
Towards Understanding Semantic Degeneration in Text-Based
Reinforcement Learning

Anonymous ACL submission

Abstract

Text-based reinforcement learning involves an001
agent interacting with a fictional environment002
using observed text and admissible actions in003
natural language to complete a task. Previ-004
ous works have shown that agents are able to005
succeed in text-based interactive environments006
even in the complete absence of semantic un-007
derstanding or other linguistic capabilities. The008
success of these agents in playing such games009
suggests that semantic understanding may not010
be important for the task. This raises an im-011
portant question about the benefits of large lan-012
guage models (LLM) such as RoBERTa in guid-013
ing the agents. In this work, we describe the014
occurrence of semantic degeneration as a con-015
sequence of inappropriate fine-tuning language016
models in text-based reinforcement learning017
(TBRL). Our analysis shows that fine-tuning018
large language models may lead to poor per-019
formance. In addition, we show that, even020
though semantics is not required for success-021
ful training, a semantically rich representation022
improves the generalization of these agents.023

1 Introduction024

Text-based games (TBGs) are a form of interac-025

tive fiction applications where players use textual026

information to control characters and change the027

game’s state in the environment. Due to the fact028

that the information from these games is shared as029

text, it is expected that a successful player exhibits030

natural language understanding (NLU). TBGs have031

surfaced as important testbeds for studying the lin-032

guistic potential of reinforcement learning agents033

along with partial observability and action gener-034

ation. TBGs can be modeled as partially observ-035

able Markov decision processes (POMDP) defined036

by the tuple ⟨S,A,O, T,E,R⟩, where S is the set037

of states, A the set of actions, O the observation038

space, T the set of state transition probabilities, E039

the conditional observation emission probabilities,040

and R : S × A → R the reward function. The041

Figure 1: Semantic degeneration of the LMs after fine-
tuning on trajectories from Zork1.

goal of a TBG agent is to maximize the final game 042

score by interacting with the environment through 043

observed text and available actions. 044

Recent works in TBRL adopt a strategy where 045

semantics are learned from the game, typically by 046

fine-tuning the underlying language models accord- 047

ing to the rewards seen in training (Yao et al., 2020; 048

Wang et al., 2022). We hypothesize that this ap- 049

proach may cause the language model to overfit 050

the training games, leading to the degeneration of 051

the semantic relationships learned during LLM pre- 052

training, and, subsequently, negatively impacting 053

the agent’s training efficiency and transfer learn- 054

ing capacity. We conduct experiments in two dis- 055

tinct TBG domains: (1) TextWorld Commonsense 056

(TWC) (Murugesan et al., 2021), and (2) Jericho 057

(Hausknecht et al., 2019) to test our hypothesis. 058

The former provides a number of games where 059

the goal is to perform house cleaning tasks such 060

as taking objects from a location and placing it 061

in their appropriate places, using commonsense 062

knowledge. The latter provides a library of clas- 063

sic text-adventure games, such as the Zork (1977), 064

each having its own unique objectives, characters, 065

and events. Unlike TWC games, Jericho games may 066

not let the player know apriori what the final goal 067

is. Instead, the player is expected to explore the 068

game to learn the story and complete the tasks one- 069

by-one. Our results indicate that the semantic de- 070

generation caused by finetuning LLMs to Q-values 071

1



during training leads to a decrease in the agent’s072

performance and hinders its ability to play a dif-073

ferent related game. Thus, we show that a better074

strategy now is to have agents learn the task at hand,075

without updating the semantic representations from076

the underlying LLM to preserve the rich seman-077

tic information from LLM pretraining. We hope078

that this work will help develop efficient finetuning079

strategies for interactive environments.080

2 Background081

Model and Architecture The general architec-082

ture of the agents in this work consist of a state083

encoder akin to the DRRN (He et al., 2015) with084

an actor-critic policy learning (Wang et al., 2016)085

and experience replay. The main components of086

the agent’s network are (1) a text encoder, (2) a087

state-action encoder, and (3) an action scorer. The088

text encoder module is a language model that con-089

verts an observation o ∈ O and action a ∈ A090

from text form to fixed length vectors f(o) and091

f(a). The state-action encoder consists of a GRU092

that takes as input the sequence of encoded ob-093

servations and actions and predicts the Q-values094

for each pair: Qϕ(o, a) = g(f(o), f(a)) given095

parameters ϕ. The action predictor is a linear096

layer that outputs the probabilities based on the097

Q-values from the previous layer. The chosen098

action is drawn following the computed probabil-099

ity distribution. The agent is trained by minimiz-100

ing the temporal differences (TD) loss: LTD =101

(r + γmaxa′∈AQϕ(o
′, a′) − Qϕ(o, a))

2 where o′102

and a′ are the next observation and next actions103

sampled from a replay memory, γ is the reward104

discount factor.105

Language Representation In order to assess the106

effectiveness of language models in text-based RL107

settings, we employ several models of distinct fea-108

tures. These models are used to encode the textual109

information, or observations, in the game into fixed-110

length vectors, which in turn are used as the input111

to the RL agent. During training, language models112

can be updated using the rewards from the game, or113

keep their weights frozen so as to avoid changing114

their word distributions. In particular, we use three115

types of encoders for our analysis:116

• Hash (blindfolded) - this encoder does not117

capture semantic information from the text.118

Instead, we utilize a hash function to reduce119

the observation to an unique integer and use120

this number as the seed to generate a pseudo- 121

random vector, similar to Yao et al. (2021). 122

• Word embeddings (simple) - we use static 123

word embeddings (such as GloVe (Penning- 124

ton et al., 2014)) to encode the tokens in the 125

observations which are passed through a GRU 126

to obtain a sequence encoding. 127

• Transformer LLMs - We use pre-trained LLMs 128

to encode the observations (Devlin et al., 129

2018; Liu et al., 2019). These models have 130

been shown to provide semantically rich en- 131

coding of textual information. 132

3 Experiments and Results 133

We now present our main experimental results. In 134

the TWC environment, the agents are trained, un- 135

less otherwise stated, for 100 episodes, with a maxi- 136

mum of 50 steps per episode (repeated over 5 runs). 137

In the Jericho environment, agents were trained 138

over 100000 steps with no limit to the number of 139

episodes (repeated over 3 runs). 140

3.1 Comparing the performance of different 141

LMs for input encoding 142

We evaluate the use of different LMs for encoding 143

the textual observation and actions into fixed-length 144

vectors. We deploy agents of the same architec- 145

ture as described in Section 2, the only exception 146

being that the input encoder used by them is dif- 147

ferent. The encoders range from static word em- 148

beddings (Simple) to LM-based models, and the 149

blindfolded encoder (Hash). We begin our analay- 150

sis with the weights of the language model-based 151

encoders fixed, i.e., only the agent’s parameters ϕ 152

are updated. 153

Semantic understanding makes learning more 154

efficient in text-based games The results from 155

these experiments show that even an agent without 156

semantic information can properly learn to play 157

the games, as seen in Figure 2. However, an agent 158

leveraging the semantic representations from lan- 159

guage models are able to: (1) converge to a stable 160

score earlier and (2) generalize to unseen observa- 161

tions. Table 1 show that LM-based models using 162

only text information match or outperform the base- 163

lines using sophisticated RL algorithms. We find 164

that performance is consistent across the valida- 165

tion (in-distribution) and test (out-of-distribution) 166

sets, which reinforce the argument that semantic 167

understanding is key to generalization. 168

2



Albert Hash Minilm Mpnet Roberta Simple Xlnet

0 20 40 60 80 100
Episode

0.2

0.3

0.4

0.5

0.6

0.7
No

rm
. s

co
re

(a) Norm. scores (TWC)

0 20 40 60 80 100
Episode

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

M
ov

es

(b) Movements (TWC)

0 20000 40000 60000 80000 100000
Step

10

5

0

5

10

15

20

25

30

Sc
or

e

(c) Scores (Zork 1)

Figure 2: Comparison of the performance across several LLM-based encoding models. Figures (a) and (b) show the
normalized scores and number of movements (lower values are better) for the medium difficulty games in TWC.
Figure (c) shows the game score achieved in training across 100k steps in Zork 1. Shaded area corresponds one
standard deviation.

3.2 Comparison to baselines169

We compare the performance of the fixed trans-170

former models against baselines in the TWC and171

Jericho environments. In TWC, the performance172

of the models are measured in the in-distribution173

validation set, and in the out-of-distribution test set,174

which contains objects not seen during training,175

we report the average score and average number176

of moves taken for each data set. In Jericho, we177

compare the average score received in the last 100178

episodes during training for 100,000 steps.179

Evaluation and Analysis The results for the180

TWC environment in the medium difficulty are181

shown in Table 1. The top section of the table in-182

cludes the baseline methods: DRRN (Hausknecht183

et al., 2019), TPC (Murugesan et al., 2021), KG-184

A2C (Ammanabrolu and Hausknecht, 2020), BiKE185

and BiKE + CBR (Atzeni et al., 2021). Our agent186

with LM encoders (e.g.: Albert, RoBERTa) for in-187

put encoding outperform baselines not only in the188

medium games but also in easy and hard (see Ap-189

pendix A.3 for details). This result highlights the190

importance of semantic encoding, particularly in191

out-of-distribution sets, where there are objects not192

seen during training. In this case, the agent must193

rely on the language model to encode observations194

that might be similar to those seen in training even195

if the exact objects were not part of it.196

3.3 Finetuning LMs with game trajectories197

and rewards198

Next, we let the agent play the game for training199

and update the transformer weights in addition to200

the actor-critic network parameters. The results201

show that, under these settings, the agents hardly202

converge to a stable score. This happens because,203

Model Valid Test

DRRN 0.60 ± 0.02 0.55 ± 0.01
TPC 0.62 ± 0.03 0.58 ± 0.01
KG-A2C 0.62 ± 0.03 0.59 ± 0.01
BiKE 0.64 ± 0.02 0.61 ± 0.01
BiKE + CBR 0.67 ± 0.03 0.67 ± 0.03

Hash 0.58 ± 0.06 0.15 ± 0.03
Simple 0.58 ± 0.08 0.43 ± 0.07
Albert* 0.66 ± 0.05 0.65 ± 0.05
MPNet* 0.66 ± 0.06 0.58 ± 0.06
RoBERTa* 0.70 ± 0.05 0.53 ± 0.06
XLNet* 0.65 ± 0.08 0.42 ± 0.07

Table 1: Results for the in-distribution (valid) and out-of-
distribution (test) sets in TWC medium difficulty games.
(*) Indicates fixed language models.

when updating the language model, the semantic 204

relationships between the words are broken as they 205

are adapted to the current game’s relations. We 206

report the results for this experiment in Figure 3 207

using two of the best performing LMs in our set, 208

Albert and RoBERTa. 209

Finetuning the language representation to game 210

trajectories and rewards causes semantic degen- 211

eration of the LMs The results presented in this 212

section show how the agent’s performance declines 213

when language representations are updated as a re- 214

sult of training the reinforcement learning agent. 215

We believe this behaviour is due to the overfitting 216

of the representations to Q-values, leading to a de- 217

generation of the semantic relationships learned 218

during pre-training of LLMs. Moreover, finetuning 219

the LM encoders to the game semantics seems to 220

negatively impact the agent’s ability to generalize 221

as can be seen in the results from Section 3.4. Thus, 222

it is desirable to avoid semantic degeneration alto- 223

gether when training the agents by not updating the 224

LMs weights directly. 225

A qualitative analysis of the semantic degenera- 226

tion caused by finetuning LMs to Q-values can be 227

seen in Figure 4. The figure show how the word 228

3



0 20 40 60 80 100
Episode

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

. s
co

re

Albert-ft
Roberta-ft
Albert
Roberta

Figure 3: Performance of fine-tuned LLMs (Albert-ft,
Roberta-ft) during training of TWC games in the easy
difficulty. The degeneration of semantic understanding
prevents the agent from converging to a stable score
within 100 episodes, moreover, the normalized score
exhibits a declining trend. Shaded areas denote one
standard deviation.

vectors shift according to their co-occurrence in229

Zork 1. For instance, the vectors for sword and230

bloody axe are placed next to each other by the231

original model. The fine-tuned model, on the other232

hand, moves bloody axe closer to kitchen because233

these two entities co-occur in the neighboring states234

in a game trajectory that lead to positive rewards.235

window

chicken

egg

nest

house

kitchen

door sword

bloody axecarpetrope

(a)

window

chicken

egg
nest

house

kitchen
door

swordbloody axe

carpet

rope

(b)

Figure 4: Shift caused by the semantic degeneration to
the contextual word embeddings in the RoBERTa model
fine-tuned to Zork 1: (a) shows the word embeddings
from the original model, (b) shows the word embeddings
after finetuning to Zork 1. The bold words denote the
case where the term “bloody axe” shifts towards the
word “kitchen” as a result of these words appearing
together in a state with positive reward.

3.4 Perturbations236

Finally, we test the robustness of each model with237

respect to perturbations in the text. We evaluate238

the agents in games where the observations are239

transformed in one of the following ways: Para-240

phrasing, we run the observations through a para-241

phrasing model to rephrase the descriptions (using242

bart-based paraphrase); Lexical Substitution, we243

replace words in the observations using synonyms244

and hypernyms from WordNet (Fellbaum, 2010).245

We see the performance of the fixed agent for246

TWC games in Figure 5a. In Easy and Medium247

difficulties, paraphrasing has little effect on the248

test valid
Split

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. s
co

re

Perturbation
None
Paraphrasing
Substitute

(a) TWC Medium

Fine-tuned Hash Fixed
Split

0

5

10

15

20

25

Sc
or

e

Perturbation
None
Paraphrasing
Substitute

(b) Zork 1

Figure 5: Evaluation of a RoBERTa agent on original,
paraphrased, and lexical substitution observations on (a)
TWC medium games and (b) Zork 1. In Figure (a), we
can see how each substitution renders the games more
difficult for the agent as the observations contain out-of-
training words. In Figure (b) we have a comparison of
fixed, fine-tuned and hash language representations.

performance of the agent in both in-distribution 249

(valid) and out-of-distribution (test) sets. This con- 250

firms the hypothesis that semantic understanding 251

is important for generalization to “unseen” obser- 252

vations. Figure 5b shows the performance of the 253

three agents in Zork 1. The fine-tuned agent ex- 254

hibits a decline in performance while playing the 255

paraphrased and lexical substitution games. This 256

is explained by the fact that the LM encoder has 257

been fine-tuned to the semantics of the original 258

game, thus, its encodings are no longer positioned 259

according to semantic similarity. The hash-based 260

agent is unable to score in either of the modified 261

games. This is expected since the hash encoding 262

does not capture any semantics. The fixed agent, 263

however, exhibits strong robustness to the pertur- 264

bations. This emphasizes the importance of using 265

LLMs as-is to avoid degeneration of the rich se- 266

mantic information. 267

4 Conclusion 268

In this paper, we have put forth a novel perspective 269

where we leverage and adapt the semantic infor- 270

mation contained in pre-trained language models 271

to the task of playing text-based games using re- 272

inforcement learning. Our experiments show that 273

agents using only fixed encodings of the textual fea- 274

tures from transformer language models are able to 275

leverage rich semantic information in the LMs to 276

outperform baselines. Additionally, we show that 277

updating the LM game semantics can negatively 278

affect the semantic relationships learned by the pre- 279

trained LMs, resulting in overfitted representations 280

that do not exhibit transfer capabilities. For future 281

work, we will focus on efficient methods to com- 282

bine the rich semantic information of LMs with 283

language information that are specific to the task. 284

4



Limitations285

Our work focuses on popular TBG environments286

and also popular choices of LLMs. In future work287

it would be interesting to study rarer TBG envi-288

ronments, potentially beyond English. In that con-289

text it would also be interesting to study multi-290

lingual LLMs as the semantic representation for291

these games. Since we use LLM representations for292

game playing, some of the limitations of these rep-293

resentations (like inability to distinguish between294

some related concepts, or certain biases), might295

carry over. Investigating these in detail is another296

interesting avenue for future work.297

References298

Prithviraj Ammanabrolu and Matthew Hausknecht.299
2020. Graph constrained reinforcement learning300
for natural language action spaces. arXiv preprint301
arXiv:2001.08837.302

Mattia Atzeni, Shehzaad Zuzar Dhuliawala, Keerthi-303
ram Murugesan, and Mrinmaya Sachan. 2021. Case-304
based reasoning for better generalization in textual305
reinforcement learning. In International Conference306
on Learning Representations.307

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and308
Kristina Toutanova. 2018. Bert: Pre-training of deep309
bidirectional transformers for language understand-310
ing. arXiv preprint arXiv:1810.04805.311

Christiane Fellbaum. 2010. Wordnet. In Theory and ap-312
plications of ontology: computer applications, pages313
231–243. Springer.314

Matthew Hausknecht, Prithviraj Ammanabrolu, Côté315
Marc-Alexandre, and Yuan Xingdi. 2019. Interac-316
tive fiction games: A colossal adventure. CoRR,317
abs/1909.05398.318

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-319
hong Li, Li Deng, and Mari Ostendorf. 2015. Deep320
reinforcement learning with a natural language action321
space. arXiv preprint arXiv:1511.04636.322

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-323
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,324
Luke Zettlemoyer, and Veselin Stoyanov. 2019.325
Roberta: A robustly optimized bert pretraining ap-326
proach. arXiv preprint arXiv:1907.11692.327

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-328
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald329
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,330
and Murray Campbell. 2021. Text-based rl agents331
with commonsense knowledge: New challenges, en-332
vironments and baselines.333

Jeffrey Pennington, Richard Socher, and Christopher D 334
Manning. 2014. Glove: Global vectors for word rep- 335
resentation. In Proceedings of the 2014 conference 336
on empirical methods in natural language processing 337
(EMNLP), pages 1532–1543. 338

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and 339
Prithviraj Ammanabrolu. 2022. Behavior cloned 340
transformers are neurosymbolic reasoners. arXiv 341
preprint arXiv:2210.07382. 342

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr 343
Mnih, Remi Munos, Koray Kavukcuoglu, and Nando 344
de Freitas. 2016. Sample efficient actor-critic with 345
experience replay. arXiv preprint arXiv:1611.01224. 346

Shunyu Yao, Karthik Narasimhan, and Matthew 347
Hausknecht. 2021. Reading and acting while blind- 348
folded: The need for semantics in text game agents. 349
arXiv preprint arXiv:2103.13552. 350

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and 351
Karthik Narasimhan. 2020. Keep calm and explore: 352
Language models for action generation in text-based 353
games. In Proceedings of the 2020 Conference on 354
Empirical Methods in Natural Language Processing 355
(EMNLP), pages 8736–8754. 356

5

http://arxiv.org/abs/1909.05398
http://arxiv.org/abs/1909.05398
http://arxiv.org/abs/1909.05398


A Appendix357

A.1 TextWorld Commonsense358

This section contains information about the games359

(Table 2) in TextWorld Commonsense as well as360

an example of an observation and plausible actions361

(Figure 6).362

The goal of TWC games are to complete a series363

of household tasks, such as “picking up an apple364

and putting it in an appropriate location”. The agent365

is provided with the description of a scene and a list366

of plausible actions. They must then decide which367

action to be taken in the current game state. If the368

action performed is good, the agent is rewarded369

with points.370

TWC games are split into easy, medium and hard371

difficulties. As the difficulty increases, the number372

of target objects and rooms to cleanup increases.373

Details can be seen in Table 2.374

Objects Targets Rooms
Easy 1 1 1
Medium 2–3 1–3 1
Hard 6–7 5–7 1–2

Table 2: No. of objects, target objects and rooms in TWC
games per difficulty level.

A.2 Model comparison in TWC375

Figure 7 shows the comparison between all lan-376

guage models in all three difficulties of TWC in377

terms of normalized score and number of move-378

ments.379

These results show how agents using fixed LMs380

converge earlier to a stable score (Figures 7 a, b, c)381

and to stable number of movements (Figures 7 d,382

e, f). Higher scores are better. Lower number of383

movements are better because it means the agent384

can complete the task while taking fewer actions,385

avoiding unnecessary moves.386

A.3 Complete Table of TWC Results387

Tables 3 and 4 show the results for all difficul-388

ties in TWC in the in-distribution set and out-of-389

distribution set.390

We can see that fixed LMs consistently perform391

better when applied to both in-distribution and out-392

of-distribution tasks. This is due to the fact that393

they can keep rich semantic information and not394

suffering from semantic degeneration.395

A.4 Complete results for perturbation 396

experiments in TWC 397

Figure 8 shows the results for the perturbation ex- 398

periments in TWC difficulties. 399

The result show how that a fixed LM model 400

(RoBERTa) can maintain a relatively similar per- 401

formance to the original observations when playing 402

noisy versions of the game. 403

A.5 Text perturbations 404

This sections presents a description of the perturba- 405

tions applied to the game texts. 406

A perturbation is a modification of an original 407

piece of text in the game to produce an “out-of- 408

training” example. Perturbations are applied to the 409

observations, actions and inventories. 410

The types of perturbations are: 411

• Lexical substitution - we use WordNet synsets 412

to find replacements for words in the text 413

• Paraphrasing - we use a BART paraphraser to 414

rephrase the original text 415

B Reproducibility 416

The code needed used to implement the methods de- 417

scribed in this manuscript are submitted along with 418

the supplementary material. The code is anony- 419

mous and contains the instructions to set up the 420

environments, download the game data, and train 421

the agents. 422

6



Observation
You’ve entered a kitchen.
Look over there! A dishwasher. You can see a closed cutlery
drawer. You see a ladderback chair. On the ladderback chair
you can make out a dirty whisk.

Plausible Actions
Open dishwasher
Open cutlery drawer
Take dirty whisk from ladder-
back chair

Figure 6: Example of an observation from a TextWorld Commonsense game.

Albert Hash Minilm Mpnet Roberta Simple Xlnet

Easy Medium Hard

0 20 40 60 80 100
Episode

0.2

0.4

0.6

0.8

1.0

No
rm

. s
co

re

(a)

0 20 40 60 80 100
Episode

0.2

0.3

0.4

0.5

0.6

0.7
No

rm
. s

co
re

(b)

0 20 40 60 80 100
Episode

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

. s
co

re

(c)

0 20 40 60 80 100
Episode

0

10

20

30

40

50

M
ov

es

(d)

0 20 40 60 80 100
Episode

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

M
ov

es

(e)

0 20 40 60 80 100
Episode

47

48

49

50

M
ov

es

(f)

Figure 7: Comparison of the performance across several language encoding models. Figures a, b, c show the
normalized score for easy, medium and hard games, respectively. Figures d, e, f show the number of movements
needed by the agent to complete the task (lower values are better). Shaded region corresponds one standard
deviation.

Easy Medium Hard
Model Score Moves Score Moves Score Moves

DRRN 0.88± 0.04 24± 2 0.60± 0.02 44± 1 0.30± 0.02 50± 0
TPC 0.89± 0.06 21± 5 0.62± 0.03 43± 1 0.32± 0.04 48± 1
KG-A2C 0.86± 0.06 22± 3 0.62± 0.03 42± 0 0.32± 0.00 48± 1
BiKE 0.94± 0.00 18± 1 0.64± 0.02 39± 1 0.34± 0.00 47± 1
BiKE + CBR 0.95± 0.04 16± 1 0.67± 0.03 35 ± 1 0.42 ± 0.04 45 ± 1

Hash 0.31± 0.07 43± 2 0.58± 0.06 43± 2 0.22± 0.03 50± 0
Simple 0.83± 0.08 26± 4 0.58± 0.08 43± 2 0.35± 0.05 49± 0
Albert* 0.96± 0.02 10± 2 0.66± 0.05 38± 2 0.41± 0.05 49± 0
MPNet* 0.85± 0.04 19± 3 0.66± 0.06 38± 2 0.36± 0.04 49± 0
RoBERTa* 0.94± 0.03 12± 2 0.70 ± 0.05 38± 2 0.40± 0.04 49± 0
XLNet* 1.00± 0.00 6 ± 1 0.65± 0.08 36± 3 0.37± 0.07 48± 1

Table 3: Results for the in-distribution (valid) sets in TWC. (*) Indicates agents with fixed LM encoders.

7



Easy Medium Hard
Model Score Moves Score Moves Score Moves

DRRN 0.78± 0.02 30± 3 0.55± 0.01 46± 0 0.20± 0.02 50± 0
TPC 0.78± 0.07 28± 4 0.58± 0.01 45± 2 0.19± 0.03 50± 0
KG-A2C 0.80± 0.07 28± 4 0.59± 0.01 43± 3 0.21± 0.00 50± 0
BiKE 0.83± 0.01 26± 2 0.61± 0.01 41± 2 0.23± 0.02 50± 0
BiKE + CBR 0.93± 0.03 17± 1 0.67± 0.03 35± 1 0.40 ± 0.03 46 ± 1

Simple 0.50± 0.12 39± 4 0.43± 0.07 43± 2 0.26± 0.04 50± 0
Hash 0.19± 0.06 44± 2 0.15± 0.03 50± 0 0.09± 0.02 50± 0
Albert* 0.64± 0.05 33± 3 0.65± 0.05 38 ± 2 0.16± 0.02 50± 0
MPNet* 0.85± 0.05 23± 2 0.58± 0.06 42± 2 0.14± 0.02 50± 0
RoBERTa* 0.90± 0.04 19± 2 0.53± 0.06 44± 1 0.19± 0.03 50± 0
XLNet* 0.64± 0.05 30± 3 0.42± 0.07 47± 1 0.17± 0.03 50± 0

Table 4: Results for the out-of-distribution (test) sets in TWC. (*) Indicates agents with fixed LM encoders.

test valid
Split

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. s
co

re

Perturbation
None
Paraphrasing
Substitute

(a) TWC Easy

test valid
Split

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. s
co

re

Perturbation
None
Paraphrasing
Substitute

(b) TWC Medium

test valid
Split

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. s
co

re

Perturbation
None
Paraphrasing
Substitute

(c) TWC Hard

Figure 8: Evaluation of an RoBERTa agent on original, paraphrased, and lexical substitution observations on (a)
Easy, (b) Medium and (c) Hard games.

8


