed approach; finally,343

Section C contains implementation details.344

A Preliminaries345

This section complements section 2.1 of the main paper.346

Truncated Singular Value Decomposition (SVD). Truncated SVD of a real m × n matrix M is347

a factorization of the form M̃ = UpΣpV
T
p where Up = [u1,u2, ...,up] is an m× p orthonormal348

matrix, Σp is a p × p rectangular diagonal matrix with non-negative real numbers on the main349

diagonal, and Vp = [v1,v2, ...,vp] is a p× n orthonormal matrix, where ui ∈ Up and vi ∈ Vp are350

the left and right singular vectors, respectively.351

Hierarchical clustering. When forming disjoint clusters where the number of clusters is not known352

in advance, hierarchical clustering (HC) [29] is of interest. Agglomerative HC is one of the well-353

known clustering techniques in machine learning that takes a proximity (adjacency) matrix as input354

and groups similar objects into clusters. HC starts by treating each client as a separate cluster. At355

each step of the clustering, the pairwise L2 (Euclidean) distance between all clusters is computed356

to identify their similarity. The two clusters that are most closest ones are merged. This iterative357

process continues till all the clusters are merged into one. And finally, a distance threshold is defined358

to determine when to stop merging clusters. In this paper the distance threshold is called clustering359

threshold.360

B Experiments361

We perform an extensive empirical analysis using a standard image classification task for multiple362

popular federated learning datasets and various statistical heterogeneity setups.363

B.1 Experimental Setup364

Datasets and Models. We use image classification task and 3 popular datasets, i.e., CIFAR-10 [33],365

CIFAR-100 [33], STL-10 [34] to employ our novel partitioning method. For all experiments,366

we consider LeNet-5 [35] architecture for CIFAR-10 dataset and ResNet-9 [36] architecture for367

CIFAR-100, and STL-10 datasets. Details of the architectures can be found in subsection C.368

369

Baselines and Implementation. To assess the performance of our novel Non-IID partitioning370

method against the conventional partitioning, we compare the results over a set of baselines.371

For SOTA personalized FL methods, the baselines include LG-FedAvg [27], Per-FedAvg [4],372

Clustered-FL (CFL) [24], and IFCA [23]. Besides, we compare with FedAvg+ [3], FedProx+ [8]373

FedNova+ [14], and SCAFFOLD+ [9]. It is noteworthy that the superscript + sign on global374

baselines means that these baselines has been fine-tuned by the clients and thus are considered375

personalized ones. We report the average results performance over three independent trials.376

377

C-NIID (ϱ%) Label Skew and SC-NIID (ϱ%). In this setting, the conventional method first randomly378

assigns ϱ% of the total available labels of a dataset to each client and then randomly distribute the379

samples of each label amongst clients own those labels as in [37]. In our SC-NIID method, we first380

form the super clusters according to our proposed method explained in Section 2. We then randomly381

assign all clients to only one of the formed super clusters. The number of assigned clients to each382

super cluster is proportional to the size (number of samples that cluster contains) of the super cluster383

which means that if the size of a super cluster is bigger, more number of clients are assigned to that384

particular super cluster. Next, the total samples of each super cluster is divided into shards and each385

client pick ϱ% of the total labels contained in the super cluster which the client belongs to.386
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Table 4: Evaluating different personalized FL methods under different data partitions. We evaluate on ResNet-9
with CIFAR-100 and STL-10 as well as LeNet-5 on CIFAR-10. For each communication round, a fraction 10%,
30%, 10% of the total 100 clients are randomly selected. We set local epoch and batch size to 10.

Dataset Algorithm C-NIID(2) SC-NIID(2) C-Dir(0.5) SC-Dir(0.5)

SOLO 83.62± 0.72 75.68± 0.47 48.45± 0.57 43.44± 0.43
FedAvg+ 83.46± 1.15 77.02± 0.73 53.31± 0.85 43.43± 1.81

CIFAR-10 FedProx+ 85.01± 0.59 76.54± 1.15 52.69± 0.60 44.61± 1.43
FedNova+ 83.99± 0.68 77.36± 0.46 53.21± 0.82 46.09± 0.33
Scafold+ 82.69± 2.93 78.88± 0.44 41.55± 5.82 16.45± 2.71
LG 83.18± 0.46 76.40± 0.46 31.35± 7.42 41.36± 0.75
PerFedAvg 83.60± 0.48 75.70± 0.74 54.90± 0.25 42.63± 1.08
IFCA 86.59± 1.16 80.49± 0.86 57.78± 1.14 51.54± 0.98

SOLO 76.71± 1.12 73.16± 0.17 45.24± 1.74 40.43± 0.85
FedAvg+ 87.99± 0.97 81.55± 0.59 66.15± 2.79 53.41± 1.16

CIFAR-100 FedProx+ 87.68± 0.82 80.70± 0.81 67.67± 0.98 53.86± 0.25
FedNova+ 87.22± 0.45 80.75± 1.28 63.15± 2.32 53.77± 0.52
Scafold+ 55.97± 13.29 15.61± 9.85 39.04± 23.73 11.43± 3.90
LG 78.27± 1.31 72.87± 0.80 44.43± 1.40 39.44± 0.90
PerFedAvg 77.47± 1.30 58.93± 0.90 58.02± 2.38 37.96± 1.24
IFCA 88.06± 0.19 82.23± 0.73 69.89± 1.64 55.66± 0.86

SOLO 78.14± 2.27 69.88± 0.62 51.12± 1.16 42.17± 0.68
FedAvg+ 85.67± 2.23 77.23± 1.45 56.80± 5.64 49.69± 0.66
FedProx+ 86.83± 1.83 83.03± 1.40 64.97± 5.86 56.35± 1.85
FedNova+ 88.45± 0.27 83.18± 2.28 60.00± 6.77 52.84± 1.03

STL-10 Scafold+ 31.74± 1.80 27.71± 4.12 50.31± 2.90 31.28± 7.52
LG 84.42± 0.77 75.52± 0.91 52.56± 2.94 46.82± 1.47
PerFedAvg 52.91± 2.12 51.64± 0.57 30.10± 2.74 31.80± 3.14
IFCA 88.99± 0.45 81.13± 0.46 67.99± 1.66 60.73± 1.27

Conventional Dir (C-Dir) and SC-Dir. In this setting, the conventional method distributes the387

training data between the clients based on the Dirichlet distribution. In particular, for N clients data388

it samples N random numbers pi ∼ DirN (α) from Dir(α) distribution 1 and allocates the pi,j389

proportion of the training data of class i to client j as in [37]. In our proposed SC-Dir(.) method, we390

again constitute the super clusters with the help of Eq. 2 or Eq. 3 as explained in Section 2. We then391

assign certain number of clients randomly to only one of these super clusters depending upon the392

size of each super cluster. We then let the data within each super cluster be assigned according to the393

Dir(.) distribution as in C-Dir(.) to the clients that belong to each cluster.394

B.2 Comparing the Performance of SOTA Baselines on the Conventional and Newly395

Proposed Non-IID Method396

We conduct experiments to compare the above four Non-IID partitioning method i.e, C-NIID (2),397

C-Dir(.), SC-NIID (2), and SC-Dir(.) methods on CIFAR-10, CIFAR-100, and STL-10 datasets and398

present the results in Table 4. It can be observed that all SOTA baselines present a great performance399

drop when the clients data are distributed according to the newly proposed Non-IID setup compared400

to the conventional Non-IID setups used in prior arts. Based on the results of table 4 and through401

extensive studies, we have the following key findings: 1) The newly proposed Non-IID partitioning402

is more challenging compared to the C-NIID. Since effectively addressing data heterogeneity is of403

paramount concern in federated learning, we suggest that the challenging tasks like SC-NIID (ϱ%),404

and SC-Dir(α) should be included in the benchmark for future FL setups. 2) Under the new Non-IID405

setup none of the existing SOTA FL algorithms outperforms others in all cases. This further indicates406

the importance of having a more comprehensive Non-IID distribution benchmark.407

1The value of α controls the degree of Non-IID-ness. A big value of α e.g., α = 100 mimics identical label
distribution (IID), while α = 0.1 results in a split, where the vast majority of data on every client are Non-IID.
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Figure 6: We obtained a proximity matrix of 100 × 100 dimension which corresponds to 100 clients’ data
distribution by the EMD measure for three different data partitioning method, i.e., IID (left), C-NIID (middle),
and SC-NIID (right). This concurs with Fig. 3 showing that CIFAR-10 naturally have two Non-IID clusters as
well with Fig. 7, and Fig. 8.

Figure 7: We obtained a proximity matrix of 100 × 100 dimension which corresponds to 100 clients’ data
distribution by the CKA measure for three different data partitioning method, i.e., IID (left), C-NIID (middle),
and SC-NIID (right). This concurs with Fig. 3 showing that CIFAR-10 naturally have two Non-IID clusters as
well with Fig. 6, and Fig. 8

B.3 Comparing the Level of Data Heterogeneity of the C-NIID and SC-NIID408

Data heterogeneity will impact the convergence of a federated model and hurts its performance. This409

necessitate a deeper investigation of data heterogeneity which has been missing. Herein we provide410

some visualizations to facilitate understanding the heterogeneity level of the setup that has been411

used as an standard one in the prior works. To this end, we distribute CIFAR-10 according to three412

data partitioning method, i.e., IID, C-NIID, and SC-NIID among the clients and then we leverage413

three distribution similarity/dissimilarity measures namely EMD [31], CKA [32], and our proposed414

method as in Eq. 2, to monitor the significance of data heterogeneity across 100 participant clients in415

the federation. Figures 6–8 visualize the proximity matrix whose entries are the distance between416

clients data computed by EMD, CKA, and our proposed method, respectively. These figures further417

confirm that the C-NIID partitioning is more like IID. This is while as can be seen in these three418

figures, our newly proposed SC-NIID distribute the data across all clients which is very different419

from IID. This corresponds to the fact that our method takes the intrinsic structure of the dataset into420

account and from a certain number of Non-IID super clusters according to the entries of the proximity421

matrix and then distribute the data among the clients from only one of these Non-IID super clusters.422

According to what we discussed, it is therefore natural to ask the following questions: How do prior423

FL approaches tackle the newly proposed Non-IID partitioning?424

Remark-1. It is not clear how the the prior personalized FL algorithms which has been proposed to425

alleviate the statistical data heterogeneity should be extended to tackle the new Non-IID setup. For426

Figure 8: We obtained a proximity matrix of 100 × 100 dimension which corresponds to 100 clients’ data
distribution by our own proposed measure as in Eq. 2 for three different data partitioning method, i.e., IID (left),
C-NIID (middle), and SC-NIID (right). This concurs with Fig. 3 showing that CIFAR-10 naturally have two
Non-IID clusters as well with Fig. 6, and Fig. 7
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instance, as mentioned in [26], the proposed regularization method is effective only for light data427

heterogeneity but would not be beneficial or even lead to drop in the performance with the increase428

of the heterogeneity. This could be true about many of the prior arts as also confirmed by the results429

reported in table 4. This further emphasizes that the performance of the prior arts should be evaluated430

under severe and challenging Non-IID setups to judge their efficacy.431

Remark-2. While many works in the literature have highlighted detrimental impacts of statistical432

data heterogeneity, showing that heterogeneity can lead to poor performance in federated optimization433

which necessitates novel forms of personalization, some works [28] discussed distinct benefits of434

data heterogeneity in their FL analyses. In contrast to this work [28], we believe to judge whether the435

impact of the corresponding heterogeneity issue is positive or negative, we should first provide a true436

notion of data heterogeneity as well as standard Non-IID benchmarks without which it will be hard437

to attest measurable benefits of heterogeneity.438

Remark-3. In Table 4 we provided the results of SOLO training as well. Considering SC-Dir(0.5)439

on CIFAR-10, as is evident from Table 4, except for a few baselines, the accuracy results of other440

baselines are worse than SOLO training which means that it is not justified for clients to participate in441

federation under the newly proposed Non-IID setting. Because the clients not only do not gain from442

federation but federation also has degraded their performance. This phenomenon can be explained443

by the fact that depending upon the dataset the proposed Non-IID partitioning distributes highly444

heterogeneous data to clients under which federation is not beneficial. This is while considering445

C-Dir(0.5) most of the baselines benefited from federation and yielded better results compared to446

SOLO training. The same behavior can be seen on other datasets and on SC-NIID(2).447

B.4 Under What Heterogeneity Environment Clients Benefit from Collaboration?448

In this section, by an empirical pseudo example we demonstrate that the widely used Non-IID setup,449

i.e., C-NIID in the literature is not a real Non-IID partition. In doing so, we sample two clients named450

as C1, and C2 and manually assign two labels to each as in Table 5 and let them to do federation451

with vanilla FedAvg [3] for 20 communication rounds. When C1 owns labels "ship+truck", and C2452

owns labels "plane+car" as in row 4, according to the common belief in the FL community we should453

have expected that due to the existence of C-NIIDness the average final accuracy be worse than454

SOLO2 training as in row 1. But surprisingly it is not the case and even though these clients have no455

label overlap, their performance improved through federation compared to SOLO. In contrast, as can456

be seen from row 6, even though C1 and C2 have 50% labels overlap (50% distribution similarity457

according to C-NIID), by taking part in federation, the accuracy of C1 drops compared to SOLO.458

This is while row 4 with the same condition (50% labels overlap) improved the results of C1 through459

federation. This further confirms that C-NIID cannot represent a true view of non-IIDness in FL.460

These anomalies can be justified by our newly proposed Non-IID partition which is based on the461

simple label skew but based on the angle in between of the clients’ data subspaces. In particular, two462

clients data are considered heterogeneous if their data are drawn from two different super clusters463

formed by our approach in Eq. 2 or Eq. 3. The result of C1 in row 4 improved because both of the464

clients own data from the same super cluster. The results of other rows can be justifies in the same465

fashion.466

The authors hope the reader take the preceding discussion as an example showing that the adopted467

Non-IID partition in the prior works may not represent a true data heterogeneity setup and also the468

authors do not claim that the proposed method can justify all anomalies. We rather like to encourage469

the researchers to designing more comprehensive alternatives to the current Non-IID setups.470

B.5 A New Benchmark for Non-IID FL471

As mentioned earlier, existing studies have been evaluated on simple partitioning strategies, i.e.,472

Non-IID label skew (20%) and Non-IID label skew (30%). In data partitioning with a% label skew,473

the union of client data will only be one dataset. Focusing on CIFAR-10 and with 20% label skew,474

most of the 100 clients can have either 50% label overlap or 100%. This simulates a partially Non-IID475

setting and cannot represent a full view of Non-IIDness. Because the data distributions of clients are476

the sub-distributions of a unique dataset such as CIFAR-10. This is the reason that statistical data477

heterogeneity has never been a big issue in the proposed personalized FL algorithms.478

2In SOLO baseline the client trains a model lonely on it own local data without taking part in federation.
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Table 5: A pseudo example illustrating that the adopted heterogeneous setup in the prior works which relies upon
the label skew can not represent a true view of Non-IIDness. That’s why it has not necessarily had detrimental
effect on the clients accuracy performance.

Row Case C1 Accuracy Status
1 ship+truck ; [8,9] 83.20 Solo Training
2 C1: ship+truck, C2:ship+truck; [8,9] 86.02 Full overlap (IID)
3 C1: ship+truck, C2:truck+plane; [9,0] 84.02 One overlap on vehicle
4 C1: ship+truck, C2:plane+car; [0,1,8,9] 83.36 No overlap (only vehicle)
6 C1: ship+truck, C2:truck+bird; [9,2] 82.43 One overlap on animal
7 C1:ship+truck, C2:car+bird; [1,2,8,9] 81.78 No overlap (animal+vehicle)
8 C1: ship+truck, C2:ship+bird; [8,2] 81.72 One overlap on animal
9 C1: ship+truck, C2:cat+dog; [3,5,8,9] 81.63 No overlap (only animal)

Table 6: The benefits of personalized SOTA algorithms should be testified when the tasks are severely Non-IID.
This table evaluates different FL approaches in the challenging scenario of MIX-4 in terms of test accuracy
performance. All approaches have substantial difficulties in handling this scenario with tremendous data
heterogeneity. We run each baseline 3 times for 50 communication rounds with 5 local epochs.

Algorithm MIX-4

SOLO 55.08± 0.29
FedAvg 63.68± 1.64
FedProx 61.86± 3.73
FedNova 60.92± 3.60
Scaffold 69.26± 0.84
LG 58.49± 0.46
PerFedAvg 42.60± 0.60
IFCA 70.32± 3.57
CFL 61.18± 2.63

In order to better assess the potential of the SOTA baselines under a real-world and challenging Non-479

IID task where the local data of clients have strong statistical heterogeneity, and the data distributions480

of clients are not the sub-distributions of a unique dataset, we design the following benchmark naming481

it as MIX-4. We hope Mix-4 become an standard benchmark for comparing different SOTA against482

each other in the FL community. We assume that each client owns data samples from one of the four483

datasets, i.e., USPS [38], CIFAR-10, SVHN, and FMNIST. In particular, we distribute CIFAR-10,484

SVHN, FMNIST, USPS among x, y, z, v clients, respectively (x+y+z+v= total clients) where each485

client receives a certain number of samples from all classes but only from one of these dataset. This is486

a very challenging Non-IID task. Under this circumstance, the union of the clients data is not a single487

dataset and in each round of communications there will be some clients whose data distribution vary488

drastically. In Table 6, we present the test accuracy of the SOTA baselines on Mix-4. It can be seen489

from Table 6 that the accuracy performance of all the methods drops significantly compared to the490

ones reported for C-NIID (the widely used Non-IID setup in prior works) in Table 4. These sorts491

of realistic assumption has never been adopted in the literature. That’s why it is a common belief492

that all users can benefit from heterogeneity. We hope designing Mix-4 opens up a new avenue to493

design more standard real-world benchmark for comparing different personalized SOTA in the FL494

community.495

Table 7: The formed super clusters for each dataset. The numbers correspond to the labels according to the
standard naming of labels in each dataset.

Dataset Formed Super Clusters

CIFAR-10 {0,1,8,9}, {2,3,4,5,6,7}

CIFAR-100 {0, 83, 53, 82}, {1, 54, 43, 51, 70, 92, 62}, {23, 69, 30, 95, 67, 73},
{47, 96, 59, 52}, {2, 97, 27, 65, 64, 36, 28, 61, 99, 18, 77, 79, 80, 34,
88, 42, 38, 44, 63, 50, 78, 66, 84 , 8, 39, 55, 72, 93, 91, 3, 4, 29, 31, 7
, 24, 20, 26, 45, 74, 5, 25, 15, 19, 32, 9, 16, 10, 22, 40, 11, 35, 98, 46
, 6, 14, 57, 94, 56, 13, 58, 37, 81, 90, 89, 85, 21, 48, 86, 87, 41, 75,
12, 71, 49, 17, 60, 76, 33, 68}

STL-10 {2, 8, 9}, {0, 1, 7, 3, 4, 5, 6}
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C Implementation496

We have released our implemented code at https://github.com/anonresearcher1/497

alg-neuripsw22. To be consistent, we adapt the official public codebase of Qinbin et al. [37] 3498

to implement our proposed method and all the other baselines with the same codebase in PyTorch499

V. 1.9. We used the public codebase of LG [22]4, Per-FedAvg [4] 5, and IFCA [23] 6 in our500

implementation. For all the global benchmarks, including FedAvg [3], FedProx [8], FedNova [14],501

Scaffold [9] we used the official public codebase of Qinbin et al. [37] 3. It is worth noting502

that, unlike the original paper and the official implementation of LG[22] 4, for the sake of fair503

comparison we initialized the models randomly with the same random seed just like all other baselines.504

505

The formed super clusters on each dataset. The details of formed super clusters on each dataset is506

presented in table 7.507

C.1 Implementation Details for MIX-4508

We set the number of clients to 100 and distribute CIFAR-10, SVHN, FMNIST, USPS amongst509

31, 25, 27, 14 clients such that each client receives 500 samples from all the available classes in510

the corresponding dataset (50 samples per each class). We further zero-pad FMNIST, and USPS511

images to make them 32× 32, and repeat them to have 3 channels. This pre-processing for FMNIST,512

and USPS is required to make the images the same size as CIFAR-10 and SVHN so that we can513

have a consistent model architecture in this task. Tables 9, and 8 present more details about other514

hyper-parameter grids used in this experiment. Further, we used LeNet-5 architecture with the details515

in Table 10, and modified the last layer to have 40 outputs corresponding to the 40 number of total516

labels (each dataset own 10 classes).517

C.2 Hyper-parameters & Architectures518

Tables 10, and 11 show the details of the convolutional neural network used for CIFAR-10, CIFAR-519

100, and STL-10.520

3 https://github.com/Xtra-Computing/NIID-Bench
4 https://github.com/pliang279/LG-FedAvg
5 https://github.com/CharlieDinh/pFedMe
6 https://github.com/jichan3751/ifca

Table 8: Hyper-parameters used for LG, Per-FedAvg, and IFCA throughout the experiments.
Method Hyper-parameters CIFAR-100 CIFAR-10 STL-10

LG

model ResNet-9 LeNet-5 ResNet-9
learning rate 0.01 0.01 0.01
weight decay 0 0 0
momentum 0.5 0.5 0.5
number of local layers 7 3 3
number of global layers 2 2 2

Per-FedAvg

model ResNet-9 LeNet-5 ResNet-9
learning rate 0.01 0.01 0.01
weight decay 0 0 0
momentum 0.5 0.5 0.5
α 1e-2 1e-2 1e-2
β 1e-3 1e-3 1e-3

IFCA

model ResNet-9 LeNet-5 ResNet-9
learning rate 0.01 0.01 0.01
weight decay 0 0 0
momentum 0.5 0.5 0.5
number of clusters 2 2 2
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Table 9: The hyper-parameters used for FedAvg+, FedProx+, FedNova+, Scaffold+, and SOLO throughout the
experiments

Method Hyper-parameters CIFAR-100 CIFAR-10 STL-10

FedAvg+

model ResNet-9 LeNet-5 ReNet-9
learning rate {0.1, 0.01, 0.001} {0.1, 0.01, 0.001} {0.1, 0.01, 0.001}
weight decay 0 0 0
momentum 0.9 0.9 0.9

FedProx+

model ResNet-9 LeNet-5 ResNet-9
learning rate {0.1, 0.01, 0.001} {0.1, 0.01, 0.001} {0.1, 0.01, 0.001}
weight decay 0 0 0
momentum 0.9 0.9 0.9
µ {0.01, 0.001} {0.01, 0.001} {0.01, 0.001}

FedNova+

model ResNet-9 LeNet-5 ResNet-9
learning rate {0.1, 0.01, 0.001} {0.1, 0.01, 0.001} {0.1, 0.01, 0.001}
weight decay 0 0 0
momentum 0.9 0.9 0.9

Scaffold+

model ResNet-9 LeNet-5 ResNet-9
learning rate {0.1, 0.01, 0.001} {0.1, 0.01, 0.001} {0.1, 0.01, 0.001}
weight decay 0 0 0
momentum 0.9 0.9 0.9

SOLO

model ResNet-9 LeNet-5 ResNet-9
learning rate 0.01 0.01 0.01
weight decay 0 0 0
momentum 0.5 0.5 0.5

Table 10: The details of LeNet-5 architecture used for the FMNIST, SVHN, CIFAR-10, and Mix-4 datasets.
Layer Details

layer 1
Conv2d(i=3, o=6, k=(5, 5), s=(1, 1))
ReLU()
MaxPool2d(k=(2, 2))

layer 2
Conv2d(i=6, o=16, k=(5, 5), s=(1, 1))
ReLU()
MaxPool2d(k=(2, 2))

layer 3 Linear(i=400 (256 for FMNIST), o=120)
ReLU()

layer 4 Linear(i=120, o=84)
ReLU()

layer 5 Linear(i=84, o=10 (100 for CIFAR-100, and 40 for Mix-4))

15



Table 11: The details of ResNet-9 architecture used for CIFAR-100, and STL-10 dataset.
Block Details Input

block 1
Conv2d(i=3, o=64, k=(3, 3), s=(1, 1))

imageGroupNorm(g=32, o=64)
ReLU()

block 2

Conv2d(i=64, o=128, k=(3, 3), s=(1, 1))

block 1GroupNorm(g=32, o=128)
ReLU()
MaxPool2d(k=(2, 2))

block 3

Conv2d(i=128, o=128, k=(3, 3), s=(1, 1))

block 2

GroupNorm(g=32, o=128)
ReLU()
Conv2d(i=128, o=128, k=(3, 3), s=(1, 1))
GroupNorm(g=32, o=128)
ReLU()

block 4

Conv2d(i=128, o=256, k=(3, 3), s=(1, 1))
GroupNorm(g=32, o=256) block 2 +
ReLU() block 3
MaxPool2d(k=(2, 2))

block 5

Conv2d(i=256, o=512, k=(3, 3), s=(1, 1))

block 4GroupNorm(g=32, o=512)
ReLU()
MaxPool2d(k=(2, 2))

block 6

Conv2d(i=512, o=512, k=(3, 3), s=(1, 1))

block 5

GroupNorm(g=32, o=512)
ReLU()
Conv2d(i=512, o=512, k=(3, 3), s=(1, 1))
GroupNorm(g=32, o=512)
ReLU()

classifier MaxPool2d(k=(4, 4)) block 4 +
Linear(i=512, o=100) block 5
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