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Abstract

We study how well large language models001
(LLMs) explain their generations with ratio-002
nales – a set of tokens extracted from the input003
texts that reflect the decision process of LLMs.004
We examine LLM rationales extracted with two005
methods: 1) attribution-based methods that use006
attention or gradients to locate important to-007
kens, and 2) prompting-based methods that008
guide LLMs to extract rationales using prompts.009
Through extensive experiments, we show that010
prompting-based rationales align better with011
human-annotated rationales than attribution-012
based rationales, and demonstrate reasonable013
alignment with humans even when model per-014
formance is poor. We additionally find that015
the faithfulness limitations of prompting-based016
methods, which are identified in previous work,017
may be linked to their collapsed predictions. By018
fine-tuning these models on the corresponding019
datasets, both prompting and attribution meth-020
ods demonstrate improved faithfulness. Our021
study sheds light on more rigorous and fair022
evaluations of LLM rationales, especially for023
prompting-based ones.1024

1 Introduction025

The rise of large language models (LLMs) has sig-026

nificantly transformed the field of natural language027

processing (NLP) (Touvron et al., 2023; Team et al.,028

2023; OpenAI et al., 2024), enabling a wide range029

of applications from web question answering to030

complex reasoning tasks. However, they are not031

always reliable and usually cannot clearly explain032

their outputs (Ji et al., 2023), which limits the de-033

ployment of these models in high-stakes scenarios.034

Rationales2, i.e., tokens of the input text that035

are most influential to the models’ predictions,036

are widely studied in the NLP community prior037

1Code and data will be released upon paper acceptance.
2Also called self-explanation or extractive rationales in

previous work (Huang et al., 2023a; Madsen et al., 2024).

Identify the most important keywords 
relevant to understanding the relationship 
between the premise and the hypothesis.

Premise:         Two racers race on motorcycles.
Hypothesis:   Two people are racing cars. 
Label:              Contradiction

motorcycles | cars

Determine the inference relation as entailment, 
contradiction, or neutral.

Premise:       Two racers race on [MASK]. 
Hypothesis: Two people are racing [MASK]. 
Label:

Human Rationale: 
motorcycles | cars

Human Alignment

Entailment

Model Faithfulness

Model:
motorcycles | cars

Contradiction

Figure 1: An example of our analysis methodology on
the e-SNLI dataset. Human alignment compares model
rationales with human-annotated rationale; Model faith-
fulness measures the rates when model prediction
changes (e.g. from Contradiction to Entailment)
after masking the rationales identified by the model.3

to the era of LLMs to interpret model predic- 038

tions (Lei et al., 2016; DeYoung et al., 2019; 039

Wiegreffe and Pinter, 2019; Jacovi and Goldberg, 040

2020). For smaller and open-source models like 041

BERT (Devlin et al., 2019), rationales are ex- 042

tracted with attribution-based methods like atten- 043

tion weights (Wiegreffe and Pinter, 2019) or gra- 044

dients (Li et al., 2016). For decoder-only LLMs, 045

besides attribution-based methods, rationales can 046

also be extracted by leveraging the instruction- 047

following ability of LLMs and guiding them with 048

explicit prompts to explain their predictions (Fig- 049

ure 1). We call these prompting-based rationales. 050

To evaluate different rationales, previous works 051

3In the first prompt, we use the true label for human align-
ment, and the predicted label for faithfulness experiments.
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on model interpretation establish two properties052

of rationales that are critical for successful in-053

terpretability: human alignment (DeYoung et al.,054

2019; Hase and Bansal, 2022) and faithfulness (Ja-055

covi and Goldberg, 2020). Human alignment refers056

to the degree to which the rationales match or align057

with human-annotated rationales, while faithful-058

ness assesses whether the rationales truly reflect the059

model’s internal process. A longstanding debate060

exists regarding the relationship between these two061

aspects (Agarwal et al., 2024). However, studies062

on LLM rationales either focus on the faithfulness063

of off-the-shelf LLMs (Huang et al., 2023a; Mad-064

sen et al., 2024), or their human alignment (Chen065

et al., 2023), but lack a comprehensive exploration066

of the two properties together. Specifically, recent067

works (Huang et al., 2023a; Madsen et al., 2024)068

study prompting-based methods and show that they069

might not be faithful to the reasoning process of070

LLMs. Moreover, they only consider LLMs as071

out-of-box models, without fine-tuning on specific072

tasks. How fine-tuning of LLMs on downstream073

tasks influences the human alignment and faithful-074

ness of LLM rationales is under-explored.075

In this paper, we conduct extensive experiments076

to evaluate LLM rationales more comprehensively077

and bridge the gap in existing research. We078

consider five state-of-the-art LLMs, encompass-079

ing both open-source models (Llama2 (Touvron080

et al., 2023), Llama3, Mistral (Jiang et al., 2023))081

and proprietary models (GPT-3.5-Turbo, GPT-4-082

Turbo (OpenAI et al., 2024)). Our study lever-083

ages two annotated natural language classification084

datasets, e-SNLI (Camburu et al., 2018a) and Med-085

icalBios (Eberle et al., 2023), to evaluate and com-086

pare rationale extraction methods based on prompt-087

ing strategies and feature attribution-based tech-088

niques such as Input×Gradient (Li et al., 2016).089

Through our experiments, we find that while090

prompting-based rationales are generally less faith-091

ful than attribution-based methods, they tend to092

align better with human-annotated rationales, both093

before and after fine-tuning. Surprisingly, even094

when prompting-based rationales exhibit poor per-095

formance, they can still produce explanations that096

reasonably align with human reasoning.097

We also observe that low classification perfor-098

mance and collapsing predictions might be related099

to the faithfulness limitation of LLM rationales.100

Fine-tuning LLMs on specific datasets improves101

the quality of rationales for both prompting and,102

particularly, attribution techniques in terms of faith-103

fulness and human alignment. This finding com- 104

plements the observations in Madsen et al. (2024), 105

where faithful evaluation was conducted using only 106

out-of-the-box LLMs. 107

In summary, our work contributes to the ongoing 108

efforts to enhance the interpretability and trustwor- 109

thiness of LLMs by providing empirical evidence 110

and practical recommendations for extracting and 111

evaluating rationales from these models. 112

2 Related Work 113

Interpretability Recent literature in natural lan- 114

guage processing (NLP) has seen a surge in inter- 115

pretability methods aimed at making models more 116

transparent and understandable. The traditional in- 117

terpretability methods include 1) attribution-based 118

methods, which leverage the attention weights in 119

models like transformers to identify which parts of 120

the input the model focuses on when making a deci- 121

sion (Vaswani et al., 2023; Clark et al., 2019; Abnar 122

and Zuidema, 2020), 2) Gradient-based methods, 123

which provide explanations by identifying which 124

input tokens most influence the model’s output, of- 125

ten using techniques like gradient-based saliency 126

maps (Simonyan et al., 2014a), or its extension 127

by incorporating the input vector norms or inte- 128

gration (Sundararajan et al., 2017). 3) Vector- 129

based methods that propagate the decomposed rep- 130

resentations throughout the model achieving the 131

best faithfulness results on encoder-based models 132

(Kobayashi et al., 2020, 2021; Ferrando et al., 2022; 133

Modarressi et al., 2022, 2023). More recently, re- 134

searchers have been using rationales, written in nat- 135

ural language, to serve interpretability where they 136

can reveal the “reasoning” behind model decisions. 137

Rationales Rationales can be categorized as free- 138

form or extractive. Free-form rationales use natural 139

language to explain the model’s reasoning, filling 140

in commonsense knowledge gaps. They can im- 141

prove model performance (Sun et al., 2022a) and 142

user interpretability (Sun et al., 2022b). Extrac- 143

tive rationales highlight specific parts of the input 144

text that provide sufficient evidence for a predic- 145

tion, independent of the rest of the input (Lei et al., 146

2016; DeYoung et al., 2020). They can also en- 147

hance model performance (Huang et al., 2021; Car- 148

ton et al., 2021) and improve human interpretabil- 149

ity (Strout et al., 2019). Our work focuses on ex- 150

tractive rationales for interpretability evaluation. In 151

this research area, Huang et al. (2023b) studied 152

faithfulness in ChatGPT, comparing prompting and 153
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Input Human Mistral-7B LLama-3-8B GPT-4 Turbo
e-

SN
L

I

Premise: Five children playing soccer chase
after a ball.
Hypothesis: There are ten children playing.
Label: Contradiction

[Five, ten] [Five children,
ten children]

[children,
playing]

[children, ten]

Premise: Asian individuals are taking pictures
of some unidentified thing.
Hypothesis: Asians play soccer in the park.
Label: Contradiction

[taking,
pictures,
play, soccer]

[Asian,
individuals, taking,
pictures, unidentified,
thing, soccer, park]

[Asian,
individuals,
unidentified,
soccer]

[Asian,
pictures,
play, soccer]

M
ed

ic
al

B
io

s

His basic surgical training was undertaken
in Newcastle. After gaining his MRCS and
spending some time carrying out locum SpR
work at Hurstwood Park, the Royal London
Hospital
Label: Surgeon

[surgical,
training,
MRCS]

[His, MRCS,
surgical]

[surgical,
training,
MRCS]

[surgical,
MRCS, SpR]

She works at both the Park Nicollet Women’s
Center and Regions Hospital – Cancer Care
Center. Kandice dedicates herself to providing
nurturing, sensitive care along with good ed-
ucational support to her patients.
Label: Nurse

[nurturing,
sensitive, care]

[Kandice, works,
nurse, Cancer Care
Center, Women’s Cen-
ter, provides, sensitive
care, educational sup-
port, patients]

[care, patients,
support]

[care, patients]

Table 1: Examples from e-SNLI and MedicalBios datasets are presented, showcasing rationales from human
annotations alongside those generated by three models (Using "Short Prompt Top-Var" method). Human rationales
and the corresponding generated words are highlighted in bold font.

Lime (Ribeiro et al., 2016). Madsen et al. (2024) in-154

vestigated LLM faithfulness on models like Llama2155

(Touvron et al., 2023), Falcon (Penedo et al., 2023),156

and Mistral (Jiang et al., 2023), noting its depen-157

dence on both model and dataset. Despite this,158

there is still a scarcity of analyses comparing LLM-159

generated rationales to interpretability methods. To160

the best of our knowledge, no studies seem to have161

assessed human alignment and model faithfulness162

jointly or used fine-tuning to overcome faithfulness163

evaluation limitations and explore its effects.164

3 Experimental Setup165

3.1 Datasets166

We utilize two natural language classification167

datasets that have been annotated with human ra-168

tionales indicating which input words were pivotal169

for the ground truth label. Table 1 shows examples170

of these datasets alongside the human rationale an-171

notation and model-generated rationale.172

e-SNLI This dataset (Camburu et al., 2018b) is173

a natural language inference task with 3 classes174

including Entailment, Contradiction, and Neutral,175

showing the relation between the premise and hy-176

pothesis sentences. This dataset is annotated for ra-177

tionales supporting the classification label by DeY-178

oung et al. (2019). We utilize 5,000 examples from179

the training set and 300 examples from the test set.180

MedicalBios MedicalBios (Eberle et al., 2023) con-181

sists of human rationale annotations for a subset of182

100 samples (five medical classes) from the BIOS 183

dataset (De-Arteaga et al., 2019) for the occupation 184

classification task. 185

3.2 Models 186

We employ five of the latest large language models, 187

encompassing both open-source and proprietary 188

ones. From the open-source models, we utilize 189

Llama2 (Touvron et al., 2023), LLama3, and Mis- 190

tral (Jiang et al., 2023). For proprietary models, we 191

include GPT3.5-Turbo and GPT4-Turbo (OpenAI 192

et al., 2024). All models are prompted without sam- 193

pling during generation, leading to deterministic 194

outputs. You can see the exact model information 195

in Table 6 in the appendix. 196

3.3 Methods 197

3.3.1 Prompting-Based Method 198

We employ various prompting strategies to explore 199

the effects of prompt wording and model align- 200

ment in generating text of similar length to human- 201

annotated rationale (Tables 12&13). The following 202

prompts are used to evaluate these aspects. 203

We test two versions of prompts to examine how 204

the clarity and length of the prompt influence the 205

model’s output: 206

Normal Prompt This version provides a detailed 207

explanation, including all the points the model 208

should consider. It is longer and aims to ensure 209

the model fully understands the task. 210

3



Model MISTRAL-7B
INSTRUCT-V0.2

LLAMA-2-7B

CHAT

LLAMA-3-8B
INSTRUCT

GPT-3.5 TURBO

1106
GPT-4 TURBO

2024-04-09
Dataset E-SNLI MedBios E-SNLI MedBios E-SNLI MedBios E-SNLI MedBios E-SNLI MedBios

Method Selection

ATTRIBUTION-BASED

ATTENTION TOP-RATIO 28.59 29.34 40.92 22.11 23.80 15.01 - - - -
SALIENCY TOP-RATIO 37.16 28.97 28.64 31.35 32.19 27.80 - - - -
INPUT×GRADIENT TOP-RATIO 31.41 27.51 26.85 30.96 36.32 29.83 - - - -

ATTENTION TOP-VAR 36.03 41.01 48.69 35.08 30.56 24.30 - - - -
SALIENCY TOP-VAR 46.07 38.30 37.25 41.49 39.78 36.36 - - - -
INPUT×GRADIENT TOP-VAR 38.86 37.08 36.66 40.45 44.76 39.48 - - - -

PROMPTING-BASED

NORMAL PROMPT UNBOUND 38.95 42.50 45.45 49.16 39.58 49.05 43.96 45.14 47.24 51.89
SHORT PROMPT UNBOUND 41.84 42.26 43.54 43.74 43.60 51.28 43.28 45.28 46.58 53.50

NORMAL PROMPT TOP-RATIO 41.17 41.17 45.90 43.98 35.98 47.58 36.58 43.68 45.27 47.81
SHORT PROMPT TOP-RATIO 41.83 42.05 40.91 45.65 37.46 46.91 37.92 41.00 47.31 45.64

NORMAL PROMPT TOP-VAR 45.93 48.43 50.93 52.23 41.67 58.85 43.85 57.16 55.33 59.28
SHORT PROMPT TOP-VAR 46.97 48.08 47.34 50.54 44.65 58.17 44.31 53.60 55.78 59.10

Table 2: Human alignment F1↑ score in e-SNLI and MedicalBios datasets. Random baseline (Selecting Top-Var
random words) is 27±4 and 22±1 for e-SNLI and MedicalBios respectively over 100 seeds. The top two alignments
in each column are indicated by bold and underlined formatting.

Short Prompt Given that long prompts may con-211

fuse LLMs, we also use a shorter version that con-212

veys the necessary information in a few sentences.213

We also experiment with three versions of the214

introduced prompts to manage the number of words215

the model generates.216

Unbound Prompt In this method, the model is217

not restricted in the number of words it can gen-218

erate. It needs to establish the appropriate length219

autonomously.220

Top-Var Prompt This prompt requires the model221

to generate exactly the same number of words as222

in the human rationale annotations for each sen-223

tence. This method controls for word count in our224

experiments, enabling us to assess model alignment225

independently of its word importance threshold.226

Top-Ratio Prompt In this approach, the model is227

guided to identify the top k most important words228

within a given sentence. The value of k is de-229

rived from a predetermined percentage of the total230

word count in the input sentence, a ratio established231

based on the training set. For example, this ratio is232

set at 20% for sentences in the e-SNLI dataset and233

13% for those in the MedicalBios dataset.234

3.3.2 Attribution-Based Methods235

We employ the Inseq library (Sarti et al., 2023)236

to implement attribution-based methods for LLMs.237

Specifically, we select three available options: (i)238

Attention Weight Attribution, which utilizes the239

model’s internal attention weights (Wiegreffe and240

Pinter, 2019); (ii) Simple Gradients (Saliency), 241

which is based on the gradients of the output with 242

respect to the inputs (Simonyan et al., 2014b); and 243

(iii) Input×Gradient, which factors in both the input 244

vector size and the gradient in its calculations (Li 245

et al., 2016). We choose these methods because of 246

their demonstrated faithfulness in previous work on 247

NLP models (Atanasova et al., 2020; Modarressi 248

et al., 2022, 2023), and their potential for efficient 249

execution on large language models with limited 250

computational resources. 251

4 Results 252

In this section, we delve into utilizing both 253

prompting-based and attribution-based approaches 254

to extract rationale from the model, focusing on 255

two aspects: human alignment and model faithful- 256

ness. Furthermore, we conduct fine-tuning experi- 257

ments on open LLMs to examine how this process 258

influences alignment and faithfulness. 259

4.1 Human Alignment 260

The annotated rationales provide explanations for 261

the ground truth label. Therefore, for the evaluation 262

of human alignment, we first request the model to 263

provide a rationale for the provided label. With this, 264

we create an array of binary values where for each 265

word in the input sentence, we indicate a 1 if it is 266

present among the generated words (0 otherwise). 267

By comparing these vectors with the equivalent 268

binary representations of human annotations, we 269
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PT 1ep 2ep 3ep 4ep 5ep
Epoch
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E-SNLI

Llama-3-8B-Instruct
Llama-2-7B-chat
Mistral-7B-Instruct-v0.2
GPT-4 Turbo Pre-Trained
GPT-3.5 Turbo Pre-Trained

PT 1ep 2ep 3ep 4ep 5ep
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
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cu

ra
cy

MedicalBios

Llama-3-8B-Instruct
Llama-2-7B-chat
Mistral-7B-Instruct-v0.2
GPT-4 Turbo Pre-Trained
GPT-3.5 Turbo Pre-Trained

Figure 2: Accuracy changes throughout 5 epochs of fine-
tuning. (PT denotes the pre-trained model’s accuracy)

calculate the F1 score. This F1 score for human270

alignment is reported in Table 2 for the e-SNLI and271

MedicalBios datasets.272

Firstly, prompting-based methods outperform273

attribution-based methods on human alignment.274

Short or normal prompting demonstrate superior275

performance compared to attritbution-based meth-276

ods in nearly all datasets and models except for277

Llama-3-8B on e-SNLI, which is also compara-278

ble. This gap can be attributed to the reliance of279

attribution-based methods on the classification ca-280

pability of LLMs (which might be subpar).281

Secondly, we note that providing additional in-282

formation about the number of words selected by283

humans in Top-Var settings enhances alignment,284

indicating disparities between model thresholds285

for word importance in Unbound prompting com-286

pared to human annotators. Furthermore, the ran-287

dom baseline, which involves selecting Top-Var288

random words in each sentence, yields F1 scores289

of 0.27±0.04 and 0.22±0.01 for e-SNLI and Medi-290

calBios respectively across 100 seeds. Contrasted291

with the Top-Var rows in Table 2, this indicates292

that both attribution-based and prompting-based293

approaches exhibit superior alignment compared294

to a random baseline.295

Thirdly, across models, the performance com-296

parison between normal and short prompts is vary-297

ing and inconclusive. For example, short prompts298

PT 1ep 2ep 3ep 4ep 5ep
Epoch

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Al
ig

nm
en

t F
1

E-SNLI

Llama-3 Prompting
Llama-3 InputXGradient
Llama-2 Prompting
Llama-2 InputXGradient
Mistral Prompting
Mistral InputXGradient

PT 1ep 2ep 3ep 4ep 5ep
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Al
ig

nm
en

t F
1

MedicalBios

Llama-3 Prompting
Llama-3 InputXGradient
Llama-2 Prompting
Llama-2 InputXGradient
Mistral Prompting
Mistral InputXGradient

Figure 3: Human alignment F1↑ changes throughout
5 epochs of fine-tuning. (PT denotes the pre-trained
model)

perform better for Mistral, LLama-3, and GPT-4- 299

Turbo, while they perform worse for LLama-2 and 300

GPT-3.5 models. 301

Finally, comparing the evaluated models re- 302

veals GPT-4-Turbo to be the most aligned with 303

humans. However, other models demonstrate task- 304

dependent alignment, with some excelling in e- 305

SNLI and others in MedicalBios. 306

4.2 Effect of Fine-tuning on Alignment 307

As described by Wang et al. (2024) and Zhong et al. 308

(2023), zero-shot LLMs may underperform small 309

fine-tuned models such as BERT. And smaller 310

LLMs like LLaMA-2-7B might even collapse en- 311

tirely. We observe similar failure patterns, where 312

models generate a single label from the possible 313

options regardless of the input sentence. This phe- 314

nomenon is illustrated in Figure 2, where the pre- 315

trained (PT) open LLMs achieve near-random accu- 316

racy (33%) on the e-SNLI dataset. This issue raises 317

the question of whether fine-tuning these models to 318

improve their classification performance also aids 319

in aligning their explanations more closely with 320

human expectations. 321

To address this issue, we fine-tune the LLMs 322

using LoRA (Hu et al., 2022), a parameter-efficient 323

fine-tuning technique. The hyperparameters for 324

fine-tuning are provided in Table 7. Figure 2 325

demonstrates that the classification performance 326
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Model MISTRAL-7B FT
INSTRUCT-V0.2

LLAMA-2-7B FT
CHAT

LLAMA-3-8B FT
INSTRUCT

Dataset E-SNLI MedicalBios E-SNLI MedicalBios E-SNLI MedicalBios
Method Selection

ATTRIBUTION-BASED

SALIENCY TOP-RATIO 37.36 (+0.20) 27.29 (−1.69) 36.34 (+7.71) 31.73 (+0.38) 34.76 (+2.57) 30.18 (+2.38)
INPUT×GRADIENT TOP-RATIO 33.71 (+2.30) 27.47 (−0.04) 36.98 (+10.13) 32.64 (+1.68) 38.59 (+2.27) 31.91 (+2.08)

SALIENCY TOP-VAR 44.87 (−1.19) 37.12 (−1.18) 45.63 (+8.37) 42.80 (+1.31) 42.90 (+3.13) 39.57 (+3.21)
INPUT×GRADIENT TOP-VAR 40.95 (+2.09) 35.67 (−1.41) 46.01 (+9.36) 41.91 (+1.46) 46.81 (+2.06) 43.31 (+3.83)

PROMPTING-BASED

NORMAL PROMPT UNBOUND 40.48 (+1.53) 41.66 (−0.84) 45.28 (−0.17) 47.26 (−1.89) 39.04 (−0.54) 48.41 (−0.64)
SHORT PROMPT UNBOUND 39.49 (−2.35) 42.74 (+0.48) 43.11 (−0.43) 43.45 (−0.29) 43.86 (+0.26) 50.45 (−0.83)

NORMAL PROMPT TOP-RATIO 40.99 (−0.17) 41.59 (+0.43) 44.40 (−1.50) 43.29 (−0.70) 35.42 (−0.56) 47.00 (−0.58)
SHORT PROMPT TOP-RATIO 42.01 (+0.18) 43.91 (+1.85) 43.23 (+2.33) 45.29 (−0.36) 38.15 (+0.69) 47.68 (+0.77)

NORMAL PROMPT TOP-VAR 45.70 (−0.24) 48.51 (+0.08) 50.58 (−0.35) 51.35 (−0.88) 41.69 (+0.02) 59.70 (+0.85)
SHORT PROMPT TOP-VAR 48.35 (+1.38) 51.96 (+3.88) 49.43 (+2.09) 52.43 (+1.89) 45.57 (+0.92) 58.57 (+0.41)

Table 3: Human alignment F1↑ score in E-SNLI and MedicalBios datasets after fine-tuning for 5 epochs on the
respective dataset. The difference in alignment between the fine-tuned and pre-trained model (Table 2) is reported
in the parentheses. (Changes greater than 1.5% are denoted using a bold font.)

of LLaMA-2, LLaMA-3, and Mistral improves sig-327

nificantly after fine-tuning on the e-SNLI dataset328

and shows slight improvements on the MedicalBios329

dataset, outperforming GPT-4-Turbo in both cases.330

We rerun the human alignment experiments for331

“Short Prompt Top-Var” and “Input×Gradient Top-332

Var” across all epochs, as shown in Figure 3. The333

results suggest a general trend of improved align-334

ment of both methods with increasing epochs.335

To analyze the generalization of this trend more336

comprehensively, we conduct alignment experi-337

ments on all prompting and attribution methods338

in Table 3 on the final epoch (5th epoch) of fine-339

tuning. The difference in human alignment be-340

tween the fine-tuned and pre-trained models (Ta-341

ble 2) is reported in parentheses.342

Overall, the results show more positive change343

than negative in alignment. Among the344

prompting-based methods, “Short Prompt Top-345

Var” demonstrates the highest gains from fine-346

tuning. Attribution-based methods, particularly347

in LLaMA models, exhibit significant alignment348

improvements after fine-tuning. Moreover, fine-349

tuning can guide the model’s attention to the correct350

words, especially in datasets like e-SNLI where pre-351

trained classification accuracy was low. We have352

demonstrated qualitative examples of such cases in353

Figure 5. As a result, these gradient-based meth-354

ods can identify more human-aligned rationales by355

tracing back the attributions from the output label356

to the input sentence in fine-tuned models.357

4.3 Faithfulness to the Model 358

While human alignment provides a useful mea- 359

sure of the plausibility of LLM rationales, it is 360

also important to consider the faithfulness of these 361

rationales to the model’s actual decision-making 362

process. A word may be crucial for the model’s 363

decision even if it does not align with human ratio- 364

nale and vice versa. Therefore, we must ask: Are 365

the self-explanations genuinely influential in the 366

model’s decision-making process? 367

To evaluate faithfulness, we employ a 368

perturbation-based experiment similar to previous 369

work (Madsen et al., 2024; Modarressi et al., 2023). 370

In this experiment, we mask the important words 371

identified by the prompting and attribution methods 372

and measure the flip rate of the predicted label 373

during classification. A higher flip rate indicates 374

that the masked words are indeed important to the 375

model, leading it to change its previous decision, 376

and this suggests that the explanation is more 377

faithful to the model’s decision-making process. 378

4.3.1 Limitations of Faithfulness Evaluation 379

before Fine-Tuning 380

Table 4 presents the faithfulness flip rate of the 381

pre-trained LLMs. A noteworthy finding is that in 382

the e-SNLI dataset, where classification accuracy 383

was notably low (Figure 2), both attribution-based 384

and prompting-based methods resulted in a very 385

small flip rate. Even more concerning, masking all 386

the words in the input sentence led to less than a 387
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Model MISTRAL-7B
INSTRUCT-V0.2

LLAMA-2-7B

CHAT

LLAMA-3-8B
INSTRUCT

GPT-3.5 TURBO

1106
Dataset E-SNLI MedBios E-SNLI MedBios E-SNLI MedBios E-SNLI MedBios

Masking Part Method Selection

ATTRIBUTION-BASED

INPUT
SALIENCY TOP-RATIO 3.00 50.00 2.36 31.82 29.33 36.11 - -
INPUT×GRADIENT TOP-RATIO 2.33 44.32 2.02 29.09 26.67 40.74 - -

PROMPTING-BASED

INPUT

NORMAL PROMPT UNBOUND 3.33 59.09 1.01 30.91 38.67 41.67 77.00 41.82
SHORT PROMPT UNBOUND 3.67 59.09 1.68 35.45 44.00 47.22 73.67 37.27
NORMAL PROMPT TOP-RATIO 1.67 28.41 1.68 33.64 24.00 45.37 41.33 24.55
SHORT PROMPT TOP-RATIO 2.33 30.68 1.01 26.36 22.67 46.30 44.33 20.91

BASELINES

INPUT
HUMAN HUMAN 4.00 60.23 2.02 38.18 31.67 43.12 55.67 36.36
RANDOM RANDOM 1.33 9.09 1.01 10.91 24.67 14.68 41.33 5.45
EVERYTHING EVERYTHING 2.33 97.73 0.34 60.00 69.67 70.64 89.00 74.55

Table 4: Faithfulness FLIP RATE↑ percentage in E-SNLI and MedicalBios datasets. The number of words to mask
is enforced in TOP-RATIO, and no method could mask more than the specified number for each sentence.

3% flip rate for the Mistral and LLaMA-2 models388

(Mask EVERYTHING).389

In further exploration, Figure 4 illustrates the390

Input×Gradient attributions of the predicted label,391

shown in green, to all instruction and input words,392

shown in shades of red. We notice that in the pre-393

trained Llama-2 model, the prediction for the label394

“entailment” is incorrect, with the model placing395

excessive emphasis on the word “entailment” in396

the instruction while largely ignoring the input sen-397

tence including the premise and hypothesis sen-398

tences. However, after fine-tuning, the attribution399

distribution becomes less skewed, leading to a cor-400

rect prediction by the model.401

Therefore, we hypothesize that the pre-trained402

model focuses more on the instruction rather than403

the input sentence. Moreover, in Table 10, we inves-404

tigate two masking scenarios. The first scenario, de-405

noted as INPUT, involves masking only the words406

from the input sentence (e.g., the premise and hy-407

pothesis in e-SNLI) while leaving the instruction408

intact, similar to Table 4. The second scenario, de-409

noted as INPUT&INSTRUCTION, extends masking410

to the entire instruction and input, constituting the411

entire prompt. When we extend the masking to in-412

clude the instruction, the flip rate can increase up to413

100%. This indicates that the model relies heavily414

on the instruction for its decisions, regardless of415

the input sentence. This phenomenon aligns with416

findings by Yin et al. (2023) and Kung and Peng417

(2023), who both found that, among all segments418

of a prompt, label information or output space is419

essential for the model’s performance. This raises 420

concerns about the reliability of this experiment for 421

measuring model faithfulness in LLMs. 422

Consequently, we argue that to conduct a more 423

robust faithfulness experiment on LLMs, it is not 424

advisable to solely rely on pre-trained models, as 425

their classification accuracy can vary depending 426

on the model and dataset (Madsen et al., 2024). 427

Instead, we suggest aligning the experiment more 428

closely with the scenario of fine-tuned encoder- 429

based models (Ferrando et al., 2022; Modarressi 430

et al., 2023) by training the LLMs and assessing 431

faithfulness on the fine-tuned model. 432

4.3.2 Faithfulness after Fine-Tuning 433

Table 5 displays the faithfulness flip rate of the fine- 434

tuned open models on e-SNLI and MedicalBios. 435

The number of masked words can directly influence 436

the prediction flip rate in this experiment. To ensure 437

a fair comparison, we limit the number of words 438

considered in the Top-Ratio and Top-Var selections 439

to the top k words for each sentence across different 440

methods. This approach is particularly important 441

for prompting-based methods, as LLMs struggle 442

to follow instructions involving fine-grained hard 443

constraints (Sun et al., 2023). 444

First, we see that fine-tuning has effectively ad- 445

dressed the near-zero flip rate (Table 4) in e-SNLI, 446

indicating that the model is no longer completely 447

disregarding the input sentence. 448

Second, a comparison of results in each selection 449

group of “Top-Ratio” and “Top-Var” (with a similar 450

number of masked words) reveals that attribution- 451
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Model MISTRAL-7B FT
INSTRUCT-V0.2

LLAMA-2-7B FT
CHAT

LLAMA-3-8B FT
INSTRUCT

Dataset E-SNLI MedicalBios E-SNLI MedicalBios E-SNLI MedicalBios
Selection Method

UNBOUND
NORMAL PROMPT 64.00 34.51 67.00 17.70 64.33 18.75
SHORT PROMPT 53.00 37.17 67.33 21.24 72.00 25.00

TOP-RATIO

ATTENTION 50.33 23.89 69.67 14.16 49.33 5.36
SALIENCY 51.00 23.89 59.67 21.24 60.00 17.86
INPUT×GRADIENT 45.33 21.24 61.33 22.12 58.00 18.75

NORMAL PROMPT 35.33 17.70 52.33 19.47 45.00 20.54
SHORT PROMPT 40.33 17.70 60.33 23.89 51.33 20.54

TOP-VAR

ATTENTION 48.00 20.35 61.00 11.50 48.67 5.36
SALIENCY 52.67 14.16 54.67 17.70 55.00 14.29
INPUT×GRADIENT 45.33 19.47 53.33 19.47 56.00 15.18

NORMAL PROMPT 37.00 15.04 50.33 16.81 47.00 16.07
SHORT PROMPT 40.33 19.47 55.00 17.70 50.67 16.07

BASELINES

TOP-VAR HUMAN 49.67 21.24 60.00 24.78 62.00 24.11
TOP-VAR RANDOM 32.67 9.73 45.00 7.96 36.67 6.25
EVERYTHING EVERYTHING 66.33 84.07 63.00 75.22 77.33 74.11

Table 5: Faithfulness FLIP RATE↑ percentage for fine-tuned models on the respective dataset after 5 epochs. The
number of words to mask is enforced in TOP-RATIO and TOP-VAR by limiting masked words per sentence. (Results
are comparable in each similar selection technique, ensuring a similar number of masked words.)

based methods generally outperform prompting.452

Consistent results can be seen in our top-k exper-453

iments in the appendix A.1 and Table 8. This dif-454

ference can be attributed to the fact that attribution455

methods base their explanations on the model’s in-456

ternal processes, whereas prompting may provide457

plausible answers without direct access to this in-458

formation, potentially diverging from the truth of459

the model’s inner workings. Additionally, prompt-460

ing is affected by the model’s ability to follow in-461

structions, which may result in the generation of462

an inaccurate number of words or the inclusion of463

words not present in the input sentence, leading to464

less faithful results.465

Third, we also present the flip rate after masking466

human rationales in Table 5. These rates are compa-467

rable to the “Top-Var” selection of other methods,468

as they involve the same number of masked words.469

Despite expectations that the model would better470

recognize the importance of words for its own de-471

cisions, prompting methods consistently underper-472

formed human rationales, and attribution methods473

did so in half of the cases. This result emphasizes474

that while the current methods demonstrate a de-475

gree of faithfulness, there remains room for further476

refinement and enhancement.477

5 Conclusions 478

In this study, we investigated the extraction of ra- 479

tionales in Large Language Models (LLMs) with a 480

focus on human alignment and model faithfulness. 481

Our experiments encompassed both prompting- 482

based and attribution-based methods across various 483

LLM architectures and datasets. Before fine-tuning, 484

we observed that prompting generally yielded bet- 485

ter human alignment, even when classification per- 486

formance was poor. However, the reliability of 487

faithfulness evaluations was compromised by low 488

classification performance and collapsing predic- 489

tions in pre-trained models highlighting the need 490

for refining faithfulness evaluation setup. 491

To address this, we fine-tuned the models to en- 492

hance their accuracy on classification tasks, which 493

led to improvements in aligning their explana- 494

tions more closely with human expectations. In 495

this scenario, although prompting showed supe- 496

rior alignment before, its faithfulness in reflecting 497

model decision-making was not as strong as that of 498

attribution-based methods. 499

Despite these improvements, a gap remained be- 500

tween the models’ rationales and human rationales 501

in both alignment and faithfulness. This highlights 502

the need for the development of more advanced 503

explanation methods to bridge this gap. 504
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Limitations505

LLM instruction-following abilities. In our im-506

plementation of prompting strategies, we heavily507

rely on the LLM’s capability to follow instructions508

accurately. For example, when requesting the top-k509

words separated by a specific delimiter character,510

we expect the model to output a list of words in our511

desired format and quantity with no extra explana-512

tions. However, LLMs are still not fully adept at513

adhering to prompts precisely (Sun et al., 2023),514

which can lead to outputs in various formats differ-515

ent from our expectations. Since our primary focus516

in this paper is not to evaluate the format-following517

ability of LLMs, we have taken measures to address518

discrepancies in the outputs as much as possible.519

To mitigate these discrepancies, we adopt tai-520

lored parsing approaches to handle unexpected out-521

put formats. For instance, if a model separates522

words in the output with a “,” character instead523

of the instructed character “|”, we adjust our pars-524

ing method accordingly. Fortunately, each model525

tends to adhere to a relatively consistent output526

format across the dataset, which enables us to527

adapt our parsing approach accordingly. Nonethe-528

less, it’s worth noting that an LLM with enhanced529

instruction-following abilities could potentially530

yield even better parsing results and consequently531

achieve higher performance levels.532

Attribution-based methods In selecting the ex-533

planation methods based on the inner workings534

of the models we opted for the ones that were al-535

ready implemented for LLMs and were relatively536

efficient to execute given the large size of the537

models. Nonetheless, we acknowledge that recent538

vector-based methods have shown promising faith-539

fulness results by decomposing the representations540

(Kobayashi et al., 2020, 2021; Modarressi et al.,541

2022; Ferrando et al., 2022; Modarressi et al., 2023)542

on smaller models such as BERT (Devlin et al.,543

2019) compared with the gradient-based methods.544

Our study highlights the gap that could be filled by545

implementing these methods for LLMs.546

Prompt Engineering Although we reported vari-547

ous versions of prompts for extracting rationales in548

this paper and conducted preliminary prompt engi-549

neering, we acknowledge that better prompts could550

potentially achieve higher performance. However,551

this approach diverges from realistic use cases552

where users may ask questions in various wordings.553

This limitation is inherent to prompting methods,554

whereas attribution-based methods are not suscep- 555

tible to this issue. Therefore, addressing this limita- 556

tion calls for continued exploration and refinement 557

of both prompting and attribution-based methods 558

in rationale extraction. 559

Larger Models In our experiments, we evaluated 560

open models with less than 8B parameters due to 561

resource limitations. However, we acknowledge 562

that larger models could potentially perform bet- 563

ter in following instructions, leading to improved 564

human alignment and model faithfulness in their 565

self-explanations. 566

Perturbation-based faithfulness evaluation In 567

this paper, we conduct faithfulness evaluation 568

of LLM rationales using perturbation-based met- 569

rics. Those metrics assume that removing crit- 570

ical features based on rationales would largely 571

affect model performance. However, Whether 572

perturbation-based metrics truly reflect rationale 573

faithfulness is a widely discussed but unsolved 574

question, as they would produce out-of-distribution 575

counterfactuals. For example, Yin et al. (2022) 576

show that with different kinds of perturbations such 577

as removal or noise in hidden representations, the 578

faithful sets vary significantly. For consistency, 579

we follow previous work (DeYoung et al., 2019; 580

Huang et al., 2023a). We leave deeper study into 581

faithfulness measurements of LLM rationales to 582

future work. 583
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A Appendix978

A.1 Top-k Faithfulness979

As previously noted, the number of masked words980

significantly impacts the flip rate. To explore this981

further, we conducted a Top-k experiment, mask-982

ing k = 1, 2, 3, 4, 5, 10 words and calculating the983

flip rate (see Table 8). The results consistent with984

Table 5 indicate that on average, attribution-based985

methods surpass prompting in terms of faithfulness.986

Model Access

meta-llama/Meta-Llama-3-8B-Instruct Open Source
meta-llama/Llama-2-7b-chat-hf Open Source
mistralai/Mistral-7B-Instruct-v0.2 Open Source
gpt-3.5-turbo-1106 Proprietary
gpt-4-turbo-2024-04-09 Proprietary

Table 6: The details of the models we used in this work.

Hyperparameter Value

Total Batch Size 64
Learning Rate E-SNLI 1e-05
Learning Rate MedicalBios 5e-06
Num Epochs 5
Learning Rate Scheduler Warmup Steps 10
Training Dataset Size 5000
LoRA r 32
LoRA alpha 16
LoRA drop out 0.05

Table 7: The hyperparameters used for fine-tuning the
models using LoRA.
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e-SNLI - Label: Contradiction

Pre-trained
Llama-2-7B:

Determine  the  inference  relation  between  two  texts  as  entailment,  if  the  premise  entails  the  hypothesis,  

contradiction,  if  the  hypothesis  contradicts  the  premise,  or  neutral,  if  neither  entailment  nor  contradiction  hold.  

Give  your  answer  as  "entailment",  "neutral"  or  "contradiction"  

Premise  and  Hypothesis:  Two  racers  race  on  motorcycles.  Two  people  are  racing  cars.  Label:  entailment  

Prediction:
entailment

Fine-tuned
Llama-2-7B:

Determine  the  inference  relation  between  two  texts  as  entailment,  if  the  premise  entails  the  hypothesis,  

contradiction,  if  the  hypothesis  contradicts  the  premise,  or  neutral,  if  neither  entailment  nor  contradiction  hold.  

Give  your  answer  as  "entailment",  "neutral"  or  "contradiction"  

Premise  and  Hypothesis:  Two  racers  race  on  motorcycles.  Two  people  are  racing  cars.  Label:  contradiction  

Prediction:
contradiction

Figure 4: Token Importance before and after fine-tuning Llama-2-7B based on the InputXGradient explainability
method. The predicted word by the model is shown in green and its attributions to previous words are shown in red.
The attributions before fine-tuning are more skewed (Fisher-Pearson coefficient of skewness over all the dataset:
3.37±0.31), and become less skewed after fine-tuning (1.42±0.36).

e-SNLI - Label: Contradiction

Pre-trained Llama-2-7B
Predicted Label Attribution:

Dog  running  with  pet  toy  being  chased  by  another  dog.  A  dog  is  being  chased  by  cat  entailment  

        

Pre-trained Llama-2-7B
True Label Attribution:

Dog  running  with  pet  toy  being  chased  by  another  dog.  A  dog  is  being  chased  by  cat  contradiction  

        

Fine-tuned Llama-2-7B
Predicted Label Attribution: Dog  running  with  pet  toy  being  chased  by  another  dog.  A  dog  is  being  chased  by  cat  contradiction  

e-SNLI - Label: Neutral

Pre-trained Llama-2-7B
Predicted Label Attribution:

Two  babies,  one  in  red,  asleep  in  their  highchairs.  twins  are  asleep  entailment  

        

Pre-trained Llama-2-7B
True Label Attribution:

Two  babies,  one  in  red,  asleep  in  their  highchairs.  twins  are  asleep  neutral  

        

Fine-tuned Llama-2-7B
Predicted Label Attribution: Two  babies,  one  in  red,  asleep  in  their  highchairs.  twins  are  asleep  neutral  

e-SNLI - Label: Entailment

Pre-trained Llama-2-7B
Predicted Label Attribution:

white  bird  grazes  the  water.  The  bird  is  touching  the  water  entailment  

        

Pre-trained Llama-2-7B
True Label Attribution:

white  bird  grazes  the  water.  The  bird  is  touching  the  water  entailment  

        

Fine-tuned Llama-2-7B
Predicted Label Attribution: white  bird  grazes  the  water.  The  bird  is  touching  the  water  entailment  

Figure 5: Token Importance before and after fine-tuning Llama-2-7B based on the Input×Gradient explainability
method. The predicted/true label is shown in green, with its attributions to input words in red. The human rationale
for the examples are ["dog", "cat], ["twins"], and ["grazes", "touching"]. The fine-tuned model identified these
words solely through training on classification data, without any rationale data.
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Model MISTRAL-7B FT
INSTRUCT-V0.2

LLAMA-2-7B FT
CHAT

LLAMA-3-8B FT
INSTRUCT

Top k 1 2 3 4 5 10 Avg 1 2 3 4 5 10 Avg 1 2 3 4 5 10 Avg
Dataset Method

E-SNLI

ATTENTION 41.0 36.7 48.0 47.7 54.0 62.3 48.3 40.0 50.0 63.7 66.3 69.3 71.0 60.1 31.0 35.3 41.7 49.7 56.0 69.7 47.2
SALIENCY 40.0 46.0 49.3 52.3 54.7 63.0 50.9 36.7 45.0 54.3 58.0 59.7 68.3 53.7 30.3 37.7 50.0 56.3 63.7 77.0 52.5
INPUT×GRADIENT 34.0 39.0 44.0 46.7 50.0 57.7 45.2 37.0 42.3 50.7 60.3 60.7 70.0 53.5 33.0 38.0 54.3 59.0 61.0 77.3 53.8

PROMPTING 31.3 30.0 41.3 40.7 47.0 55.3 40.9 35.3 44.3 54.7 60.7 64.3 64.0 53.9 29.3 28.7 47.0 48.7 57.7 76.7 48.0

MedicalBios

ATTENTION 7.1 10.6 15.0 15.0 19.5 31.0 16.4 5.3 8.0 7.1 8.8 9.7 13.3 8.7 0.9 3.6 3.6 5.4 6.2 15.2 5.8
SALIENCY 5.3 12.4 14.2 17.7 20.4 31.0 16.8 14.2 18.6 18.6 15.9 16.8 18.6 17.1 7.1 11.6 13.4 17.0 18.8 18.8 14.4
INPUT×GRADIENT 8.8 16.8 15.0 14.2 17.7 25.7 16.4 15.9 17.7 19.5 15.0 18.6 19.5 17.7 8.0 12.5 14.3 16.1 17.0 22.3 15.0

PROMPTING 7.1 10.6 16.8 16.8 17.7 28.3 16.2 0.9 9.7 14.2 19.5 17.7 19.5 13.6 6.2 7.1 12.5 19.6 16.1 27.7 14.9

Table 8: Faithfulness FLIP RATE↑ percentage in E-SNLI and MedicalBios datasets. The Top-k is enforced in
masking and no method could mask more than the specified k. The highest faithfulness in each dataset and top-k is
in bold font.

Model MISTRAL-7B FT
INSTRUCT-V0.2

LLAMA-2-7B FT
CHAT

LLAMA-3-8B FT
INSTRUCT

Top k 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10
Dataset Method

E-SNLI

ATTENTION 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0
SALIENCY 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0
INPUT×GRADIENT 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0

PROMPTING 1.0 1.8 2.9 3.8 4.7 8.2 0.9 1.9 2.9 3.8 4.8 7.4 0.9 1.8 2.8 3.8 4.8 9.1

MedicalBios

ATTENTION 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0
SALIENCY 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0
INPUT×GRADIENT 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0 1.0 2.0 3.0 4.0 5.0 10.0

PROMPTING 1.0 1.8 2.9 3.9 4.9 9.9 0.2 1.6 2.7 3.7 4.7 8.5 0.8 1.7 2.7 3.7 4.5 7.7

Table 9: The average number of masked words in each experiment of Table 8. Prompting can have fewer masked
words as a result of generating words out of the input sentence or not following the instruction on how many words
it should generate (We limit the masks if the model generates more than k words).

Model MISTRAL-7B
INSTRUCT-V0.2

LLAMA-2-7B
CHAT

LLAMA-3-8B
INSTRUCT

GPT-3.5 TURBO
1106

Dataset E-SNLI MedicalBios E-SNLI MedicalBios E-SNLI MedicalBios E-SNLI MedicalBios
Masking Part Method Selection

ATTRIBUTION-BASED

INPUT
SALIENCY TOP-RATIO 3.00 50.00 2.36 31.82 29.33 36.11 - -
INPUT×GRADIENT TOP-RATIO 2.33 44.32 2.02 29.09 26.67 40.74 - -

INPUT&INSTR. SALIENCY TOP-RATIO 97.00 71.59 100.00 90.91 86.00 72.22 - -
INPUT×GRADIENT TOP-RATIO 97.33 63.64 100.00 93.64 86.33 74.07 - -

PROMPTING-BASED

INPUT

NORMAL PROMPT UNBOUND 3.33 59.09 1.01 30.91 38.67 41.67 77.00 41.82
SHORT PROMPT UNBOUND 3.67 59.09 1.68 35.45 44.00 47.22 73.67 37.27
NORMAL PROMPT TOP-RATIO 1.67 28.41 1.68 33.64 24.00 45.37 41.33 24.55
SHORT PROMPT TOP-RATIO 2.33 30.68 1.01 26.36 22.67 46.30 44.33 20.91

INPUT&INSTR. EXTENDED PROMPT UNBOUND 68.67 61.36 8.75 28.18 58.33 45.37 99.67 50.00

BASELINES

INPUT
HUMAN HUMAN 4.00 60.23 2.02 38.18 31.67 43.12 55.67 36.36
EVERYTHING EVERYTHING 2.33 97.73 0.34 60.00 69.67 70.64 89.00 74.55

Table 10: Faithfulness FLIP RATE↑ percentage in E-SNLI and MedicalBios datasets. The number of words to mask
is enforced in TOP-RATIO, and no method could mask more than the specified number for each sentence.
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Model MISTRAL-7B FT
INSTRUCT-V0.2

LLAMA-2-7B FT
CHAT

LLAMA-3-8B FT
INSTRUCT

Dataset E-SNLI MedicalBios E-SNLI MedicalBios E-SNLI MedicalBios
Selection Method

UNBOUND
NORMAL PROMPT 64.00 34.51 67.00 17.70 64.33 18.75
SHORT PROMPT 53.00 37.17 67.33 21.24 72.00 25.00

TOP-RATIO

ATTENTION 50.67 28.32 70.33 15.04 53.67 9.82
SALIENCY 52.33 30.09 62.67 24.78 66.00 23.21
INPUT×GRADIENT 47.67 25.66 62.33 26.55 62.67 25.89

NORMAL PROMPT 54.67 32.74 63.00 23.01 61.67 24.11
SHORT PROMPT 52.67 35.40 64.00 25.66 59.00 25.00

TOP-VAR

ATTENTION 47.67 23.01 67.33 15.93 53.67 6.25
SALIENCY 50.00 19.47 58.67 26.55 60.00 17.86
INPUT×GRADIENT 44.33 20.35 58.00 24.78 61.67 19.64

NORMAL PROMPT 51.33 30.97 64.67 19.47 61.33 21.43
SHORT PROMPT 50.67 30.09 60.67 20.35 59.00 20.54

BASELINES

TOP-VAR HUMAN 49.67 21.24 60.00 24.78 62.00 24.11
EVERYTHING EVERYTHING 66.33 84.07 63.00 75.22 77.33 74.11

Table 11: Faithfulness FLIP RATE↑ percentage in E-SNLI and MedicalBios datasets for fine-tuned models on the
respective dataset for 5 epochs. No limitations were applied to the number of masked words which means that
LLMs could mask more words in prompting techniques by generating more words than instructed.
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Figure 6: The human alignment (F1) and model faithfulness flip rate, evaluated at the intersection of correctly
predicted examples (important for alignment) and the samples that were predicted within the output space of classes
prior to fine-tuning (important for faithfulness). Additionally, the number of masks is constrained to the Top-Var
selection.
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Method Selection Prompt

NORMAL PROMPT UNBOUND You will be provided a short premise and a hypothesis, each delimited with triple
backticks.
Your task is to identify the most important key words in the premise and hypothesis
that are most relevant to understanding the relationship between the premise and
the hypothesis given a label (entailment/neutral/contradiction).
• These key words should be selected to capture the main idea or reasoning
behind why the given label indicates the relationship between the premise and the
hypothesis.
• The key words should be copied verbatim from the text.
• Write the key words as a pipe-separated (|) list of words with spaces.
• Example output: <word1> | <word2> | <word3>
• Make sure to only output keyword tokens and do not explain the answer.

Premise: “‘ {premise} “‘
Hypothesis: “‘ {hypothesis} “‘
Label: {label}

SHORT PROMPT UNBOUND Identify the most important key words from the text that are most relevant to
understanding the relationship between the premise and the hypothesis.
Write the words as a pipe-separated (|) list of words with spaces and do not explain
the answer.

Premise: “‘ {premise} “‘
Hypothesis: “‘ {hypothesis} “‘
Label: {label}

EXTENDED PROMPT UNBOUND Consider the following prompt: " Determine the inference relation between
two (short, ordered) texts as entailment, if the premise entails the hypothesis,
contradiction, if the hypothesis contradicts the premise, or neutral, if neither
entailment nor contradiction hold.
Give your answer as "entailment", "neutral" or "contradiction" and nothing else.
Premise and Hypothesis: “‘ {premise} {hypothesis} “‘
Label: "

Identify the most important single key words from the whole prompt (Including
instruction and sentence) that are most relevant to understanding the relationship
between the premise and the hypothesis as {label}.
Just write the words as a pipe-separated (|) list of words with spaces and do not
explain the answer.

NORMAL PROMPT TOP-VAR / TOP-RATIO You will be provided a short premise and a hypothesis, each delimited with triple
backticks.
Your task is to identify the top {k} most important key words in the premise and
hypothesis that are most relevant to understanding the relationship between the
premise and the hypothesis given a label (entailment/neutral/contradiction).
• These key words should be selected to capture the main idea or reasoning
behind why the given label indicates the relationship between the premise and the
hypothesis.
• The key words should be copied verbatim from the text.
• Write the key words as a pipe-separated (|) list of words with spaces.
• Example output: <word1> | <word2> | <word3>
• Make sure to only output top {k} keyword tokens and do not explain the answer.

Premise: “‘ {premise} “‘
Hypothesis: “‘ {hypothesis} “‘
Label: {label}

SHORT PROMPT TOP-VAR / TOP-RATIO Identify the top {k} most important key words from the text that are most relevant
to understanding the relationship between the premise and the hypothesis.
Write the top {k} words as a pipe-separated (|) list of words with spaces and do not
explain the answer.
Premise: “‘ {premise} “‘
Hypothesis: “‘ {hypothesis} “‘
Label: {label}

ATTRIBUTION-BASED TOP-VAR / TOP-RATIO
(Selected later from tokens
with the highest attribution
scores)

Determine the inference relation between two (short, ordered) texts as entailment,
if the premise entails the hypothesis, contradiction, if the hypothesis contradicts
the premise, or neutral, if neither entailment nor contradiction hold.
Give your answer as "entailment", "neutral" or "contradiction" and nothing else.

Premise and Hypothesis: “‘ {premise} {hypothesis} “‘
Label: {predicted_class}

CLASSIFICATION Determine the inference relation between two (short, ordered) texts as entailment,
if the premise entails the hypothesis, contradiction, if the hypothesis contradicts
the premise, or neutral, if neither entailment nor contradiction hold.
Give your answer as "entailment", "neutral" or "contradiction" and nothing else.

Premise and Hypothesis: “‘ {premise} {hypothesis} “‘
Label:

Table 12: The prompts utilized for the e-SNLI dataset.
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Method Selection Prompt

NORMAL PROMPT UNBOUND You will be provided a biography which is delimited with triple backticks.
Your task is to identify the most important key words from the text that indicate
why is the person in the following short bio described as a {label}.
• The key words should be copied verbatim from the text.
• Write the key words as a pipe-separated (|) list of single words.
• Make sure to only output keyword tokens and do not explain the answer.
• Example output: <word1> | <word2> | <word3>

Bio: “‘ {bio} “‘

SHORT PROMPT UNBOUND Identify the most important key words from the text that indicate why is the person
in the following short bio described as a {label}.
• Write the key words as a pipe-separated (|) list of single words.

Bio: “‘ {bio} “‘

EXTENDED PROMPT UNBOUND Consider the following prompt:
" Determine the occupation of the person in the following short bio.
Give your answer as a single word from (psychologist, surgeon, nurse, dentist,
physician) and nothing else.

Bio: “‘ {bio} “‘
Occupation: "

Identify the most important single key words from the whole prompt (Including
instruction and bio) that indicate why is the person in the short bio described as a
{label}.
Just write the words as a pipe-separated (|) list of words with spaces and do not
explain the answer.

NORMAL PROMPT TOP-VAR / TOP-RATIO You will be provided a biography which is delimited with triple backticks.
Your task is to identify the top {k} most important key words from the text that
indicate why is the person in the following short bio described as a {label}.
• The key words should be copied verbatim from the text.
• Write the key words as a pipe-separated (|) list of single words.
• Make sure to only output top {k} keyword tokens and do not explain the answer.
• Example output: <word1> | <word2> | <word3>

Bio: “‘ {bio} “‘

SHORT PROMPT TOP-VAR / TOP-RATIO Identify the top {k} most important key words from the text that indicate why is
the person in the following short bio described as a {label}.
• Write the key words as a pipe-separated (|) list of single words and do not explain.

Bio: “‘ {bio} “‘

ATTRIBUTION-BASED TOP-VAR / TOP-RATIO
(Selected later from tokens
with the highest attribution
scores)

Determine the occupation of the person in the following short bio.
Give your answer as a single word from (psychologist, surgeon, nurse, dentist,
physician) and nothing else.

Bio: “‘ {bio} “‘
Occupation: {predicted_label}

CLASSIFICATION Determine the occupation of the person in the following short bio.
Give your answer as a single word from (psychologist, surgeon, nurse, dentist,
physician) and nothing else.

Bio: “‘ {bio} “‘
Occupation:

Table 13: The prompts utilized for the MedicalBios dataset.
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