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ABSTRACT

Interpretability remains a major obstacle to deploying large language models
(LLMs) in high-stakes settings such as Alzheimer’s disease (AD) progression
diagnosis, where early and explainable predictions are essential. Traditional at-
tribution methods suffer from inter-method variability and often produce unsta-
ble explanations due to the polysemantic nature of LLM representations, while
mechanistic interpretability lacks direct alignment with model inputs/outputs
and does not provide importance scores. We propose a unified interpretability
framework that integrates attributional and mechanistic perspectives through
monosemantic feature extraction. Our approach evaluates six attribution tech-
niques, refines them using a learning-based explanation optimizer, and employs
sparse autoencoders (SAEs) to map LLM activations into a disentangled latent
space that supports clearer and more coherent attribution analysis. Comparing
latent-space and native attributions, we observe substantial gains in robustness,
consistency, and semantic clarity. Experiments on IID and OOD Alzheimer’s co-
horts across binary and three-class tasks demonstrate that our framework yields
more reliable, clinically aligned explanations and reveals meaningful diagnostic
patterns. This work advances the safe and trustworthy use of LLMs in cognitive
health and neurodegenerative disease assessment.

1 INTRODUCTION

Explainable Artificial Intelligence (XAI) plays a crucial role in building trust in machine learning
systems, especially in sensitive and high-stakes areas such as finance, climate, autonomous
driving and healthcare (Doshi-Velez & Kim, 2017; Manifold et al., 2021). In medical settings,
interpretability is essential for clinical integration and regulatory approval, especially in complex
diseases such as Alzheimer’s Disease (AD) progression (Super et al., 2023), where early and accurate
detection can substantially alter treatment results (Jack et al., 2018).

Although machine learning has shown promise in AD diagnostics using multimodal clinical data
(Bron et al., 2015), the application of large language models (LLMs) such as GPT-4 and LLaMA-2
in structured clinical settings remains limited (Brown et al., 2020; Touvron et al., 2023). A key
obstacle is the polysemanticity of internal neural representations—individual neurons or fea-
tures often encode multiple, semantically unrelated concepts (Olah et al., 2020; Cunningham
et al., 2023; Elhage et al., 2022a). This entanglement undermines the interpretability of standard
attribution techniques such as gradients, perturbations, and integrated paths, which typically
assume one-to-one correspondence between features and meanings. Moreover, existing attri-
bution methods assign importance scores to input features (e.g., words or tokens), yet they fall
short in addressing the polysemantic nature of internal representations. This limitation often
leads to ambiguous or misleading explanations—particularly problematic in clinical applications,
where interpretability is critical (Samek et al., 2021; van der Velden et al., 2022; Quellec et al.,
2021; Mamalakis et al., 2023). Moreover, the inter-method variability of attributional techniques
is another limitation of dataset-driven explanations, as it reduces trust in the interpretability of
AI models (Mamalakis et al., 2025). In contrast, mechanistic interpretability aims to uncover the
internal structure of neural computation by identifying semantically coherent components within
the model. Sparse Autoencoders (SAE) have played a pivotal role in advancing our understanding
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of such representations in both language and vision domains (Gorton, 2024). SAEs aim to solve
the superposition problem in neural feature representations by mapping the model’s activations
into a more monosemantic latent space, where individual features are better aligned with specific
concepts in the network (Cunningham et al., 2023). However, these mechanistic tools typically
lack attributional resolution, limiting their utility for explaining how specific inputs contribute to
model predictions in real-world, decision-critical scenarios (Elhage et al., 2022a).

This reveals a critical gap in the current landscape: attributional techniques offer only surface-level
explanations using polysemantic features, while mechanistic methods provide structural insights
based on monosemantic feature alignment but lack attributional grounding. To date, no unified
framework successfully integrates both paradigms—particularly in the domain of LLM-based
clinical inference.

To address these challenges and produce stable, clinically meaningful explanations from large lan-
guage models, we introduce a unified monosemantic attribution framework that integrates both
attributional and mechanistic interpretability approaches (Figure 1). Our approach first employs
sparse autoencoders (SAEs) to transform polysemantic LLM activations into a more monose-
mantic latent space, where individual features are encouraged to correspond to disentangled
semantic factors. This bottleneck substantially reduces representational complexity and enables
classical attribution methods to assign more precise and semantically coherent importance scores.
For the attribution component, we apply six established techniques—Feature Ablation, Layer
Activations, Layer Conductance, Layer Gradient SHAP (Lundberg & Lee, 2017a), Layer Integrated
Gradients (Sundararajan et al., 2017b), and Layer Gradient×Activation—both in the native acti-
vation space (polysemantic features) and in the SAE-induced latent space (more monosemantic
features). To address the inter-method variability problem (Mamalakis et al., 2025), we combine
the resulting attribution vectors and introduce the Transformer Explanation Optimizer (TEO), a
learning-based mechanism that selects explanations with maximal alignment to model behavior
and dataset-level consistency (Mamalakis et al., 2025). We experiment with encoder–decoder
architectures based on 1D transformers (TEO) and diffusion networks (DEO). For meta-level
assessment and visualization, we embed these optimized attributions into a 2D manifold using
UMAP (McInnes et al., 2018), and impose a global coherence constraint by evaluating their linear
structure along the primary UMAP components. This geometry-aware constraint acts as an addi-
tional regularizer and provides a principled way to impose global structure on the explanation
space.

The central hypothesis of this work—namely, that as the embedding layer approaches a more
monosemantic representation, attribution scores become more stable, less complex, and more
diagnostically informative compared to those derived from polysemantic features—is evaluated
through a series of experiments in which different LLMs are trained and tested on ADNI Mueller
et al. (2005) (IID) and tested on BrainLAT Prado et al. (2023) (OOD) to assess resilience under
demographic and protocol shifts. We study both binary (Control vs. Alzheimer’s disease (AD))
and multi-class settings (Control, Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive
Impairment (LMCI) in ADNI; Control, Frontotemporal Dementia (FTD), and AD in BrainLAT).
The data are partitioned into 80% training and 20% validation within the training portion (which
itself constitutes 80% of the full dataset), with the remaining 20% held out for testing. The last-
layer embeddings of the LLM that achieved the strongest baseline performance are subsequently
used to evaluate the proposed interpretability framework. Importantly, both the SAEs and TEO
(with and without the SAE bottleneck) are trained exclusively on IID explanation cohorts using
only these training/validation splits and are then evaluated on the OOD dataset without any
additional training or adjustments, allowing us to assess out-of-distribution robustness under
strict generalization conditions.

Contributions and Novelty: We propose a unified interpretability framework that couples ex-
plainer optimisation with monosemantic feature extraction and an optional geometry-aware
constraint. Concretely:

• Transformer Explanation Optimizer (TEO). We propose a learning-based optimizer
that consolidates and refines the outputs of six widely used attribution methods. TEO
reduces inter-method variance and enhances explanation clarity, all without requiring
any retraining of the underlying LLM.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LLM i-Layer

SA
E

Monosemantic feature space k-Attributional interpretability methods

encoder decoder

UMAP constraint

Explanation optimizer

n-Optimized attributions

G
lobal pattern discovery

Generated Multimodal Clinical Patient Text

The participant's sex is Male.  Their Date of Birth is 03/1933. Their Year of Birth is 1933.0. Their Handedness is Right. Their Marital status at baseline is Married. Their education in years is 18.0.  Partic ipant Retired? 
Yes. Type of Participant residence House (owned or rented). Language to be used for testing the Participant English.  Participant's Primary Language English.  The participant's Ethnicity is Not Hispanic or Latino. Trail 
Making Test:  Race 5. Information Source Participant Visit. The participant's weight is 164.2. The weight was measured in pound s. The participant's  Systolic - mmHg 118.0. The participant's  Diastolic  - mmHg 
67.0.  The partic ipant's  Seated Pulse Rate (per minute) is 53.0. The participant's Respirations (per minute) are 20.0. The participant's  Temperature is 97.0. The Temperature Source was Oral. The Temperature Units 
were Fahrenheit. Depressive symptoms present? No. On the Clock Drawing Test the partecipant answered the following questions in this way:  Approximately c ircular face Correct.  Symmetry of number placement 
Incorrect.  Correctness of numbers Correct.  Presence of the two hands Correct. Presence of the two hands, set to ten after eleven Correct.  Clock Drawing Test:  Total Score 4.0.  On the Clock copying task the 
participant scored as follows:  Approximately c ircular face Yes. Symmetry of number placement Yes. Correctness of numbers Yes. Presence of the two hands Yes. Presence of the two hands, set to ten after eleven 
Yes. Clock copying task:  Total Score 5.0.  On the Auditory Verbal Learning Test the participant scored as follows in each trial:  Trial 1  Total 4.0.  Total Intrusions 0.0. Trial 2  Total 5.0.  Total Intrusions 0.0. Trial 3  Total 
5.0. Total Intrusions 0.0. Trial 4 Total 5.0. Total Intrusions 0.0. Trial 5 Total 5.0. Total Intrusions 1.0. Trial 6 Total 0. 0.  Total Intrusions 0.0. List B Total 5.0.  Total Intrusions 1.0. On the Category Fluency Test Animals 
the scores were:  - Total Correct 12.0. Perseverations 0.0. Intrusions 2.0. Part A - Time to Complete 32.0.  Errors of Commission 0.0. Errors of Omission 0.0. Part B - Time to complete 144.0.  Errors of Commission 1.0. 
Errors of Omission 0.0. On the Auditory Verbal Learning Test the participant scored as follows: 30 Minute Delay Total 0.0. Total Intrusions 1.0. Recognition Score 8.0. Total Intrusions 5.0. American National Adult 
Reading Test:  ANART Total Score (Total # of errors) 19.0. For the Functional Activities Questionnaire the participant scored as follows for each question:  Writing checks, paying bills, or balancing checkbook. Never 
did, would have difficulty now (1). Assembling tax records, business affairs, or other papers. Never did, would have difficulty now (1).  Shopping alone for clothes, household necessities,  or groceries. Never did,  
would have difficulty now (1). Playing a game of skill such as bridge or chess, working on a hobby. Normal (0).  Heating water, making a cup of coffee, turing off the stove. Normal (0). Preparing a balanced meal. 
Never did, would have difficulty now (1). Keeping track of current events. Never did, would have difficulty now (1).  Paying attention to and understanding a TV program, book, or magazine. Has difficulty, but does by 
self (1). Remembering appointments, family occasions, holidays, medications. Requires assistance (2). Trail Making Test for FAQ score:  Traveling out of the neighborhood, driving, or arranging to take public 
transportation. Dependent (3). Total Score for FAQ is 11.0

n-Inputs

 n-O
ptim

ized attributions

Figure 1: Proposed interpretability framework for LLM in Alzheimer’s diagnosis. The model
integrates k-attributional methods with a SAE to generate a monosemantic feature space. An ex-
planation optimizer refines attribution outputs, enhancing clarity and reducing variability. Global
explanation quality is visualized and assessed using UMAP and a linear meta-rule, supporting
both individual prediction interpretability and cohort-level pattern discovery.

• Attribution Through a Monosemantic Bottleneck (SAE). We train sparse autoencoders
on LLM activations to obtain a more monosemantic latent representation of the embed-
ding layer, and we compute attributions in this disentangled space. Introducing this
SAE-based bottleneck yields substantially sparser and more robust explanations with
clearer semantic alignment, enabling the identification of meaningful biomarkers and
pathology-related patterns when combined with the proposed TEO optimizer.

• Latent vs. Native Attributions. We directly compare attributions computed in the SAE-
induced monosemantic latent space with those obtained in the native model space.
Across all tasks, latent-space attributions exhibit improved robustness (lower RIS/ROS)
and greater semantic coherence. Statistical testing confirms significant differences be-
tween the two settings, with the SAE-enabled variant consistently outperforming the
no-SAE baseline.

• Tunable Sparsity–Stability Frontier. Across IID and OOD regimes, and for both binary
and three-class tasks, TEO with monosemantic features (TEO-SAE) provides the most
stable explanations, while a geometry-aware constraint (TEO-UMAP) recovers higher
sparsity with only a modest reduction in stability.

• Clinical Signal Discovery. Our framework reveals clinically meaningful structure in
multimodal Alzheimer’s data and produces class-specific, human-aligned explanations
suitable for integration into clinical reasoning workflows. The resulting attributions
highlight the most informative neurocognitive assessments, reducing clinical burden by
prioritizing the tests that most effectively support Alzheimer’s diagnosis and progression
monitoring.

2 METHODS

2.1 ATTRIBUTIONAL THEORY AND METHODS

Attribution explainability methods follow the framework of additive feature attribution, where the
explanation model g ( f ,x) is represented as a linear function of simplified input features:
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g ( f ,x) =φ0 +
M∑

i=1
φi xi (1)

Here, f is the predictive model, φi ∈R is the attribution (importance) assigned to feature xi , and
M is the number of simplified input features (here 512).

For this study, we employed six well-established attributional interpretability methods applied
to large language models (LLMs), denoted as K = 6: Feature Ablation, Layer Activations (which
capture the embedding activation space of a specific layer of interest within the LLM), Layer
Conduction, Layer Gradient-SHAP (Lundberg & Lee, 2017b), Layer Integrated Gradients (Sun-
dararajan et al., 2017a), and Layer Gradient × Activation (For analytical mathematic formulation
see Appendix A.1.). To align these layer-wise interpretability methods with the additive feature
attribution framework, we reinterpret the internal activations (i.e., latent units) of a network layer
L as simplified input features. The objective is to estimate an attribution score φi for each unit,
where φi ∈R quantifies the contribution of the corresponding neuron to the model’s prediction.

All attribution methods were applied to the final (22nd) layer of the MODERN-BERT LLM—the
model variant that achieved the highest classification accuracy in our evaluations (see Supplemen-
tary section B.2). These formulations allow us to ground various neural attribution techniques
within a unified additive explanation model, facilitating their comparison and hybridization under
shared theoretical assumptions.

2.2 ATTRIBUTIONAL EXPLANATION OPTIMIZER FRAMEWORK

Let A = {A1, A2, . . . , AK } denote the set of K = 6 attribution methods applied to the final layer L of
the model f . Each method Ak generates an attribution vectorφ(k) = [φ(k)

1 ,φ(k)
2 , . . . ,φ(k)

M ], where M
is the number of latent features (neurons) in layer L. The goal is to derive a unified attribution
vector φ̄ that captures the consensus explanation across methods. Each attribution vectorφ(k)

is evaluated using the Relative Input Stability (RIS), Relative Output Stability (ROS) Agarwal et al.
(2022b), and Sparseness Chalasani et al. (2020) metrics (For analytical mathematic formulation
see Appendix A.2.).

2.2.1 AGGREGATION OF ATTRIBUTIONS

The weighted average attribution vector φ̄ serves as the target explanation for the optimization
process and it is calculated as:

φ̄=
K∑

k=1
wk ·φ(k) (2)

2.2.2 EXPLANATION RECONSTRUCTION VIA ENCODER–DECODER MODELS

An encoder–decoder model is trained to generate a reconstructed explanation φ̂ from the orig-
inal input x . Two architectures are considered the Diffusion UNet1D Ronneberger et al. (2015)
(Diffusion Explanation Optimizer, DEO) and the x-transformer autoencoder Vaswani et al. (2017);
Nguyen & Salazar (2019) (Transformer Explanation Optimizer, TEO). For the analytical mathemat-
ical formulation, see Appendix A.2.4.

2.2.3 THE TOTAL COST FUNCTION OF THE OPTIMIZER

As previously highlighted, the reconstruction of the optimal explanation and the associated cost
function adhere to the same principles and architectural design outlined in Mamalakis et al.
(2025). The cost function consists of three key components: sparseness, as defined in Chalasani
et al. (2020); ROS and RIS scores Agarwal et al. (2022a); and similarity. The integration of these
components ensures a robust and interpretable evaluation. The total cost function for training
the reconstruction model is:

Ltotal(φ
(k),φ̂) =λ1 · 1

MRIS( f ,φ̂)
+λ2 · 1

MROS( f ,φ̂)

+λ3 ·Msparse( f ,φ̂)+λ4 ·Lsimilarity(φ̂,φ̄) (3)
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where:λ1,λ2,λ3,λ4 are hyperparameters controlling the influence of each loss term. This formula-
tion enables a principled and quantitative integration of multiple attribution methods, optimizing
toward a robust and interpretable explanation.

2.3 UMAP PROJECTION AND LINEAR CONSTRAINT

To obtain a unified and comparable low-dimensional representation of attribution scores across
all tokenizer features, we apply a feature-wise UMAP projection to the normalized attribution
tensor of shape RM×T , where M is the number of test samples and T denotes the dimensionality
of the tokenizer embedding space. For each feature j , the attribution vector x( j ) ∈ RM is min–
max normalized and embedded using a one-dimensional UMAP transformation into a two-
dimensional space y( j ) ∈ RM×2. The resulting coordinates are normalized to [0,1] so that all
feature-wise embeddings share a common bounded range. This nonlinear projection preserves
the local neighborhood structure of each attribution distribution while mapping all T tokenizer
features into an aligned and directly comparable representation space across attribution methods
(further mathematical formulation please see Appendix A.4).

Linear Constraint on UMAP Embeddings: To encourage structural consistency in the UMAP
McInnes et al. (2018) embeddings, we introduce a linear constraint requiring equality between
the first and second embedding components for each point, expressed as ui 1 = ui 2. This can
be written equivalently as ui 1 −ui 2 = 0 for all i . We incorporate this constraint into the overall
optimization objective via a penalty term,

λ5

n∑
i=1

(ui 1 −ui 2)2,

where λ5 controls the strength of the constraint. This formulation enforces consistency of the
reconstructed embeddings while preserving flexibility in the learned attribution representation.

2.4 THE SAE APPROACH AND ARCHITECTURES

The mathematical formulation situates SAE architectures within the theoretical framework of
superposition and semantic disentanglement (for an analytical mathematical formulation, see
Appendix A.5). By expressing hidden states as sparse linear combinations of interpretable features,
SAEs bridge the gap between low-level activations and human-understandable concepts. Let
x ∈ Rd denote a layer’s neuron activation vector in a pretrained model. A Sparse Autoencoder
learns a sparse feature representation a ∈RF such that:

x̂ =W a+b, (4)

where W ∈Rd×F is the decoder (dictionary) matrix and b ∈Rd is a learned bias term. Each column
W·,i represents the direction of feature i in neuron space, and ai is its activation. This linear map-
ping enables complex activations to be expressed as combinations of more interpretable features.
If F > d , then the feature space is overcomplete, and W cannot be full-rank. This leads to super-
position, where multiple features overlap in the same subspace, and individual neurons encode
multiple unrelated concepts Elhage et al. (2022b). If W is invertible and aligned to a basis, each
neuron corresponds to a single feature. The representation is monosemantic and disentangled
Olah et al. (2020). When W has overlapping columns, neurons can respond to multiple features,
yielding polysemantic behavior. That is, for some j , x j = ∑

i W j ,i ai involves multiple nonzero
terms Bills et al. (2023). Variants of SAEs like TopK, JumpReLU, and Gated-SAEs offer increasingly
precise control over the mapping between low-level activations and human-understandable con-
cepts, enabling fine-grained analysis and intervention (analytical mathematical formulation, see
Appendix A.6.).

2.5 ATTRIBUTION FROM SPARSE FEATURE SPACE TO INPUT TOKENS

Let xinput ∈Rdinput denote the input embedding vector (e.g., LLM token embeddings), x = f (xinput) ∈
Rd the hidden layer activation of the LLM, a = Encoder(x) ∈RF the SAE sparse feature vector, and
x̂ = W a+b the reconstructed activation from the SAE decoder. Now suppose we have a sparse
attribution vector ψi over features a, i.e., ψ ∈RF , where each ψi reflects the importance of SAE
feature ai . We aim to assign importanceΦk to each input token dimension xinput,k .

5
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We propagate the feature attributions backward through the encoder to the input. Using the chain
rule:

Φk =
F∑

i=1
ψi · ∂ai

∂xinput,k
=

F∑
i=1

ψi · ∂ai

∂x
· ∂x

∂xinput,k
(5)

where ∂ai
∂x is the encoder Jacobian (SAE layer), and ∂x

∂xinput,k
is the LLM gradient from input token to

hidden layer. This gives us a scalar attributionΦk ∈R for each token/input embedding dimension
k. This represents how much each input token contributes to the sparse SAE features identified as
important. In doing so, we assess the contribution of input features based on the monosemantic
behavior of the trained network’s internal mechanisms. Building on our study, we apply the six
previously discussed attribution methods at two levels: from the SAE feature space to the encoder
layer, and from the encoder layer to the input embedding space. This dual-level attribution
analysis enables us to investigate how interpretable sparse features relate to model internals and
ultimately shape the input-level representations. Attribution methods (e.g., Integrated Gradients,
SHAP) can directly estimate:

φinput = AttributionMethod( f ,xinput,φ
SAE) (6)

where φSAE denotes the monosemantic feature space of the SAE network. Thus, the dual-level
approach allows us to connect semantically meaningful sparse features to the raw input represen-
tation space.

2.6 LLM NETWORKS AND HYPERPARAMETER TUNING

We evaluate encoder-based LLMs (BERT, RoBERTa, DistilBERT, ALBERT, BioBERT, ModernBERT)
on ADNI (IID) and BRAINLAT (OOD) under a unified protocol spanning full fine-tuning, zero-shot,
few-shot with temperature control, and parameter-efficient LoRA. ModernBERT outperformed
all other networks on ADNI: in the binary task it achieved the highest F1 (75.89%), AUC-PR
(86.41%), ROC-AUC (83.95%), and Accuracy (72.37%), and it remained strongest in the three-
class setting (F1 68.80%, AUC-PR 78.48%, ROC-AUC 78.67%, Accuracy 65.05%). For OOD model
adaptation, ModernBERT zero-shot yielded 55% Accuracy, few-shot/LoRA provided modest gains
(62%), while full fine-tuning peaked at 84% Accuracy but lies outside our scope. Accordingly,
we use ModernBERT fine-tuned on ADNI for IID and zero-shot on BRAINLAT for OOD, and all
interpretability analyses are conducted on the 22nd layer of ModernBERT. We conducted extensive
hyperparameter tuning for all components. The explanation optimizer performed best at a
learning rate of 2e-4, with the optimal weight configuration (λ1,λ2,λ3,λ4) = (0.1,0.3,0.1,0.5).
UMAP constraints were most effective at the 4× batch size level (4×64). Among the four SAE
variants, TopK produced the strongest overall performance (Supplementary B.3; Figures 2, 4,
5), using a 32× feature depth. All models were trained using the AdamW optimizer with early
stopping and standard evaluation metrics. Further hyperparameter tuning and evaluation details
are provided in Supplementary section B.3 and B.2, B.4.

2.7 DATASET AND CODE AVAILABILITY

The dataset used in this study originates from the ADNI cohort Mueller et al. (2005) and is rep-
resented as text generated from multiple modalities, serving as the in-distribution (IID) dataset.
We further split the generated text into nine subgroups based on input modality, as detailed in
Supplementary Material B.1.5, for pattern analysis and biomarker research purposes. For the out-
of-distribution (OOD) cohort, we used text generated from multimodal sources (MRI and clinical
files) in the Latin American Brain Health Institute (BrainLat) dataset, a multi-site initiative pro-
viding neuroimaging, cognitive, and clinical data across several Latin American countries Prado
et al. (2023). Additional demographic and preprocessing details are provided in Supplementary
Sections B.1.1–B.1.5. The code is implemented in Python using PyTorch and runs on an NVIDIA
cluster in one A100-SXM-80GB GPU. It leverages SAE_LENs Bloom et al. (2024) for SAE train-
ing, quantus Hedström et al. (2023) for evaluation, and captum for attribution analysis. The
codebase https://anonymous.4open.science/r/TEO_SAE-6D24/README.md.
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Table 1: Unified attribution summary split vertically by task and setting. Values are mean±std
per class. Binary columns use (A/C) = Alzheimer/Control; Three-class columns use (L/M/C) =
LMCI/MCI/Control, (A/F/C)= Alzheimer, Frontotemporal Dementia, Control;

Task & Setting Method (row = variant) Sparseness RIS ROS

Binary — IID (ADNI) Columns: (A/C)

Gradient Activation 0.3277/0.2500 ± 0.0384/0.0230 5.6149/5.6170 ± 0.0193/0.0221 16.9303/16.9347 ± 0.0034/0.0
Gradient Activation-SAE 0.2035/0.1668 ± 0.0117/0.0072 5.6252/5.6173 ± 0.0213/0.0221 16.9343/16.9347 ± 6.8e−5/4.0e−5

DEO 0.3383/0.3377 ± 0.0033/0.0017 9.2839/9.3131 ± 0.0800/0.1427 20.6342/20.6159 ± 0.0866/0.2026
DEO-SAE 0.3374/0.3140 ± 0.0029/0.0010 9.2790/9.1750 ± 0.0646/0.1088 20.6150/20.5150 ± 0.0880/0.1299

TEO 0.4220/0.4199 ± 0.0003/0.0005 5.0520/5.0688 ± 0.0192/0.0184 16.3529/16.3777 ± 0.0056/0.0011
TEO-SAE 0.2672/0.2682 ± 0.0010/0.0007 1.6227/0.9964 ± 0.1708/0.2639 12.9250/12.2983 ± 0.1703/0.2613
TEO-UMAP (SAE) 0.3989/0.4057 ± 0.0004/0.0003 5.4394/5.4709 ± 0.0332/0.1746 16.3037/16.2102 ± 0.0033/0.0079

Binary — OOD (BrainLat) Columns: (A/C)

Gradient Activation-SAE 0.1140/0.0630 ± 0.0177/0.0069 6.0328/6.0339 ± 0.0277/0.0398 16.9347/16.9348 ± 3.6e−6/3.7e−5

TEO-SAE 0.2691/0.2725 ± 0.0016/0.0004 0.6835/0.4734 ± 0.6676/0.2801 11.5236/11.2130 ± 0.6591/0.5150
TEO-UMAP (SAE) 0.3989/0.4043 ± 0.0005/0.0029 5.4394/5.4282 ± 0.0383/0.1944 16.3037/16.1577 ± 0.0039/0.1054

Three-class — IID (ADNI) Columns: (L/M/C)

Gradient Activation 0.3839/0.2917/0.2697 ± 0.0177/0.0200/0.0061 5.6272/5.6269/5.6290 ± 0.0212/0.0193/0.0225 16.9339/16.9340/16.9347 ± 0.0008/0.0006/0
Gradient Activation-SAE 0.4310/0.2579/0.2296 ± 0.1156/0.1095/0.0036 5.6297/5.6172/5.6210 ± 0.9478/1.1684/0.0194 16.9347/16.9347/16.9348 ± 2.8625/3.5241/1.22e−5

TEO 0.4131/0.3909/0.3918 ± 0.0003/0.0047/0.0008 5.0938/4.8283/4.8080 ± 0.0188/0.0377/0.0184 16.4043/16.1354/16.1172 ± 0.0024/0.0324/0.0090
TEO-SAE 0.2860/0.2838/0.2682 ± 0.0374/0.0523/0.0649 2.2642/2.1617/1.5468 ± 0.4877/0.4547/0.1171 13.5646/13.4676/12.8570 ± 2.2745/2.7641/0.1179
TEO-UMAP (SAE) 0.4161/0.4172/0.3973 ± 0.0870/0.2372/0.0749 5.1017/5.1116/5.1086 ± 0.1697/0.1072/0.2083 16.4031/16.4088/16.4123 ± 3.8616/0.4924/6.8439

Three-class — OOD (BrainLat) Columns: (A/F/C)

Gradient Activation-SAE 0.1836/0.4303/0.1772 ± 0.0016/0.0022/0.0112 6.0269/6.1450/6.1234 ± 0.0302/0.1210/0.1912 16.9348/16.9345/16.9346 ± 2.6e−6/2.8e−5/1.5e−5

TEO-SAE 0.3716/0.4224/0.4162 ± 0.0009/0.0002/0.0029 4.9396/5.5421/5.7520 ± 0.0148/0.0611/0.3645 15.8121/16.2773/16.3792 ± 0.0099/0.0010/0.0034
TEO-UMAP (SAE) 0.4239/0.4246/0.4238 ± 5.0e−5/2.4e−4/5.6e−4 5.4583/5.5576/5.5525 ± 0.0297/0.0954/0.1862 16.3726/16.3572/16.3661 ± 0.0017/0.0035/0.0073

3 RESULTS

3.1 ABLATION AND EVALUATION SCORES WITH/WITHOUT UMAP CONSTRAINT AND SAE LAYER.

In this study, sparseness is defined such that higher values correspond to more selective and
concentrated attributions across input features—that is, greater sparseness. However, sparseness
alone is insufficient to assess explanation quality, as it does not account for robustness or stabil-
ity. Therefore, the most effective explanation method is one that simultaneously achieves high
sparseness and low RIS and ROS values.

Across IID, OOD datasets and for both binary and three-class classification tasks, Table 1 shows a
consistent stability–sparsity frontier governed by the proposed optimizers and a monosemantic
bottleneck (SAE). In the binary IID case, SAE substantially improves stability for feature-learning
explainers, most notably: Layer Conductance and especially TEO, with large drops in RIS/ROS for
both Alzheimer’s and Control, whereas Activation–SAE increases RIS/ROS relative to its no-SAE
variant and is therefore less robust. In the binary OOD case, this pattern persists and strengthens:
TEO–SAE achieves the lowest RIS/ROS overall (strong cross-dataset stability), while TEO–UMAP
recovers higher sparsity (> 0.40) at a modest stability cost versus TEO–SAE, offering a tunable
sparsity–stability trade-off. In the three-class IID setting, Feature Ablation is the sparsity leader
across Control/LMCI/MCI (∼ 0.52–0.53) with moderate, steady yet still high RIS/ROS values; Layer
Conductance–SAE markedly reduces RIS/ROS for LMCI/MCI; and TEO–SAE again delivers the
most stable attributions across all classes, albeit with reduced sparsity compared with no-SAE
variants. The same rank ordering holds OOD. Across all blocks, gradient-formulaic methods
(Grad-SHAP, Guided Backprop, Integrated Gradients) show near-invariant RIS/ROS (∼ 5.6/ ∼
16.93) regardless of SAE, class, or domain, indicating that SAE chiefly benefits learned-attribution
methods. Further analyses are provided in Supplementary §B.4, Tables 2–5.

3.2 INDIVIDUAL-LEVEL AND COHORT-LEVEL EXPLANATIONS AND PATTERNS

Figure 2 presents qualitative local-level and cohort-level attributions for the LMCI class in the three-
class classification task on both IID and OOD settings using our proposed optimisers TEO, TEO-
SAE, and TEO-UMAP (SAE). At the local level, the heatmaps illustrate feature importance, with
tokens colour-coded to indicate relevance (green = positive relevance; red = negative relevance).
Visually, TEO-SAE produces the tightest, least noisy explanations—fewer spurious highlights
and clearer token groupings—consistent with its lowest RIS/ROS in Table 1. Adding the UMAP
constraint restores higher sparseness while preserving much of TEO-SAE stability: TEO-UMAP
(SAE) yields compact, well-separated patterns that remain clinically interpretable across IID
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and OOD. Across classes and datasets, higher Sparseness corresponds to less diffuse maps with
balanced positive/negative highlights, whereas low Sparseness with high RIS/ROS manifests as
saturated red/green patches and unstable saliency (see Supplementary Figures 7–16). Among the
six classical attribution methods (Activation, Layer Conductance, Feature Ablation, Gradient SHAP,
Gradient Activation, Integrated Gradient), Feature Ablation attains the highest Sparseness but
exhibits poorer stability (elevated RIS/ROS), a gap that worsens with SAE due to decoder-driven
“decompression” (Supplementary Figures 7–8). Layer Conductance shows the opposite trade-
off: SAE reduces Sparseness but improves stability (lower RIS/ROS), with similar stability gains
observed for Gradient Activation, Integrated Gradient, and Gradient SHAP (Supplementary Figures
9–10). Overall, none of these classical methods match the proposed framework as TEO-SAE is
consistently most stable, and TEO-UMAP (SAE) offers a tunable sparsity–stability compromise
that generalises from ADNI to BrainLat (for extended analyses see Supplementary §B.6).

At the cohort level, we extracted UMAP embeddings to visualise patterns and text–category clusters
in 2D space, observing any spreading effects or homogeneous clustering. We also applied PCA to
identify high-contributing features (threshold 0.6 on the first component; Figure 2). Moving from
TEO to TEO–SAE produces tighter, more homogeneous low-to-high attribution and the lowest
RIS/ROS (highest stability), but also a marked reduction in sparseness, evident as broader token
spread in the 2D manifold (see Figure 2). In some cases, this stabilisation concentrates signals so
strongly that few features exceed the significance threshold (square box in the 1D scatter plot where
PCA first component ≥ 0.6), and not all subgroups are represented (Figure 2, Supplementary Figure
32). Imposing a linear UMAP constraint (TEO–UMAP) mitigates this effect by restoring sparsity in
significant attributions while retaining stability, yielding compact, clinically interpretable maps
with more uniform subgroup coverage (Figure 2; Supplementary Figures 33–35). The behaviour of
the proposed framework (TEO, TEO–SAE, TEO–UMAP) shows that higher sparseness corresponds
to less diffuse, more balanced highlights, whereas lower sparseness with higher RIS/ROS results in
saturated red/green patches. This mirrors the patterns observed across the six classical methods
(Activation, Layer Conduction, Feature Ablation, Gradient SHAP, Gradient Activation, Integrated
Gradient; Supplementary §B.10). With SAE, feature-learning explainers such as Layer Conduction
generally gain stability (lower RIS/ROS) at some sparsity cost, while Feature Ablation maintains
high sparsity but remains unstable. None, however, match the stability–sparsity trade-off achieved
by TEO–SAE and TEO–UMAP (box plots in Figure 2; Table 1). Supplementary §B.7 (Figures 22–31)
provides more details about cohort-level attributions.

3.3 ARE MONOSEMANTIC REPRESENTATION–BASED ATTRIBUTION METHODS STATISTICALLY

DISTINCT FROM STANDARD ATTRIBUTION TECHNIQUES?

A statistical evaluation of interpretability metrics (sparseness, RIS, and ROS, see Supplemen-
tary §B5) across methods with and without the SAE layer was computed. In the binary ADNI task,
paired t-tests with FDR correction showed that adding an SAE bottleneck significantly reduced
Complexity (p < 10−10) and RIS (p < 10−4) in both groups, while ROS changes were small and
inconsistent (marginal for Control, non-significant for Alzheimer’s). The strongest SAE effects ap-
peared in attribution metrics, with Gradient SHAP (p < 10−45), Layer Conduction (p = 3.2×10−7),
Integrated Gradients (p < 10−55), and the TEO (p < 10−95) all showing decisive reductions, con-
firming robust stability gains under SAE. In the three-class ADNI task, paired t-tests and Wilcoxon
signed-rank tests (BH-FDR) indicated that the MCI group showed the clearest improvement: ROS
decreased strongly (t(17) = −10.12, p = 1.30×10−8; W = 0, p = 8.0×10−6, q = 2.3×10−5), RIS
showed a smaller reduction detected non-parametrically (W = 19, p = 0.00117), and Complexity
increased modestly by Wilcoxon (W = 17, p = 7.9×10−4) while paired t-tests were non-significant.
Control and LMCI had incomplete pairs, preventing matched testing with correction. Overall, SAE
reliably improves attribution stability (lower RIS/ROS) and increase sparseness in binary tasks,
with the three-class MCI group showing the most consistent ROS gains.

3.4 CLINICAL RELEVANCE IN ALZHEIMER’S DISEASE PROGRESSION: SAE-GUIDED ATTRIBUTION

PRODUCES MORE RELIABLE AND CLINICALLY COHERENT EXPLANATIONS

To assess the clinical relevance of our attribution framework and, in particular, the contribution
of the SAE layer in producing monosemantic and diagnostically coherent explanations, we per-
formed an auxiliary evaluation across three cohorts (Binary ADNI, Binary BrainLAT, and three-class
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Figure 2: Left: Stability–sparsity frontier for explanation optimizers on ADNI (Late MCI) in the
testing cohort. Scatter points show TEO, TEO–SAE, and TEO–UMAP (SAE) on ADNI (IID) and
BrainLat (OOD). Metrics: Sparseness (higher is better) vs. RIS/ROS stability (lower is better).
Middle: Token-level heatmap produced by the proposed framework, with feature-attribution scale
(green: positive relevance; red: negative relevance; white: neutral). Right: 1st PCA and 2D UMAP
projections of the full testing cohort. Thresholding uses 60% feature attribution over 512 tokens.
The generated input text is split into nine subgroups (different colours) based on input modality,
as detailed in Supplementary Material B.1.5, for pattern analysis and biomarker identification.

ADNI). For each test sample, we extracted the top 50% most influential token attributions from
TEO without SAE, TEO with SAE, and TEO-UMAP, and constructed class-specific CSV files in which
highlighted characters for each attribution method were arranged column-wise, with the full char-
acter sequence (including the CLS token) provided in the first column to ensure clear sample-level
distinction. These CSVs were then presented to a large language model (ChatGPT-5.1 OpenAI
(2024)) under a fixed prompting protocol to yield an external, model-agnostic assessment of the
interpretability structure encoded by each explanation space. Across both binary tasks, all three
attribution methods correctly identified the pathological Alzheimer’s class; however, TEO without
SAE consistently fixated on task artefacts (e.g., instruction counts or label-like patterns) rather
than clinically meaningful biomarkers, whereas TEO-SAE and TEO-UMAP surfaced coherent
neurocognitive indicators, demographic risk factors, and processing-speed impairments. In the
more challenging three-class ADNI setting, the SAE-enabled variants again produced clearer
diagnostic separation and more structured biomarker profiles, while TEO without SAE failed to
identify pathology or highlight relevant clinical features. These results collectively demonstrate
that imposing an SAE-driven monosemantic representation substantially strengthens the reliabil-
ity, diagnostic validity, and clinical interpretability of the resulting attribution signals. Additional
methodological details and full GPT prompts are provided in Supplementary Material B.8.

3.4.1 THE CLINICAL IMPACT AND OUTCOME IN THE DIAGNOSIS OF ALZHEIMER

Biomarker Identification: Our findings demonstrate that both TEO-SAE and TEO-UMAP yield
the most reliable and consistent identification of informative sources across the nine multimodal
subgroups. Using a threshold of 0.6 on the first principal component (PCA; Figure 2), we observe
systematic and class-specific biomarker patterns in the IID binary task (ADNI). For the Control
group, TEO-SAE is primarily driven by FAQ, whereas TEO-UMAP shifts emphasis toward DEM,
AVLT2, and FAQ. For the Alzheimer’s group, TEO prioritises FAQ, AVLT1, and CFA, while TEO-
UMAP highlights ANART, FAQ, and DEM. In the three-class setting, TEO identifies AVLT1, CDT,
and ANART as most influential for Controls, while TEO-UMAP selects AVLT1, CDT, and CFA. For
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MCI, TEO assigns highest relevance to CCT, AVLT2, and FAQ, whereas TEO-UMAP favours AVLT2,
ANART, and CFA. For LMCI, TEO elevates AVLT1, FAQ, and CDT, while TEO-UMAP elevates FAQ,
ANART, and AVLT2. These trends are summarised in Supplementary Table 6 (Section B.9), with
acronym definitions provided in Sections B.1.5 (Table 1).

Importantly, these results illustrate how our proposed mechanistic attribution framework can dis-
entangle which demographic/vital features and, crucially, which cognitive assessments contribute
most strongly to each diagnostic category. This is particularly relevant in clinical neuroscience,
where cognitive tests are often time-consuming, resource-intensive, and susceptible to demo-
graphic or cultural bias. Our framework provides a principled approach for identifying the most
informative cognitive biomarkers-such as AVLT, FAQ, CDT, and ANART-which have been repeat-
edly linked to early Alzheimer’s progression in the literature (Petersen et al., 1999), (Bondi et al.,
2019). By pinpointing the minimal set of high-yield assessments for each classification task, the
method supports more efficient screening pipelines, reduces clinical burden, and enables scalable
application in larger cohorts where repeated or comprehensive testing is impractical.

3.5 LIMITATION AND FUTURE WORK

Although our framework demonstrates substantial improvements in attribution clarity and robust-
ness, some limitations remain. A generalized outcome about clinical LLMs is not feasible at the
level of this study, as the analysis was restricted to the neurodegenerative domain, limiting gener-
alisability to other areas such as oncology. Constraining the manifold space of explanations with
explicit guidance from clinical experts could further improve explanation quality and enhance
pattern discovery within the proposed framework. In addition, while stability–sparsity assessment
focused on RIS/ROS and sparsity indices as important first-level evaluation metrics, additional
measures such as uncertainty quantification and fairness auditing should be incorporated in
future work. Future work will further strengthen these results by integrating clinical experts into
the loop to refine a more analytical vocabulary and to further characterize the enriched patterns
identified by the proposed framework. Lastly, we aim to prospectively validate the approach, ex-
tend it to additional centres, modalities, and clinical domains (e.g., oncology), explore alternative
constraints, and incorporate uncertainty and fairness auditing.

4 CONCLUSION

We presented a unified interpretability framework that combines monosemantic feature extrac-
tion with learning-based explainer optimisation (TEO–SAE) and an optional geometry-aware
constraint (TEO–UMAP). Across IID (ADNI) and OOD (BrainLat) cohorts, and in both binary and
three-class tasks, TEO–SAE consistently achieved the most stable explanations (lowest RIS/ROS),
while TEO–UMAP offered a complementary high-sparsity regime with only a modest reduction in
stability—together defining a tunable sparsity–stability frontier that generalises across distribu-
tion shifts. Classical attribution methods benefited unevenly from the monosemantic bottleneck:
gradient-based techniques changed little, whereas feature-learning explainers such as Layer
Conductance showed substantial gains, though none matched the robustness of our optimisers.
Clinically, the framework reliably identified meaningful diagnostic markers, with stable contri-
butions centred on functional status, memory performance, and visuospatial abilities. TEO–SAE
highlighted core neuropsychological indicators, while TEO–UMAP revealed complementary de-
mographic and language-related signals. At the cohort level, a simple thresholding rule on the 2D
UMAP embeddings produced actionable maps that prioritise high-yield assessments, streamline
diagnostic workflows, reduce clinical burden, and enable scalable deployment in large or resource-
limited settings. Overall, integrating monosemantic encoding with geometry-aware explanation
optimisation offers substantially more robust, coherent, and clinically aligned explanations than
standard attribution methods, charting a principled path toward trustworthy, human-aligned
interpretability for LLMs in Alzheimer’s disease progression assessment.
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ETHICS STATEMENT

The paper discusses several potential positive societal impacts, particularly emphasizing its
relevance to clinical applications such as the early diagnosis and treatment planning of Alzheimer’s
Disease. By proposing a unified interpretability framework that combines attributional and
mechanistic techniques, the authors aim to enhance the trustworthiness, consistency, and human
alignment of large language model (LLM) outputs. This improved interpretability is presented as a
means to support safer and more effective integration of LLMs into cognitive health and clinical
decision-making, with the potential to uncover clinically meaningful patterns and ultimately
improve patient outcomes. However, the paper does not explicitly address possible negative
societal impacts of the work. It does not discuss risks such as the misinterpretation of model
ex-677 planations, over-reliance on machine-generated insights in high-stakes medical contexts,
or the potential for the framework to inadvertently reinforce biases embedded in training data.
Societal impacts can be better established through future work, in which we plan to incorporate
clinician-in-the-loop evaluation and patients.
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