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ABSTRACT

All-in-One Image Restoration (AiOIR) tasks often involve diverse degradation
that require robust and versatile strategies. However, most existing approaches
typically lack explicit frequency modeling and rely on fixed or heuristic optimiza-
tion schedules, which limit the generalization across heterogeneous degradation.
To address these limitations, we propose EvoIR, an AiOIR-specific framework
that introduces evolutionary frequency modulation for dynamic and adaptive im-
age restoration. Specifically, EvoIR employs the Frequency-Modulated Module
(FMM) that decomposes features into high- and low-frequency branches in an ex-
plicit manner and adaptively modulates them to enhance both structural fidelity
and fine-grained details. Central to EvoIR, an Evolutionary Optimization Strategy
(EOS) iteratively adjusts frequency-aware objectives through a population-based
evolutionary process, dynamically balancing structural accuracy and perceptual fi-
delity. Its evolutionary guidance further mitigates gradient conflicts across degra-
dation and accelerates convergence. By synergizing FMM and EOS, EvoIR yields
greater improvements than using either component alone, underscoring their com-
plementary roles. Extensive experiments on multiple benchmarks demonstrate that
EvoIR outperforms state-of-the-art AiOIR methods.

1 INTRODUCTION

Image restoration recovers a high-quality image from its degraded observation. Traditionally, this
problem has been tackled by task-specific networks, each tailored to a particular type of degrada-
tion. Such task-specific models have demonstrated impressive performance across various tasks,
including denoising Shen et al. (2023), dehazing Song et al. (2023), deraining Chen et al. (2023a),
deblurring Tsai et al. (2022), low-light enhancement Ma et al. (2023b), and under-water enhance-
ment Zhang et al. (2025b).

However, task-specific methods suffer from limited generalization, as they are inherently tailored
to handle only predefined degradation types. When applied to unfamiliar degradation, their perfor-
mance tends to degrade dramatically. General image restoration approaches have been proposed Za-
mir et al. (2021); Chen et al. (2022); Cui et al. (2023a); Xia et al. (2023) to address these limita-
tions. Although these models are capable of addressing various degradation types, they are generally
trained and tested on single tasks, which limits their practicality in real-world settings that involve
complex and mixed degradation.

Recently, All-in-One image restoration methods Ai et al. (2024); Conde et al. (2024); Liu et al.
(2025); Cui et al. (2025); Zamfir et al. (2025); Tian et al. (2025) have emerged as promising so-
lutions to the limitations aforementioned. These approaches restore images corrupted by multiple
degradation types within a unified framework. Early efforts such as AirNet Li et al. (2022) con-
structed explicit degradation encoders to obtain discriminative degradation-aware features. Subse-
quent works, including ProRes Ma et al. (2023a) and PromptIR Potlapalli et al. (2023), enhanced
performance by incorporating visual prompts as guidance. The work in Tan et al. (2024) exploits
the rich feature representations of large-scale vision models, such as CLIP Radford et al. (2021) and
DINO Caron et al. (2021). Perceive-IR Zhang et al. (2025a) formulates image restoration from a
quality-aware perspective, enabling the model to adjust its restoration strategy based on degradation
severity.
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Figure 1: PSNR comparisons of AiOIR methods
on “Noise + Haze + Rain” (3D) and “Noise +
Haze + Rain + Blur + Low-light” (5D) settings.
Results of our EvoIR are marked in Red, while
the other best results are indicated in each color.
EvoIR performs the best in average.

Despite the emergence of All-in-One restora-
tion frameworks, two key challenges remain
largely underexplored. First, most existing
methods operate solely in the spatial domain
and fail to explicitly model the frequency char-
acteristics of degraded images. This limitation
hinders the ability of the model to balance the
restoration of structural smoothness and texture
fidelity. Second, current training strategies are
typically static, relying on fixed loss weights
throughout optimization. Such rigid configu-
rations prevent the model from dynamically
adapting to the varying difficulty levels across
samples or tasks. These limitations lead to sub-
optimal performance in complex degradation
scenarios.

To address these limitations, we propose
EvoIR, an All-in-One image restoration frame-
work that integrates frequency-aware represen-
tation learning with dynamic loss optimiza-
tion. At its core, we introduce a Frequency-
Modulated Module (FMM), which decom-
poses features into high- and low-frequency
components and applies branch-specific mod-
ulation to enhance texture details and preserve
structural consistency. Additionally, we develop an Evolutionary Optimization Strategy (EOS)
that simulates population-based evolution during training to dynamically adjust loss weight config-
urations, allowing the model to adapt to varying restoration objectives and task complexities without
manual tuning.

As shown in Fig. 1, EvoIR consistently outperforms previous State-Of-The-Art (SOTA) All-in-One
Image Restoration (AiOIR) methods across a wide range of degradation types. Especially, EvoIR
achieve new highest results of average PSNR/SSIM in both 3-task and 5-task settings compared
with recent proposed methods.

Our contributions can be summarized as follows:

• We propose EvoIR; to the best of our knowledge within AiOIR, it is the first framework that
leverages an evolutionary algorithm for loss weighting, together with frequency-aware modula-
tion. EvoIR attains state-of-the-art performance across multiple benchmarks and remains robust
to diverse degradation.

• We introduce a Frequency-Modulated Module (FMM) that explicitly separates features into
high- and low-frequency components and dynamically modulates each branch to target fine-
grained textures and structural smoothness under complex degradation.

• We present an Evolutionary Optimization Strategy (EOS), a population-based mechanism with
modest overhead that automatically identifies and adapts optimal loss-weight configurations for
AiOIR, improving convergence and balancing perceptual quality without manual tuning.

2 RELATED WORK

2.1 ALL-IN-ONE IMAGE RESTORATION

All-in-One image restoration methods address diverse degradation using a unified model, offering
improved storage and deployment efficiency over task-specific Yasarla & Patel (2019); Chen et al.
(2023a); Kupyn et al. (2018); Cai et al. (2023); Wu et al. (2022) and general-purpose Chen et al.
(2022); Zamir et al. (2022b); Xia et al. (2023); Guo et al. (2024a) approaches.
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The core challenge lies in restoring multiple degradation types within a shared parameter space.
To address this, AirNet Li et al. (2022) applies contrastive learning for degradation discrimination,
IDR Zhang et al. (2023) adopts a two-stage ingredient-oriented design, and ProRes Ma et al. (2023a)
introduce visual prompts for guided restoration. Recent methods Tan et al. (2024); Luo et al. (2023)
further leverage large-scale pre-trained vision models to enhance texture and semantics.

However, most approaches utilize similar restoration strategies across spatial regions, neglecting
frequency properties and structural complexity, which leads to oversmoothing or texture loss. More-
over, fixed training objectives hinder adaptation to sample difficulty. EvoIR addresses these limita-
tions through frequency-aware modulation and adaptive optimization for more robust restoration.

2.2 FREQUENCY DOMAIN-BASED IMAGE RESTORATION

Recent studies have emphasized the importance of frequency-domain modeling in boosting restora-
tion performance Cui et al. (2023b); Wu et al. (2025). CSNet Cui et al. (2024) integrates channel-
wise Fourier transforms and multi-scale spatial frequency modules, guided by frequency-aware loss,
to enhance both spectral interaction and spatial detail. For deblurring, the Efficient Frequency Do-
main Transformer Kong et al. (2023) reformulates attention and feed-forward layers in the frequency
domain, improving visual quality and efficiency. FPro Zhou et al. (2024) employs frequency decom-
position and prompt learning to guide structure–detail recovery across diverse tasks. AdaIR Cui et al.
(2025) further mines degradation-specific frequency priors and applies bidirectional modulation to
enhance reconstruction.

While effective, these methods often exist solely and complex modules. In contrast, our adaptive
frequency-modulated module that explicitly performs frequency-aware modulation in the feature
space. With assist of evolutionary optimization, it balances texture–structure dynamically without
incurring additional architectural overhead.

Figure 2: An overview of the EvoIR pipeline, combining frequency-aware representation (FMM),
spectral-enhanced FFT blocks (RES-FFTB), and evolutionary loss optimization (EOS).

3 METHODOLOGY

3.1 OVERALL PIPELINE

As illustrated in Fig. 2, EvoIR comprises two tightly coupled components: a frequency-modulated
architecture (FMM) and an evolutionary optimization strategy (EOS), which collaboratively achieve
robust image restoration.
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Frequency-modulated architecture (FMM). FMM splits the input features into a low-frequency
path and a high-frequency path and fuses them adaptively. The low-frequency path performs spec-
tral gating: it transforms the low-pass component to the frequency domain, applies a learned mask
to suppress noise-dominated bands, and returns to the spatial domain for subsequent attention. The
high-frequency path remains entirely in the spatial domain: a learned spatial mask emphasizes edges
and textures, followed by depthwise convolutions to enhance fine-grained details. The two cali-
brated outputs are fused in the spatial domain and fed into multi-scale residual Transformer blocks
(RES-FFTB) within a Restormer-like encoder–decoder, enabling hierarchical representation with
strong long-range dependencies and local detail recovery.

Evolutionary optimization (EOS). To balance fidelity and perception under varying degradation
without manual tuning, EOS performs a stage-based population search over loss weights (α, β) ∈
∆2. At the beginning of each stage (every T iterations), we freeze the current network parameters
and evaluate candidates on a held-out validation set; elites are retained, offspring are generated via
convex crossover and small mutation with projection back to the simplex, and the best pair (α⋆

t , β
⋆
t )

is selected after G generations. The selected weights are then used for the next K epochs of training.
This procedure improves stability (evaluation under frozen weights) and tracks the moving optimum
as the model evolves.

Backbone architecture. Following prior frequency-domain designs Kong et al. (2023), we extend
them into the RES-FFTB module with multi-head self-attention and residual connections for efficient
information flow. We also adopt the Refine Block from AdaIR Cui et al. (2025) to further polish the
fused features before decoding.

To summarize, FMM provides content-adaptive frequency modulation (spectral for low-frequency,
spatial for high-frequency), while EOS supplies data-driven loss balancing across stages. Together
they form a unified, robust pipeline that generalizes across diverse restoration tasks and complex
degradation.

3.2 ADAPTIVE FREQUENCY MODULATION

To effectively handle diverse and spatially variant degradation in All-in-One image restoration, we
propose the Frequency-Modulated Module (FMM), explicitly integrating frequency-aware induc-
tive bias into our model. As illustrated in the middle-left of Fig. 2, FMM employs a dual-branch
structure designed to individually handle high- and low-frequency components of input feature
maps. This dual-branch approach empowers the model to adaptively emphasize texture details or
structural smoothness, guided by input degradation patterns.

Given an input feature map XF ∈RH×W×C , we first obtain two modulation features by a spatial
band-split:

XL = GL ∗XF , XH = XF −XL, (1)
where ∗ denotes spatial convolution and GL is a learnable (or parametrized) low-pass kernel (e.g.,
depthwise separable). For interpretation, we also denote the unitary 2D Fourier transform by F and
index Fourier coefficients by ξ = (u, v) on the H ×W DFT grid; then Eq. equation 1 is equivalent
to UL(ξ) = ĜL(ξ)UF (ξ) and UH(ξ) = (1 − ĜL(ξ))UF (ξ) in the frequency domain, but the
high-frequency branch does not perform FFT/IFFT in implementation.

Low-frequency branch (spectral gating). We transform XL to the frequency domain and apply
a data-adaptive spectral mask Maskl(ξ)∈ [0, 1]:

UL = F(XL), ŨL(ξ) = Maskl(ξ)UL(ξ), X̃L = F−1(ŨL). (2)

The refined low-frequency features X̃L serve as Key/Value, while the original XF acts as Query in
the subsequent attention, enhancing structural smoothness and global coherence.

High-frequency branch (spatial gating). In parallel, we keep the computation entirely in the
spatial domain and generate a spatial mask mh∈ [0, 1]H×W conditioned on the input (via the global
token from GAP and lightweight layers), and apply

X̃H = mh ⊙XH , (3)
followed by depthwise convolutions to emphasize fine-grained textures and edges. Especially, both
FFT and IFFT are removed to better extract high-frequency information.
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Fusion. Since the low branch returns to the spatial domain in Eq. equation 2, we fuse the two paths
in the spatial domain:

X̂ = X̃L + X̃H . (4)

The calibrated features are then processed by residual Transformer blocks (RES-FFTB), strengthen-
ing the decoder pathway and improving representation fidelity.

Finally, the calibrated features are processed through residual Transformer Blocks (TBs), specif-
ically enhanced by the frequency-aware RES-FFTB module (as illustrated in the bottom-right of
Fig. 2). RES-FFTB leverages learnable weights to modulate frequency-transformed features, further
strengthening the decoder pathway and improving feature representation fidelity.

Algorithm 1: Evolutionary Optimization Strategy (EOS)
Input: Validation set Dv; losses Lfid,Lperc; population size n; generations G; trigger interval T

(iterations)
Output: Weights (α⋆

r , β
⋆
r ) applied for the next T iterations

1 Trigger r: (called every T training iterations) freeze current weights θr ;
2 Initialize population P0 = {(αi, βi)}ni=1 with αi + βi = 1 ;
3 for g ← 1 to G do
4 foreach (α, β) ∈ Pg−1 do

// validation fitness under frozen θr
5 f(α, β)← − 1

|Dv|
∑

(x,y)∈Dv

[
αLfid(fθr (y), x) + β Lperc(fθr (y), x)

]
;

6 end
7 Keep top-k elites Pelite by f ;
8 Initialize new population Pg ← Pelite ;
9 while |Pg| < n do

10 Sample parents pa, pb ∈ Pelite and λ∼U(0, 1) ;
11 Crossover: c = λ pa + (1− λ) pb ;
12 Mutation: c← c+ ε, ε∼N (0, σ2) ;
13 Projection: c← Π∆2(c) ; // enforce α+ β = 1 and nonnegativity
14 Add c to Pg ;
15 end
16 end
17 return (α⋆

r , β
⋆
r ) = argmax(α,β)∈PG

f(α, β) ; // use for the next T iterations

3.3 EVOLUTIONARY LOSS OPTIMIZATION

To enable adaptive balancing between fidelity and perceptual objectives under varying degradation
severities, we introduce an Evolutionary Optimization Strategy (EOS) (Fig. 2, top-left). EOS
treats the loss weights as candidates and performs a population-based search to find the best weight
pair during training.

Losses and feasible set. We consider two batch-averaged losses: a pixel-wise fidelity loss Lfid
(e.g., ℓ1/Charbonnier) and a perceptual lossLperc (we use 1−MS-SSIM so that a smaller value means
better performance). A candidate is a weight pair (α, β) ∈ ∆2 = {(α, β) : α, β ≥ 0, α + β = 1}.
During training, the combined loss for a mini-batch is

Ltrain(θ;α, β) = αLfid(θ) + β Lperc(θ), α+ β = 1. (5)

What EOS optimizes. At trigger r (every T iterations), we freeze the current network parameters
θr and evaluate each candidate on a held-out validation set Dv:

Jr(α, β | θr) =
1

|Dv|
∑

(x,y)∈Dv

[
αLfid(fθr (y), x) + β Lperc(fθr (y), x)

]
, (α, β) ∈ ∆2, (6)

with fitness f(α, β) = −Jr(α, β | θr) (larger is better). EOS returns (α⋆
r , β

⋆
r ) = argmax f(α, β)

and uses it for the next T training iterations by minimizing equation 5.

5
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Procedure. As detailed in Alg. 1, EOS maintains a population P of weight pairs on the simplex.
Each generation computes f(α, β) onDv with θr frozen, keeps the top-k elites, and creates offspring
via convex crossover and small mutation followed by projection back to ∆2 (to keep α + β = 1
and nonnegativity). This repeats for G generations. The best (α⋆

r , β
⋆
r ) is then used for the next

T iterations until the next trigger. As detailed in Alg.1 and visualized in Fig.2, the EOS process
involves the following steps:

1) Initialization: Randomly initialize (or pre-define) a small population P0 = {(αi, βi)}ni=1 on
∆2.

2) Fitness Evaluation (frozen θr): For each (α, β) ∈ Pg−1, compute f(α, β) =
− 1

|Dv|
∑

(x,y)∈Dv

[
αLfid(fθr (y), x) + β Lperc(fθr (y), x)

]
.

3) Selection (elitism): Keep the top-k candidates by f to form Pelite.
4) Crossover (convex): Sample parents pa, pb ∈ Pelite and λ∼U(0, 1), set c = λ pa + (1− λ) pb.
5) Mutation + projection: Perturb c ← c + ε with ε∼N (0, σ2), then project c ← Π∆2(c) to

enforce α+ β = 1 and c ≥ 0.
6) Repeat & apply: Iterate 2–5 for G generations; return (α⋆

r , β
⋆
r ) and use it for the next T training

iterations.

With elitist selection and deterministic evaluation, the best fitness is non-decreasing across genera-
tions. In practice, we evaluate on a fixed stratified subset of Dv to reduce variance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: Following Li et al. (2022); Potlapalli et al. (2023), we consider One-by-One training
paradigm (single-task training), All-in-One training paradigm (multi-task joint training), compos-
ited degradation and remote sensing imagery. For One-by-One and All-in-One, we explore two com-
mon degradation combinations: N+H+R (Noise, Haze, Rain) and N+H+R+B+L (Noise, Haze, Rain,
Blur, Low-light). Denoising: BSD400 Arbelaez et al. (2010), WED Ma et al. (2016), CBSD68 Mar-
tin et al. (2001) and Kodak24 Franzen (1999); Dehazing: OTS from RESIDE-β Li et al. (2018) and
SOTS-Outdoor Li et al. (2018); Deraining: Rain100L Yang et al. (2017); Deblurring: GoPro Nah
et al. (2017); Low-light Enhancement: LOL Wei et al. (2018). Details of these datasets are sum-
marized in appendix. For composited degradation, we use CDD11 dataset Guo et al. (2024b). For
remote sensing AiOIR, we choose MDRS-LandsatLihe et al. (2025). For these two settings, we
follow the original split of training and test sets.

Implementation Details: For EvoIR, we employ the AdamW optimizer with β1 = 0.9, β2 = 0.999,
and an initial learning rate of 2× 10−4. The model is trained for 150 epochs with a total batch size
of 28. The loss weights are initialized as α = 0.8 and β = 0.2, which are updated by the EOS. After
75 epochs, the learning rate is halved to 1× 10−4. The evolutionary optimization strategy is applied
every 500 training iterations.

Following Cui et al. (2025), we adopt task-specific resampling ratios to address data imbalance
across restoration tasks. Specifically, the data expansion ratios of 3, 120, 5, and 200 are applied to
denoising, deraining, deblurring, and low-light enhancement, respectively, while dehazing remains
unaltered. Training is conducted on 4 NVIDIA A100 40GB GPUs using cropped patches of size
128× 128, with random horizontal and vertical flipping for data augmentation.

4.2 ALL-IN-ONE RESTORATION RESULTS

We evaluate EvoIR under two All-in-One settings: a moderate setting with three degradation and a
more complex five-degradation setting .

Three-Degradations Setting (“N+H+R”). Tab.1 shows that EvoIR achieves the best average
PSNR (33.00 dB) and SSIM (0.922). Compared to the three latest AiOIR methods: AdaIR Cui et al.
(2025), MoCE-IR Zamfir et al. (2025) and DFPIR Tian et al. (2025), our method improves the aver-
age PSNR/SSIM by +0.31 dB/+0.004, +0.23 dB/+0.005 and +0.12 dB/+0.003, respectively. Notably,
EvoIR achieves new state-of-the-art results on dehazing (32.08/0.982) and deraining (39.07/0.985),
demonstrating the effectiveness of adaptive frequency modulation and evolutionary optimization.
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Table 1: Performance comparison (PSNR/SSIM) under All-in-One (“N+H+R”) setting. Results are
partially sourced from Perceive-IR Zhang et al. (2025a).

Method Denoising (CBSD68) Dehazing Deraining Average Params (M)
σ = 15 σ = 25 σ = 50 SOTS Rain100L

AirNet (CVPR’22) 33.92/0.932 31.26/0.888 28.00/0.797 27.94/0.962 34.90/0.967 31.20/0.910 8.93
IDR (CVPR’23) 33.89/0.931 31.32/0.884 28.04/0.798 29.87/0.970 36.03/0.971 31.83/0.911 15.34
ProRes (ArXiv’23) 32.10/0.907 30.18/0.863 27.58/0.779 28.38/0.938 33.68/0.954 30.38/0.888 370.63
PromptIR (NeurIPS’23) 33.98/0.933 31.31/0.888 28.06/0.799 30.58/0.974 36.37/0.972 32.06/0.913 32.96
NDR (TIP’24) 34.01/0.932 31.36/0.887 28.10/0.798 28.64/0.962 35.42/0.969 31.51/0.910 28.40
Gridformer (IJCV’24) 33.93/0.931 31.37/0.887 28.11/0.801 30.37/0.970 37.15/0.972 32.19/0.912 34.07
InstructIR (ECCV’24) 34.15/0.933 31.52/0.890 28.30/0.804 30.22/0.959 37.98/0.978 32.43/0.913 15.84
Up-Restorer (AAAI’25) 33.99/0.933 31.33/0.888 28.07/0.799 30.68/0.977 36.74/0.978 32.16/0.915 28.01
Perceive-IR (TIP’25) 34.13/0.934 31.53/0.890 28.31/0.804 30.87/0.975 38.29/0.980 32.63/0.917 42.02
AdaIR (ICLR’25) 34.12/0.935 31.45/0.892 28.19/0.802 31.06/0.980 38.64/0.983 32.69/0.918 28.77
MoCE-IR (CVPR’25) 34.11/0.932 31.45/0.888 28.18/0.800 31.34/0.979 38.57/0.984 32.73/0.917 25.35
DFPIR (CVPR’25) 34.14/0.935 31.47/0.893 28.25/0.806 31.87/0.980 38.65/0.982 32.88/0.919 31.10
EvoIR 34.14/0.937 31.48/0.896 28.23/0.811 32.08/0.982 39.07/0.985 33.00/0.922 36.68

As illustrated in Fig.3, EvoIR significantly enhances texture clarity and preserves structural details.
In particular, for local red regions in the first line for denoising comparison, our method effectively
restores fine local textures better than DFPIR and MoCE-IR, significantly improving visual clarity
and realism. Structural elements, including edges and object boundaries, are distinctly sharper and
more coherent compared to baseline methods, indicating EvoIR’s superior capability in handling
spatially variant degradation.

Five-Degradations Setting (“N+H+R+B+L”). Tab. 2 shows the performance under a more chal-
lenging scenario. EvoIR maintains superior performance with an average PSNR of 30.83 dB and
SSIM of 0.918. It still surpasses several recent methods like Perceive-IR, AdaIR, and DFPIR in both
PSNR and SSIM. Even as the degradation types increase, EvoIR demonstrates remarkable stability,
outperforming all SOTAs in PSNR and the second average SSIM (marginally -0.001).

Considering that our EvoIR has 36.68M parameters, it is on the same scale as other methods with
better results. These consistent improvements validate the robustness and generalization capability
of EvoIR under complex degradation scenarios.

4.3 ONE-BY-ONE RESTORATION RESULTS

We evaluate EvoIR under the One-by-One setting, where each restoration task is trained and tested
independently. Top lines are task-specific and general methods, and the bottom lines refer to AiOIR
methods.

Figure 3: Visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R”
setting. More visualization results are illustrated in appendix.
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Table 2: Performance comparison (PSNR/SSIM) under All-in-One (“N+H+R+B+L”) setting. De-
noising results only reports noise level under σ = 25 following Zhang et al. (2023). Results are
partially sourced from Perceive-IR Zhang et al. (2025a).

Method Denoising Dehazing Deraining Deblurring Low-light Average Params (M)
CBSD68 SOTS Rain100L GoPro LOL

TAPE (ECCV’22) 30.18/0.855 22.16/0.861 29.67/0.904 24.47/0.763 18.97/0.621 25.09/0.801 1.07
Transweather (CVPR’22) 29.00/0.841 21.32/0.885 29.43/0.905 25.12/0.757 21.21/0.792 25.22/0.836 37.93
AirNet (CVPR’22) 30.91/0.882 21.04/0.884 32.98/0.951 24.35/0.781 18.18/0.735 25.49/0.846 8.93
IDR (CVPR’23) 31.60/0.887 25.24/0.943 35.63/0.965 27.87/0.846 21.34/0.826 28.34/0.893 15.34
PromptIR (NeurIPS’23) 31.47/0.886 26.54/0.949 36.37/0.970 28.71/0.881 22.68/0.832 29.15/0.904 32.96
Gridformer (IJCV’24) 31.45/0.885 26.79/0.951 36.61/0.971 29.22/0.884 22.59/0.831 29.33/0.904 34.07
InstructIR (ECCV’24) 31.40/0.887 27.10/0.956 36.84/0.973 29.40/0.886 23.00/0.836 29.55/0.907 15.84
Perceive-IR (TIP’25) 31.44/0.887 28.19/0.964 37.25/0.977 29.46/0.886 22.88/0.833 29.84/0.909 42.02
AdaIR (ICLR’25) 31.35/0.889 30.53/0.978 38.02/0.981 28.12/0.858 23.00/0.845 30.20/0.910 28.77
MoCE-IR (CVPR’25) 31.34/0.887 30.48/0.974 38.04/0.982 30.05/0.899 23.00/0.852 30.58/0.919 25.35
DFPIR (CVPR’25) 31.29/0.889 31.64/0.979 37.62/0.978 28.82/0.873 23.82/0.843 30.64/0.913 31.10
EvoIR 31.42/0.895 31.66/0.980 38.68/0.984 28.78/0.876 23.59/0.855 30.83/0.918 36.68

As shown in Tab. 3, EvoIR achieves the best denoising performance on Kodak24, consistently rank-
ing first in all noise levels. Notably, it reaches 35.30 dB at σ = 15, surpassing Perceive-IR and
Restormer by +0.46 dB and +0.52 dB, respectively. On the dehazing task, EvoIR leads on SOTS
(32.21/0.984), outperforming DehazeFormer and other strong baselines without relying on task-
specific priors. For deraining, it achieves 39.23/0.986 on Rain100L, better than the second best
method Perceive-IR, highlighting its adaptability to fine-scale textures. HI-Diff and FSNet rank
first and second in deblurring, while all AiOIR methods fail to deblur well in this setting. As most
task-specific and general methods contain modules designed for blurry regions, it is suitable that
EvoIR performs poorly. In low-light enhancement, EvoIR ranks the third in PSNR and first in SSIM
(24.09/0.850), only trailing Retinexformer and MIRNet while outperforming all methods.

Overall, EvoIR consistently delivers leading or near-leading results across four single tasks except
deblurring, confirming its robustness in diverse degradation scenarios.

4.4 COMPOSITE DEGRADATION RESULTS

Besides the standard 3D/5D protocols, we add a composite degradation evaluation on CDD covering
single (L/H/R/S), all pairwise double, and representative triple mixes. Results are illustrated in Tab.
4. EvoIR obtains the best average (28.88 dB / 0.885), surpassing OneRestore (28.47/0.878, +0.41 dB
/ +0.007) and ranking 1st on 8/11 subsets (the rest 2nd). These results indicate that EvoIR maintains
strong performance not only on single degradations but also under co-occurring artifacts, consistent
with the design goal of frequency-aware modulation plus stage-wise training stability.

Table 3: Single-task restoration results, including denoising, dehazing, deraining, deblurring, and
low-light enhancement. Bold denotes best overall; underline highlights the second.

Denoising PSNR Dehazing
PSNR/SSIM

Deraining
PSNR/SSIM

Dreblurring
PSNR/SSIM

Low-light
PSNR/SSIM

Kodak24 σ = 15 σ = 25 σ = 50 SOTS Rain100L GoPro LOL

DnCNN 34.60 32.14 28.95 DehazeNet 22.46/0.851 UMR 32.39/0.921 DeblurGAN 28.70/0.858 URetinex 21.33/0.835

FFDNet 34.63 32.13 28.98 FDGAN 23.15/0.921 LPNet 33.61/0.958 Stripformer 33.08/0.962 SMG 23.81/0.809

ADFNet 34.77 32.22 29.06 DehazeFormer 31.78/0.977 DRSformer 38.14/0.983 HI-Diff 33.33/0.964 Retinexformer 25.16/0.845

MIRNet-v2 34.29 31.81 28.55 Restormer 30.87/0.969 Restormer 36.74/0.978 MPRNet 32.66/0.959 MIRNet 24.14/0.835

Restormer 34.78 32.37 29.08 NAFNet 30.98/0.970 NAFNet 36.63/0.977 Restormer 32.92/0.961 Restormer 22.43/0.823

NAFNet 34.27 31.80 28.62 FSNet 31.11/0.971 FSNet 37.27/0.980 FSNet 33.29/0.963 DiffIR 23.15/0.828

AirNet 34.81 32.44 29.10 AirNet 23.18/0.900 AirNet 34.90/0.977 AirNet 31.64/0.945 AirNet 21.52/0.832

IDR 34.78 32.42 29.13 PromptIR 31.31/0.973 PromptIR 37.04/0.979 PromptIR 32.41/0.956 PromptIR 22.97/0.834

Perceive-IR 34.84 32.50 29.16 Perceive-IR 31.65/0.977 Perceive-IR 38.41/0.984 Perceive-IR 32.83/0.960 Perceive-IR 23.79/0.841

EvoIR 35.30 32.86 29.78 EvoIR 32.21/0.984 EvoIR 39.23/0.986 EvoIR 29.57/0.891 EvoIR 24.09/0.850
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Table 4: Results of different image restoration methods under composite degradation images

Methods Single-L Single-H Single-R Single-S Double-L+HDouble-L+RDouble-L+SDouble-H+RDouble-H+S Triple-L+H+RTriple-L+H+S Average
AirNet 24.83/.77824.21/.95126.55/.89126.79/.919 23.23/.779 22.82/.710 23.29/.723 22.21/.868 23.29/.901 21.80/.708 22.24/.725 23.75/.814
PromptIR 26.32/.80526.10/.96931.56/.94631.53/.960 24.49/.789 25.05/.771 24.51/.761 24.54/.924 27.05/.925 23.74/.752 23.33/.747 25.90/.850
WeatherDiff 23.58/.76321.99/.90424.85/.88524.80/.888 21.83/.756 22.69/.730 22.12/.707 21.25/.868 21.99/.868 21.23/.716 21.04/.698 22.49/.799
WGSWNet 24.39/.77427.90/.98233.15/.96434.43/.973 24.27/.800 25.06/.772 24.60/.765 27.23/.955 27.65/.960 23.90/.772 23.97/.711 26.96/.863
OneRestore 26.48/.82632.52/.99033.40/.96434.31/.973 25.79/.822 25.58/.799 25.19/.789 29.99/.957 30.21/.964 24.78/.788 24.90/.791 28.47/.878
EvoIR 27.06/.83032.24/.99134.03/.97035.80/.981 25.92/.824 26.02/.806 25.96/.802 29.76/.965 30.17/.971 25.43/.797 25.31/.797 28.88/.885

4.5 REMOTE SENSING IMAGERY RESULTS

To better prove the effectiveness of our method, we include one new AiOIR task on remote sensing
imagery. We evaluate on the recently proposed MDRS-Landsat all-in-one remote sensing bench-
mark. As is shown in Tab. 5, without any modification or special fine-tuning, EvoIR (37 M) outper-
forms prior SOTAs and even surpasses the remote-sensing-specialized Ada4DIR-d (41 M) across all
four degradations.

Table 5: Results of different image restoration methods under remote sensing imagery

Methods Blur PSNR/SSIM Dark PSNR/SSIM Haze PSNR/SSIM Noise PSNR/SSIM
NAFNet 33.10/0.8120 30.40/0.9516 31.56/0.9642 33.08/0.8263
Restormer 35.23/0.8559 37.86/0.9872 36.18/0.9867 34.53/0.8589
DGUNet 29.64/0.7822 27.15/0.9010 27.45/0.9338 30.31/0.7314
TransWeather 33.45/0.8159 36.33/0.9705 35.02/0.9689 33.69/0.8428
AirNet 28.27/0.7887 28.38/0.9472 24.39/0.9331 30.30/0.7446
PromptIR 36.41/0.8861 39.09/0.9900 37.61/0.9897 34.99/0.8729
IDR 36.57/0.8902 35.19/0.9865 36.99/0.9892 34.88/0.8681
SrResNet-AP 34.63/0.8479 33.87/0.9823 34.78/0.9825 34.70/0.8620
Restormer-AP 35.75/0.8732 37.27/0.9885 37.36/0.9888 34.96/0.8697
Uformer-AP 34.64/0.8488 36.58/0.9899 36.06/0.9877 34.39/0.8533
Ada4DIR-d 37.20/0.9004 43.85/0.9954 41.06/0.9938 35.14/0.8724
EvoIR 37.48/0.9069 44.73/0.9959 41.28/0.9943 35.18/0.8774

4.6 ABLATION STUDY

4.6.1 EFFECTS OF EACH COMPONENTS

As shown in Tab. 6, we evaluate the effectiveness of various components through comparisons
with the baseline method (index a). We incrementally integrate the Frequency-Modulated Module
(FMM) (index b), Evolutionary Optimization Strategy (EOS) (index c), and finally, combine both
components into our full EvoIR framework (index d). The average PSNR and SSIM under the three-
degradation setting clearly indicate that both FMM and EOS significantly enhance the restoration
performance.

Table 6: AiOIR performance of different components under the “N+H+R” setting.

Index TB FMM EOS avg PSNR↑ avg SSIM↑

(a) ✓ 32.50 (+0.00) 0.914 (+0.000)
(b) ✓ ✓ 32.68 (+0.18) 0.916 (+0.002)
(c) ✓ ✓ 32.58 (+0.08) 0.915 (+0.001)
(d) ✓ ✓ ✓ 33.00 (+0.50) 0.922 (+0.008)

4.6.2 EFFECTS OF EOS

To further validate the effectiveness of the proposed Evolutionary Optimization Strategy (EOS) in
accelerating convergence, we provide additional analysis beyond quantitative comparisons. Specifi-
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cally, we visualize both the training loss curves and the performance curves (in terms of PSNR and
SSIM) over epochs, comparing scenarios with and without EOS.

As illustrated in Fig. 4, the training loss curve employing EOS exhibits a notably steeper decline
in the early training stages, indicating more rapid initial convergence and efficient optimization.
Correspondingly, the PSNR and SSIM curves clearly demonstrate that EOS achieves superior per-
formance earlier and maintains consistently higher restoration quality throughout training. These
results empirically confirm that EOS effectively alleviates gradient conflicts and enhances training
stability, leading to faster and more robust convergence.

Figure 4: PSNR, SSIM and loss comparisons w/ and w/o Evolutionary Optimization Strategy (EOS)
on 3D setting. We can find that model with EOS can converge faster and perform better.

To better evaluate the cost of EOS during the training stage, we instrument EOS steps and report per-
epoch overhead in Tab. 7: EOS wall-clock 1.417 s (0.1% of the epoch), broken down into evaluation
1.272 s (89.8%), communication 0.094 s (6.6%), and residual 0.051 s (3.6%). EOS uses T=500,
population P=5, generations G=3, and is triggered 3× per epoch (which corresponds to 24 per-
rank calls across 8 GPUs). The average per global trigger is 472.3 ms, the GPU kernel time during
evaluation is 390.7 ms/trigger, the payload is 94.4 MB/epoch, and the peak extra memory at EOS
steps is 84.1 MB. Despite this periodic cost, Fig. 4 shows improved time-to-target PSNR/SSIM and
higher final quality. In short, EOS is compute-light: on our 8×GPU setup it adds only 0.1% per-epoch
wall time (1.417 s/epoch for 3 triggers) with a peak extra memory of 84.1 MB, while preserving the
quality gains.

Table 7: EOS overhead per-epoch during the training stage.

EOS wall (s) Eval (s) Comm (s) Resid. (s)

1.417 (0.1%) 1.272 0.094 0.051

Avg/call (ms) Eval GPU (ms/call) Payload (MB) Peak extra mem (MB)

59.0 48.8 94.4 84.1

5 CONCLUSION

We present EvoIR, an All-in-One Image Restoration framework unifying frequency-aware mod-
ulation and a population-based evolutionary loss scheduler. FMM performs spectral gating on
low-frequency components and spatial masking on high-frequency details; EOS searches (α, β)
on a held-out validation set every T iterations, yielding a data-driven balance between fidelity and
perception with modest overhead. To the best of our knowledge within AiOIR, EvoIR is the first
work to introduce a population-based evolutionary algorithm for dynamic loss balancing. Extensive
experiments demonstrate superior results across diverse degradation—achieving SOTA or highly
competitive performance under multiple degradation protocols. Ablation studies attribute the gains
to the synergy between FMM and EOS.
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A USAGE OF LLMS

We used LLM as a general-purpose assist tool only for language polishing; all technical content is
original and verified by the authors. LLMs are not authors.

B CODE AND MODELS

Anonymous code and models for evaluation can be found here.

C EXPERIMENTAL SETTINGS

C.0.1 DATASETS

For the datasets used for AiOIR aforementioned: N+H+R (Noise, Haze, Rain) and N+H+R+B+L
(Noise, Haze, Rain, Blur, Low-light). We summarize all details as follows in Tab. 8.

Table 8: Dataset summary under two training settings.

Setting Degradation Training dataset (Number) Testing dataset (Number)

O
ne

-b
y-

O
ne

Noise (N) N: BSD400 +WED (400+4744) N: CBSD68 +Urban100 +Kodak24 (68+100+24)

Haze (H) H: RESIDE-β-OTS (72135) H: SOTS-Outdoor (500)

Rain (R) R: Rain100L (200) R: Rain100L (100)

Blur (B) B: GoPro (2103) B: GoPro (1111)

Low-light (L) L: LOL (485) L: LOL (15)

A
ll-

in
-O

ne

N+H+R
BSD400+WED+RESIDE-β-OTS+Rain100L

Number: 400+4744+72135+200
Total: 77479

N: CBSD68 (68)

H: SOTS-Outdoor (500)

R: Rain100L (100)

N+H+R+B+L

BSD400+WED+RESIDE-β-OTS+Rain100L
+GoPro+LOL

Number: 400+4744+72135+200+2103+485
Total: 80067

N: CBSD68 (68)

H: SOTS-Outdoor (500)

R: Rain100L (100)

B: GoPro (1111)

L: LOL (15)

C.0.2 BASELINES

We compare EvoIR with a comprehensive set of baselines under both the All-in-One and One-by-
One settings. We apply PSNR, SSIM as evaluation metrics. In all tables, the best and second-best
results are marked in bold and underlined, respectively.

All-in-One setting: For “N+H+R” setting, we include the following recent All-in-One models: Air-
Net Li et al. (2022), IDR Zhang et al. (2023), ProRes Ma et al. (2023a), PromptIR Potlapalli et al.
(2023), NDR Yao et al. (2024), Gridformer Wang et al. (2024), InstructIR Conde et al. (2024),
Up-Restorer Liu et al. (2025), Perceive-IR Zhang et al. (2025a), AdaIR Cui et al. (2025), MoCE-
IR Zamfir et al. (2025), DFPIR Tian et al. (2025). For “N+H+R+B+L” setting, we also include
TAPE Liu et al. (2022), TransWeather Valanarasu et al. (2022).

One-by-One setting: We adopt task-specific and general methods tailored to individual degradation
types. For Denoising: DnCNN Zhang et al. (2017), FFDNet Zhang et al. (2018), ADFNet Shen
et al. (2023), MIRNet-v2 Zamir et al. (2022a), Restormer Zamir et al. (2022b), NAFNet Chen
et al. (2022); Dehazing: adding DehazeNet Cai et al. (2016), FDGAN Dong et al. (2020), Dehaze-
Former Song et al. (2023), FSNet Cui et al. (2023a); Deraining: adding UMR Yasarla & Patel (2019),
LPNet Gao et al. (2019), DRSformer Chen et al. (2023a); Deblurring: adding DeblurGAN Kupyn
et al. (2018), Stripformer Tsai et al. (2022), HI-Diff Chen et al. (2023b), MPRNet Zamir et al.
(2021); Low-light enhancement: adding URetinex Wu et al. (2022), SMG Xu et al. (2023), Retinex-
former Cai et al. (2023), MIRNet Zamir et al. (2020), DiffIR Xia et al. (2023). We report All-in-One
methods retrained under the One-by-One setting for comparison.

15

https://anonymous.4open.science/r/EvoIR-ID5956


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D ADDITIONAL ABLATIONS OF BLOCK NUMBER

In this study, we investigate the impact of varying the number of FMM blocks across the four stages
of EvoIR. For example, (index 6) adopts 4, 1, 1, and 1 FMM blocks in Stages 1 through 4, respec-
tively. We report the average PSNR and SSIM across three degradation settings.

As shown in Tab. 9, (index 8) achieves the best performance in both average PSNR and SSIM. Com-
parisons between (index 2) & (index 3), and (index 4) & (index 5), indicate that introducing FMM
blocks to multiple stages enhances restoration quality. Moreover, the parameter cost for early stages
is relatively low (e.g., only 0.12M and 3.71M for Stages 1 and 2, respectively), while later stages
impose significantly higher computational overhead. Notably, allocating more FMM blocks to early
stages yields greater performance gains than doing so in later stages. These findings suggest that a
favorable design choice for EvoIR is to prioritize block allocation in earlier stages while keeping the
latter ones lightweight. The configuration in (index 8)—with 4, 2, 2, and 1 blocks—offers a balanced
trade-off between performance (33.00 dB / 0.922) and model complexity (36.68M).

Table 9: Average performance of different numbers of FMM blocks in each stage.

Index Stage avg PSNR ↑ avg SSIM ↑ Params (M)1 2 3 4

(1) 0 0 0 0 32.58 0.915 25.44
(2) 1 1 1 1 32.86 0.921 30.94
(3) 2 1 1 1 32.91 0.922 31.06
(4) 3 1 1 1 32.94 0.922 31.18
(5) 3 2 1 1 32.89 0.922 34.89
(6) 4 1 1 1 32.96 0.922 31.30
(7) 4 2 1 1 32.99 0.922 35.01
(8) 4 2 2 1 33.00 0.922 36.68

E VISUALIZATION

E.1 T-SNE VISUALIZATION FOR DEGRADATION FEATURES

We provide stage-wise visualizations that reveal how representations become degradation-aware
by stages. EvoIR is a three-stage encoder-decoder architecture with a bottleneck block between
encoders and decoders. After training, we take the output of Stage 1-3, perform global pooling to
obtain one embedding per image, and plot t-SNE colored by degradation label for 3D AiOIR.

As is shown in Fig. 5, we anticipate that Encoder Stage 1-3 embeddings mix degradations (captur-
ing shared low-level content), while Decoder Stage 1-3 show stronger clustering by degradation,
aligning with FMM’s design: spectral gating on low-frequency structure and spatial masking on
high-frequency details, fused and refined deeper in the hierarchy.

E.2 VISUAL COMPARISON UNDER THREE DEGRADATIONS

Due to page limitations, we provide additional visual comparisons for the three-degradation setting
(“N+H+R”). As shown in Fig. 6, 7, 8, 9, and 10, we compare our EvoIR against recent state-of-the-
art methods, including AdaIR Cui et al. (2025) (ICLR’25), DFPIR Tian et al. (2025) (CVPR’25),
and MoCE-IR Zamfir et al. (2025) (CVPR’25).

Across all degradation types, EvoIR consistently preserves higher fidelity while maintaining fine
textures and structural details. The zoomed-in regions further highlight EvoIR’s superiority in re-
covering sharp edges and realistic patterns compared to other approaches. These visual results are
consistent with the quantitative improvements reported earlier.
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Figure 5: The t-SNE visualization of features after each stage of encoders and decoders.

E.3 VISUAL COMPARISON UNDER FIVE DEGRADATIONS

As some methods do not provide visual results under the five-degradation setting (“N+H+R+B+L”),
we select InstructIR Conde et al. (2024) (ECCV’24) and MoCE-IR Zamfir et al. (2025) (CVPR’25)
for comparison with our EvoIR.

Zoom-in views in Fig. 11, 12, 13, 14, and 15 reveal that EvoIR better preserves both textural and
structural details, producing results that are visually closer to the reference images. These observa-
tions indicate better restoration quality compared to the competing methods.
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Figure 6: Denoising (σ = 15) visual comparisons of EvoIR with state-of-the-art All-in-One methods
under “N+H+R” setting.
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Figure 7: Denoising (σ = 25) visual comparisons of EvoIR with state-of-the-art All-in-One methods
under “N+H+R” setting.
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Figure 8: Denoising (σ = 50) visual comparisons of EvoIR with state-of-the-art All-in-One methods
under “N+H+R” setting.
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Figure 9: Deraining visual comparisons of EvoIR with state-of-the-art All-in-One methods under
“N+H+R” setting.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 10: Dehazing visual comparisons of EvoIR with state-of-the-art All-in-One methods under
“N+H+R” setting.
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Figure 11: Denoising (σ = 25) visual comparisons of EvoIR with state-of-the-art All-in-One meth-
ods under “N+H+R+B+L” setting.
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Figure 12: Deraining visual comparisons of EvoIR with state-of-the-art All-in-One methods under
“N+H+R+B+L” setting.

Figure 13: Dehazing visual comparisons of EvoIR with state-of-the-art All-in-One methods under
“N+H+R+B+L” setting.
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Figure 14: Enhancement visual comparisons of EvoIR with state-of-the-art All-in-One methods un-
der “N+H+R+B+L” setting.

Figure 15: Deblurring visual comparisons of EvoIR with state-of-the-art All-in-One methods under
“N+H+R+B+L” setting.
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