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Abstract

Monge map refers to the optimal transport map between two probability distributions and
provides a principled approach to transform one distribution to another. Neural network-
based optimal transport map solver has gained great attention in recent years. Along this
line, we present a scalable algorithm for computing the neural Monge map between two
probability distributions. Our algorithm is based on a weak form of the optimal transport
problem, thus it only requires samples from the marginals instead of their analytic expres-
sions, and can be applied in large-scale settings. Furthermore, using the duality gap we
prove rigorously a posteriori error analysis for the method. Our algorithm is suitable for
general cost functions, compared with other existing methods for estimating Monge maps
using samples, which are usually for quadratic costs. The performance of our algorithms
is demonstrated through a series of experiments with both synthetic and realistic data,
including text-to-image generation, class-preserving map, and image inpainting tasks.

1 Introduction

The past decade has witnessed great success of optimal transport (OT) (Villani, 2008) based applications in
machine learning community (Arjovsky et al., 2017; Krishnan & Martínez, 2018; Li et al., 2019; Inoue et al.,
2020; Ma et al., 2020; Fan et al., 2020; Haasler et al., 2020; Alvarez-Melis & Fusi, 2020; Alvarez-Melis et al.,
2021; Bunne et al., 2021; Mokrov et al., 2021; Bunne et al., 2022; Yang & Uhler, 2018; Fan et al., 2022a; Fan
& Alvarez-Melis, 2022; Nguyen & Ho, 2022; Zhu et al., 2021). The Wasserstein distance induced by OT is
widely used to evaluate the discrepancy between distributions thanks to its weak continuity and robustness.
In this work, given any two probability distributions ρa and ρb defined on Rn and Rm, we consider the
Monge problem

CMonge(ρa, ρb) ≜ min
T :Rn→Rm,
T♯ρa=ρb

∫
Rn

c(x, T (x))ρa(x) dx. (1)

Here c(x, y) denotes the cost of transporting from x to y and T is the transport map. We define the
pushforward of distribution ρa by T as T♯ρa(E) = ρa(T−1(E)) for any measurable set E ⊂ Rm. The Monge

∗Equal contribution.
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problem seeks the cost-minimizing transport plan T∗ from ρa to ρb. The optimal T∗ is also known as the
Monge map of (1).

In this work, we propose a scalable algorithm for estimating the Wasserstein distance as well as the op-
timal map in continuous spaces without introducing any regularization terms. Particularly, we apply the
Lagrangian multiplier directly to the Monge problem and obtain a sup-inf problem. Our contribution is
summarized as follows: 1) We develop a neural network based algorithm to compute the optimal transport
map associated with general transport costs between two distributions; 2) Our method is capable of com-
puting OT problems between distributions with different dimensions. 3) We provide a rigorous a posteriori
error analysis of the algorithm based on duality gaps; 4) We demonstrate its performance and its scaling
properties in truly high dimensional settings through various experiments.

Just like other computational OT methods, our method does not require paired data for learning the transport
map. In real-life applications, the acquirement and maintenance of large-scale paired data are laborious. We
will show that our proposed algorithm can be applied to multiple cutting-edge tasks, where the dominant
methods still require paired data. In particular, our examples include text-to-image generation and image
inpainting, which confirm that our algorithm can achieve competitive results even without paired data.

Figure 1: Random image samples with size 224 × 224 on Laion art testing prompts. Except for the last row
of real images, we show the outputs of the same decoder with different conditions. The condition of decoder
includes a text encoding, which we keep unchanged across rows, and an image embedding. In the first row,
we feed the decoder the text embedding, and the generated images are unrealistic because the image and
the text embeddings are not interchangeable. In the second row, we pass the embedding mapped by our
transport map, which is trained on unpaired data. As a baseline method, we pass an image embedding
generated by the diffusion prior in DALL·E2-Laion, which is trained on paired data. To explicitly show the
decoder’s recovery ability, we pass the real image embedding in the fourth row.
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Figure 2: Random image samples on Conceptual Captions 3M prompts. The meaning of each row is the
same as in Figure 1.

2 A brief background of OT problems

Consider X as a closed subset of Rn and Y as an arbitrary Polish space1. Suppose the cost function c is
defined on Rn × Y. We denote ρa, ρb as Borel probability distributions defined on X ,Y respectively. Then
the general OT problem, which can be treated as a relaxation of Monge problem (1), can be formulated as

C(ρa, ρb) := inf
π∈Π(ρa,ρb)

∫∫
X ×Y

c(x, y)dπ(x, y), (2)

where we define Π(ρa, ρb) as the set of joint Borel probability distributions on X × Y with marginals equal
to ρa and ρb. Once c is continuous and satisfies (15) and ρa is atomless, then optimal values of Monge
problem and Kantorovich problem are equal to each other (Pratelli, 2007), i.e., CMonge(ρa, ρb) = C(ρa, ρb).

The Kantorovich dual formulation (Villani, 2008, Ch. 5) of the primal OT problem (2) is

sup
ϕ,ψ

{∫
Y
ϕ(y)ρb(y) dy −

∫
X
ψ(x)ρa(x) dx

}
, (3)

where the maximization is over all ψ ∈ Cb(ρa), ϕ ∈ Cb(ρb) that satisfy ϕ(y) − ψ(x) ≤ c(x, y) for any
x ∈ X , y ∈ Y. For further discussions on the dual problem (3), as well as its equivalence to the primal OT
problem (2) , we refer the reader to Appendix A. In general, the optimal solution π∗ of (2) can be treated as
a stochastic transport plan, i.e., we are allowed to break a single particle into pieces and then transport each

1A topological space is Polish space if it is a separable, complete, metric space. Euclidean space Rm and its closed subsets
are Polish spaces.
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piece to certain positions according to the plan π∗. However, in this study, we mainly focus on computing
the deterministic optimal map T∗ for the Monge problem.

The following theorem states the existence and uniqueness of the optimal solution to the Monge problem.
It also reveals the relation between the optimal map T∗ and the optimal transport plan π∗. This theorem is
taken from Chapter 10 of (Villani, 2008). A more complete statement can be found in Appendix A.
Theorem 1. (Informal, existence and uniqueness of Monge map) Assume the boundary ∂X of X has
dimension no larger than n− 1. Suppose the cost c satisfies (15), (16), (17), (18), and assume that ρa and
ρb are compactly supported and ρa is absolute continuous with respect to the Lebesgue measure on Rn. Then
there exists a unique-in-law2 transport map T∗ solving Monge problem (1). Furthermore, (Id, T∗)♯ρa3 is an
optimal solution to the OT problem (2).

3 Proposed method

In order to formulate a tractable algorithm for the general Monge problem (1), we first notice that (1) is a
constrained optimization problem. Thus, we introduce a Lagrange multiplier f for the constraint T♯ρa = ρb
and reformulate (1) as a saddle point problem

sup
f∈Cb(Y)

inf
T∈M(X ,Y)

L(T, f). (4)

Here we denote Cb(Y) as the space of bounded continuous functions on Y; and M(X ,Y) as the space of
measurable map T : X → Y. In the following discussion, if not specified, we always treat the optimization
space of f and T as Cb(Y),M(X ,Y). Furthermore, we define L(T, f) as∫

X
c(x, T (x))ρadx+

∫
Y
f(y)(ρb − T♯ρa)dy =

∫
X
[c(x, T (x)) − f(T (x))] ρadx+

∫
Y
f(y)ρbdy. (5)

It is worth mentioning that if we optimize the inner problem of (4), our proposed problem (4) is also
closely tied to the Kantorovich dual problem (20) of primal OT problem. Such observation will be useful on
establishing several theoretical results for our method.

The following theorem reveals the equivalence between the existence of solutions to primal problem (1) as
well as dual problem (3) and the existence of saddle point (see Definition 3 of Appendix B).
Theorem 2 (Equivalence & Consistency between optima of (1) and saddle point). Suppose X = Rn,Y =
Rm; ρa, ρb are Borel probability distributions on X ,Y; ρa is atomless4. Assume the OT distance C(ρa, ρb) <
+∞ and the cost c is continuous and bounded from below by a finite number c, i.e. c ≥ c. Then,

(Equivalence) The following two statements are equivalent:
1. There exists at least one saddle point of L(T, f).
2. Both the primal problem (1) and the dual problem (20) admit at least one solution.

(Consistency) For any optimal solution T∗ to (1), optimal solution ϕ∗ to (20), and saddle point (T̂, f̂) of
L(T, f), we have (T∗, ϕ∗) is a saddle point of L(T, f), T̂ is an optimal solution to (1), and f̂ is an optimal
solution to (20). Furthermore, L(T̂, f̂) = CMonge(ρa, ρb).

A direct corollary of Theorem 2 guarantees the existence of the saddle point.
Corollary 1 (Existence of saddle point). Suppose X = Rn,Y = Rm. Assume that ρa, ρb are compactly
supported Borel probability distributions on X ,Y, and ρa is absolute continuous with respect to the Lebesgue
measure on Rn. Assume c satisfies (16), (17), (18), (23), and there exists a finite constant c such that c ≥ c.
Then the Monge map T∗ and the optimal solution ϕ∗ to (20) both exist and (T∗, ϕ∗) is a saddle point of
L(T, f).

2This means if T∗∗ is another Monge map solving the problem (1), then T∗ = T∗∗ on Spt(ρa) \ E0, where Spt(ρa) is the
support of ρa and E0 is a zero measure set.

3This is the joint distribution on X × Y obtained by pushing forward ρa via the map (Id, T∗) : X → X × Y.
4This indicates that no single point in X carries a positive mass of ρa.
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The existence of the saddle point of L(T, f) is a rather strong assumption and may not always hold (Zhang
et al., 2022). We next provide some further assertions only focusing on the existence of sup-inf solution to
(4) instead of the existence of saddle point.
Theorem 3 (Consistency of sup-inf solution). Assume the cost function is continuous and satisfies the
condition (15). Suppose the sup-inf problem (4) admits at least one solution (T̄, f̄). Under the condition
T̄♯ρa = ρb, f̄ is an optimal solution to Kantorovich dual (20), then T̄ is optimal solution to Monge problem
(1); and furthermore, L(T̄, f̄) = CMonge(ρa, ρb).

It is hard to theoretically guarantee the condition T̄♯ρa = ρb for general cost. Empirically, we verify our
method can achieve T̄♯ρa ≈ ρb qualitatively (Figure 4, 5(b), 6, 7) and quantitatively (Figure 4(b), Table 1,
2). More results on consistency without T̄♯ρa = ρb are presented in Appendix B.3.

In the implementation, we parametrize both the map T and the dual variable f by the neural networks
Tθ, fη, with θ, η being the parameters. Consequently, our goal is to solve the following saddle point problem

max
η

min
θ

L(Tθ, fη) := 1
N

N∑
k=1

c(Xk, Tθ(Xk)) − fη(Tθ(Xk)) + fη(Yk) (6)

where N is the size of the datasets and {Xk}, {Yk} are samples drawn by ρa and ρb separately. The algorithm
is summarized in Algorithm 1. The computational complexity of our algorithm is similar with GAN-type
methods. In particular, Algorithm 1 requires O(K(K1 +K2)B) operations in total.

Algorithm 1 Computing optimal Monge map from ρa to ρb
1: Input: Marginal distributions ρa and ρb, Batch size B, Cost function c(x, y).
2: Initialize Tθ, fη.
3: for K steps do
4: Sample {Xk}Bk=1 ∼ ρa. Sample {Yk}Bk=1 ∼ ρb.
5: Update θ to decrease (6) for K1 steps.
6: Update η to increase (6) for K2 steps.
7: end for
8: Output: The transport map Tθ.

Mapping between unequal dimensions Our method is still applicable when c(x, y) is defined on
Rn × Rm and n ̸= m. A typical example is c(x, y) = c̄(Q(x), y) (Pass, 2010; McCann & Pass, 2020), where
c̄ is defined on Rm × Rm and Q(x) is an embedding function. To name a few, Q(x) can be the upsampling
function (Rout et al., 2022), or padding zero function (see Figure 8) as n < m, and a linear projection
(Section 6.1) as n > m.

Comparison with GAN It is worth pointing out that our method and the WGAN (Arjovsky et al., 2017)
are similar in the sense that they are both carrying out minimization over the generator/transport map and
maximization over the discriminator/dual potential. However, there are two main distinctions, which are
summarized in the following. More detailed discussions are postponed to Appendix C.
• (Purpose: arbitrary map vs optimal map) The purpose of WGAN is to find an arbitrary map T such

that T♯ρa is close to the target distribution ρb; On the other hand, the purpose of our method is two-fold:
we not only compute for the map T that pushforwards ρa to ρb, but also guarantee the optimality of T
in the sense of minimizing the total transportation cost EX∼ρa

c(X,T (X)).
• (Designing logic: minimizing distance vs computing distance itself) In WGAN, one aims at minimizing

the OT distance as the discrepancy between T♯ρa and the target distribution ρb, the optimal value of the
corresponding loss function thus equals to 0; In contrast, our proposed method computes OT distance
(as well as the transport map) between source distribution ρa and the target ρb. In this case, the optimal
value of the associated loss function equals CMonge(ρa, ρb).

4 Error Estimation via Duality Gaps
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In this section, we assume X = Y = Rd, i.e. we consider Monge problem on Rd. Suppose we solve (4) to
a certain stage and obtain the pair (T, f), inspired by Hütter & Rigollet (2020) and Makkuva et al. (2020),
we provide an a posteriori estimate to a weighted L2 error between our computed map T and the optimal
Monge map T∗. Before we present our result, we need the following assumptions.
Assumption 1 (on cost c(·, ·)). We assume c ∈ C2(Rd × Rd) is bounded from below. Furthermore, for
any x, y ∈ Rd, we assume ∇xc(x, y) is injective w.r.t. y; ∇2

xyc(x, y), as a d × d matrix, is invertible; and
∇2
yyc(x, y) is independent of x.

Assumption 2 (on marginals ρa, ρb). ρa, ρb are compactly supported on Rd, and ρa has density.
Assumption 3 (on dual variable f). Assume the dual variable f ∈ C2(Rd) is always taken from c-concave
functions, i.e., there exists certain φ ∈ C2(Rd) such that f(·) = infx{φ(x) + c(x, ·)} (see Definition 5.7 of
Villani (2008)). Furthermore, we assume that there exists at least one minimizer xy ∈ argminx{φ(x) +
c(x, y)} for any y ∈ Rd. And the Hessian of φ(·) + c(·, y) at xy is positive definite.
Assumption 4 (Infimum over T̃ achieves its minimizer). Assume that there exists measurable Tf ∈
M(Rd,Rd) such that Tf ∈ argminT̃ {L(T̃, f)}. i.e., Tf (x) ∈ argminy{f(y)−c(x, y)} for almost every y ∈ Rd.

For the sake of conciseness, let us introduce two notations. We denote σ(x, y) = σmin(∇2
xyc(x, y)) > 0 as the

minimum singular value of ∇2
xyc(x, y); and denote

λ(y) = λmax(∇2
xx(φ(x) + c(x, y))|x=xy

) > 0 (7)

as the maximum eigenvalue of the Hessian of φ(·) + c(·, y) at xy. We denote the duality gaps as

E1(T, f) = L(T, f) − inf
T̃

L(T̃ , f), E2(f) = sup
f̃

inf
T̃

L(T̃ , f̃) − inf
T̃

L(T̃ , f).

We can verify that the conditions mentioned in Theorem 1 are satisfied under Assumption 1 and Assumption
2. Thus the Monge map T∗ to the Monge problem (1) exists and is unique. We now state the main theorem
on error estimation:
Theorem 4 (A posteriori Error Estimation via Duality Gaps). Suppose Assumption 1, 2, 3 and 4 hold. Let
us further assume the sup-inf problem (4) admits a solution (f̄, T̄ ) that is consistent with the Monge problem,
i.e. T̄ equals T∗, ρa almost surely. Then there exists a strict positive weight function β(x) > min

y∈Rm

{
σ(x,y)2

2λ(y)

}
such that the weighted L2 error between computed map T and the Monge map T∗ is upper bounded by

∥T − T∗∥L2(βρa) ≤
√

2(E1(T, f) + E2(f)). (8)

The exact formulation of β is provided in (43) in the appendix B.4.
Remark 1. The cost c(x, y) = 1

2 ∥x− y∥2 or c(x, y) = −x · y satisfy the conditions mentioned above. More
specifically, when c(x, y) = −x · y, we have σ(x, y) = 1, and λ(y) = 1

λmin(∇2f(y)) , which recovers Theorem 3.6
in Makkuva et al. (2020). Indeed, in this case, our f, λ correspond to f, 1

α in Makkuva et al. (2020).

Theorem 4 provides an a posteriori error bound, i.e., for any computed (T, f), we provide an upper bound
(8) on the accuracy of T . The weight function β(·) relies on f , and (T, f) could be arbitrary computed pair,
thus it is almost impossible to provide a uniform lower bound for β(·), which is also dicussed in Makkuva
et al. (2020, Remark 3.7). Further analysis on λ(·) and β(·) can be found in Appendix B.5. We clarify some
limitations of our Theorem 4 below.

• (Hardness on evaluating E1, E2) It could be intractable to calculate E2 exactly due to the term
sup

f̃
inf

T̃
L(T̃ , f̃), but one can approximate them by empirical values using samples after convergence.

• (Restricted form for analytic cost) Suppose that the cost c satisfies Assumption 1 and is also analytic,
then c is restricted to the specific form A(x) +F (x)⊤y+B(y), where A,B are analytical functions on Rd,
and F : Rd → Rd is analytic with invertible Jacobian DF (x) at any x ∈ Rd.

Some further discussion on enforcing the c-concavity of the dual variable f is presented in Appendix B.4.
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5 Related work

Discrete OT methods (Courty et al., 2016; Feydy et al., 2020; Pooladian & Niles-Weed, 2021; Meng et al.,
2019) solve the Kantorovich formulation with EMD (Nash, 2000) or Sinkhorn algorithm (Cuturi, 2013). It
normally computes an optimal coupling of two empirical distributions. Such type of treatment has been
widely accepted since it is friendly to high dimensional cases (Altschuler et al., 2017; Genevay et al., 2018;
Li et al., 2019; Xie et al., 2020), but the algorithm does not scale well to a large number of samples and is
not suitable to handle continuous probability measures. In addition, they cannot map the unseen samples.
With an additional parameterization of a mapping function, such as linear or kernel function space (Perrot
et al., 2016), they can map the unseen data. However, this map is not the solution to Monge problem but
only an approximation of the optimal coupling (Courty et al., 2017, Sec. 2.1). Perrot et al. (2016) requires
solving the matrix inverse when updating the transformation map, thus introducing a risk of instability.
Their function space of the map is also less expressive than neural networks, which makes it difficult to solve
the OT problem with complex transport costs and high dimension data. And they still can not handle large
scale datasets.

With the rise of neural networks, neural OT has become popular with an advantage of dealing with continuous
measure. Seguy et al. (2017); Genevay et al. (2016) solve the regularized OT problem, and as such introduce
the bias. Another branch of work (Makkuva et al., 2020; Korotin et al., 2021b; Fan et al., 2020; Korotin
et al., 2021c) comes with parameterizing Brenier potential by Input Convex Neural Network (ICNN) (Amos
et al., 2017). The notable work (Makkuva et al., 2020) is special case of our formula. In particular, their
dual formula reads suph infg −

∫
[⟨x,∇g(x) − h(∇g(x))⟩]ρadx −

∫
h(y)ρbdy, where g, h are ICNN. After a

change of variable ∇g = T, h = −f + ∥ · ∥2/2, it becomes the same as our (5) equipped with the cost
c(x, y) = ∥x−y∥2/2. Later, the ICNN parameterization was shown to be less suitable (Korotin et al., 2021a;
Fan et al., 2022b; Korotin et al., 2022a) for large scale problems because ICNN is not expressive enough.

Recently, several works have illustrated the scalability of our dual formula with different realizations of
the transportation costs. When c(x, y) = ∥x − y∥2

2/2, our method directly boils down to reversed max-
imum solver (Nhan Dam et al., 2019), which appears to be the best neural OT solvers among multiple
baselines (Korotin et al., 2021a). Another variant (Rout et al., 2022) of our work obtains comparable per-
formance in image generative models, which asserts the efficacy in unequal dimension tasks. Gazdieva et al.
(2022) utilizes the same dual formula with more diverse costs in image super-resolution task.

Based on the similar dual formula, several works propose to add random noise as an additional input to
make the map stochastic, i.e. one-to-many mapping, so it can approximate the Kantorovich OT plan. To
make the learning of stochastic map valid, Korotin et al. (2022b) extends the transport cost c(x, y) to be
weak cost that depends on the mapped distribution. Typically, they involve the variance in the weak cost to
enforce diversity. The stochastic map is, however, not suitable for our problem (1) because of the conditional
collapse behavior (Korotin et al., 2022b, Sec 5.1). Later, Asadulaev et al. (2022) extends the dual formula
to more general cost functional. We note that the term general cost in Asadulaev et al. (2022) is different
from general cost in our paper. They propose to solve the General OT problem infπ∈Π(ρa,ρb) F(π) through
the dual formula

sup
f

inf
π∈Π(ρa)

{F(π) −
∫

Y
f(y)dπ(y) +

∫
Y
f(y)dρb(y)}.

If F(π) =
∫
c(x, y)dπ(x, y) and assuming optimal π∗ is of the form π∗ = (Id, T∗)♯ρa, then their formula boils

down to our (5). However, the assumption π∗ = (Id, T∗)♯ρa may not always hold.

6 Experiments

In this section, we specialize (5) with different general costs c(x, y) to fit in various applications. We will
not focus on the quadratic cost c(x, y) = ∥x− y∥2

2 since our formula in this special case has been extensively
studied in multiple scenarios, e.g. generative model (Rout et al., 2022), super-resolution (Gazdieva et al.,
2022), and style transfer (Korotin et al., 2022b). Instead, we focus on data with specific structure, which
will be revealed in the cost function. Due to a wide span of tasks, it is unrealistic to find universal baselines
in this section. We will select the proper baselines according to the scale of the examples.
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6.1 Unpaired text to image generation

We consider the task of generating images given text prompts. Existing successful text-to-image generation
algorithms (Ramesh et al., 2021; 2022; Saharia et al., 2022) are supervised learning methods, and as such
rely on paired data. In real world, it can be exhausting to maintain large-scale paired datasets given that
they are mostly web crawling data, and the validity period of web data is limited. We intend to learn a map
between the text and image embedding space of the CLIP model without paired data. Our framework is
shown in Figure 3. We use the same unpaired data generation scheme as Rout et al. (2022).

(a) Pipeline motivated by DALL·E2. (b) Unpaired data generation process

Figure 3: (a) During the training process (above the dotted line), our map learns to generate image em-
beddings that maximize the expected similarity with input texts. During the evaluation (below the dotted
line), given a text encoding from the CLIP model, our map outputs an image embedding, which conditions
a pre-trained diffusion decoder to generate an image. The CLIP encoder and diffusion decoder are both
pre-trained and frozen.
(b) We split a paired text-image dataset training into two parts: S and T , and take the texts from S and
images from T as our training data. Finally, we use the paired test data to compare with the real images.

In our algorithm, the sample from source distribution ρa is the text encoding x ∈ R77×768 (x ̸= 0) from
CLIP (Radford et al., 2021) model, and the sample from target distribution ρb is the image embedding
y ∈ R768, which is normalized to have ∥y∥2 = 1. The CLIP model is pre-trained on 400M (text, image)
pairs of web data with contrastive loss, such that the paired texts and images share a large cosine similarity,
and the non-paired ones present a small similarity. As a result, we choose the transport cost as the negative
cosine similarity between Rx and y:

c(x, y) = − ⟨Rx, y⟩
∥Rx∥2∥y∥2

= −⟨Rx, y⟩
∥Rx∥2

. (9)

The frozen matrix R : R77×768 → R768 is extracted from a linear layer of CLIP model and it projects the
text encoding x to the same dimension as image embedding y. The normalized projected vector Rx/∥Rx∥
is called text embedding. Similar to DALL·E2 (Ramesh et al., 2021; 2022), we use text encoding instead of
text embedding as the input data because the encoding contains more information. The cost c(x, y) would
enforce our map to generate an image embedding relevant to the input text.

We evaluate our algorithm on two datasets: Laion art and Conceptual captions 3M (CC-3M). Laion art
dataset is filtered from a 5 billion dataset to have the high aesthetic level, which is suitable for the learning
of image generation, while CC-3M is not curated. We use the OpenAI’s CLIP (ViT-L/14) model and a
DALL·E2 diffusion decoder. The training of their diffusion decoder requires paired data and its train dataset
includes Laion art but not CC-3M. Therefore, our results on CC-3M are heavily based on the unpaired data
because no part in Figure 3 has seen paired data of CC-3M, while on Laion art, the diffusion decoder has
some paired data information gained from pre-training.

We show qualitative samples in Figure 1 and 2, where we compare with DALL·E2-Laion, a DALL·E2 model
pre-trained on the paired Laion aesthetic dataset, which includes Laion art dataset. Figure 1 confirms
that our transport map can generate image embeddings with comparable quality even without paired data.
Since CC-3M is a zero-shot dataset for DALL·E2-Laion, the performance of DALL·E2-Laion clearly drops in
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Figure 2, while our model still generates reasonable images. We visually verify our map achieves T♯ρa ≈ ρb
by comparing the generated embeddings with the real image embeddings (on a test dataset). In Figure 4
(a), we present the results of our method, along with the results of a non-linear kernel map given by Perrot
et al. (2016). While the latter method struggles to generalize to unseen data, our method is able to generate
a distribution that closely matches the ground truth.

(a) (b)

Figure 4: (a) Comparison between the Laion art target image embeddings and fitted measure of generated
embeddings by our method and Perrot et al. (2016). Samples are projected onto 2D plane by PCA.
(b) Averaged cosine similarity between the generated image embeddings and (Left) the ground truth image
embeddings or (Right) the unrelated text embeddings. The similarity on the left depicts how well the model
recovers the real image embedding, and the similarity on the right quantifies the overfitting behavior (the
lower the better).

We also quantitatively compare with the baseline in terms of cosine similarity in Figure 4 (b). Note that
we also normalize T (x), so T (x) = y ⇔ cos-similarity(T (x), y) = 1. Our method achieves higher cosine
similarity w.r.t. the real images on Laion art dataset. In practice, we observe that the relevance of each
(text, image) pair in CC-3M is more noisy than Laion art, which makes the model more difficult to learn the
real image embedding. This explains why our cosine similarity w.r.t real image embedding on CC-3M can
not converge to the same level as Laion art. In the meantime, our overfitting level is low on both datasets.

6.2 Class-preserving map

We consider the class-preserving map between two labelled datasets. The input distribution ρa =
∑J
j=1 ajρ

j
a

is a mixture of J distinct distributions {ρja}Jj=1. Similarly, the target distribution is ρb =
∑J
j=1 bjρ

j
b, where

{aj} and {bj} satisfy
∑
j aj = 1 and

∑
j bj = 1. Each distribution ρja (or ρjb) is associated with a known

label/class j. We further assume that the support of {ρja}j (or {ρjb}j) are disjoint with respect to j. We
seek a map that solves the problem

min
T♯ρ

j
a=ρj

b

∫
Rn

∥x− T (x)∥2ρa(x) dx, ∀j (10)

where the constraint asks the map to preserve the original class. To approximate this map, we replace the
constraint by a contrastive penalty. This trick transfers (10) to the original Monge problem with a cost

c({x, y}, {x′, y′}) = ∥x− x′∥2 + 1(y ̸= y′), (11)

where y and y′ are the labels corresponding to x and x′, 1 is the indicator function. To better guide the
mapping, we involve the label as an input to the mapping T and the potential f . Denote ℓ(·) : Rm → RJ as
a pre-trained classifier on the target domain ρb. Given a feature from the target domain, ℓ(·) will output a
probability vector. Then, our full formula reads

sup
f

inf
T

∫ [
∥x− x̄∥2 − y⊤ȳ − f(x̄; ȳ))

]
dρa +

∫
f(x′; y′)dρb, where x̄ = T (x; y), ȳ = ℓ(T (x; y)).

In practice, y ∈ RJ is a one-hot label and it is known because both the source and target datasets are labeled.
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(a) (b)

Figure 5: (a) Our cost is composed of the ordinary cost ∥x− x̄∥2 and the contrastive label cost −y⊤ȳ.
(b) Class-preserving mapping by our conditional map. The top block is the source images, and the bottom
block is the pushforward images. Each column represents a class. Left: F → M, Right: M → K.

Table 1: Class-preserving map result: accuracy of the maps and FID of generated samples. Our map is
deterministic. The map by Asadulaev et al. (2022) is non-conditional on the label. M, K, F represent
MNIST, KMNIST, FMNIST correspondingly. Our accuracy result is significantly better than Asadulaev
et al. (2022) thanks to the guidance of contrastive cost (11).

Asadulaev et al. (2022)
deterministic map

Asadulaev et al. (2022)
stochastic map

Ours with
conditional map

Ours with
non-conditional map

FID M → K 17.26 9.69 18.07 17.45
F → M 7.15 5.26 5.78 6.86

Accuracy M → K 79.20 61.91 99.59 93.02
F → M 82.97 83.22 99.73 98.93

Recent two works (Asadulaev et al., 2022; Bunne et al., 2022) are along this line of class-guided OT maps.
The former one learns an unconditional map T (x), i.e. no need of label information during the inference,
and the latter one learns a conditional map T (x; y). Our method is different from both of them because their
costs do not explicitly involve the label, while we include the label in the contrastive cost (11). Our method
is designed to learn a conditional map, but we can also fit an unconditional map to the learned conditional
map for the convenience of inference.

We compare our algorithm with Asadulaev et al. (2022) on ∗NIST (LeCun & Cortes, 2005; Xiao et al., 2017;
Clanuwat et al., 2018) datasets, where we use default labels in PyTorch. The visualization of our mapping is
presented in Figure 5 (b). We also calculate FID (Heusel et al., 2017) between the mapped source test dataset
and the target test dataset. To quantify how well the map preserves the original class, we use a pre-trained
SpinalNet classifier (Kabir et al., 2022) on the target domain and evaluate the accuracy of the predicted
label. If the predicted label of T (x; y) equals to the original label y, then the mapping is correct, otherwise
wrong. We show the quantitative result in Table 1, where the results of Asadulaev et al. (2022) are from their
paper. Since Asadulaev et al. (2022) makes inference using an unconditional map, to make a fair comparison,
we present the results with a fitted unconditional map as well in Table 1. The stochastic map in Asadulaev
et al. (2022) leads to a lower FID because the loss function for the stochastic map incorporates the "variance"
of the pushforward distribution, which encourages the generation of more diverse data. However, because
the stochastic map requires random noise as input, it requires a more sophisticated network architecture and
is more computationally expensive to train.

6.3 Unpaired image inpainting

In this section, we show the effectiveness of our method on the inpainting task with random rectangle masks.
We take the distribution of occluded images to be ρa and the distribution of the full images to be ρb. In
many inpainting works, it’s assumed that an unlimited amount of paired training data is accessible (Zeng
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et al., 2021). However, some real-world applications do not involve the paired datasets. Accordingly, we
consider the unpaired inpainting task. The training and test data are generated in the same way as Figure
3 (b). We choose cost function to be mean squared error (MSE) in the unmasked area

c(x, y) = α · ∥x⊙M(x) − y ⊙M(x)∥2
2

n
, (12)

where M(x), depending on x, is a binary mask with the same size as the image. M takes the value 1 in the
unoccluded region, and 0 in the unknown/missing region. ⊙ represents the point-wise multiplication, α is a
tunable coefficient, and n is dimension of x. Different from Rout et al. (2022), where c(x, y) = ∥x− y∥2/n,
we include the mask in the cost to avoid the penalty in the masked region. Otherwise, it penalizes the
generation of non-zero pixels because the pixel values are zeros in the masked region of source image. The
map satisfying constraints T♯ρa = ρb and T (x) ⊙M(T (x)) = x⊙M(x) is the optimal map.

(a) Masked images (b) Real images (c) Perrot et al. (2016) (d) Our T (x)

Figure 6: Unpaired image inpainting on test dataset of CelebA 64 × 64.

We conduct the experiments on CelebA 64 × 64 and 128 × 128 datasets (Liu et al., 2015). The input images
(ρa) are occluded by randomly positioned square masks. Each of the source ρa and target ρb distributions
contains 80k images. We present the empirical results of inpainting in Figure 6 and 15. In Figure 6, we
compare with the discrete OT method Perrot et al. (2016) since it also accepts general costs. It fits a map
that approximates the barycentric projection so it can also provide out-of-sample mapping, although their
map is not the solution to our Monge problem. We use 1000 unpaired samples for Perrot et al. (2016) to
learn the optimal coupling. The comparison in Figure 6 confirms that our recovered images have much better
quality than the discrete OT method.

We also evaluate FID of the generated composite images w.r.t. the original images on the test dataset. We
use 40k images and compute the score with the implementation provided by Obukhov et al. (2020). We
choose transport map with L2 cost and WGAN-GP (Gulrajani et al., 2017) as the baselines and show the
comparison results in Table 2. Our essential difference with transport map with L2 cost is that the latter
cost does not involve masks, which jeopardizes the performance when the position of masks are changeable.

Table 2: Quantitative evaluation results on CelebA 64 × 64 test dataset.

Cost (12) Cost α∥x− y∥2/n WGAN-GP
α = 10 α = 104

FID 9.2857 3.7109 8.9398 6.7479

Theoretically, the change of α should not affect the OT map because f should be able to scale arbitrarily.
However, in practice, due to the self-regularization of neural networks (Martin & Mahoney, 2021), f can
not scale arbitrarily with α. As a result, modifying α will change the loss landscape. During the training,
we observe that the magnitude ratio r = |E[c(x, T (x))]|/E[f(T (x))]| decreases from 18 to 0.2 when α drops
from 104 to 10. We also observe the map learned with a larger α can generate more realistic images with
natural transition in the mask border and exhibit more details on the face (see Figure 14 in the appendix).
In our experiments, we observe that r > 10 yields reasonable results.
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6.4 Population transportation on the sphere

Motivated by the recent spherical transportation works (Cohen et al., 2021; Amos et al., 2022), we consider
the following population transport problem on the sphere for testing our proposed method. It is well-
known that the population on earth is not distributed uniformly over the land due to various factors such
as landscape, climate, temperature, economy, etc. Suppose we ignore all these factors, and we would like
to design an optimal transport plan under which the current population travels along the earth’s surface
to form a rather uniform (in spherical coordinate) distribution over the earth’s landmass. We treat the
earth as an ideal sphere with radius 1, then we are able to formulate such problem as a Monge problem
defined on D = [0, 2π) × [0, π] with certain cost function c. To be more specific, we consider the spherical
coordinate (θ, ϕ) on D, which corresponds to the point (cos θ sinϕ, sin θ sinϕ, cosϕ) on the sphere. For
any (θ1, ϕ1), (θ2, ϕ2) ∈ D, we set the distance c(·, ·) function as the geodesic distance on sphere, which is
formulated as

c((θ1, ϕ1), (θ2, ϕ2)) = arccos(sinϕ1 sinϕ2 cos(θ1 − θ2) + cosϕ1 cosϕ2). (13)

Then assume the current population distribution over the sphere is denoted as ρa (in Cartesian coordinate),
which introduces the corresponding distribution ρSph

a (in sperical coordinate) on D. Denote Dland ⊂ D as
the region of the land in the spherical coordinate system. We set the target distribution ρSph

b as the uniform
distribution supported on Dland. We aim at solving the following Monge problem

min
T :T♯ρ

Sph
a =ρSph

b

{∫
D

c((θ, ϕ), T (θ, ϕ))ρSph
a dθdϕ

}
.

The samples used in our experiment are generated from the licensed dataset from Doxsey-Whitfield et al.
(2015). In our exact implementation, in order to avoid the explosion of the gradient of arccos(·) near ±1,
we replace the cost c with its linearization (In our computation, the constant π

2 can be omitted.)

ĉ((θ1, ϕ1), (θ2, ϕ2)) = π

2 − (sinϕ1 sinϕ2 cos(θ1 − θ2) + cosϕ1 cosϕ2). (14)

Furthermore, to guarantee that each sample point is transported onto landmass, we composite the trained
map T with a map τ : D → D that remains samples on land unchanged but maps samples on sea back to the
closest location on land among randomly selected sites. In Figure 7, we compare our result with the linear
transformation method introduced in Perrot et al. (2016). For more general kernel map, such as Gaussian
kernel, their algorithm is not very stable and it is very difficult to obtain valid results.

Although the ground truth for this example is unknown to us, we refer the reader to Appendix D for more
synthetic examples with ground truth such as distributions with unequal dimensions, cost of decreasing
functions, and Monge map on sphere.

Figure 7: We show our result on the left and Perrot et al. (2016) on the right. Each figure plots samples
from the source distribution ρSph

a (blue) and samples from the pushforward distribution Tθ♯ρSph
a (green). We

also demonstrate the computed transport map (orange) for the first 500 randomly generated points from
source ρSph

a to target ρSph
b .
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7 Conclusion and Discussion

In this paper, we present a novel method to compute the Monge map between two given distributions with
flexible transport cost functions. In particular, we consider applying Lagrange multipliers on the Monge
problem, which leads to a sup-inf saddle point problem. By further introducing neural networks into our
optimization, we obtain a scalable algorithm that can handle most general costs.

Broader impact Our method will become a useful tool for machine learning applications such as domain
adaption, and image restoration that requires transforming data distributions. Compared to other deep
learning methods, our scheme reduces the need for paired data; compared to other OT methods, our scheme
can be applied to high dimensional large-scale datasets, and we do not involve regularization which could
hurt the quality of transformed data. In the future, it is promising to specialize our method to structured
data, such as time series, graphs, point clouds, and SPD manifolds (Ju & Guan, 2022).

Limitation Firstly, We observe that when the target distribution is a discrete distribution with fixed
support, our method tends to be more unstable. We conjecture that this is because the network parame-
terization of the discriminator is too complex for this type of uncomplicated target distribution. Secondly,
there could be a gap between the theory and some of our experiments. We make a summary table in Section
F, which demonstrates that for some experiments, the existence and uniqueness of the Monge map are not
guaranteed. It is either because the space is not regular or the assumptions in Theorem 1 are not fully
satisfied. We leave the theoretical study for those examples as the future direction.
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A Backgrounds of optimal transport problem with general cost function

We present some fundamental results of OT problem with general cost in this section. Most of the results
are collected and summarized from Villani (2008).

Suppose M is a smooth, complete connected Riemmannian manifold. In most of our discussions, we treat
M as the Euclidean space Rn for the sake of convenience. Let us denote X as a closed subset of M . Thus X
is a Polish space, meaning X is a separable5, complete, metric space. We assume Y is a general Polish space.
Suppose the cost function c is defined on X × Y. Suppose X ,Y are equipped with their Borel σ-algebra.
Denote P(X ),P(Y) as the space of Borel probability measures on X ,Y. We mainly focus on the Monge
problem (1) from ρa ∈ P(X ) to ρb ∈ P(Y) with cost function c.

Before the detailed discussion, we list some useful conditions that may be used later.

A) c is bounded below, i.e., there exists a ∈ L1(X ), b ∈ L1(Y), s.t. c(x, y) ≥ a(x) + b(y) on X × Y; (15)
B) c is locally Lipschitz as a function of x on int(X ), locally in y; (16)
C) c is everywhere superdifferentiable as a function of x ∈ int(X ), for all y; (17)
D) For arbitrary x ∈ int(X ),∇xc(x, ·) : Y → Rn, is injective, (18)

i.e., suppose for x, y, y′,∇xc(x, y) = ∇xc(x, y′), then y = y′.

Here we denote int(X ) as the interior of the set X , i.e., int(X ) is the union of all open sets in M contained
in X . And we define the local Lipschitz property and superdifferentiablity as follows.
Definition 1 (Locally Lipschitz). Let U ⊂ Rn be open and let f : Rn → R be given. Then

(1) f is Lipschitz if there exists L < ∞ such that

∀x, z ∈ Rn, |f(z) − f(x)| ≤ L|x− z|.

(2) f is said to be locally Lipschitz if for any x0 ∈ Rn, there is a neighbourhood of x0 in which f is Lipschitz.
Definition 2 (Superdifferentiablity). f : Rn → R is superdifferentiable at x, with supergradient p, if

f(z) ≤ f(x) + ⟨p, z − x⟩ + o(|z − x|).

Here the little-o notation indicates that limz→x
o(|z−x|)

|z−x| = 0.

The relation between optimal values of Monge problem (1) and its relaxation, namely, the general OT problem
(2) is studied in Pratelli (2007) (c.f. Bibliographical notes of Chap 4 in Villani (2008)). We summarize the
result below.
Theorem 5. Suppose X , Y are two Polish spaces; ρa, ρb are Borel probability distributions on X ,Y. Suppose
ρa is atomless (i.e. no single point carries a positive mass). Assume further c is continuous and satisfies
(15). Then CMonge(ρa, ρb) = C(ρa, ρb).

Recall that the Kantorovich dual problem of the primal OT problem (2) is formulated as

K(ρa, ρb) := sup
(ψ, ϕ) ∈ Cb(X ) × Cb(Y)

ϕ(y) − ψ(x) ≤ c(x, y) ∀ x ∈ X , y ∈ Y

{∫
Y
ϕ(y)ρb(y) dy −

∫
X
ψ(x)ρa(x) dx

}
.

We denote the optimal value of this dual problem as K(ρa, ρb).

It is not hard to tell that the above dual problem is equivalent to any of the following two problems

sup
ψ∈Cb(X )

{∫
Y
ψc,+(y)ρb(y) dy −

∫
X
ψ(x)ρa(x) dx

}
, (19)

5A topological space is separable if it contains a countable dense set. Since Rn is separable, its subset X equipped with the
subspace topology is also separable.
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sup
ϕ∈Cb(Y)

{∫
Y
ϕ(y)ρb(y) dy −

∫
X
ϕc,−(x)ρa(x) dx

}
. (20)

Here the c-transform ψc,+, ϕc,− are defined via infimum/supremum convolution as:

ψc,+(y) = inf
x

(ψ(x) + c(x, y)); (21)

ϕc,−(x) = sup
y

(ϕ(y) − c(x, y)). (22)

If we denote ψ∗, ϕ∗ as the optimal solutions to (19), (20) respectively. Then both (ψ∗, ψ
c,+
∗ ) and (ϕc,−∗ , ϕ∗)

are the optimal solutions to (3); ψc,+∗ , ϕc,−∗ are also solutions to (20), (19) respectively.
Remark 2 (c.f. Theorem 5.10 of Villani (2008)). It is worth mentioning that one can relax the Cb(X ), Cb(Y)
spaces in (3), (19) and (20) to L1(X ; ρa) and L1(Y; ρb).

The following theorem states the equivalent relationship between the primal OT problem (2) and its Kan-
torovich dual (3). The proof of a more general version can be found in Theorem 5.10 of Villani (2008).
Theorem 6 (Kantorovich Duality). Suppose X ,Y are two Polish spaces. Suppose c is a cost function defined
on X × Y, c is continuous and satisfies (15). Recall that C(ρa, ρb) denotes the infimum value of (2) and
K(ρa, ρb) denotes the maximum value of (3) (or equivalently, (19), (20)). Then C(ρa, ρb) = K(ρa, ρb).
Furthermore, if we assume that c is bounded from above by

c(x, y) ≤ u(x) + v(y), with u ∈ L1(X ; ρa), v ∈ L1(Y; ρb). (23)

Then the optimal transport plan π∗ for (2) and optimal potential ϕ∗ for (20) both exist.

The following result states the existence and uniqueness of the optimal solution to the Monge problem. It
also reveals the relation between the optimal map T∗ of (1) and the optimal transport plan π∗ of (2). It is
a simplified version of Theorem 10.28 combined with Theorem 10.26 taken from Villani (2008).
Theorem 1 (Existence, uniqueness and characterization of the optimal Monge map). Assume X ,Y, ρa, ρb
are defined as in the beginning of section 2. Assume the dimension of boundary ∂X is no larger than n− 1.
Suppose the cost c is continuous and satisfies (15), (16), (17), (18), we further assume that ρa and ρb are
compactly supported and ρa is absolutely continuous with respect to the Lebesgue measure on Rn. Then there
exists a unique-in-law transport map T∗ solving the Monge problem (1). And the joint distribution (Id, T∗)♯ρa
on Rn×m is the optimal transport plan of the general OT problem (2). Furthermore, there exists a c-convex6

ψ∗, which can be proved to be differentiable ρa almost surely7, and ∇ψ∗(x) + ∇xc(x, T∗(x)) = 0, ρa almost
surely.
Remark 3. The differentiable property of c-convex ψ∗ is a direct result of Theorem 10.26 from Villani
(2008).
Remark 4. The condition C(ρa, ρb) < +∞ in Theorem 10.28 of Villani (2008) is automatically satisfied
since we assume that ρa, ρb are compactly supported and the cost c is continuous. It is also worth mentioning
that the conditions in Theorem 1 can be modified and we can still obtain the existence and uniqueness of the
Monge map. We refer the readers to Remark 10.33 of Villani (2008) for more details.
Remark 5 (Discussion on regularity of T∗, ψ∗). From the above theorem, one can tell that the regularity of
the Monge map T∗ is closely related to the regularity of ψ∗, which is a very important topic in OT and the
Monge-Ampère equation associated to the OT problem. We refer the reader to Theorem 12.50, 12.51 and
12.52 of Villani (2008) for details. Furthermore, in recent research such as Hütter & Rigollet (2020), Manole
et al. (2022), stronger Ck,α regularity on ψ∗ were used to establish bounds on minimax rates for certain types
of estimators under the statistical setting. In our paper, we did not consider the aforementioned statistical
problem, so we omit the detailed discussion on the regularities of both T∗ and ψ∗.

6C.f. the definition in Assumption 3.
7ψ∗ is differentiable at x for all x ∈ Spt(ρa) \ E0, where E0 is a zero measure set.
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B Proof of theoretical results

We first define the saddle point of L(T, f) to the sup-inf problem (4) as following.
Definition 3 (Saddle point). Suppose X ,Y are two Polish spaces. We say (T̂, f̂) is a saddle point of the
functional L(T, f) to the sup-inf problem (4) defined in (5) if (T̂, f̂) satisfy

T̂ ∈ argmin
T∈M(X ,Y)

{L(T, f̂)}; f̂ ∈ argmax
f∈Cb(Y)

{L(T̂, f)}.

Before we introduce the main results, we present a useful lemma that enables one to switch the optimization
over function parameters and the integral. Such result is a corollary of Theorem 14.60 in Rockafellar & Wets
(2009) (also c.f. Theorem 3A in Rockafellar (1976)) and it is also used in (Korotin et al., 2022b; Gazdieva
et al., 2022).
Lemma 1. Let f : Rn × Rm → R is continuous function. Let µ be a Borel measure defined on Rn. Denote
M(Rn,Rm) as the space of all measurable functions T : Rn → Rm. Then we have

inf
T∈M(Rn,Rm)

∫
Rn

f(x, T (x))dµ(x) =
∫
Rn

inf
ξ∈Rm

f(x, ξ) dµ(x).

B.1 Proof of Theorem 2

Proof. (1 → 2) First denote T∗ as a solution to (1) and ϕ∗ as a solution to (20). We prove (T∗, ϕ∗) is the
saddle point of L(T, f). We first prove T∗ ∈ argmin

T∈M(X ,Y)
{L(T, ϕ∗)}. By using lemma 1, one gets

inf
T

{L(T, ϕ∗)} = −
∫

X
sup
ξ

{ϕ∗(ξ)−c(x, ξ)}ρa(x)dx+
∫

Y
ϕ∗(y)ρb(y)dy =

∫
Y
ϕ∗(y)ρb(y)dy−

∫
X
ϕc,−∗ (x)ρa(x)dx.

Since ϕ∗ solves (20), the right-hand side of the above equals K(ρa, ρb). Now by Theorem 5, 6, one can obtain
CMonge(ρa, ρb) = C(ρa, ρb) = K(ρa, ρb), which leads to the strong duality of such Monge problem. Thus we
have infT {L(T, ϕ∗)} = CMonge(ρa, ρb). Since T∗ solves (1), we have

inf
T

{L(T, ϕ∗)} =
∫

X
c(x, T∗(x))ρa(x)dx = L(T∗, ϕ∗).

The second equality above is due to the constraint T∗♯ρa = ρb. This proves T∗ ∈ argmin
T∈M(X ,Y)

{L(T, ϕ∗)}.

The proof of ϕ∗ ∈ argmax
ϕ∈Cb(Y)

{L(T∗, ϕ)} is straightforward, since L(T∗, ϕ) =
∫

X c(x, T∗(x))ρa(x)dx is indepen-

dent of ϕ.

Thus we have proved that (T∗, ϕ∗) is a saddle of L(T, f).

(2 → 1) Let us first prove that T̂ is an optimal solution to Monge problem (1). We first claim that
T̂♯ρa = ρb. Suppose this is not true, then one can find a function φ ∈ Cb(Y) such that

∫
Y φ(T̂ (x))ρa(x)dx ̸=∫

Y φ(y)ρb(y)dy8. Without loss of generality, assume
∫

Y φ(y)ρb(y)dy −
∫

X φ(T̂ (x))ρa(x)dx > 0. We pick the
test function νφ ∈ Cb(Y) with ν ∈ R as an arbitrary real number, then we consider

L(T̂, νφ) =
∫

X
c(x, T̂ (x))ρa(x)dx+ ν(

∫
Y
φ(y)ρb(y)dy −

∫
X
φ(T̂ (x))ρa(x)dx︸ ︷︷ ︸

denote as δ>0

) ≥ c + µδ. (24)

Recall T̂ ∈ argmin
T

{L(T, f̂)}, use Lemma 1, then we have

L(T̂, f̂) = inf
T

{L(T, f̂)} =
∫

Y
f̂(y)ρb(y)dy −

∫
X
f̂ c,−(x)ρa(x)dx ≤ K(ρa, ρb) = C(ρa, ρb) < +∞. (25)

8This is due to the fact that when Y is a metric space, and µa, µb ∈ P(Y) (Borel measure), if
∫

Y f dµa =
∫

Y f dµb for all
f ∈ Cb(Y); then µa = µb.
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Combine (24) and (25), one can obtain L(T̂, f̂) − L(T̂, νφ) ≤ C(ρa, ρb) − c − νδ. We can increase ν large
enough so that L(T̂, f̂) < L(T̂, νφ). This contradiction to the fact that f̂ ∈ argmax

f∈Cb(Y)
{L(T̂, f)}. Thus we have

proved that T̂♯ρa = ρb. As a result ,∫
X
c(x, T̂ (x))ρa(x)dx = L(T̂, f̂) = inf

T
{L(T, f̂)} ≤ inf

T♯ρa=ρb

{L(T, f̂)} = inf
T♯ρa=ρb

∫
X
c(x, T (x))ρa(x)dx.

This indicates that T̂ solves the Monge problem (1). The above calculation also leads to L(T̂, f̂) =
CMonge(ρa, ρb).

At last, we prove that f̂ is the optimal solution to Kantorovich dual problem (20). By applying Lemma 1,
just notice that for any f ∈ Cb(Y), one can verify

L(T̂, f̂) ≥ L(T̂, f) ≥ inf
T

{L(T, f)} =
∫

Y
f(y)ρb(y)dy −

∫
X
f c,−(x)ρb(y)dy.

On the other hand, we have

L(T̂, f̂) = inf
T

{L(T, f̂)} =
∫

Y
f̂(y)ρb(y)dy −

∫
X
f̂ c,−(x)ρb(y)dy.

This proves that f̂ is the optimal solution to (20).

A simialr proof of T∗ ∈ argmin
T∈M(X ,Y)

{L(T, ϕ∗)} as part of our proof to Theorem 2 is also established in section

6.1 of Gazdieva et al. (2022).

To prove the Corollary 1, it suffices to check the conditions in this corollary imply the conditions in Theorem
1, 2, 6.

B.2 Proof of Theorem 3

Proof . As mentioned before in the proof of Theorem 2, by Lemma 1, one can verify

inf
T

L(T, f) =
∫

Y
f(y)ρb(y)dy −

∫
X
f c,−(x)ρa(x)dx, (26)

Then the sup-inf problem supf infT L(T, f) can be formulated as

sup
f

{∫
Y
f(y)ρb(y)dy −

∫
X
f c,−(x)ρa(x)dx

}
.

This is exactly the Kantorovich dual problem (20). Since (T̄, f̄) is the solution to sup-inf problem, f̄ is an
optimal solution to (20). This verifies the first assertion of the theorem.

On the other hand, at (T̄, f̄), we have

T̄ (x) ∈ argmaxξ∈Y{f̄(ξ) − c(x, ξ)}, ρa almost surely.

This leads to
f̄ c,−(x) = f̄(T̄ (x)) − c(x, T̄ (x)), ρa almost surely.

Then we have∫
X
c(x, T̄ (x))ρa(x) dx =

∫
X
f̄(T̄ (x))ρa(x) dx−

∫
X
f̄ c,−(x)ρa(x) dx

=
∫

Y
f̄(y)ρb(y) dy −

∫
X
f̄ c,−(x)ρa(x) dx

=
∫∫

X ×Y
[f̄(y) − f̄ c,−(x)]dπ(x, y) ≤

∫∫
X ×Y

c(x, y)dπ(x, y)
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for any π ∈ Π(ρa, ρb). Here the second equality is due to the assumption T∗♯ρa = ρb. The last inequality is
due to the definition of f̄ c,−(x) = supy{f̄(y) − c(x, y)}.

We now take the infimum value of
∫∫

X ×Y cdπ and we obtain∫
X
c(x, T̄ (x))ρa(x) dx ≤ C(ρa, ρb), (27)

Now, for any transport map T satisfying T♯ρa = ρb, by denoting π = (Id, T )♯ρa, we have∫
X
c(x, T (x))ρa(x) dx =

∫∫
X ×Y

c(x, y)dπ(x, y) ≥ C(ρa, ρb). (28)

Combining (27) and (28), we obtain∫
X
c(x, T̄ (x))ρa(x)dx ≤

∫
X
c(x, T (x))ρa(x)dx, for any T, T♯ρa = ρb.

This indicates the existence of the Monge map, and T̄ is the Monge map.

At last, we have

L(T̄, f̄) =
∫

X
c(x, T̄ (x))ρa(x)dx+

∫
Y
f̄(y)(T∗♯ρa − ρb)dy =

∫
X
c(x, T̄ (x))ρa(x) dx = CMonge(ρa, ρb).

B.3 Consistency in optimal values

As discussed in Theorem 3, we require the condition T̄♯ρa = ρb to establish the consistency between the
sup-inf solution and the optimal transport solution. However, even without the assumption T̄♯ρa = ρb, one
can directly prove the consistency in optimal value, i.e., supf infT L(T, f) = C(ρa, ρb). This is demonstrated
in the following theorem.
Theorem 7 (Consistency in optimal value). Assume the cost function is continuous and satisfies the con-
dition (15). Suppose the sup-inf problem (4) admits at least one solution (T̄, f̄), then L(T̄, f̄) = C(ρa, ρb).

Proof. The proof of the first part of this theorem is the same as Theorem 3. Thus it is not hard to verify

sup
f

inf
T

L(T, f) = sup
f

{∫
Rm

f(y)ρb(y)dy −
∫
Rn

f c,−(x)ρa(x)dx
}

= K(ρa, ρb).

Since c(x, y) satisfies (15), recall Theorem 6, the optimal value of Kantorovich dual problem equals general
OT distance C(ρa, ρb). This proves our assertion.

Theorem 7 indicates that although for some general cases in which our proposed method (4) fails to compute
for a valid transport map T̄ , (4) is still able to recover the exact optimal transport distance C(ρa, ρb). In
the following example, although the Monge map does not exist, the proposed method can still capture the
exact OT distance.
Example 1. Consider the OT problem on R with c(x, y) = |x − y|2 and ρa = δ0 (point distribution at 0),
ρb = N (0, 1) (normal distribution). Our method yields

sup
f

inf
T

{
|0 − T (0)|2 +

∫
R
f(y)ρb(y)dy − f(T (0))

}
.
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By setting Ψ0(y) = f(y) − |y|2, our sup-inf problem becomes

sup
f

inf
T


∫
R
[(f(y) − |y|2)︸ ︷︷ ︸

Ψ0(y)

+|y|2]ρb(y)dy − (f(T (0)) − |0 − T (0)|2)︸ ︷︷ ︸
Ψ0(T (0))


= sup

Ψ0

inf
T

{
∫
R
(Ψ0(y) + |y|2)ρb(y)dy − Ψ0(T (0))} =

∫
R

|y|2ρb(y)dy︸ ︷︷ ︸
=1

+ sup
Ψ0

{∫
R
[Ψ0(y) − sup Ψ0]ρb(y)dy

}
︸ ︷︷ ︸

≤0

= 1

The supreme over Ψ0 is obtained when Ψ0 = Const, i.e., when f(y) = |y|2 + Const. Thus we have
supf infT L(T, f) = 1 = C(ρa, ρb).

B.4 Proof of Theorem 4

We can firstly verify the following lemma.
Lemma 2 (Existence and uniqueness of Monge map under Assumption 1, 2). Suppose Assumption 1 and 2
hold, then the Monge map T∗ exists and is unique in law.

Lemma 2 is a corollary of Theorem 1. Once assumption 1 and 2 hold, the conditions on c(·, ·) and ρa, ρb
mentioned in Theorem 1 are all satisfied. To prove Theorem 4, we further need the following two lemmas.
Lemma 3. Suppose n × n matrix A is invertible with minimum singular value σmin(A) > 0. Also assume
n× n matrix H is self-adjoint and satisfies λIn ⪰ H ≻ On

9. Then A⊤H−1A ⪰ σmin(A)2

λ In.

Proof of Lemma 3 . One can first verify that H−1 ⪰ 1
λIn by digonalizing H−1. To prove this lemma, we

only need to verify that for arbitrary v ∈ Rn,

v⊤A⊤H−1Av = (Av)⊤H−1Av ≥ |Av|2

λ
≥ σmin(A)2

λ
|v|2

Thus A⊤H−1A− σmin(A)2

λ In is positive-semidefinite.

The following lemma is crucial since it analyzes the concavity of the target function f(·) − c(·, y) when f is
c-concave.
Lemma 4 (Concavity of f(·) − c(x, ·) if f c-concave). Suppose the cost function c(x, y) and f satisfy the
conditions mentioned in Theorem 4. Denote the function Ψx(y) = f(y) − c(x, y), then we have

∇2Ψx(y) ⪯ −σ(x, y)2

λ(y) In.

Proof of Lemma 4. First, we notice that f is c-convex, thus, there exists φ such that f(y) = infx{φ(x) +
c(x, y)}. Let us also denote Φ(x, y) = φ(x) + c(x, y).

Now for a fixed y ∈ Rn, We pick one

xy ∈ argminx {φ(x) + c(x, y)}

Since we assumed that φ ∈ C2(Rn) and c ∈ C2(Rn × Rn), we have

∇xΦ(xy, y) = ∇φ(xy) + ∇xc(xy, y) = 0 (29)

Now recall Assumption 3, .∇2
xxΦ(xy, y) is positive definite, thus is also invertible. We can now apply the

implicit function theorem to show that the equation ∇xΦ(x, y) = 0 determines an implicit function x(·),
9Here matrix M1 ≻ M2 iff M2 −M1 is a positive-definite matrix, and M1 ⪰ M2 iff M1 −M2 is a positive-semidefinite matrix.
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which satisfies x(y) = xy in a small neighborhood U ⊂ Rn containing y. Furthermore, one can show that
x(·) is continuously differentiable at y. We will denote xy as x(y) in our following discussion.

Now differentiating (29) with respect to y yields

∇2
xxΦ(x(y), y)∇x(y) + ∇2

xyc(x(y), y) = 0. (30)

On one hand, (30) tells us
∇x(y) = −∇2

xxΦ(x(y), y)−1∇2
xyc(x(y), y). (31)

Now we directly compute
∇2Ψx(y) = ∇2f(y) − ∇2

yyc(x, y). (32)

In order to compute ∇2f(y), we first compute ∇f(y)

∇f(y) = ∇(φ(x(y)) + c(x(y), y)) = ∇yc(x(y), y). (33)

the second equality is due to the envelope theorem Afriat (1971). Then ∇2f(y) can be computed as

∇2f(y) = ∇2
yxc(x(y), y)∇x(y) + ∇2

yyc(x(y), y). (34)

Plugging (31) into (34), recall (32), this yields

∇2Ψx(y) = −∇2
yxc(x(y), y)∇2

xxΦ(x(y), y)−1∇2
xyc(x(y), y) + ∇2

yyc(x(y), y) − ∇2
yyc(x, y).

Recall the Assumption 1, notice that c ∈ C2(Rn × Rn), by symmetry of second derivatives, one can verify
∇2
xyc

⊤ = ∇2
yxc; Since ∇2

yyc(x, y) is independent of x, one has ∇2
yyc(x(y), y)−∇2

yyc(x, y) = 0. Thus we obtain

∇2Ψx(y) = −∇2
xyc(x(y), y)⊤∇2

xxΦ(x(y), y)−1∇2
xyc(x(y), y). (35)

By the positive definite assumption made in Assumption 3 as well as (7), we have λ(y)In ⪰ ∇2
xxΦ(x(y), y) ≻

On. Recall that σmin(∇2
xyc(x, y)) = σ(x, y). Now we apply lemma 3 to (35), this yields

∇2Ψx(y) ⪯ −σ(x, y)2

λ(y) In.

Now we prove the main result of Theorem 4.

Proof of Theorem 4. In this proof, we denote
∫

as
∫
Rd for simplicity.

We first recall

L(T, f) =
∫
c(x, T (x))ρa(x) dx+

∫
f(y)ρb(y) dy −

∫
f(T (x))ρa(x) dx

=
∫
f(y)ρb(y) dy −

∫
(f(T (x)) − c(x, T (x)))ρa(x)dx,

then we write

E1(T, f) = L(T, f) − inf
T̃

L(T̃ , f) = −
∫

[f(T (x)) − c(x, T (x))]ρa dx+ sup
T̃

{∫
[f(T̃ (x)) − c(x, T̃ (x))]ρa dx

}
Recall Tf defined in Assumption 4, we have, for almost every x ∈ Rd,

Tf (x) = argmaxy{f(y) − c(x, y)} = argmaxy{Ψx(y)}, (36)
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recall that we denote Ψx(y) = f(y) − c(x, y), then, for almost every x ∈ Rd, we have

∇Ψx(Tf (x)) = 0. (37)

One can also write:

E1(T, f) =
∫

[(f(Tf (x)) − c(x, Tf (x))) − (f(T (x)) − c(x, T (x)))]

=
∫

[Ψx(Tf (x)) − Ψx(T (x))]ρa(x) dx

For any x ∈ Rd, since Ψx(·) ∈ C2(Rn), and according to the previous Lemma 4, we have

Ψx(T (x)) − Ψx(Tf (x)) = ∇Ψx(Tf (x))(T (x) − Tf (x)) + 1
2(T (x) − Tf (x))⊤∇2Ψx(ω(x))(T (x) − Tf (x))

with

ω(x) = (1 − θx)T (x) + θxTf (x) (38)

for certain θx ∈ [0, 1]. By (37) and Lemma 4, we have

Ψx(T (x)) − Ψx(Tf (x)) ≤ −σ(x, ω(x))2

2λ(ω(x)) |T (x) − Tf (x)|2.

Thus we have:

E1(T, f) =
∫

[Ψx(Tf (x)) − Ψx(T (x))]ρa(x) dx ≥
∫
σ(x, ω(x))2

2λ(ω(x)) |T (x) − Tf (x)|2ρa(x) dx (39)

On the other hand, recall a solution of our sup-inf problem (4) is denoted as (T̄, f̄). Then we have

sup
f

inf
T

L(T, f) =
∫
c(x, T̄ (x))ρa dx−

∫
f(y)(T̄♯ρa − ρb)dy =

∫
c(x, T̄ (x))ρa dx,

the second equality is due to the assumption on the consistency between T̄ and Monge map T∗, thus T̄♯ρa = ρb.

Thus we have

E2(f) =
∫
c(x, T̄ (x))ρa dx− inf

T̃

(∫
c(x, T̃ (x))ρa(x)dx+

∫
f(y)ρb(y) dy −

∫
f(T̃ (x))ρa(x)dx

)
= −

∫
f(T̄ (x)) − c(x, T̄ (x))ρa dx+ sup

T̃

∫
(f(T̃ (x)) − c(x, T̃ (x)))ρa(x)dx.

The second equality is due to T̄♯ρa = ρb. Similar to the previous treatment, we have

E2(f) =
∫

[Ψx(Tf (x)) − Ψx(T̄ (x))]ρa(x) dx

Apply similar analysis as before, we obtain

E2(f) ≥
∫
σ(x, ξ(x))2

2λ(ξ(x)) |T̄ (x) − Tf (x)|2ρa(x) dx (40)

with

ξ(x) = (1 − τx)T̄ (x) + τxTf (x) (41)
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for certain τx ∈ [0, 1]. Since T̄ = T∗, ρa almost surely, (40) leads to

E2(f) ≥
∫
σ(x, ξ(x))2

2λ(ξ(x)) |T∗(x) − Tf (x)|2ρa(x) dx (42)

Now we set
β(x) = min

{
σ(x, ω(x))2

2λ(ω(x)) ,
σ(x, ξ(x))2

2λ(ξ(x))

}
, (43)

where ω and ξ are defined in (38) and (41). Combining (39) and (42), we obtain

E1(T, f) + E2(f) ≥
∫
β(x)(|T (x) − Tf (x)|2 + |T∗(x) − Tf (x)|2)ρa dx

≥
∫
β(x)

2 |T (x) − T∗(x)|2ρa dx

This leads to ∥T − T∗∥L2(βρa) ≤
√

2(E1(T, f) + E2(f)).

Discussion on enforcing the c-concave property of the dual variable Theorem 4 is established on
the assumption of c-concavity of the dual variable f . In practice, the c-concave property can be approximated
via soft-min convolution, i.e., one can set fθ(y) = − 1

K log(EX∼U exp(−K(φθ(X) + c(X, y)))) with K > 0
large enough, φθ as an arbitrary neural network and U as a uniform distribution over a sufficiently large
ball. However, according to the existing work (Fan et al., 2022b; Korotin et al., 2022a) on applying ICNN
to solve OT, restricting f to the c-concave functions may undermine the performance of our computation.
The related implementation and comparison may serve as good directions for future research.

B.5 Further analysis on λ(·) and β(·)

We can carry out some further calculations so that we may gain a better understanding of the value λ(y)
evaluated at y = Tf (x). We can then tell that the quantity β defined in (43) will be impossible to be bounded
from below as the maps T, Tf are very close to the sup-inf solution T̄ . Before our calculation, we need the
following lemma.
Lemma 5. We assume the assumptions mentioned in Theorem 4 all hold. We also assume that for the
cost function c, the map ∇yc(·, y) : x 7→ ∇yc(x, y) is injective. We further strengthen Assumption 4 such
that Tf (x) minimizes f(y) − c(x, y) for all x ∈ Rd. Similarly, we denote map Tφ as Tφ(y) = x(y) ∈
arg minx{φ(x) + c(x, y)} for all y ∈ Rd. Then we have Tφ(Tf (y)) = y for all y.

Proof. To prove this, we notice that ∇y(f(y) − c(x, y))|y=Tf (x) = 0. This yields

∇f(Tf (x)) − ∇yc(x, Tf (x)) = 0, for arbitrary x ∈ Rd. (44)

By a similar argument carried out in the proof of Lemma 4, we are able to show that

∇f(y) = ∇yc(Tφ(y), y), (45)

for all y ∈ Rd. Then, for any x, we can set y = Tf (x) in (45) and plug this into (44) to obtain

∇yc(Tφ(Tf (x)), Tf (x)) − ∇yc(x, Tf (x)) = 0 (46)

Now due to the fact that ∇xyc(x, y) is invertible in Assumption 1, one can tell that the map ∇yc(·, y) : x 7→
∇xc(x, y) is injective. Thus (46) yields Tφ(Tf (x)) = x for all x ∈ Rd.

Remark 6 (Tf , Tφ as inverse map to each other). If we further assume that φ is c-convex, i.e., φ(x) =
supy{f(y) − c(x, y)}. Then by similar argument, we can also prove that Tf (Tφ(y)) = y for all y ∈ Rd. Thus,
Tf and Tφ are inverse map to each other.
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Theorem 8 (Estimation on λ(·) at Tf (x)). Suppose we assume all the assumptions as in Lemma 5. Let Tf
as defined in Assumption 4, and λ(·) defined in (7). Denote Γ = ∇2

xyc(x, Tf (x)). Then we have λ(Tf (x)) =
∥ΓDTf (x)Γ−1Γ⊤∥2. Furthermore, λ(Tf (x)) ≥ σ(Γ)∥DTf (x)∥2.

Proof. Let us recall that we denote Tf (x) = arg maxy{f(y) − c(x, y)} = arg maxy{Ψx(y)}. Using the
optimality condition, we obtain ∇Ψx(Tf (x)) = 0.

∇yc(x, Tf (x)) − ∇f(Tf (x)) = 0. (47)

Let us now differentiate (47) w.r.t. x.

∇2
xyc(x, Tf (x)) + ∇2

yyc(x, Tf (x))DTf (x) − ∇2f(Tf (x))DTf (x) = 0,

which can also be formulated as

∇2
xyc(x, Tf (x)) + ∇2

yyΨx(Tf (x))DTf (x) = 0. (48)

Let us now recall equation (35) and the definition of Tφ, we substitute (35) into (48) to obtain

∇2
xyc(x, Tf (x)) − ∇2

xyc(Tφ(Tf (x)), Tf (x))⊤∇2
xxΦ(Tφ(Tf (x)), Tf (x))−1∇2

xyc(Tφ(Tf (x)), Tf (x))DTf (x) = 0.
(49)

Recall that the previous Lemma 5 yields Tφ(Tf (x)) = x for all x ∈ Rd. Let us denote Γ = ∇2
xyc(x, Tf (x))

for simplicity. Then equation (49) then leads to

∇2
xxΦ(x(Tf (x)), Tf (x)) = ΓDTf (x)Γ−1Γ⊤ (50)

Since ∇2
xxΦ is self-adjoint, then λmax(∇2

xxΦ(x(Tf (x)), Tf (x))) = ∥∇2
xxΦ(x(Tf (x)), Tf (x))∥2 =

∥ΓDTf (x)Γ−1Γ⊤∥2. We can bound this matrix 2-norm as

∥ΓDTf (x)Γ−1Γ⊤∥2 ≥ ∥ΓDTf (x)Γ−1∥2

∥Γ−⊤∥2
= σmin(Γ)∥DTf (x)∥2.

Thus, when y equals to the minimizer Tf (x) ∈ arg miny{f(y) − c(x, y)}, the quantity λ(y) = λ(Tf (x)) ≥
σmin(Γ)∥DTf (x)∥2

Now suppose that method is about to converge to the sup-inf solution, i.e., the current minimizer Tf of
L(f, T ) is very close to the sup-inf solution T̄ and our computed T is very close to Tf . Then the ω(x), ξ(x)
mentioned in the proof of Theorem 4 will both be very close to Tf (x), thus, β(x) approximately equals to

σ(x, Tf (x))
λ(Tf (x))

Recall the inequality λ(Tf (x)) ≥ σ(Γ)∥DTf (x)∥2 by Theorem 8 and σmin(Γ) = σmin(∇2
xyc(x, Tf (x))) =

σ(x, Tf (x)) by definition, we obtain that β(x) can approximately bounded from above by 1
∥DTf (x)∥2

. Notice
that we can easily construct ρa with very small support and ρb with large support so that the norm of the
gradient of the approximated OT map ∥Tf (x)∥2 is as large as possible for all x ∈ supp(ρa). Then β(x) can
be an arbitrarily small value.
Example 2. Consider quadratic cost c(x, y) = |x− y|2 and two uniform distributions on R, ρa = U([−ϵ, ϵ])
and ρb = U([−L,L]) with ϵ, L > 0. Then the optimal transport map T∗(x) = L

ϵ x. Since we assume the
consistency, T̄ (x) = L

ϵ x, thus ∥DT̄∥ = L
ϵ .

In Example 2, suppose T, Tf are very close to T̄ , it is likely that DTf (x) also possesses a large norm for most
of the x ∈ [−ϵ, ϵ], which leads to a very small value of β(x) ≤ ϵ

L .

28



Published in Transactions on Machine Learning Research (07/2023)

C Relation between our method and generative adversarial networks

It is worth pointing out that our scheme and Wasserstein Generative Adversarial Networks (WGAN) (Ar-
jovsky et al., 2017) are similar in the sense that they are both doing minimization over the generator/map and
maximization over the discriminator/dual potential. However, there are two main distinctions between them.
Such differences are not reflected from the superficial aspects such as the choice of reference distributions
ρa, but come from the fundamental logic hidden behind the algorithms.

• We want to first emphasize that the mechanisms of the two algorithms are different: Typical Wasser-
stein GANs (WGAN) are usually formulated as

min
G

max
∥D∥Lip≤1

∫
D(y)ρb(y)dy −

∫
D(G(x))ρa(x)dx︸ ︷︷ ︸

1−Wasserstein distance W1(G♯ρa,ρb)

(51)

and ours reads

max
f

min
T

∫
f(y)ρb(y)dy −

∫
f(T (x))ρa(x)dx+

∫
c(X,T (x))ρa(x)dx︸ ︷︷ ︸

general Wasserstein distance CMonge(ρa,ρb)

(52)

The inner maximization of (51) computes W1 distance via Kantorovich duality and the outer
loop minimize the W1 gap between desired ρb and G♯ρa; However, the logic behind our scheme
(52) is different: the inner optimization computes for the c−transform of f , i.e. f c,−(x) =
supξ(f(ξ) − c(x, ξ)); And the outer maximization computes for the Kantorovich dual problem
C(ρa, ρb) = supf

{∫
f(y)ρb(y)dy −

∫
f c,−(x)ρa(x)dx

}
.

Even under W1 circumstance, one can verify the intrinsic difference between two proposed methods:
when setting the cost c(x, y) = ∥x − y∥, and ρa = G♯ρa in (52), the entire "sup-inf" optimization
of (52) (underbraced part) is equivalent to the inner maximization problem of (51) (underbraced
part), but not for the entire saddle point scheme.
It is also important to note that WGAN aims to minimize the distance between the generated
distribution and the target distribution and the ideal value for (51) is 0. On the other hand, one of
our goals is to estimate the optimal transport distance between the initial distribution ρa and the
target distribution ρb. Thus the ideal value for (52) should be C(ρa, ρb), which is not 0 in most of
the cases.

• We then argue about the optimality of the computed map G and T : In (51), one is trying to
obtain a map G by minimizing W1(ρb, G♯ρa) w.r.t. G, and hopefully, G♯ρa can approximate ρb well.
However, there isn’t any restriction exerted on G, thus one can not expect the computed G to be
the optimal transport map between ρa and ρb; On the other hand, in (52), we not only compute T
such that T♯ρa approximates ρb , but also compute for the optimal T that minimizes the transport
cost Eρa

[c(X,T (X))]. In (52), the computation of T is naturally incorporated in the sup-inf scheme,
and there exists the theoretical result (recall Theorem 3 in the paper) that guarantees T to be the
optimal transport map.

In summary, even though the formulation of both algorithms are similar, the designing logic (minimizing
distance vs computing distance itself) and the purposes (computing arbitrary pushforward map vs computing
the optimal map) of the two methods are distinct. Thus the theoretical and empirical study of GANs cannot
be trivially translated to the proposed method. In addition to the above discussions, we should also refer
the readers to Gazdieva et al. (2022), in which a comparison between a similar saddle point method and the
regularized GANs are made in section 6.2 and summarized in Table 1.

D Additional results

OT between 1D manifolds We consider the source distribution to be an 1D uniform distribution, and
the target as an incomplete ellipse. In this case, the source dimension n = 1 and target dimension m = 2.
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As discussed in Section 3, we choose the embedding function to be padding-zero function Q(x) = [x, 0], so
the cost reads

c(x, y) = c̄(Q(x), y) = ∥[x, 0] − y∥2
2.

As shown in Figure 8, our algorithm is able to learn a symmetric map from an 1D uniform distribution
towards the incomplete ellipse. This example also shows that our method can deal with the case that both
ρa and ρb are not absolute continuous w.r.t. Lebesgue measure.

(a) ρa (b) ρb (c) T♯ρa (d) T (·) map

Figure 8: Qualitative results for learning unequal dimension maps.

Decreasing function as the cost We consider the cost function c(x, y) = ϕ(∥x−y∥) with ϕ as a monotonic
decreasing function. We test our algorithm for a specific example ϕ(s) = 1

s2 . In this example, we compute
for the optimal Monge map from ρa to ρb with ρa = h♯U([4, 6] × [0, 2π)) and ρb = h♯U([1, 2] × [0, 2π)).
Here we define h : R+ × [0, 2π) → R2 as the transform from polar coordinates to Cartesian coordinates, i.e.
h(r, θ) = (r cos θ, r sin θ). We denote U(E) as the uniform distribution over the measurable set E ⊂ R2. Let
us denote the outer annulus as Ωa, which is the image of [4, 6] × [0, 2π) under h; similarly, the inner annulus
is denoted as Ωb. One can verify that the density function ρa(x) = 1

4π∥x∥χΩa and ρb(x) = 1
2π∥x∥χΩb

. Here
χE is the indicator function of measurable set E, i.e. χE(x) = 1 if x ∈ E and χE(x) = 0 if x /∈ E.

Under polar coordinate, we define the map τ∗ that maps each point (r, θ) on [4, 6] × [0, 2π) to (4 − r
2 , (θ +

π) mod (2π)) ∈ [1, 2] × [0, 2π). Then the ground truth Monge map is T∗ = h ◦ τ∗ ◦ h−1 : Ωa → Ωb.
Now we denote OT distance using the above reciprocal cost as W−2. Then it is not hard to compute
W−2(ρa, ρb) =

∫∫
Ωa

1
∥T∗(x)−x∥2 ρa(x) dx =

∫ 2π
0

∫ 6
4

1
(4+ r

2 )2
1

4πr rdrdθ = 1
2

∫ 6
4

1
(4+ r

2 )2 dr = 1
42 .

We also compute the same problem for L2 cost, i.e. c(x, y) = ∥x − y∥2. Under polar coordinate, the
corresponding Monge map is T∗ = h ◦ τ∗ ◦ h−1 where τ∗ of the problem should map each point (r, θ) on

[4, 6]×[0, 2π) to ( r2 −1, θ). Similar to the above discussion, W2(ρa, ρb) =
(∫ 2π

0
∫ 6

4
(
1 + r

2
)2 1

4πr rdrdθ
) 1

2 =
√

37
3

Figure 9 shows the transported samples as well as the differences between the two cost functions.

(a) (b) (c) (d) (e)

Figure 9: Panel (a) shows the samples from computed T♯ρa. When c(x, y) = 1/∥x− y∥2 (panels (b) (c)), we
show T (x) maps the circle with radius 6 to the circle with radius 1, and maps the circle with radius 4 to the
circle with radius 2. If c(x, y) = ∥x− y∥2, which is the case of the panels (d) (e), it is exactly opposite.
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Uniform distribution on sphere We use the geodesic distance on sphere (13) as the cost. We set
ρa = U([0, 2π) × [0, π4 ]) and ρb = U([0, 2π) × [ 3π

4 , π]), and consider solving

min
T :T♯ρa=ρb

∫
c((θ, ϕ), T (θ, ϕ))ρa dθdϕ. (53)

To mitigate the gradient blow-up of arccos near ±1, we slightly modify the original cost function as

cλ((θ1, ϕ1), (θ2, ϕ2)) = arccos(λ(sinϕ1 sinϕ2 cos(θ1 − θ2) + cosϕ1 cosϕ2)) (54)

with λ = 0.999. We apply our algorithm to solve (53) with cost cλ. We also translate our computed map back
to the 3D sphere S via spherical-Cartesian coordinate transform (θ, ϕ, r) 7→ (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)
where we fix the radius r = 3.

We demonstrate the numerical results in Figure 10. In this example, the ground truth Monge map T∗ of
(53) maps each (θ, ϕ) on [0, 2π) × [0, π4 ] to (θ, ϕ + 3

4π). Furthermore, it is not hard to verify that the OT
distance between ρa, ρb is Wgeodesic(ρa, ρb) = 9π

4 .

(a) (b) (c) (d)

Figure 10: Monge map from ρa to ρb on the sphere: (a) blue samples from ρa and orange samples from ρb;
(b) blue samples from ρa, orange samples are obtained from T♯ρb, grey curves are geodesics connecting each
transporting pairs; (c) our computed Monge map maps blue ring (ϕ = π

8 ) to the orange curve (ground truth
is ϕ = 7

8π); (d) our computed Monge map maps blue ring (ϕ = π
4 ) to the orange curve (ground truth is the

south pole)

Our computational method also yields to an estimation on the OT distance. To be more specific, for any com-
puted Tθ, we can use Monte Carlo method to estimate the OT distance as Ŵ (ρa, ρb) = 1

N

∑N
k=1 c(xk, Tθ(xk)),

where the N samples {xk} are i.i.d. samples drawn from ρa. In exact computation, we choose N = 50000.
We summarize the comparison between our estimated OT distances and exact OT distances of previous
examples in the following Table 3.

W−2 (annulus example) W2 (annulus example) Wgeodesic (sphere example)
Figure 9 (b,c) Figure 9 (d,e) Figure 10

real distance W 1/42 ≈ 0.0238
√

37/3 ≈ 3.5119 9π/4 ≈ 7.0686
our estimation Ŵ 0.0241 3.4019 7.1041

relative error |W−Ŵ |
|W | 1.3149% 3.1325% 0.5018%

Table 3: Comparison between the estimated OT distances and the exact OT distances.
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Figure 11: In this figure, we plot N = 40000 samples {θk, ϕk}Nk=1 (blue) randomly drawn from ρSph
a , and

their mapped samples {Tθ(θk, ϕk)}Nk=1 (green).

Population transportation We have described this example in Section 6.4. Here we make further ex-
planation on the map-to-land transform τ , it is defined as follows.

τ(θ, ϕ) =

(θ, ϕ), if (θ, ϕ) ∈ Land;
argmin
(θ̃,ϕ̃)∈P

{
∥(θ̃, ϕ̃) − (θ, ϕ)∥2

}
, if (θ, ϕ) ∈ Sea.

Here we choose P as a finite set consists of 2000 samples randomly selected from ρSph
b .

We further plot in Figure 11 with sufficiently large amount of source samples and mapped samples. Among
the 40000 mapped samples, 7718 are located on the sea, and we apply τ to map these samples back to a
rather close location on land. It is worth mentioning that the map used as the background in our figures
has several small regions removed from the actual land. This is due to the lack of data points in the dataset
provided in Doxsey-Whitfield et al. (2015).

We also tested our algorithm on this population transport example with different costs. One of the costs we
consider is the cλ cost defined before in (54), with λ = 0.99. We can treat cλ as a reasonable approximation
of the exact geodesic distance on sphere. The other cost we consider is the L2 cost c((θ1, ϕ1), (θ2, ϕ2)) =
(θ2 − θ1)2 + (ϕ2 −ϕ1)2. We present the numerical results for both costs in Figure 12. One can tell that there
are more transport trajectories passing through the Northern Arctic Circle with cλ cost than the trajectories
with L2 cost. This makes sense since the cλ distance of trajectory passing through the North Arctic Circle
won’t be necessarily large when comparing with L2 distance. As a result, the transport plan with cλ cost is
available to accommodate more transport plans going across the Arctic Circle.

Text to image generation We show additional generation results in Figure 13. We also compared the
cos-sim cost (9) and the ordinary inner product cost c(x, y) = −⟨Rx, y⟩. The latter can converge to the
same level as cos-sim cost, measured both qualitatively via generated images and quantitatively via cosine
similarity w.r.t. real images (see Figure 4 (b).) The only difference is the method with inner product cost will
converge slightly slower. After investigating the statistics of ∥Rx∥, we find this result is reasonable because
∥Rx∥ concentrates around 12 with a large probability. Meanwhile, we emphasize that this text-to-image
generation task has not been considered in previous neural OT methods, which is itself a contribution, even
though using cos-sim cost does not distinguish from inner product cost significantly.
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(a) Population transport with cost cλ (b) Population transport with L2 cost

Figure 12: Comparison of transport plans using different cost functions.

E Implementation details and hyper-parameters

E.1 Synthetic datasets

We follow Algorithm 1 and apply Adam method Kingma & Ba (2014) to train both Tθ and fη for all the
following examples in this section. Recall the notations B,K,K1,K2 mentioned in Algorithm 1.

OT between 1D manifolds The networks Tθ and fη each has 5 layers with 10 hidden neurons. The
batch size B = 100. K1 = 6,K2 = 1. The learning rate is 10−3. The number of iterations K = 12000.

Decreasing cost function In this example, we set Tθ(x) = x + Fθ(x) and optimize over θ. For either
1

|x−y|2 or |x − y|2 case we set both Fθ and the Lagrange multiplier fη as six layers multilayer perceptron
(MLP), with PReLU and Tanh activation functions respectively, each layer has 36 nodes. The training batch
size B = 2000. We set K = 8000, K1 = 8,K2 = 6. The learning rate for both θ and η equals 10−4.

Uniform distribution on sphere In this example, we set Tθ(x) = x + Fθ(x) and optimize over θ. We
set both Fθ and fη as six layers MLP, with PReLU activation functions, each layer has 8 nodes The training
batch size is B = 4000. We set K = 10000, K1 = 8,K2 = 4. The learning rate for both θ and η equals
0.9 × 10−4.

Population transportation In this example, we set Tθ(x) = x + Fθ(x) and optimize over θ, we choose
both Fθ, fη as ResNets with depth equals 4 and hidden dimensions equals 32; we choose the activation
function as PReLU. We apply dropout technique Srivastava et al. (2014) with p = 0.24 to each layer of our
networks. The learning rate for both θ and η was set as 5 × 10−5. Tθ is computed after K = 200000 steps
of optimization with K1 = 8,K2 = 1 and training batchsize B = 400.

For the comparison experiment, we tested our example by slightly modifying the codes presented in OT
mapping estimation for domain adaptation of POT library Flamary et al. (2021). We train the linear
transformation on 2000 samples from both ρSph

a and ρSph
b , we choose the hyper parameter µ = 1, ϵ = 10−4.

We plot the second Figure 7 by applying the map-to-land transform τ with 2000 newly selected samples.
We also tried the same example with Gaussian kernel provided in Flamary et al. (2021), but the results are
always unstable for various hyper parameters. Generally speaking, it is very hard to obtain valid results
with Gaussian kernel.

E.2 Text to image generation

Dataset details Laion aesthetic dataset is filtered from a Laion 5B dataset to have the high aesthetic
level. Laion art is the subset of Laion aesthetic and contains 8M most aethetic samples. We download the
metadata of Laion art according to the instructions of Laion. We then filter only English prompts, and
download the images with img2dataset. To speed up the training, we run the CLIP retrieval to convert
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(a) Random image samples on Laion art prompts

(b) Random image samples on Conceptual Captions 3M prompts

Figure 13: Additional text to image generation results

images to embeddings and use embedding-dataset-reordering to reorder the embeddings into the expected
format. By doing these two steps, we save the time of calculating embeddings on the fly. After filtering
English prompts, we get the Laion art dataset with 2.2M data.
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(a) Degraded and original images (b) Composite images G(x) (c) Pushforward images T (x)

Figure 14: Unpaired image inpainting on test dataset of CelebA 64 × 64. We take the composite image
G(x) = T (x) ⊙ MC + x ⊙ M as the output image. Additionally, we provide the pushforward images T (x)
to illustrate the regularization effect of transportation costs. In panels (b) and (c), we show the results with
α = 10 in the first row and α = 10000 in the second row. A small transportation cost would result that the
pushforward map neglects the connection to the unmasked area, which is illustrated by a more clear mask
border in pushforward images.

Figure 15: Unpaired image inpainting on test dataset of CelebA 128 × 128. We take the composite image
G(x) = T (x) ⊙MC + x⊙M as the output image.

We download CC-3M following this instruction. We then remove all the images with watermark, which
include images downloaded from shutterstock, alamy, gettyimages, and dailymail.co.uk websites. After re-
moving watermark images, the CC-3M only has 0.8M (text, image) pairs left. We then use CLIP retrieval
and embedding-dataset-reordering packages to convert raw images/texts to embeddings.

For each dataset, we let the source and the target distribution contain 0.3M data respectively, and take the
rest of dataset as the test data.

Network structure and hyper-parameters We use the DALLE·2 prior network to represent the map
T . The potential f is using the same network with an additional pooling layer. We use EMA to stabilize
the training of the map. The batch size is 225. The numbers of loop iterations are K1 = 10, K2 = 1. We
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use the learning rates 10−4, Adam (Kingma & Ba, 2014) optimizer with weight decay coefficient 0.0602. We
train the networks for 110 epochs.

On NVIDIA RTX A6000 (48GB), the training time of each experiment is 21 hours.

E.3 Unpaired inpainting

Denote MC as the complement of M , i.e. MC = 1 in the occluded area and 0 otherwise. The composite
image is G(x) = T (x) ⊙ MC + x ⊙ M . The loss function we actually use is slightly different with the (5).
We modify the f(T (x)) to be f(G(x)) to strengthen the training of f

sup
f

inf
T

∫
Rn

[c(x, T (x)) − f(G(x))] ρa(x) dx+
∫
Rm

f(y)ρb(y) dy.

In the unpaired inpainting experiments, the images are first cropped at the center with size 140 and then
resized to 64 × 64 or 128 × 128. We choose learning rate to be 1 · 10−3, Adam optimizer with default beta
parameters, K2 = 1. The batch size is 64 for CelebA64 and 16 for CelebA128. The number of inner loop
iteration K1 = 5 for CelebA64 and K1 = 10 for CelebA128.

We use exactly the same UNet for the map T and convolutional neural network for f as Rout et al. (2022,
Table 9) for CelebA64 and add one additional convolutional block in f network for CelebA128. On NVIDIA
RTX A6000 (48GB), the training time of CelebA64 experiment is 10 hours and the time of CelebA128 is 45
hours.

We use the POT implementation (Flamary et al., 2021) of Perrot et al. (2016) as the template and implement
the masked MSE loss by ourselves. Perrot et al. (2016) provides two options as the transformation map,
one is linear and another is the kernel function. We find the kernel function on this example would generate
mode-collapse results, so we adopt the linear transformation map. We choose L2 regularization coefficient
to be 10−3, and other parameters are the same as default.

E.4 Class preserving mapping

The NIST images are rescaled to size 32 × 32 and repeated to 3 channels.

We use the conditional UNet to represent map T . We add a projection module (Miyato & Koyama, 2018) on
WGAN-QC’s ResNet (Liu et al., 2019) to represent potential f . We choose learning rate to be 1 ·10−4, Adam
optimizer with betas (0.5, 0.999). K1 = 10,K2 = 1. We use EMA to stablize the training of the map. The
batch size is 64. In practice, we introduce a coefficient λ in the cost c({x, y}, {x′, y′}) = ∥x−x′∥2 +λ1(y ̸= y′)
and set λ = 0.5.
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F Theoretical justification of all the examples considered in this article

Table 4: We make a summary table on all the problems considered in this work with their cost function
c and distributions ρa, ρb and whether the existence and uniqueness of Monge map for each problem are
guaranteed. We conclude the last column by checking the conditions in Theorem 1. Note that the theory
of the existence of Monge map relies on the connection to a deterministic OT plan (Santambrogio, 2015,
Section 1.1-1.4), and it is quite common that the OT plan is non-deterministic in deep learning examples.
Sd is the unit ball in Rd, and ∆d−1 is the d− 1 dimension probability simplex in Rd.

Problem X Y Cost
Guarantee of existence

and uniqueness

Text to image R77×768 \ {0} S768 c(x, y) = − ⟨Rx,y⟩
∥Rx∥2

[No] ∇xc(x, ·) = R⊤

∥Rx∥ (I − uu⊤)

may not be injective.

Here we denote u = Rx
∥Rx∥ .

Class-preserving map [−1, 1]32×32×3 × ∆J−1 Y = X
c({x, y}, {x̄, ȳ}) =

∥x− x̄∥2 − λy⊤ȳ

[No] Consider M = R32×32×3+J ,

ρa is not absolutely continuous

as a distribution on R32×32×3+J

Image inpainting
[−1, 1]32×32×3 or

[−1, 1]64×64×3
Y = X c(x, y) ∝ ∥x⊙M − y ⊙M∥2

2
Existence guaranteed

uniqueness not guaranteed

Population transport [0, 2π) × [0, π] Y = X
c({θ1, ϕ1}, {θ2, ϕ2}) =

− sinϕ1 sinϕ2 cos(θ1 − θ2)

− cosϕ1 cosϕ2

[No] ∇xc(x, ·) may not be

injective, c.f. Remark 7

Line to ellipse [−L,L] (0, π)

c(x, y) =

(x− a cos y)2 + b2 sin2 y

The parametrization of

the line and the ellipse are

(x, 0); (a cos y, b sin y).

[Yes] The conditions in

Theorem 1 are satisfied.

Annulus

(reciprocal cost)

Ω1

4 ≤ r ≤ 6

Ω2

1 ≤ r ≤ 2
c(x, y) = 1

∥x−y∥2

[Yes] One can restrict c on X × Y,

i.e., set the manifold M = Ω1

as stated in Appendix A,

and choose X = M .

The conditions in Theorem 1

are all satisfied.

Annulus

(L2 cost)

Ω1

4 ≤ r ≤ 6

Ω2

1 ≤ r ≤ 2
c(x, y) = ∥x− y∥2 [Yes] One can verify that

the conditions in Thm 1 are satisfied.

OT on sphere [0, 2π) × [0, π] Y = X
cλ({θ1, ϕ1}, {θ2, ϕ2}) =

arccos(λ(cosϕ1 cosϕ2

+ sinϕ1 sinϕ2 cos(θ1 − θ2)))

[No] ∇xc(x, ·) may not be injective.

c.f. Remark 7

Remark 7. We discuss the condition (18) for geodesic cost. Consider the cost c is the linearized geodesic
distance (14), one can compute

∇θ1,ϕ1c({θ1, ϕ1}, {θ2, ϕ2}) =
(

sinϕ1 sinϕ2 sin(θ1 − θ2)
− cosϕ1 sinϕ2 cos(θ1 − θ2) + sinϕ1 cosϕ2

)
Fix θ2 = θ1. When ϕ1 ̸= π

2 , we can always choose two different ϕ′, ϕ′′ ∈ [0, π] such that sin(ϕ1 − ϕ′) =
sin(ϕ1 − ϕ′′), so

∇θ1,ϕ1c({θ1, ϕ1}, {θ2, ϕ
′}) =

(
0

sin(ϕ1 − ϕ′)

)
=

(
0

sin(ϕ1 − ϕ′′)

)
= ∇ϕ1c({θ1, ϕ1}, {θ2, ϕ

′′}),

37



Published in Transactions on Machine Learning Research (07/2023)

thus ∇xc(x, ·) is not injective on [0, 2π) × [0, π]. One can also use a similar way to show that for the cost
cλ (cf. (54)) used in OT on sphere, ∇xcλ(x, ·) is not injective. This is also true for the original arc length
distance function (13). The cost function c(x, y) may satisfy (18) if it is the square of the geodesic distance,
i.e., c(x, y) = d2(x, y) where d(x, y) denotes the length of the geodesic joining x, y. The computation w.r.t.
the square cost may serve as one of our future research directions.

G Notations used in the paper

Notation Meaning

c(x, y) cost function

X ,Y Polish spaces

ρa, ρb Borel probability measures defined on X ,Y

T Measurable map from X to Y

T♯µ Pushforward of distribution µ by the map T

M(X ,Y) Space of measurable maps from X to Y

Cb(X ) Space of bounded continuous functions defined on X

P(X ) Space of Borel probability distributions defined on X

C(ρa, ρb) OT distance from ρa to ρb, i.e., optimal value to the general OT problem 2

CMonge(ρa, ρb) Optimal value to the Monge problem 1

K(ρa, ρb) Optimal value to the Kantorovich dual problem (3), (19), or (20)

L(T, f) Lagrangian function of the Monge problem, defined in (5)

ψc,+ c−transform defined in (21)

ϕc,− c−transform defined in (22)

T∗, ϕ∗ Optimal solution (Monge map) to (1) and optimal solution to (20)

(T̂, f̂) Saddle point of L(T, f) to (4)

(T̄, f̄) sup-inf solution to (4)

B,K,K1,K2 Training batch size, total iterations, iterations for Tθ, iterations for fη
R Frozen matrix

⊙ Point-wise multiplication

M,MC Binary mask with the same size as the image, complement of M

U(E) Uniform probability distribution on measurable set E
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