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ABSTRACT

Interpretability remains a central barrier to the safe deployment of large lan-
guage models (LLMs) in high-stakes domains such as neurodegenerative disease
diagnosis. In Alzheimer’s disease (AD), early and explainable predictions are crit-
ical for clinical decision-making, yet attribution-based methods (e.g., saliency
maps, SHAP) often suffer from inconsistency due to the polysemantic nature of
LLM representations. Mechanistic interpretability promises to uncover more
coherent features, but it is not directly aligned with individual model outputs,
limiting its applicability in practice. To address these limitations, we propose a
unified interpretability framework that integrates attributional and mechanistic
perspectives via monosemantic feature extraction. First, we evaluate six com-
mon attribution techniques and further develop an explanation-optimization
step that updates explanations to reduce inter-method variability and improve
clarity. In the second stage, we train sparse autoencoders (SAEs) to transform
LLM activations into a disentangled latent space in which each dimension cor-
responds to a coherent semantic concept. This monosemantic representation
enables more structured and interpretable attribution analysis. We then com-
pare feature attributions in this latent space with those from the original model,
demonstrating improved robustness and semantic clarity. Evaluations on in-
distribution (IID) and out-of-distribution (OOD) Alzheimer’s cohorts across
binary and three-class classification tasks confirm the effectiveness of our frame-
work. By bridging attributional relevance and mechanistic clarity, our approach
provides more trustworthy, consistent, and human-aligned explanations, and
reveals clinically meaningful patterns in multimodal AD data. This work takes
a step toward safer and more reliable integration of LLMs into cognitive health
applications and clinical workflows.

1 INTRODUCTION

Explainable Artificial Intelligence (XAI) plays a crucial role in building trust in machine learning
systems, especially in sensitive and high-stakes areas such as finance, climate, autonomous
driving and healthcare (Doshi-Velez & Kim, 2017; Manifold et al., 2021). In medical settings,
interpretability is essential for clinical integration and regulatory approval, especially in complex
diseases such as Alzheimer’s Disease (AD), where early and accurate detection can substantially
alter treatment results (Jack et al., 2018).

Although machine learning has shown promise in AD diagnostics using multimodal clinical data
(Bron et al., 2015), the application of large language models (LLMs) such as GPT-4 and LLaMA-2 in
structured clinical settings remains limited (Brown et al., 2020; Touvron et al., 2023). A key obstacle
is the polysemanticity of internal neural representations—individual neurons or features often
encode multiple, semantically unrelated concepts (Olah et al., 2020b; Cunningham et al., 2023;
Elhage et al., 2022a). This entanglement undermines the interpretability of standard attribution
techniques such as gradients, perturbations, and integrated paths, which typically assume one-
to-one correspondence between features and meanings. Moreover, existing attribution methods
assign importance scores to input features (e.g., words or tokens), yet they fall short in addressing
the polysemantic nature of internal representations. This limitation often leads to ambiguous or
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misleading explanations—particularly problematic in clinical applications, where interpretability
is critical (Samek et al., 2021; van der Velden et al., 2022; Quellec et al., 2021; Mamalakis et al.,
2023). In contrast, mechanistic interpretability aims to uncover the internal structure of neural
computation by identifying semantically coherent components within the model. Sparse Au-
toencoders have played a pivotal role in advancing our understanding of such representations
in both language and vision domains (Gorton, 2024). The behavior of neural networks is often
interpreted through the lens of computational circuits—specialized groups of neurons responsible
for interpretable functions, such as edge detection (Olah et al., 2020a) or identity mapping (Olsson
et al., 2022). However, these mechanistic tools typically lack attributional resolution, limiting
their utility for explaining how specific inputs contribute to model predictions in real-world,
decision-critical scenarios (Elhage et al., 2022a).

This reveals a critical gap in the current landscape: attributional techniques offer surface-level
explanations that lack semantic clarity, while mechanistic methods offer structural insights
without attributional grounding. To date, no unified framework successfully integrates both
paradigms—particularly in the domain of LLM-based clinical inference.

To address this, we propose a monosemantic attribution framework that combines both attribu-
tional and mechanistic interpretability (see Figure 1). Our approach uses sparse autoencoders
(SAEs) to map LLM activations into a monosemantic feature space, where each latent feature
corresponds to a clear and disentangled concept. This transformation reduces complexity and
enables attribution methods to assign more precise and meaningful scores. We evaluated six
well-established attribution methods: Feature Ablation, Layer Activations, Layer Conduction,
Layer Gradient SHAP (Lundberg & Lee, 2017a), Layer Integrated Gradients (Sundararajan et al.,
2017b), and Layer Gradient × activation, both in the original LLM activation space and in the
SAE-transformed feature space. Attribution scores are then refined using an Explanation Opti-
mizer, which selects the most coherent and informative explanations based on alignment with
model behavior and dataset-level consistency (Mamalakis et al., 2025). To facilitate interpretable
visualization and meta-level assessment, we project the optimized attribution vectors into a 2D
embedding space using UMAP (McInnes et al., 2018). We define a global meta-rule—attributional
coherence across the first and second UMAP components—as a constraint to evaluate and reg-
ularize explanation quality. To this end, we impose a linearity constraint in the UMAP space to
further enhance the interpretability of spatially structured explanation clusters.

Contributions and Novelty: We propose a unified interpretability framework that couples ex-
plainer optimisation with monosemantic feature extraction and an optional geometry-aware
constraint. Concretely:

• Transformer Explainer Optimiser (TEO). We introduce a learning-based optimiser that
refines the outputs of six common attribution methods, reducing inter-method variance
and improving clarity without retraining the base model.

• Monosemantic Bottleneck (SAE). We train sparse autoencoders on LLM activations
to obtain a disentangled latent space whose dimensions align with coherent semantic
concepts, enabling structured, human-interpretable and mechanistic attribution.

• Latent vs. Native Attributions. We compare attributions computed in the monosemantic
latent space with those in the original model space, showing improved robustness (lower
RIS/ROS) and greater semantic coherence under our pipeline.

• Tunable Sparsity–Stability Frontier. Across IID (ADNI) and OOD (BrainLat) cohorts, and
for binary and three-class tasks, TEO with monosemantic feature extractions (TEO-SAE)
yields the most stable explanations, while a geometry-aware constraint (TEO-UMAP)
reliably recovers higher sparsity with a modest stability cost.

• Clinical Signal Discovery. The framework surfaces clinically meaningful patterns in
multimodal Alzheimer’s data and produces class-specific, human-aligned attributions
that are suitable for integration into clinical reasoning workflows.

Overall, the work unifies attributional refinement with monosemantic mechanistic structure,
delivering explanations that are more stable, more coherent, and practically actionable across
datasets and tasks. These improvements offer a pathway toward more trustworthy AI systems
capable of providing actionable clinical insights, particularly in early-stage Alzheimer’s disease
detection (Super et al., 2023).
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Generated Multimodal Clinical Patient Text

The participant's sex is Male.  Their Date of Birth is 03/1933. Their Year of Birth is 1933.0. Their Handedness is Right. Their Marital status at baseline is Married. Their education in years is 18.0.  Partic ipant Retired? 
Yes. Type of Participant residence House (owned or rented). Language to be used for testing the Participant English.  Participant's Primary Language English.  The participant's Ethnicity is Not Hispanic or Latino. Trail 
Making Test:  Race 5. Information Source Participant Visit. The participant's weight is 164.2. The weight was measured in pound s. The participant's  Systolic - mmHg 118.0. The participant's  Diastolic  - mmHg 
67.0.  The partic ipant's  Seated Pulse Rate (per minute) is 53.0. The participant's Respirations (per minute) are 20.0. The participant's  Temperature is 97.0. The Temperature Source was Oral. The Temperature Units 
were Fahrenheit. Depressive symptoms present? No. On the Clock Drawing Test the partecipant answered the following questions in this way:  Approximately c ircular face Correct.  Symmetry of number placement 
Incorrect.  Correctness of numbers Correct.  Presence of the two hands Correct. Presence of the two hands, set to ten after eleven Correct.  Clock Drawing Test:  Total Score 4.0.  On the Clock copying task the 
participant scored as follows:  Approximately c ircular face Yes. Symmetry of number placement Yes. Correctness of numbers Yes. Presence of the two hands Yes. Presence of the two hands, set to ten after eleven 
Yes. Clock copying task:  Total Score 5.0.  On the Auditory Verbal Learning Test the participant scored as follows in each trial:  Trial 1  Total 4.0.  Total Intrusions 0.0. Trial 2  Total 5.0.  Total Intrusions 0.0. Trial 3  Total 
5.0. Total Intrusions 0.0. Trial 4 Total 5.0. Total Intrusions 0.0. Trial 5 Total 5.0. Total Intrusions 1.0. Trial 6 Total 0. 0.  Total Intrusions 0.0. List B Total 5.0.  Total Intrusions 1.0. On the Category Fluency Test Animals 
the scores were:  - Total Correct 12.0. Perseverations 0.0. Intrusions 2.0. Part A - Time to Complete 32.0.  Errors of Commission 0.0. Errors of Omission 0.0. Part B - Time to complete 144.0.  Errors of Commission 1.0. 
Errors of Omission 0.0. On the Auditory Verbal Learning Test the participant scored as follows: 30 Minute Delay Total 0.0. Total Intrusions 1.0. Recognition Score 8.0. Total Intrusions 5.0. American National Adult 
Reading Test:  ANART Total Score (Total # of errors) 19.0. For the Functional Activities Questionnaire the participant scored as follows for each question:  Writing checks, paying bills, or balancing checkbook. Never 
did, would have difficulty now (1). Assembling tax records, business affairs, or other papers. Never did, would have difficulty now (1).  Shopping alone for clothes, household necessities,  or groceries. Never did,  
would have difficulty now (1). Playing a game of skill such as bridge or chess, working on a hobby. Normal (0).  Heating water, making a cup of coffee, turing off the stove. Normal (0). Preparing a balanced meal. 
Never did, would have difficulty now (1). Keeping track of current events. Never did, would have difficulty now (1).  Paying attention to and understanding a TV program, book, or magazine. Has difficulty, but does by 
self (1). Remembering appointments, family occasions, holidays, medications. Requires assistance (2). Trail Making Test for FAQ score:  Traveling out of the neighborhood, driving, or arranging to take public 
transportation. Dependent (3). Total Score for FAQ is 11.0

n-Inputs

 n-O
ptim

ized attributions

Figure 1: Proposed interpretability framework for LLM in Alzheimer’s diagnosis. The model
integrates k-attributional methods with a SAE to generate a monosemantic feature space. An ex-
planation optimizer refines attribution outputs, enhancing clarity and reducing variability. Global
explanation quality is visualized and assessed using UMAP and a linear meta-rule, supporting
both individual prediction interpretability and cohort-level pattern discovery.

2 METHODS

2.1 ATTRIBUTIONAL THEORY AND METHODS

Attribution explainability methods follow the framework of additive feature attribution, where the
explanation model g ( f ,x) is represented as a linear function of simplified input features:

g ( f ,x) =φ0 +
M∑

i=1
φi xi (1)

Here, f is the predictive model, φi ∈R is the attribution (importance) assigned to feature xi , and
M is the number of simplified input features (here 512).

For this study, we employed six well-established attributional interpretability methods applied
to large language models (LLMs), denoted as K = 6: Feature Ablation, Layer Activations (which
capture the embedding activation space of a specific layer of interest within the LLM), Layer
Conduction, Layer Gradient-SHAP (Lundberg & Lee, 2017b), Layer Integrated Gradients (Sun-
dararajan et al., 2017a), and Layer Gradient × Activation (For analytical mathematic formulation
see Appendix A.1.). To align these layer-wise interpretability methods with the additive feature
attribution framework, we reinterpret the internal activations (i.e., latent units) of a network layer
L as simplified input features. The objective is to estimate an attribution score φi for each unit,
where φi ∈R quantifies the contribution of the corresponding neuron to the model’s prediction.

All attribution methods were applied to the final (22nd) layer of the MODERN-BERT LLM—the
model variant that achieved the highest classification accuracy in our evaluations (see Supplemen-
tary section B.4). These formulations allow us to ground various neural attribution techniques
within a unified additive explanation model, facilitating their comparison and hybridization under
shared theoretical assumptions.

2.2 ATTRIBUTIONAL EXPLANATION OPTIMIZER FRAMEWORK

Let A = {A1, A2, . . . , AK } denote the set of K = 6 attribution methods applied to the final layer L of
the model f . Each method Ak generates an attribution vectorφ(k) = [φ(k)

1 ,φ(k)
2 , . . . ,φ(k)

M ], where M
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is the number of latent features (neurons) in layer L. The goal is to derive a unified attribution
vector φ̄ that captures the consensus explanation across methods. Each attribution vectorφ(k)

is evaluated using the Relative Input Stability (RIS), Relative Output Stability (ROS) Agarwal et al.
(2022b), and Sparseness Chalasani et al. (2020) metrics (For analytical mathematic formulation
see Appendix A.2.).

2.2.1 AGGREGATION OF ATTRIBUTIONS

The weighted average attribution vector φ̄ serves as the target explanation for the optimization
process and it is calculated as:

φ̄=
K∑

k=1
wk ·φ(k) (2)

2.2.2 EXPLANATION RECONSTRUCTION VIA ENCODER–DECODER MODELS

An encoder–decoder model is trained to generate a reconstructed explanation φ̂ from the orig-
inal input x . Two architectures are considered the Diffusion UNet1D Ronneberger et al. (2015)
(Diffusion Explanation Optimizer, DEO) and the x-transformer autoencoder Vaswani et al. (2017);
Nguyen & Salazar (2019) (Transformer Explanation Optimizer, TEO). For the analytical mathemat-
ical formulation, see Appendix A.2.4.

2.2.3 THE TOTAL COST FUNCTION OF THE OPTIMIZER

As previously highlighted, the reconstruction of the optimal explanation and the associated cost
function adhere to the same principles and architectural design outlined in Mamalakis et al.
(2025). The cost function consists of three key components: sparseness, as defined in Chalasani
et al. (2020); ROS and RIS scores Agarwal et al. (2022a); and similarity. The integration of these
components ensures a robust and interpretable evaluation. The total cost function for training
the reconstruction model is:

Ltotal(φ
(k),φ̂) =λ1 · 1

MRIS( f ,φ̂)
+λ2 · 1

MROS( f ,φ̂)

+λ3 ·Msparse( f ,φ̂)+λ4 ·Lsimilarity(φ̂,φ̄) (3)

where:λ1,λ2,λ3,λ4 are hyperparameters controlling the influence of each loss term. This formula-
tion enables a principled and quantitative integration of multiple attribution methods, optimizing
toward a robust and interpretable explanation.

2.3 UMAP PROJECTION AND LINEAR CONSTRAINT

Given a dataset Φ̂ = {φ̂1,φ̂2, . . . ,φ̂n} ⊂ RD , UMAP McInnes et al. (2018) aims to find a low-
dimensional embedding U = {u1,u2, . . . ,un} ⊂Rd where typically d = 2 or d = 3, such that the local
topological structure of the data in Φ̂ is preserved in U (further mathematical formulation please
see Appendix A.4). Let ui = (ui 1,ui 2, . . . ,ui d ) represent the embedding of the i -th data point in the
d-dimensional space (see Appendix A.4). The constraint that the first and second components of
the embedding are equal can be written as:

ui 1 = ui 2 ∀i ∈ {1,2, . . . ,n} (4)

In other words, the first component ui 1 and the second component ui 2 of each embedding
vector ui must be equal. This can be written as a linear equality constraint, ui 1 −ui 2 = 0 ∀i ∈
{1,2, . . . ,n}. This constraint ensures that for each data point i , the first and second components of
the corresponding embedding vector ui are equal. In the Ltotal(φ

(k),φ̂), of eq. 3, we can add an
extra penalty term to the loss function to enforce this constraint. The penalty term would be:

λ5

n∑
i=1

(ui 1 −ui 2)2 (5)

where λ5 is a regularization parameter that controls the strength of the penalty. This penalty term
enforces the condition that the first and second components of each embedding point of the
reconstructed explanation from the optimizer (φ̂) are equal, but it allows flexibility depending on
the value of λ5.
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2.4 THE SAE APPROACH AND ARCHITECTURES

The mathematical formulation situates SAE architectures within the theoretical framework of
superposition and semantic disentanglement (for an analytical mathematical formulation, see
Appendix A.5). By expressing hidden states as sparse linear combinations of interpretable features,
SAEs bridge the gap between low-level activations and human-understandable concepts. Let
x ∈ Rd denote a layer’s neuron activation vector in a pretrained model. A Sparse Autoencoder
learns a sparse feature representation a ∈RF such that:

x̂ =W a+b, (6)

where W ∈Rd×F is the decoder (dictionary) matrix and b ∈Rd is a learned bias term. Each column
W·,i represents the direction of feature i in neuron space, and ai is its activation. This linear map-
ping enables complex activations to be expressed as combinations of more interpretable features.
If F > d , then the feature space is overcomplete, and W cannot be full-rank. This leads to super-
position, where multiple features overlap in the same subspace, and individual neurons encode
multiple unrelated concepts Elhage et al. (2022b). If W is invertible and aligned to a basis, each
neuron corresponds to a single feature. The representation is monosemantic and disentangled
Olah et al. (2020b). When W has overlapping columns, neurons can respond to multiple features,
yielding polysemantic behavior. That is, for some j , x j = ∑

i W j ,i ai involves multiple nonzero
terms Bills et al. (2023). Variants of SAEs like TopK, JumpReLU, and Gated-SAEs offer increasingly
precise control over the mapping between low-level activations and human-understandable con-
cepts, enabling fine-grained analysis and intervention (analytical mathematical formulation, see
Appendix A.6.).

2.5 ATTRIBUTION FROM SPARSE FEATURE SPACE TO INPUT TOKENS

Let xinput ∈Rdinput denote the input embedding vector (e.g., LLM token embeddings), x = f (xinput) ∈
Rd the hidden layer activation of the LLM, a = Encoder(x) ∈RF the SAE sparse feature vector, and
x̂ = W a+b the reconstructed activation from the SAE decoder. Now suppose we have a sparse
attribution vector ψi over features a, i.e., ψ ∈RF , where each ψi reflects the importance of SAE
feature ai . We aim to assign importanceΦk to each input token dimension xinput,k .

We propagate the feature attributions backward through the encoder to the input. Using the chain
rule:

Φk =
F∑

i=1
ψi · ∂ai

∂xinput,k
=

F∑
i=1

ψi · ∂ai

∂x
· ∂x

∂xinput,k
(7)

where ∂ai
∂x is the encoder Jacobian (SAE layer), and ∂x

∂xinput,k
is the LLM gradient from input token to

hidden layer. This gives us a scalar attributionΦk ∈R for each token/input embedding dimension
k. This represents how much each input token contributes to the sparse SAE features identified as
important. In doing so, we assess the contribution of input features based on the monosemantic
behavior of the trained network’s internal mechanisms. Building on our study, we apply the six
previously discussed attribution methods at two levels: from the SAE feature space to the encoder
layer, and from the encoder layer to the input embedding space. This dual-level attribution
analysis enables us to investigate how interpretable sparse features relate to model internals and
ultimately shape the input-level representations. Attribution methods (e.g., Integrated Gradients,
SHAP) can directly estimate:

φinput = AttributionMethod( f ,xinput,φ
SAE) (8)

where φSAE denotes the monosemantic feature space of the SAE network. Thus, the dual-level
approach allows us to connect semantically meaningful sparse features to the raw input represen-
tation space.

2.6 LLM NETWORKS AND HYPERPARAMETER TUNING

We evaluate encoder-based LLMs (BERT, RoBERTa, DistilBERT, ALBERT, BioBERT, ModernBERT)
on ADNI (IID) and BRAINLAT (OOD) under a unified protocol spanning full fine-tuning, zero-shot,
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few-shot with temperature control, and parameter-efficient LoRA. ModernBERT outperformed
all other networks on ADNI: in the binary task it achieved the highest F1 (75.89%), AUC-PR
(86.41%), ROC-AUC (83.95%), and Accuracy (72.37%), and it remained strongest in the three-
class setting (F1 68.80%, AUC-PR 78.48%, ROC-AUC 78.67%, Accuracy 65.05%). For OOD model
adaptation, ModernBERT zero-shot yielded 55% Accuracy, few-shot/LoRA provided modest gains
(62%), while full fine-tuning peaked at 84% Accuracy but lies outside our scope. Accordingly,
we use ModernBERT fine-tuned on ADNI for IID and zero-shot on BRAINLAT for OOD, and all
interpretability analyses are conducted on the 22nd layer of ModernBERT. We conducted extensive
hyperparameter tuning for all components. The explanation optimizer performed best at a
learning rate of 2e-4, with the optimal weight configuration (λ1,λ2,λ3,λ4) = (0.1,0.3,0.1,0.5).
UMAP constraints were most effective at the 4× batch size level (4×64). Among SAE variants, TopK
achieved the best results with a 32× feature depth. All models were trained using the AdamW
optimizer with early stopping and standard evaluation metrics. Further hyperparameter tuning
and evaluation details are provided in Supplementary section B.5 and B.6.

2.7 DATASET AND CODE AVAILABILITY

The dataset used in this study originates from the ADNI cohort Mueller et al. (2005), represented
as text generated from multiple modalities, serving as the in-distribution (IID) dataset. For
the out-of-distribution (OOD) cohort, we used text generated from multimodal sources (MRI
and clinical files) in the Latin American Brain Health Institute (BrainLat) dataset, a multi-site
initiative providing neuroimaging, cognitive, and clinical data across several Latin American
countries Prado et al. (2023). Additional demographic and preprocessing details are provided in
Supplementary Sections B.1–B.4. The code is implemented in Python using PyTorch and runs on
an NVIDIA cluster in one A100-SXM-80GB GPU. It leverages SAE_LENs Bloom et al. (2024) for
SAE training, quantusHedström et al. (2023) for evaluation, andcaptum for attribution analysis.
The codebase https://anonymous.4open.science/r/TEO_SAE-6D24/README.md.

3 RESULTS

3.1 ABLATION AND EVALUATION SCORES WITH/WITHOUT UMAP CONSTRAINT AND SAE LAYER.

In this study, sparseness is defined such that higher values correspond to more selective and
concentrated attributions across input features—that is, greater sparseness. However, sparseness
alone is insufficient to assess explanation quality, as it does not account for robustness or stabil-
ity. Therefore, the most effective explanation method is one that simultaneously achieves high
sparseness and low RIS and ROS values.

Across IID, OOD datasets and for both binary and three-class classification tasks, Table 1 shows a
consistent stability–sparsity frontier governed by the proposed optimizers and a monosemantic
bottleneck (SAE). In the binary IID case, SAE substantially improves stability for feature-learning
explainers, most notably: Layer Conductance and especially TEO, with large drops in RIS/ROS for
both Alzheimer’s and Control, whereas Activation–SAE increases RIS/ROS relative to its no-SAE
variant and is therefore less robust. In the binary OOD case, this pattern persists and strengthens:
TEO–SAE achieves the lowest RIS/ROS overall (strong cross-dataset stability), while TEO–UMAP
recovers higher sparsity (> 0.40) at a modest stability cost versus TEO–SAE, offering a tunable
sparsity–stability trade-off. In the three-class IID setting, Feature Ablation is the sparsity leader
across Control/LMCI/MCI (∼ 0.52–0.53) with moderate, steady yet still high RIS/ROS values; Layer
Conductance–SAE markedly reduces RIS/ROS for LMCI/MCI; and TEO–SAE again delivers the
most stable attributions across all classes, albeit with reduced sparsity compared with no-SAE
variants. The same rank ordering holds OOD. Across all blocks, gradient-formulaic methods
(Grad-SHAP, Guided Backprop, Integrated Gradients) show near-invariant RIS/ROS (∼ 5.6/ ∼
16.93) regardless of SAE, class, or domain, indicating that SAE chiefly benefits learned-attribution
methods. Further analyses are provided in Supplementary §B.7, Tables 2–5.

3.2 INDIVIDUAL-LEVEL AND COHORT-LEVEL EXPLANATIONS AND PATTERNS

Figure 2 shows qualitative local attributions for the the LMCI class of the three-class classification
task on IID and OOD using our proposed optimiser TEO, TEO-SAE, and TEO-UMAP (SAE). Tokens
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Table 1: Unified attribution summary split vertically by task and setting. Values are mean±std
per class. Binary columns use (A/C) = Alzheimer/Control; Three-class columns use (L/M/C) =
LMCI/MCI/Control.

Task & Setting Method (row = variant) Sparseness RIS ROS

Binary — IID (ADNI) Columns: (A/C)

Activation 0.3164/0.2562 ± 0.0076/0.0176 14.3023/14.2365 ± 0.3686/0.3381 25.5485/25.5487 ± 0.4828/0.3286
Activation-SAE 0.2966/0.2520 ± 0.0071/0.0047 21.3084/19.3275 ± 0.3110/0.9323 32.6174/30.6394 ± 0.3079/0.9334

Layer Conductance 0.3966/0.3745 ± 0.0261/0.0071 12.3985/5.6502 ± 2.6406/0.0391 23.1466/16.9615 ± 1.6865/0.0318
Layer Conductance-SAE 0.3915/0.2480 ± 0.0076/0.0079 5.6285/5.6141 ± 0.0236/0.0184 16.9471/16.9301 ± 0.0103/0.0052

Feature Ablation 0.5236/0.5256 ± 0.0098/0.0110 23.1523/22.5611 ± 0.8198/0.2884 33.9088/33.9076 ± 0.1613/0.3747
Feature Ablation-SAE 0.5235/0.5265 ± 0.0104/0.0088 23.5609/23.6221 ± 0.1033/0.0933 34.9298/34.9726 ± 0.0745/0.1033

Gradient SHAP 0.3192/0.4333 ± 0.0043/0.0030 5.6231/5.6325 ± 0.0237/0.0235 16.9357/16.9461 ± 0.0018/0.0022
Gradient SHAP-SAE 0.0820/0.1339 ± 0.0155/0.0099 5.6218/5.6196 ± 0.0227/0.0190 16.9345/16.9348 ± 1.5e−5/6.0e−6

Gradient Activation 0.3277/0.2500 ± 0.0384/0.0230 5.6149/5.6170 ± 0.0193/0.0221 16.9303/16.9347 ± 0.0034/0.0
Gradient Activation-SAE 0.2035/0.1668 ± 0.0117/0.0072 5.6252/5.6173 ± 0.0213/0.0221 16.9343/16.9347 ± 6.8e−5/4.0e−5

Integrated Gradient 0.2983/0.4304 ± 0.0080/0.0066 5.6206/5.6278 ± 0.0180/0.0190 16.9326/16.9434 ± 0.0015/0.0024
Integrated Gradient-SAE 0.1212/0.0644 ± 0.0058/0.0059 5.6224/5.6214 ± 0.0178/0.0169 16.9345/16.9346 ± 1.2e−5/8.3e−6

DEO 0.3383/0.3377 ± 0.0033/0.0017 9.2839/9.3131 ± 0.0800/0.1427 20.6342/20.6159 ± 0.0866/0.2026
DEO-SAE 0.3374/0.3140 ± 0.0029/0.0010 9.2790/9.1750 ± 0.0646/0.1088 20.6150/20.5150 ± 0.0880/0.1299

TEO 0.4220/0.4199 ± 0.0003/0.0005 5.0520/5.0688 ± 0.0192/0.0184 16.3529/16.3777 ± 0.0056/0.0011
TEO-SAE 0.2672/0.2682 ± 0.0010/0.0007 1.6227/0.9964 ± 0.1708/0.2639 12.9250/12.2983 ± 0.1703/0.2613
TEO-UMAP (SAE) 0.3989/0.4057 ± 0.0004/0.0003 5.4394/5.4709 ± 0.0332/0.1746 16.3037/16.2102 ± 0.0033/0.0079

Binary — OOD (BrainLat) Columns: (A/C)

Activation-SAE 0.1533/0.3965 ± 0.0103/0.0303 19.1625/18.2412 ± 0.3642/0.5392 31.2827/29.0406 ± 1.5414/0.4731

Layer Conductance-SAE 0.2392/0.2543 ± 0.0298/0.0210 6.1621/6.2149 ± 0.1495/0.2076 16.9438/16.9403 ± 0.0071/0.0050

Feature Ablation-SAE 0.5288/0.5285 ± 0.0070/0.0044 23.5834/24.1474 ± 0.0645/0.1160 34.6531/34.9613 ± 0.2526/0.2205

Gradient SHAP-SAE 0.1201/0.0571 ± 0.0144/0.0271 6.0440/6.0303 ± 0.0396/0.0471 16.9347/16.9348 ± 5.8e−5/5.7e−6

Gradient Activation-SAE 0.1140/0.0630 ± 0.0177/0.0069 6.0328/6.0339 ± 0.0277/0.0398 16.9347/16.9348 ± 3.6e−6/3.7e−5

Integrated Gradient-SAE 0.0643/0.0143 ± 0.0052/0.0003 6.0579/6.0276 ± 0.0456/0.0339 16.9348/16.9349 ± 7.8e−6/1.1e−5

TEO-SAE 0.2691/0.2725 ± 0.0016/0.0004 0.6835/0.4734 ± 0.6676/0.2801 11.5236/11.2130 ± 0.6591/0.5150
TEO-UMAP (SAE) 0.3989/0.4043 ± 0.0005/0.0029 5.4394/5.4282 ± 0.0383/0.1944 16.3037/16.1577 ± 0.0039/0.1054

Three-class — IID (ADNI) Columns: (L/M/C)

Activation 0.2715/0.2626/0.3030 ± 0.0384/0.0379/0.0377 15.0786/16.6568/14.4042 ± 1.9754/2.8208/0.1660 26.3951/27.9606/25.7217 ± 1.9727/2.8233/0.171
Activation-SAE 0.2644/0.3091/0.3450 ± 0.0630/0.0603/0.0095 18.4231/19.4227/18.9968 ± 2.3518/3.4745/4.4840 29.7333/30.7419/30.3026 ± 4.8472/6.1045/0.2636

Layer Conductance 0.3623/0.3053/0.2315 ± 0.0064/0.0076/0.0096 13.1429/6.6083/5.6260 ± 0.3255/2.2363/0.0209 24.5060/17.9191/16.9440 ± 0.4120/2.2581/0.0045
Layer Conductance-SAE 0.2464/0.2930/0.3315 ± 0.0628/0.0578/0.0062 5.6236/5.6291/5.6222 ± 0.9099/1.1307/0.0149 16.9338/16.9384/16.9390 ± 2.7457/3.4067/0.0105

Feature Ablation 0.5226/0.5222/0.5239 ± 0.0097/0.0094/0.0067 22.2447/23.4984/23.3250 ± 0.1629/0.4587/0.4109 33.6064/34.8737/34.6653 ± 0.1615/0.4407/0.4580
Feature Ablation-SAE 0.5268/0.5257/0.5261 ± 0.0840/0.1048/0.0120 21.9794/23.0006/23.0766 ± 3.6802/4.5402/0.1403 33.3071/34.3136/34.4179 ± 5.4997/6.8050/0.1463

Gradient SHAP 0.1292/0.0891/0.2310 ± 0.0326/0.0131/0.0206 5.6152/5.6292/5.6189 ± 0.0144/0.0187/0.0139 16.9255/16.9392/16.9358 ± 0.0014/0.0021/0.0021
Gradient SHAP-SAE 0.3011/0.2881/0.1844 ± 0.0721/0.0618/0.0148 5.6217/5.6186/5.6219 ± 0.9462/1.1670/0.0253 16.9348/16.9348/16.9348 ± 2.8625/3.5241/1.4e−5

Guided Backprop 0.3839/0.2917/0.2697 ± 0.0177/0.0200/0.0061 5.6272/5.6269/5.6290 ± 0.0212/0.0193/0.0225 16.9339/16.9340/16.9347 ± 0.0008/0.0006/0
Guided Backprop-SAE 0.4310/0.2579/0.2296 ± 0.1156/0.1095/0.0036 5.6297/5.6172/5.6210 ± 0.9478/1.1684/0.0194 16.9347/16.9347/16.9348 ± 2.8625/3.5241/1.22e−5

Integrated Gradient 0.1084/0.1102/0.0451 ± 0.0262/0.0157/0.0071 5.6094/5.6283/5.6207 ± 0.0178/0.0209/0.0215 16.9276/16.9358/16.9331 ± 0.0006/0.0020/0.0011
Integrated Gradient-SAE 0.3889/0.2660/0.2639 ± 0.0841/0.0905/0.0042 5.6282/5.6203/5.6209 ± 0.9476/1.1685/0.0209 16.9343/16.9346/16.9348 ± 2.8625/3.5240/1.22e−5

TEO 0.4131/0.3909/0.3918 ± 0.0003/0.0047/0.0008 5.0938/4.8283/4.8080 ± 0.0188/0.0377/0.0184 16.4043/16.1354/16.1172 ± 0.0024/0.0324/0.0090
TEO-SAE 0.2860/0.2838/0.2682 ± 0.0374/0.0523/0.0649 2.2642/2.1617/1.5468 ± 0.4877/0.4547/0.1171 13.5646/13.4676/12.8570 ± 2.2745/2.7641/0.1179
TEO-UMAP (SAE) 0.4161/0.4172/0.3973 ± 0.0870/0.2372/0.0749 5.1017/5.1116/5.1086 ± 0.1697/0.1072/0.2083 16.4031/16.4088/16.4123 ± 3.8616/0.4924/6.8439

Three-class — OOD (BrainLat) Columns: (L/M/C)

Activation-SAE 0.1907/0.1400/0.4505 ± 0.0016/0.0124/0.0375 18.6406/18.0787/19.0940 ± 0.9117/0.0313/0.1796 29.5628/28.8583/29.9240 ± 0.8978/0.0452/0.2538

Layer Conductance-SAE 0.1857/0.2006/0.3252 ± 0.0073/0.0119/0.0145 6.0546/6.2684/6.2120 ± 0.0477/0.0401/0.2450 16.9637/17.0146/16.9582 ± 0.0071/0.0206/0.0173

Feature Ablation-SAE 0.5262/0.5293/0.5281 ± 0.0057/0.0112/0.0058 23.5693/23.5916/22.6406 ± 0.0577/0.1118/0.0331 34.5169/34.3720/33.4853 ± 0.0737/0.0804/0.2338

Gradient SHAP-SAE 0.0637/0.1137/0.1951 ± 0.0265/0.0420/0.0264 6.0315/6.1274/6.1227 ± 0.0298/0.1207/0.1619 16.9349/16.9347/16.9346 ± 7.6e−5/8.9e−5/4.3e−5

Gradient Activation-SAE 0.1836/0.4303/0.1772 ± 0.0016/0.0022/0.0112 6.0269/6.1450/6.1234 ± 0.0302/0.1210/0.1912 16.9348/16.9345/16.9346 ± 2.6e−6/2.8e−5/1.5e−5

Integrated Gradient-SAE 0.0072/0.0361/0.0671 ± 0.0009/0.0049/0.0121 6.0356/6.1478/6.1225 ± 0.0189/0.0924/0.1502 16.9348/16.9346/16.9346 ± 1.1e−6/8.9e−6/1.3e−5

TEO-SAE 0.3716/0.4224/0.4162 ± 0.0009/0.0002/0.0029 4.9396/5.5421/5.7520 ± 0.0148/0.0611/0.3645 15.8121/16.2773/16.3792 ± 0.0099/0.0010/0.0034
TEO-UMAP (SAE) 0.4239/0.4246/0.4238 ± 5.0e−5/2.4e−4/5.6e−4 5.4583/5.5576/5.5525 ± 0.0297/0.0954/0.1862 16.3726/16.3572/16.3661 ± 0.0017/0.0035/0.0073

are colour-coded (green = positive relevance; red = negative). Visually, TEO-SAE produces the tight-
est, least noisy explanations—fewer spurious highlights and clearer token groupings—consistent
with its lowest RIS/ROS in Table 1. Adding the UMAP constraint restores higher sparseness while
preserving much of TEO-SAE stability: TEO-UMAP (SAE) yields compact, well-separated pat-
terns that remain clinically interpretable across IID and OOD. Across classes and datasets, higher
Sparseness corresponds to less diffuse maps with balanced positive/negative highlights, whereas
low Sparseness with high RIS/ROS manifests as saturated red/green patches and unstable saliency
(see Supplementary Figures 7–16). Among the six classical attribution methods (Activation, Layer
Conductance, Feature Ablation, Gradient SHAP, Gradient Activation, Integrated Gradient), Feature
Ablation attains the highest Sparseness but exhibits poorer stability (elevated RIS/ROS), a gap that
worsens with SAE due to decoder-driven “decompression” (Supplementary Figures 7–8). Layer
Conductance shows the opposite trade-off: SAE reduces Sparseness but improves stability (lower
RIS/ROS), with similar stability gains observed for Gradient Activation, Integrated Gradient, and
Gradient SHAP (Supplementary Figures 9–10). Overall, none of these classical methods match
the proposed framework as TEO-SAE is consistently most stable, and TEO-UMAP (SAE) offers
a tunable sparsity–stability compromise that generalises from ADNI to BrainLat (for extended
analyses see Supplementary §B.9).
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Figure 2: Stability–sparsity frontier for explanation optimizers on ADNI (Late MCI). Scatter shows
TEO, TEO–SAE, and TEO–UMAP (SAE) on ADNI (IID) and BrainLat (OOD). Metrics: Sparseness
(higher is better) vs. RIS/ROS stability (lower is better). Thresholding uses 60% feature attribution
over 512 tokens. TEO–SAE yields the most stable explanations, TEO–UMAP recovers higher
sparsity with modest stability cost, and TEO lies between.

Moving from TEO to TEO–SAE produces tighter, more homogeneous low-to-high attribution
and the lowest RIS/ROS (highest stability), but also a marked reduction in sparseness, evident
as broader token spread in the 2D manifold (see Figure 2). In some cases, this stabilisation
concentrates signals so strongly that few features exceed the significance threshold (square box in
the 2D scatter plot where U M AP-PC 1/PC 2 ≥ 0.6), and not all subgroups are represented (Figure 2,
Supplementary Figure 32). Imposing a linear UMAP constraint (TEO–UMAP) mitigates this effect
by restoring sparsity in significant attributions while retaining stability, yielding compact, clinically
interpretable maps with more uniform subgroup coverage (Figure 2; Supplementary Figures
33–35). The behaviour of the proposed framework (TEO, TEO–SAE, TEO–UMAP) shows that
higher sparseness corresponds to less diffuse, more balanced highlights, whereas lower sparseness
with higher RIS/ROS results in saturated red/green patches. This mirrors the patterns observed
across the six classical methods (Activation, Layer Conduction, Feature Ablation, Gradient SHAP,
Gradient Activation, Integrated Gradient; Supplementary §B.10). With SAE, feature-learning
explainers such as Layer Conduction generally gain stability (lower RIS/ROS) at some sparsity cost,
while Feature Ablation maintains high sparsity but remains unstable. None, however, match the
stability–sparsity trade-off achieved by TEO–SAE and TEO–UMAP (box plots in Figure 2; Table 1).
Supplementary §B.10 (Figures 22–31) provides more details about cohort-level attributions.

3.3 ARE MONOSEMANTIC REPRESENTATION–BASED ATTRIBUTION METHODS STATISTICALLY

DISTINCT FROM STANDARD ATTRIBUTION TECHNIQUES?

A statistical evaluation of interpretability metrics (sparseness, RIS, and ROS) across methods
with and without the SAE layer was computed. In the binary ADNI task, paired t-tests with FDR
correction showed that adding an SAE bottleneck significantly reduced Complexity (p < 10−10)
and RIS (p < 10−4) in both groups, while ROS changes were small and inconsistent (marginal
for Control, non-significant for Alzheimer’s). The strongest SAE effects appeared in attribution
metrics, with Gradient SHAP (p < 10−45), Layer Conduction (p = 3.2×10−7), Integrated Gradients
(p < 10−55), and the TEO (p < 10−95) all showing decisive reductions, confirming robust stability
gains under SAE. In the three-class ADNI task, paired t-tests and Wilcoxon signed-rank tests (BH-
FDR) indicated that the MCI group showed the clearest improvement: ROS decreased strongly
(t(17) = −10.12, p = 1.30× 10−8; W = 0, p = 8.0× 10−6, q = 2.3× 10−5), RIS showed a smaller
reduction detected non-parametrically (W = 19, p = 0.00117), and Complexity increased modestly
by Wilcoxon (W = 17, p = 7.9×10−4) while paired t-tests were non-significant. Control and LMCI
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had incomplete pairs, preventing matched testing with correction. Overall, SAE reliably improves
attribution stability (lower RIS/ROS scores) and reduces Complexity in binary tasks, with the three-
class MCI group showing the most consistent ROS gains. Full analytical results and additional
details are provided in Supplementary §B.8.

3.4 THE CLINICAL IMPACT AND OUTCOME IN THE DIAGNOSIS OF ALZHEIMER

This study shows that the TEO-SAE and TEO-UMAP provide the most reliable identification of
informative sources across this nine multimodal subgroups. Using a significance threshold of 0.6
on UMAP principal components PC1/PC2 (Figure 2), we observe in the binary task of the IID test
cohort (ADNI) that, for Control, TEO-SAE is dominated by FAQ, whereas TEO-UMAP emphasises
DEM, AVLT2, and FAQ; for Alzheimer’s, TEO prioritises FAQ, AVLT1, and CFA, while TEO-UMAP
highlights ANART, FAQ, and DEM. In the three-class task, for Control the main contributors are
AVLT1, CDT, and ANART under TEO, and AVLT1, CDT, and CFA under TEO-UMAP; for MCI, TEO
favours CCT, AVLT2, and FAQ, whereas TEO-UMAP favours AVLT2, ANART, and CFA; and for LMCI,
TEO elevates AVLT1, FAQ, and CDT, while TEO-UMAP elevates FAQ, ANART, and AVLT2. These
patterns are summarised in Supplementary Table 6 (Section B.11) and the acronyms follow the
description in Sections B.1–B.3.

3.5 LIMITATION AND FUTURE WORK

While our framework demonstrates substantial improvements in attribution clarity and robust-
ness, some limitations remain. A generalized outcome about clinical LLMs is not feasible at
the level of this study, as the analysis was restricted to the neurodegenerative domain, limiting
generalisability to other areas such as oncology. Methodologically, we evaluated only one type of
monosemantic bottleneck (SAE) and a linear UMAP constraint, leaving alternative architectures
and constraint families (e.g., neuro-symbolic or meta-learning) unexplored. Constraining the
manifold space of explanations with explicit guidance from clinical experts could further improve
explanation quality and enhance pattern discovery within the proposed framework. In addition,
while stability–sparsity assessment focused on RIS/ROS and sparsity indices as important first-
level evaluation metrics, additional measures such as uncertainty quantification and fairness
auditing should be incorporated in future work. Future work will strengthen more these results by
validate prospectively, extend to additional centres/modalities and other clinical domains (e.g.,
oncology), explore alternative constraints, and incorporate uncertainty and fairness auditing.

4 CONCLUSION

We introduce a unified interpretability framework that combines explainer optimisation with a
monosemantic bottleneck (TEO–SAE) and an optional geometry-aware constraint (TEO–UMAP).
Across IID (ADNI) and OOD (BrainLat), and in both binary and three-class settings, TEO–SAE
consistently achieves the lowest RIS/ROS (highest stability), while TEO–UMAP reliably recovers
higher sparsity at a modest stability cost—establishing a tunable sparsity–stability frontier that
generalises across tasks and distribution shift. Gradient-based baselines change little with SAE,
whereas SAE substantially benefits feature-learning explainers (like Layer Conduction), and none
of the classical techniques surpass our optimisers, underscoring the value of learning monoseman-
tic features within an explainer-optimisation pipeline. Clinically, stable contributors concentrate
on functional status (FAQ) and memory (AVLT1/AVLT2), with visuospatial performance (CDT)
features recurring in Control/LMCI. TEO–SAE emphasises neuropsychological performance sig-
nals, whereas TEO–UMAP exposes complementary demographic/language markers, yielding
class-specific, clinically interpretable profiles. A simple UMAP PC1/PC2 0.6 rule produces ac-
tionable cohort-level attribution maps that can prioritise assessments, reduce testing burden,
inform trial enrichment, and support personalised monitoring. Critically, while increasing feature
dimensionality can erode attribution quality in standard methods, transformer-based optimiza-
tion explainers remain resilient when guided by geometric and structural constraints. Taken
together, our results, both theoretical and empirical, indicate that integrating monosemantic
encoding with geometry-aware explanation can enhance robust, human-aligned interpretability
in neuroscience-focused AI.
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The paper discusses several potential positive societal impacts, particularly emphasizing its
relevance to clinical applications such as the early diagnosis and treatment planning of Alzheimer’s
Disease. By proposing a unified interpretability framework that combines attributional and
mechanistic techniques, the authors aim to enhance the trustworthiness, consistency, and human
alignment of large language model (LLM) outputs. This improved interpretability is presented as a
means to support safer and more effective integration of LLMs into cognitive health and clinical
decision-making, with the potential to uncover clinically meaningful patterns and ultimately
improve patient outcomes. However, the paper does not explicitly address possible negative
societal impacts of the work. It does not discuss risks such as the misinterpretation of model
ex-677 planations, over-reliance on machine-generated insights in high-stakes medical contexts,
or the potential for the framework to inadvertently reinforce biases embedded in training data.
Societal impacts can be better established through future work, in which we plan to incorporate
clinician-in-the-loop evaluation and patients.
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