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Abstract

Text-based reinforcement learning involves an
agent interacting with a fictional environment
using observed text and admissible actions in
natural language to complete a task. Previ-
ous works have shown that agents are able to
succeed in text-based interactive environments
even in the complete absence of semantic un-
derstanding or other linguistic capabilities. The
success of these agents in playing such games
suggests that semantic understanding may not
be important for the task. This raises an im-
portant question about the benefits of large lan-
guage models (LLM) such as RoBERTa in guid-
ing the agents. In this work, we describe the
occurrence of semantic degeneration as a con-
sequence of inappropriate fine-tuning language
models in text-based reinforcement learning
(TBRL). Our analysis shows that fine-tuning
large language models may lead to poor per-
formance. In addition, we show that, even
though semantics is not required for success-
ful training, a semantically rich representation
improves the generalization of these agents.

1 Introduction

Text-based games (TBGs) are a form of interac-
tive fiction applications where players use textual
information to control characters and change the
game’s state in the environment. Due to the fact
that the information from these games is shared as
text, it is expected that a successful player exhibits
natural language understanding (NLU). TBGs have
surfaced as important testbeds for studying the lin-
guistic potential of reinforcement learning agents
along with partial observability and action gener-
ation. TBGs can be modeled as partially observ-
able Markov decision processes (POMDP) defined
by the tuple (S, A, 0, T, E, R), where S is the set
of states, A the set of actions, O the observation
space, 1" the set of state transition probabilities, £/
the conditional observation emission probabilities,
and R : S x A — R the reward function. The
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Figure 1: Semantic degeneration of the LMs after fine-
tuning on trajectories from ZorkI.

goal of a TBG agent is to maximize the final game
score by interacting with the environment through
observed text and available actions.

Recent works in TBRL adopt a strategy where
semantics are learned from the game, typically by
fine-tuning the underlying language models accord-
ing to the rewards seen in training (Yao et al., 2020;
Wang et al., 2022). We hypothesize that this ap-
proach may cause the language model to overfit
the training games, leading to the degeneration of
the semantic relationships learned during LLM pre-
training, and, subsequently, negatively impacting
the agent’s training efficiency and transfer learn-
ing capacity. We conduct experiments in two dis-
tinct TBG domains: (1) TextWorld Commonsense
(TWC) (Murugesan et al., 2021), and (2) Jericho
(Hausknecht et al., 2019) to test our hypothesis.
The former provides a number of games where
the goal is to perform house cleaning tasks such
as taking objects from a location and placing it
in their appropriate places, using commonsense
knowledge. The latter provides a library of clas-
sic text-adventure games, such as the Zork (1977),
each having its own unique objectives, characters,
and events. Unlike TWC games, Jericho games may
not let the player know apriori what the final goal
is. Instead, the player is expected to explore the
game to learn the story and complete the tasks one-
by-one. Our results indicate that the semantic de-
generation caused by finetuning LLMs to Q-values



during training leads to a decrease in the agent’s
performance and hinders its ability to play a dif-
ferent related game. Thus, we show that a better
strategy now is to have agents learn the task at hand,
without updating the semantic representations from
the underlying LLM to preserve the rich seman-
tic information from LLM pretraining. We hope
that this work will help develop efficient finetuning
strategies for interactive environments.

2 Background

Model and Architecture The general architec-
ture of the agents in this work consist of a state
encoder akin to the DRRN (He et al., 2015) with
an actor-critic policy learning (Wang et al., 2016)
and experience replay. The main components of
the agent’s network are (1) a text encoder, (2) a
state-action encoder, and (3) an action scorer. The
text encoder module is a language model that con-
verts an observation o € O and action a € A
from text form to fixed length vectors f(o0) and
f(a). The state-action encoder consists of a GRU
that takes as input the sequence of encoded ob-
servations and actions and predicts the Q-values
for each pair: Qg(0,a) = g(f(0), f(a)) given
parameters ¢. The action predictor is a linear
layer that outputs the probabilities based on the
Q-values from the previous layer. The chosen
action is drawn following the computed probabil-
ity distribution. The agent is trained by minimiz-
ing the temporal differences (TD) loss: L7p =
(r +ymaxyea Qp(0,a’) — Qs(0,a))* where o
and o’ are the next observation and next actions
sampled from a replay memory, v is the reward
discount factor.

Language Representation In order to assess the
effectiveness of language models in text-based RL
settings, we employ several models of distinct fea-
tures. These models are used to encode the textual
information, or observations, in the game into fixed-
length vectors, which in turn are used as the input
to the RL agent. During training, language models
can be updated using the rewards from the game, or
keep their weights frozen so as to avoid changing
their word distributions. In particular, we use three
types of encoders for our analysis:

* Hash (blindfolded) - this encoder does not
capture semantic information from the text.
Instead, we utilize a hash function to reduce
the observation to an unique integer and use

this number as the seed to generate a pseudo-
random vector, similar to Yao et al. (2021).

* Word embeddings (simple) - we use static
word embeddings (such as GloVe (Penning-
ton et al., 2014)) to encode the tokens in the
observations which are passed through a GRU
to obtain a sequence encoding.

* Transformer LLMs - We use pre-trained LLMs
to encode the observations (Devlin et al.,
2018; Liu et al., 2019). These models have
been shown to provide semantically rich en-
coding of textual information.

3 Experiments and Results

We now present our main experimental results. In
the TWC environment, the agents are trained, un-
less otherwise stated, for 100 episodes, with a maxi-
mum of 50 steps per episode (repeated over 5 runs).
In the Jericho environment, agents were trained
over 100000 steps with no limit to the number of
episodes (repeated over 3 runs).

3.1 Comparing the performance of different
LMs for input encoding

We evaluate the use of different LMs for encoding
the textual observation and actions into fixed-length
vectors. We deploy agents of the same architec-
ture as described in Section 2, the only exception
being that the input encoder used by them is dif-
ferent. The encoders range from static word em-
beddings (Simple) to LM-based models, and the
blindfolded encoder (Hash). We begin our analay-
sis with the weights of the language model-based
encoders fixed, i.e., only the agent’s parameters ¢
are updated.

Semantic understanding makes learning more
efficient in text-based games The results from
these experiments show that even an agent without
semantic information can properly learn to play
the games, as seen in Figure 2. However, an agent
leveraging the semantic representations from lan-
guage models are able to: (1) converge to a stable
score earlier and (2) generalize to unseen observa-
tions. Table 1 show that LM-based models using
only text information match or outperform the base-
lines using sophisticated RL algorithms. We find
that performance is consistent across the valida-
tion (in-distribution) and test (out-of-distribution)
sets, which reinforce the argument that semantic
understanding is key to generalization.
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Figure 2: Comparison of the performance across several LLM-based encoding models. Figures (a) and (b) show the
normalized scores and number of movements (lower values are better) for the medium difficulty games in TWC.
Figure (c) shows the game score achieved in training across 100k steps in Zork I. Shaded area corresponds one

standard deviation.

3.2 Comparison to baselines

We compare the performance of the fixed trans-
former models against baselines in the TWC and
Jericho environments. In TWC, the performance
of the models are measured in the in-distribution
validation set, and in the out-of-distribution test set,
which contains objects not seen during training,
we report the average score and average number
of moves taken for each data set. In Jericho, we
compare the average score received in the last 100
episodes during training for 100,000 steps.

Evaluation and Analysis The results for the
TWC environment in the medium difficulty are
shown in Table 1. The top section of the table in-
cludes the baseline methods: DRRN (Hausknecht
et al., 2019), TPC (Murugesan et al., 2021), KG-
A2C (Ammanabrolu and Hausknecht, 2020), BiKE
and BiKE + CBR (Atzeni et al., 2021). Our agent
with LM encoders (e.g.: Albert, RoOBERTa) for in-
put encoding outperform baselines not only in the
medium games but also in easy and hard (see Ap-
pendix A.3 for details). This result highlights the
importance of semantic encoding, particularly in
out-of-distribution sets, where there are objects not
seen during training. In this case, the agent must
rely on the language model to encode observations
that might be similar to those seen in training even
if the exact objects were not part of it.

3.3 Finetuning LMs with game trajectories
and rewards

Next, we let the agent play the game for training
and update the transformer weights in addition to
the actor-critic network parameters. The results
show that, under these settings, the agents hardly
converge to a stable score. This happens because,

Model | Valid Test

DRRN 0.60 £ 0.02 0.55 4+ 0.01
TPC 0.62 4+ 0.03 0.58 4+ 0.01
KG-A2C 0.62 4+ 0.03 0.59 4+ 0.01
BiKE 0.64 4+ 0.02 0.61 4+ 0.01
BiKE + CBR 0.67 £ 0.03 0.67 + 0.03
Hash 0.58 4+ 0.06 0.15 £ 0.03
Simple 0.58 £ 0.08 0.43 £ 0.07
Albert* 0.66 4+ 0.05 0.65 £+ 0.05
MPNet* 0.66 £+ 0.06 0.58 £+ 0.06
RoBERTa* 0.70 + 0.05 0.53 £ 0.06
XLNet* 0.65 4 0.08 0.42 £+ 0.07

Table 1: Results for the in-distribution (valid) and out-of-
distribution (test) sets in TWC medium difficulty games.
(*) Indicates fixed language models.

when updating the language model, the semantic
relationships between the words are broken as they
are adapted to the current game’s relations. We
report the results for this experiment in Figure 3
using two of the best performing LMs in our set,
Albert and RoBERTa.

Finetuning the language representation to game
trajectories and rewards causes semantic degen-
eration of the LMs The results presented in this
section show how the agent’s performance declines
when language representations are updated as a re-
sult of training the reinforcement learning agent.
We believe this behaviour is due to the overfitting
of the representations to Q-values, leading to a de-
generation of the semantic relationships learned
during pre-training of LLMs. Moreover, finetuning
the LM encoders to the game semantics seems to
negatively impact the agent’s ability to generalize
as can be seen in the results from Section 3.4. Thus,
it is desirable to avoid semantic degeneration alto-
gether when training the agents by not updating the
LMs weights directly.

A qualitative analysis of the semantic degenera-
tion caused by finetuning LMs to Q-values can be
seen in Figure 4. The figure show how the word
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Figure 3: Performance of fine-tuned LLMs (Albert-ft,
Roberta-ft) during training of TWC games in the easy
difficulty. The degeneration of semantic understanding
prevents the agent from converging to a stable score
within 100 episodes, moreover, the normalized score
exhibits a declining trend. Shaded areas denote one
standard deviation.

vectors shift according to their co-occurrence in
Zork 1. For instance, the vectors for sword and
bloody axe are placed next to each other by the
original model. The fine-tuned model, on the other
hand, moves bloody axe closer to kitchen because
these two entities co-occur in the neighboring states
in a game trajectory that lead to positive rewards.
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Figure 4: Shift caused by the semantic degeneration to
the contextual word embeddings in the RoOBERTa model
fine-tuned to Zork I: (a) shows the word embeddings
from the original model, (b) shows the word embeddings
after finetuning to Zork 1. The bold words denote the
case where the term “bloody axe” shifts towards the
word “kitchen” as a result of these words appearing
together in a state with positive reward.

3.4 Perturbations

Finally, we test the robustness of each model with
respect to perturbations in the text. We evaluate
the agents in games where the observations are
transformed in one of the following ways: Para-
phrasing, we run the observations through a para-
phrasing model to rephrase the descriptions (using
bart-based paraphrase); Lexical Substitution, we
replace words in the observations using synonyms
and hypernyms from WordNet (Fellbaum, 2010).
We see the performance of the fixed agent for
TWC games in Figure 5a. In Easy and Medium
difficulties, paraphrasing has little effect on the
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Figure 5: Evaluation of a RoBERTa agent on original,
paraphrased, and lexical substitution observations on (a)
TWC medium games and (b) Zork 1. In Figure (a), we
can see how each substitution renders the games more
difficult for the agent as the observations contain out-of-
training words. In Figure (b) we have a comparison of
fixed, fine-tuned and hash language representations.

performance of the agent in both in-distribution
(valid) and out-of-distribution (test) sets. This con-
firms the hypothesis that semantic understanding
is important for generalization to “unseen’ obser-
vations. Figure 5b shows the performance of the
three agents in Zork 1. The fine-tuned agent ex-
hibits a decline in performance while playing the
paraphrased and lexical substitution games. This
is explained by the fact that the LM encoder has
been fine-tuned to the semantics of the original
game, thus, its encodings are no longer positioned
according to semantic similarity. The hash-based
agent is unable to score in either of the modified
games. This is expected since the hash encoding
does not capture any semantics. The fixed agent,
however, exhibits strong robustness to the pertur-
bations. This emphasizes the importance of using
LLMs as-is to avoid degeneration of the rich se-
mantic information.

4 Conclusion

In this paper, we have put forth a novel perspective
where we leverage and adapt the semantic infor-
mation contained in pre-trained language models
to the task of playing text-based games using re-
inforcement learning. Our experiments show that
agents using only fixed encodings of the textual fea-
tures from transformer language models are able to
leverage rich semantic information in the LMs to
outperform baselines. Additionally, we show that
updating the LM game semantics can negatively
affect the semantic relationships learned by the pre-
trained LMs, resulting in overfitted representations
that do not exhibit transfer capabilities. For future
work, we will focus on efficient methods to com-
bine the rich semantic information of LMs with
language information that are specific to the task.



Limitations

Our work focuses on popular TBG environments
and also popular choices of LLMs. In future work
it would be interesting to study rarer TBG envi-
ronments, potentially beyond English. In that con-
text it would also be interesting to study multi-
lingual LLMs as the semantic representation for
these games. Since we use LLM representations for
game playing, some of the limitations of these rep-
resentations (like inability to distinguish between
some related concepts, or certain biases), might
carry over. Investigating these in detail is another
interesting avenue for future work.
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A Appendix

A.1 TextWorld Commonsense

This section contains information about the games
(Table 2) in TextWorld Commonsense as well as
an example of an observation and plausible actions
(Figure 6).

The goal of TWC games are to complete a series
of household tasks, such as “picking up an apple
and putting it in an appropriate location”. The agent
is provided with the description of a scene and a list
of plausible actions. They must then decide which
action to be taken in the current game state. If the
action performed is good, the agent is rewarded
with points.

TWC games are split into easy, medium and hard
difficulties. As the difficulty increases, the number
of target objects and rooms to cleanup increases.
Details can be seen in Table 2.

Objects | Targets | Rooms
Easy 1 1 1
Medium 2-3 1-3 1
Hard 67 5-7 1-2

Table 2: No. of objects, target objects and rooms in TWC
games per difficulty level.

A.2 Model comparison in TWC

Figure 7 shows the comparison between all lan-
guage models in all three difficulties of TWC in
terms of normalized score and number of move-
ments.

These results show how agents using fixed LMs
converge earlier to a stable score (Figures 7 a, b, c)
and to stable number of movements (Figures 7 d,
e, f). Higher scores are better. Lower number of
movements are better because it means the agent
can complete the task while taking fewer actions,
avoiding unnecessary moves.

A.3 Complete Table of TWC Results

Tables 3 and 4 show the results for all difficul-
ties in TWC in the in-distribution set and out-of-
distribution set.

We can see that fixed LMs consistently perform
better when applied to both in-distribution and out-
of-distribution tasks. This is due to the fact that
they can keep rich semantic information and not
suffering from semantic degeneration.

A4 Complete results for perturbation
experiments in TWC

Figure 8 shows the results for the perturbation ex-
periments in TWC difficulties.

The result show how that a fixed LM model
(RoBERTa2) can maintain a relatively similar per-
formance to the original observations when playing
noisy versions of the game.

A.5 Text perturbations

This sections presents a description of the perturba-
tions applied to the game texts.

A perturbation is a modification of an original
piece of text in the game to produce an “out-of-
training” example. Perturbations are applied to the
observations, actions and inventories.

The types of perturbations are:

* Lexical substitution - we use WordNet synsets
to find replacements for words in the text

* Paraphrasing - we use a BART paraphraser to
rephrase the original text

B Reproducibility

The code needed used to implement the methods de-
scribed in this manuscript are submitted along with
the supplementary material. The code is anony-
mous and contains the instructions to set up the
environments, download the game data, and train
the agents.



Observation Plausible Actions

You’ve entered a kitchen. Open dishwasher

Look over there! A dishwasher. You can see a closed cutlery Open cutlery drawer

drawer. You see a ladderback chair. On the ladderback chair Take dirty whisk from ladder-
you can make out a dirty whisk. back chair

Figure 6: Example of an observation from a TextWorld Commonsense game.
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Figure 7: Comparison of the performance across several language encoding models. Figures a, b, ¢ show the
normalized score for easy, medium and hard games, respectively. Figures d, e, f show the number of movements
needed by the agent to complete the task (lower values are better). Shaded region corresponds one standard
deviation.

Easy Medium Hard
Model Score Moves Score Moves Score Moves
DRRN 0.88+0.04 244+2|060+0.02 44+1]030+0.02 50+0
TPC 0.89+0.06 21+5|0.62+0.03 43+1|0.32+0.04 48+1
KG-A2C 0.86£0.06 22+3|0.62+0.03 42+0 | 0.324+0.00 48+1
BiKE 0.94+£000 18+1|0.64+0.02 39+1|0.34+0.00 47+1
BiKE+CBR | 0.954+0.04 16+1 | 0.67+0.03 35+1 | 042+004 45+1
Hash 0.31+£0.07 43+2|058+0.06 43+2|0.224+0.03 50=+0
Simple 0.83+0.08 26+4|058+0.08 43+£2|0.354+0.05 49+0
Albert* 096002 10+2 | 0.66+0.05 38+£2 | 0.414+0.05 49+0
MPNet* 0.85+£0.04 1943 | 0.66+0.06 38+2|0.364+0.04 49+0
RoBERTa* 0.94+£003 12+2 | 070+£0.05 38+£2 | 0404+0.04 49£0
XLNet* 1.00£0.00 6+1|0.65+0.08 36+3|037+£0.07 48+1

Table 3: Results for the in-distribution (valid) sets in TWC. (*) Indicates agents with fixed LM encoders.



Easy Medium Hard
Model Score Moves | Score Moves | Score Moves
DRRN 0.784+0.02 3043 | 0.55+£0.01 46+0 | 0.20+0.02 5040
TPC 0.784+0.07 2844 | 0.58+0.01 45+2 | 0.194+0.03 5040
KG-A2C 0.804+0.07 2844 ]0.59+0.01 43+3 | 0.21+0.00 5040
BiKE 0.83+0.01 2642 |0.61+£0.01 41+2]023+0.02 5040
BiKE+CBR | 0.93+£0.03 17+1 | 0.67+0.03 354+1 | 040+0.03 46+1
Simple 0.50+0.12 3944 | 043+0.07 43+2]0.26+0.04 5040
Hash 0.19+0.06 44+2|0.15+£0.03 50+£0 | 0.094+0.02 50+0
Albert* 0.64+£005 33+3|065+0.06 38+2|0.164+0.02 50£0
MPNet* 0.854+0.05 234+2|0.58+0.06 42+2 | 0.144+0.02 5040
RoBERTa* 0904+0.04 1942 | 0.53+£0.06 44+1 | 0.194+0.03 5040
XLNet* 0.644+0.05 304+3|042+0.07 47+1 | 0.17+0.03 50+0

Table 4: Results for the out-of-distribution (test) sets in TWC. (*) Indicates agents with fixed LM encoders.
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