

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EVOIR: TOWARDS ALL-IN-ONE IMAGE RESTORATION VIA EVOLUTIONARY FREQUENCY MODULATION

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

012 All-in-One Image Restoration (AiOIR) tasks often involve diverse degradation  
013 that require robust and versatile strategies. However, most existing approaches  
014 typically lack explicit frequency modeling and rely on fixed or heuristic optimization  
015 schedules, which limit the generalization across heterogeneous degradation.  
016 To address these limitations, we propose EvoIR, an AiOIR-specific framework  
017 that introduces evolutionary frequency modulation for dynamic and adaptive im-  
018 age restoration. Specifically, EvoIR employs the Frequency-Modulated Module  
019 (FMM) that decomposes features into high- and low-frequency branches in an ex-  
020 plicit manner and adaptively modulates them to enhance both structural fidelity  
021 and fine-grained details. Central to EvoIR, an Evolutionary Optimization Strategy  
022 (EOS) iteratively adjusts frequency-aware objectives through a population-based  
023 evolutionary process, dynamically balancing structural accuracy and perceptual fi-  
024 delity. Its evolutionary guidance further mitigates gradient conflicts across degra-  
025 dation and accelerates convergence. By synergizing FMM and EOS, EvoIR yields  
026 greater improvements than using either component alone, underscoring their com-  
027 plementary roles. Extensive experiments on multiple benchmarks demonstrate that  
028 EvoIR outperforms state-of-the-art AiOIR methods.

## 029 1 INTRODUCTION

031 Image restoration recovers a high-quality image from its degraded observation. Traditionally, this  
032 problem has been tackled by task-specific networks, each tailored to a particular type of degra-  
033 dation. Such task-specific models have demonstrated impressive performance across various tasks,  
034 including denoising Shen et al. (2023), dehazing Song et al. (2023), deraining Chen et al. (2023a),  
035 deblurring Tsai et al. (2022), low-light enhancement Ma et al. (2023b), and under-water enhance-  
036 ment Zhang et al. (2025b).

037 However, task-specific methods suffer from limited generalization, as they are inherently tailored  
038 to handle only predefined degradation types. When applied to unfamiliar degradation, their per-  
039 formance tends to degrade dramatically. General image restoration approaches have been proposed  
040 Zamfir et al. (2021); Chen et al. (2022); Cui et al. (2023a); Xia et al. (2023) to address these limita-  
041 tions. Although these models are capable of addressing various degradation types, they are generally  
042 trained and tested on single tasks, which limits their practicality in real-world settings that involve  
043 complex and mixed degradation.

044 Recently, All-in-One image restoration methods Ai et al. (2024); Conde et al. (2024); Liu et al.  
045 (2025); Cui et al. (2025); Zamfir et al. (2025); Tian et al. (2025) have emerged as promising so-  
046 lutions to the limitations aforementioned. These approaches restore images corrupted by multiple  
047 degradation types within a unified framework. Early efforts such as AirNet Li et al. (2022) con-  
048 structed explicit degradation encoders to obtain discriminative degradation-aware features. Subse-  
049 quent works, including ProRes Ma et al. (2023a) and PromptIR Potlapalli et al. (2023), enhanced  
050 performance by incorporating visual prompts as guidance. The work in Tan et al. (2024) exploits  
051 the rich feature representations of large-scale vision models, such as CLIP Radford et al. (2021) and  
052 DINO Caron et al. (2021). Perceive-IR Zhang et al. (2025a) formulates image restoration from a  
053 quality-aware perspective, enabling the model to adjust its restoration strategy based on degradation  
severity.

054  
 055  
 056  
 057  
 058  
 059  
 060  
 061  
 062  
 063  
 064  
 065  
 066  
 067  
 068  
 069  
 070  
 071  
 072  
 073  
 074  
 075  
 076  
 077  
 078  
 079  
 080  
 081  
 082  
 083  
 084  
 085  
 086  
 087  
 088  
 089  
 090  
 091  
 092  
 093  
 094  
 095  
 096  
 097  
 098  
 099  
 100  
 101  
 102  
 103  
 104  
 105  
 106  
 107  
 Despite the emergence of All-in-One restoration frameworks, two key challenges remain largely underexplored. First, most existing methods operate solely in the spatial domain and fail to explicitly model the frequency characteristics of degraded images. This limitation hinders the ability of the model to balance the restoration of structural smoothness and texture fidelity. Second, current training strategies are typically static, relying on fixed loss weights throughout optimization. Such rigid configurations prevent the model from dynamically adapting to the varying difficulty levels across samples or tasks. These limitations lead to sub-optimal performance in complex degradation scenarios.

To address these limitations, we propose **EvoIR**, an All-in-One image restoration framework that integrates frequency-aware representation learning with dynamic loss optimization. At its core, we introduce a **Frequency-Modulated Module (FMM)**, which decomposes features into high- and low-frequency components and applies branch-specific modulation to enhance texture details and preserve structural consistency. Additionally, we develop an **Evolutionary Optimization Strategy (EOS)** that simulates population-based evolution during training to dynamically adjust loss weight configurations, allowing the model to adapt to varying restoration objectives and task complexities without manual tuning.

As shown in Fig. 1, EvoIR consistently outperforms previous State-Of-The-Art (SOTA) All-in-One Image Restoration (AiOIR) methods across a wide range of degradation types. Especially, EvoIR achieves new highest results of average PSNR/SSIM in both 3-task and 5-task settings compared with recent proposed methods.

Our contributions can be summarized as follows:

- We propose **EvoIR**; to the best of our knowledge within AiOIR, it is the first framework that leverages an evolutionary algorithm for loss weighting, together with frequency-aware modulation. EvoIR attains state-of-the-art performance across multiple benchmarks and remains robust to diverse degradation.
- We introduce a **Frequency-Modulated Module (FMM)** that explicitly separates features into high- and low-frequency components and dynamically modulates each branch to target fine-grained textures and structural smoothness under complex degradation.
- We present an **Evolutionary Optimization Strategy (EOS)**, a population-based mechanism with modest overhead that automatically identifies and adapts optimal loss-weight configurations for AiOIR, improving convergence and balancing perceptual quality without manual tuning.

## 2 RELATED WORK

### 2.1 ALL-IN-ONE IMAGE RESTORATION

All-in-One image restoration methods address diverse degradation using a unified model, offering improved storage and deployment efficiency over task-specific Yasarla & Patel (2019); Chen et al. (2023a); Kupyn et al. (2018); Cai et al. (2023); Wu et al. (2022) and general-purpose Chen et al. (2022); Zamir et al. (2022b); Xia et al. (2023); Guo et al. (2024a) approaches.

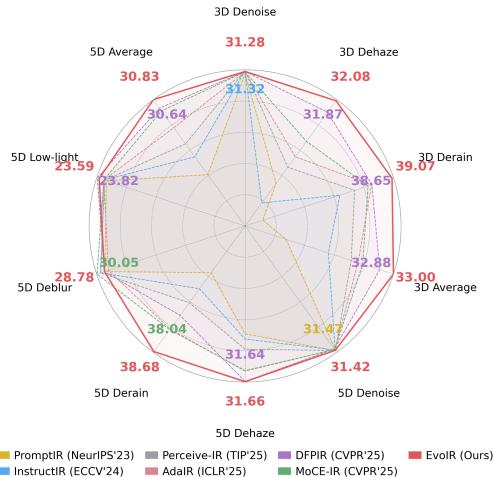


Figure 1: PSNR comparisons of AiOIR methods on “Noise + Haze + Rain” (3D) and “Noise + Haze + Rain + Blur + Low-light” (5D) settings. Results of our EvoIR are marked in Red, while the other best results are indicated in each color. EvoIR performs the best in average.

## 3 METHODS

### 3.1 Evolutionary Optimization Strategy (EOS)

### 3.2 Frequency-Modulated Module (FMM)

### 3.3 All-in-One Image Restoration (AiOIR)

### 3.4 Evolutionary Optimization Strategy (EOS)

### 3.5 Frequency-Modulated Module (FMM)

### 3.6 All-in-One Image Restoration (AiOIR)

### 3.7 Evolutionary Optimization Strategy (EOS)

### 3.8 Frequency-Modulated Module (FMM)

### 3.9 All-in-One Image Restoration (AiOIR)

### 3.10 Evolutionary Optimization Strategy (EOS)

### 3.11 Frequency-Modulated Module (FMM)

### 3.12 All-in-One Image Restoration (AiOIR)

### 3.13 Evolutionary Optimization Strategy (EOS)

### 3.14 Frequency-Modulated Module (FMM)

### 3.15 All-in-One Image Restoration (AiOIR)

### 3.16 Evolutionary Optimization Strategy (EOS)

### 3.17 Frequency-Modulated Module (FMM)

### 3.18 All-in-One Image Restoration (AiOIR)

### 3.19 Evolutionary Optimization Strategy (EOS)

### 3.20 Frequency-Modulated Module (FMM)

### 3.21 All-in-One Image Restoration (AiOIR)

The core challenge lies in restoring multiple degradation types within a shared parameter space. To address this, AirNet Li et al. (2022) applies contrastive learning for degradation discrimination, IDR Zhang et al. (2023) adopts a two-stage ingredient-oriented design, and ProRes Ma et al. (2023a) introduce visual prompts for guided restoration. Recent methods Tan et al. (2024); Luo et al. (2023) further leverage large-scale pre-trained vision models to enhance texture and semantics.

However, most approaches utilize similar restoration strategies across spatial regions, neglecting frequency properties and structural complexity, which leads to oversmoothing or texture loss. Moreover, fixed training objectives hinder adaptation to sample difficulty. EvoIR addresses these limitations through frequency-aware modulation and adaptive optimization for more robust restoration.

## 2.2 FREQUENCY DOMAIN-BASED IMAGE RESTORATION

Recent studies have emphasized the importance of frequency-domain modeling in boosting restoration performance Cui et al. (2023b); Wu et al. (2025). CSNet Cui et al. (2024) integrates channel-wise Fourier transforms and multi-scale spatial frequency modules, guided by frequency-aware loss, to enhance both spectral interaction and spatial detail. For deblurring, the Efficient Frequency Domain Transformer Kong et al. (2023) reformulates attention and feed-forward layers in the frequency domain, improving visual quality and efficiency. FPro Zhou et al. (2024) employs frequency decomposition and prompt learning to guide structure–detail recovery across diverse tasks. AdaIR Cui et al. (2025) further mines degradation-specific frequency priors and applies bidirectional modulation to enhance reconstruction.

While effective, these methods often exist solely and complex modules. In contrast, our adaptive frequency-modulated module that explicitly performs frequency-aware modulation in the feature space. With assist of evolutionary optimization, it balances texture–structure dynamically without incurring additional architectural overhead.

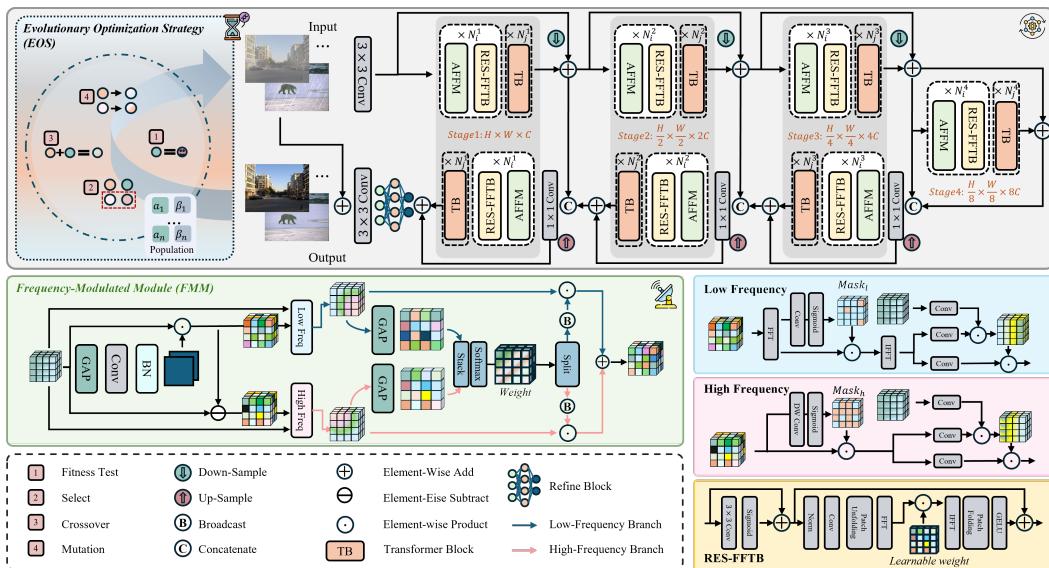


Figure 2: An overview of the EvoIR pipeline, combining frequency-aware representation (FMM), spectral-enhanced FFT blocks (RES-FFTB), and evolutionary loss optimization (EOS).

### 3 METHODOLOGY

### 3.1 OVERALL PIPELINE

As illustrated in Fig. 2, EvoIR comprises two tightly coupled components: a *frequency-modulated architecture* (FMM) and an *evolutionary optimization strategy* (EOS), which collaboratively achieve robust image restoration.

162 **Frequency-modulated architecture (FMM).** FMM splits the input features into a **low-frequency**  
 163 **path** and a **high-frequency path** and fuses them adaptively. The low-frequency path performs *spectral*  
 164 *gating*: it transforms the low-pass component to the frequency domain, applies a learned mask  
 165 to suppress noise-dominated bands, and returns to the spatial domain for subsequent attention. The  
 166 high-frequency path remains entirely in the *spatial domain*: a learned spatial mask emphasizes edges  
 167 and textures, followed by depthwise convolutions to enhance fine-grained details. The two cali-  
 168 brated outputs are fused in the spatial domain and fed into multi-scale residual Transformer blocks  
 169 (RES-FFTB) within a Restormer-like encoder-decoder, enabling hierarchical representation with  
 170 strong long-range dependencies and local detail recovery.

171 **Evolutionary optimization (EOS).** To balance fidelity and perception under varying degradation  
 172 without manual tuning, EOS performs a *stage-based* population search over loss weights  $(\alpha, \beta) \in$   
 173  $\Delta^2$ . At the beginning of each stage (every  $T$  iterations), we freeze the current network parameters  
 174 and evaluate candidates on a held-out validation set; elites are retained, offspring are generated via  
 175 convex crossover and small mutation with projection back to the simplex, and the best pair  $(\alpha_t^*, \beta_t^*)$   
 176 is selected after  $G$  generations. The selected weights are then used for the next  $K$  epochs of training.  
 177 This procedure improves stability (evaluation under frozen weights) and tracks the moving optimum  
 178 as the model evolves.

179 **Backbone architecture.** Following prior frequency-domain designs Kong et al. (2023), we extend  
 180 them into the *RES-FFTB* module with multi-head self-attention and residual connections for efficient  
 181 information flow. We also adopt the Refine Block from AdaIR Cui et al. (2025) to further polish the  
 182 fused features before decoding.

183 To summarize, FMM provides content-adaptive frequency modulation (spectral for low-frequency,  
 184 spatial for high-frequency), while EOS supplies data-driven loss balancing across stages. Together  
 185 they form a unified, robust pipeline that generalizes across diverse restoration tasks and complex  
 186 degradation.

### 187 3.2 ADAPTIVE FREQUENCY MODULATION

189 To effectively handle diverse and spatially variant degradation in All-in-One image restoration, we  
 190 propose the **Frequency-Modulated Module (FMM)**, explicitly integrating frequency-aware inductive  
 191 bias into our model. As illustrated in the middle-left of Fig. 2, FMM employs a dual-branch  
 192 structure designed to individually handle high- and low-frequency components of input feature  
 193 maps. This dual-branch approach empowers the model to adaptively emphasize texture details or  
 194 structural smoothness, guided by input degradation patterns.

195 Given an input feature map  $\mathbf{X}_F \in \mathbb{R}^{H \times W \times C}$ , we first obtain two *modulation features* by a spatial  
 196 band-split:

$$197 \mathbf{X}_L = \mathbf{G}_L * \mathbf{X}_F, \quad \mathbf{X}_H = \mathbf{X}_F - \mathbf{X}_L, \quad (1)$$

198 where  $*$  denotes spatial convolution and  $\mathbf{G}_L$  is a learnable (or parametrized) low-pass kernel (e.g.,  
 199 depthwise separable). For interpretation, we also denote the unitary 2D Fourier transform by  $\mathcal{F}$  and  
 200 index Fourier coefficients by  $\xi = (u, v)$  on the  $H \times W$  DFT grid; then Eq. equation 1 is equivalent  
 201 to  $U_L(\xi) = \hat{G}_L(\xi) U_F(\xi)$  and  $U_H(\xi) = (1 - \hat{G}_L(\xi)) U_F(\xi)$  in the frequency domain, but the  
 202 high-frequency branch does not perform FFT/IFFT in implementation.

204 **Low-frequency branch (spectral gating).** We transform  $\mathbf{X}_L$  to the frequency domain and apply  
 205 a data-adaptive spectral mask  $\text{Mask}_L(\xi) \in [0, 1]$ :

$$206 U_L = \mathcal{F}(\mathbf{X}_L), \quad \tilde{U}_L(\xi) = \text{Mask}_L(\xi) U_L(\xi), \quad \tilde{\mathbf{X}}_L = \mathcal{F}^{-1}(\tilde{U}_L). \quad (2)$$

208 The refined low-frequency features  $\tilde{\mathbf{X}}_L$  serve as *Key/Value*, while the original  $\mathbf{X}_F$  acts as *Query* in  
 209 the subsequent attention, enhancing structural smoothness and global coherence.

210 **High-frequency branch (spatial gating).** In parallel, we keep the computation entirely in the  
 211 spatial domain and generate a spatial mask  $\mathbf{m}_h \in [0, 1]^{H \times W}$  conditioned on the input (via the global  
 212 token from GAP and lightweight layers), and apply

$$214 \tilde{\mathbf{X}}_H = \mathbf{m}_h \odot \mathbf{X}_H, \quad (3)$$

215 followed by depthwise convolutions to emphasize fine-grained textures and edges. Especially, both  
 FFT and IFFT are removed to better extract high-frequency information.

216 **Fusion.** Since the low branch returns to the spatial domain in Eq. equation 2, we fuse the two paths  
 217 in the spatial domain:

$$\hat{\mathbf{X}} = \tilde{\mathbf{X}}_L + \tilde{\mathbf{X}}_H. \quad (4)$$

220 The calibrated features are then processed by residual Transformer blocks (RES-FFTB), strengthening  
 221 the decoder pathway and improving representation fidelity.

222 Finally, the calibrated features are processed through residual Transformer Blocks (TBs), specifically  
 223 enhanced by the frequency-aware RES-FFTB module (as illustrated in the bottom-right of  
 224 Fig. 2). RES-FFTB leverages learnable weights to modulate frequency-transformed features, further  
 225 strengthening the decoder pathway and improving feature representation fidelity.

---

227 **Algorithm 1:** Evolutionary Optimization Strategy (EOS)

---

228 **Input:** Validation set  $\mathcal{D}_v$ ; losses  $\mathcal{L}_{\text{fid}}, \mathcal{L}_{\text{perc}}$ ; population size  $n$ ; generations  $G$ ; trigger interval  $T$   
 229 (iterations)

230 **Output:** Weights  $(\alpha_r^*, \beta_r^*)$  applied for the next  $T$  iterations

231 1 **Trigger  $r$ :** (called every  $T$  training iterations) freeze current weights  $\theta_r$  ;  
 232 2 Initialize population  $\mathcal{P}_0 = \{(\alpha_i, \beta_i)\}_{i=1}^n$  with  $\alpha_i + \beta_i = 1$  ;  
 233 3 **for**  $g \leftarrow 1$  **to**  $G$  **do**  
 234 4   **foreach**  $(\alpha, \beta) \in \mathcal{P}_{g-1}$  **do**  
 235     // validation fitness under frozen  $\theta_r$   
 236      $f(\alpha, \beta) \leftarrow -\frac{1}{|\mathcal{D}_v|} \sum_{(x,y) \in \mathcal{D}_v} [\alpha \mathcal{L}_{\text{fid}}(f_{\theta_r}(y), x) + \beta \mathcal{L}_{\text{perc}}(f_{\theta_r}(y), x)]$  ;  
 237     **end**  
 238     Keep top- $k$  elites  $\mathcal{P}_{\text{elite}}$  by  $f$  ;  
 239     Initialize new population  $\mathcal{P}_g \leftarrow \mathcal{P}_{\text{elite}}$  ;  
 240     **while**  $|\mathcal{P}_g| < n$  **do**  
 241       Sample parents  $p_a, p_b \in \mathcal{P}_{\text{elite}}$  and  $\lambda \sim \mathcal{U}(0, 1)$  ;  
 242       **Crossover:**  $c = \lambda p_a + (1 - \lambda) p_b$  ;  
 243       **Mutation:**  $c \leftarrow c + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$  ;  
 244       **Projection:**  $c \leftarrow \Pi_{\Delta^2}(c)$  ;     // enforce  $\alpha + \beta = 1$  and nonnegativity  
 245       Add  $c$  to  $\mathcal{P}_g$  ;  
 246     **end**  
 247 17 **return**  $(\alpha_r^*, \beta_r^*) = \arg \max_{(\alpha, \beta) \in \mathcal{P}_G} f(\alpha, \beta)$  ; // use for the next  $T$  iterations

---

249  
 250 3.3 EVOLUTIONARY LOSS OPTIMIZATION  
 251

252 To enable adaptive balancing between fidelity and perceptual objectives under varying degradation  
 253 severities, we introduce an **Evolutionary Optimization Strategy (EOS)** (Fig. 2, top-left). EOS  
 254 treats the loss weights as candidates and performs a population-based search to find the best weight  
 255 pair during training.

256 **Losses and feasible set.** We consider two batch-averaged losses: a pixel-wise fidelity loss  $\mathcal{L}_{\text{fid}}$   
 257 (e.g.,  $\ell_1$ /Charbonnier) and a perceptual loss  $\mathcal{L}_{\text{perc}}$  (we use 1-MS-SSIM so that a smaller value means  
 258 better performance). A candidate is a weight pair  $(\alpha, \beta) \in \Delta^2 = \{(\alpha, \beta) : \alpha, \beta \geq 0, \alpha + \beta = 1\}$ .  
 259 During training, the combined loss for a mini-batch is

$$\mathcal{L}_{\text{train}}(\theta; \alpha, \beta) = \alpha \mathcal{L}_{\text{fid}}(\theta) + \beta \mathcal{L}_{\text{perc}}(\theta), \quad \alpha + \beta = 1. \quad (5)$$

260 **What EOS optimizes.** At trigger  $r$  (every  $T$  iterations), we *freeze* the current network parameters  
 261  $\theta_r$  and evaluate each candidate on a held-out validation set  $\mathcal{D}_v$ :

$$J_r(\alpha, \beta \mid \theta_r) = \frac{1}{|\mathcal{D}_v|} \sum_{(x,y) \in \mathcal{D}_v} [\alpha \mathcal{L}_{\text{fid}}(f_{\theta_r}(y), x) + \beta \mathcal{L}_{\text{perc}}(f_{\theta_r}(y), x)], \quad (\alpha, \beta) \in \Delta^2, \quad (6)$$

262 with fitness  $f(\alpha, \beta) = -J_r(\alpha, \beta \mid \theta_r)$  (larger is better). EOS returns  $(\alpha_r^*, \beta_r^*) = \arg \max f(\alpha, \beta)$   
 263 and uses it for the next  $T$  training iterations by minimizing equation 5.

270 **Procedure.** As detailed in Alg. 1, EOS maintains a population  $\mathcal{P}$  of weight pairs on the simplex.  
 271 Each generation computes  $f(\alpha, \beta)$  on  $\mathcal{D}_v$  with  $\theta_r$  frozen, keeps the top- $k$  *elites*, and creates offspring  
 272 via convex *crossover* and small *mutation* followed by projection back to  $\Delta^2$  (to keep  $\alpha + \beta = 1$   
 273 and nonnegativity). This repeats for  $G$  generations. The best  $(\alpha_r^*, \beta_r^*)$  is then used for the next  
 274  $T$  iterations until the next trigger. As detailed in Alg.1 and visualized in Fig.2, the EOS process  
 275 involves the following steps:

- 276 1) **Initialization:** Randomly initialize (or pre-define) a small population  $\mathcal{P}_0 = \{(\alpha_i, \beta_i)\}_{i=1}^n$  on  
 $\Delta^2$ .
- 277 2) **Fitness Evaluation (frozen  $\theta_r$ ):** For each  $(\alpha, \beta) \in \mathcal{P}_{g-1}$ , compute  $f(\alpha, \beta) =$   
 $-\frac{1}{|\mathcal{D}_v|} \sum_{(x,y) \in \mathcal{D}_v} [\alpha \mathcal{L}_{\text{fid}}(f_{\theta_r}(y), x) + \beta \mathcal{L}_{\text{perc}}(f_{\theta_r}(y), x)]$ .
- 278 3) **Selection (elitism):** Keep the top- $k$  candidates by  $f$  to form  $\mathcal{P}_{\text{elite}}$ .
- 279 4) **Crossover (convex):** Sample parents  $p_a, p_b \in \mathcal{P}_{\text{elite}}$  and  $\lambda \sim \mathcal{U}(0, 1)$ , set  $c = \lambda p_a + (1 - \lambda) p_b$ .
- 280 5) **Mutation + projection:** Perturb  $c \leftarrow c + \varepsilon$  with  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ , then project  $c \leftarrow \Pi_{\Delta^2}(c)$  to  
 $\Delta^2$  to enforce  $\alpha + \beta = 1$  and  $c \geq 0$ .
- 281 6) **Repeat & apply:** Iterate 2–5 for  $G$  generations; return  $(\alpha_r^*, \beta_r^*)$  and use it for the next  $T$  training  
 $\Delta^2$  iterations.

286 With elitist selection and deterministic evaluation, the best fitness is non-decreasing across genera-  
 287 tions. In practice, we evaluate on a fixed stratified subset of  $\mathcal{D}_v$  to reduce variance.

## 289 4 EXPERIMENTS

### 291 4.1 EXPERIMENTAL SETUP

293 **Datasets:** Following Li et al. (2022); Potlapalli et al. (2023), we consider *One-by-One training*  
 294 *paradigm* (single-task training), *All-in-One training paradigm* (multi-task joint training), compos-  
 295 ed degradation and remote sensing imagery. For One-by-One and All-in-One, we explore two com-  
 296 mon degradation combinations: **N+H+R** (Noise, Haze, Rain) and **N+H+R+B+L** (Noise, Haze, Rain,  
 297 Blur, Low-light). **Denoising:** BSD400 Arbelaez et al. (2010), WED Ma et al. (2016), CBSD68 Mar-  
 298 tin et al. (2001) and Kodak24 Franzen (1999); **Dehazing:** OTS from RESIDE- $\beta$  Li et al. (2018) and  
 299 SOTS-Outdoor Li et al. (2018); **Deraining:** Rain100L Yang et al. (2017); **Deblurring:** GoPro Nah  
 300 et al. (2017); **Low-light Enhancement:** LOL Wei et al. (2018). Details of these datasets are sum-  
 301 marized in appendix. For composited degradation, we use CDD11 dataset Guo et al. (2024b). For  
 302 remote sensing AiOIR, we choose MDRS-LandsatLihe et al. (2025). For these two settings, we  
 303 follow the original split of training and test sets.

304 **Implementation Details:** For EvoIR, we employ the AdamW optimizer with  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ ,  
 305 and an initial learning rate of  $2 \times 10^{-4}$ . The model is trained for 150 epochs with a total batch size  
 306 of 28. The loss weights are initialized as  $\alpha = 0.8$  and  $\beta = 0.2$ , which are updated by the EOS. After  
 307 75 epochs, the learning rate is halved to  $1 \times 10^{-4}$ . The evolutionary optimization strategy is applied  
 308 every 500 training iterations.

309 Following Cui et al. (2025), we adopt task-specific resampling ratios to address data imbalance  
 310 across restoration tasks. Specifically, the data expansion ratios of 3, 120, 5, and 200 are applied to  
 311 denoising, deraining, deblurring, and low-light enhancement, respectively, while dehazing remains  
 312 unaltered. Training is conducted on 4 NVIDIA A100 40GB GPUs using cropped patches of size  
 313  $128 \times 128$ , with random horizontal and vertical flipping for data augmentation.

### 314 4.2 ALL-IN-ONE RESTORATION RESULTS

316 We evaluate EvoIR under two *All-in-One* settings: a moderate setting with three degradation and a  
 317 more complex five-degradation setting .

319 **Three-Degradations Setting (“N+H+R”).** Tab.1 shows that EvoIR achieves the best average  
 320 PSNR (33.00 dB) and SSIM (0.922). Compared to the three latest AiOIR methods: AdaIR Cui et al.  
 321 (2025), MoCE-IR Zamfir et al. (2025) and DFPIR Tian et al. (2025), our method improves the aver-  
 322 age PSNR/SSIM by  $+0.31$  dB/ $+0.004$ ,  $+0.23$  dB/ $+0.005$  and  $+0.12$  dB/ $+0.003$ , respectively. Notably,  
 323 EvoIR achieves new state-of-the-art results on dehazing (32.08/0.982) and deraining (39.07/0.985),  
 demonstrating the effectiveness of adaptive frequency modulation and evolutionary optimization.

324 Table 1: Performance comparison (PSNR/SSIM) under All-in-One (“**N+H+R**”) setting. Results are  
 325 partially sourced from Perceive-IR Zhang et al. (2025a).

| Method                | Denoising (CBSD68)  |                     |                     | Dehazing<br>SOTS    | Deraining<br>Rain100L | Average             | Params (M) |
|-----------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|---------------------|------------|
|                       | $\sigma = 15$       | $\sigma = 25$       | $\sigma = 50$       |                     |                       |                     |            |
| AirNet (CVPR’22)      | 33.92/0.932         | 31.26/0.888         | 28.00/0.797         | 27.94/0.962         | 34.90/0.967           | 31.20/0.910         | 8.93       |
| IDR (CVPR’23)         | 33.89/0.931         | 31.32/0.884         | 28.04/0.798         | 29.87/0.970         | 36.03/0.971           | 31.83/0.911         | 15.34      |
| ProRes (ArXiv’23)     | 32.10/0.907         | 30.18/0.863         | 27.58/0.779         | 28.38/0.938         | 33.68/0.954           | 30.38/0.888         | 370.63     |
| PromptIR (NeurIPS’23) | 33.98/0.933         | 31.31/0.888         | 28.06/0.799         | 30.58/0.974         | 36.37/0.972           | 32.06/0.913         | 32.96      |
| NDR (TIP’24)          | 34.01/0.932         | 31.36/0.887         | 28.10/0.798         | 28.64/0.962         | 35.42/0.969           | 31.51/0.910         | 28.40      |
| Gridformer (IJCV’24)  | 33.93/0.931         | 31.37/0.887         | 28.11/0.801         | 30.37/0.970         | 37.15/0.972           | 32.19/0.912         | 34.07      |
| InstructIR (ECCV’24)  | <b>34.15</b> /0.933 | <u>31.52</u> /0.890 | <u>28.30</u> /0.804 | 30.22/0.959         | 37.98/0.978           | 32.43/0.913         | 15.84      |
| Up-Restorer (AAAI’25) | 33.99/0.933         | 31.33/0.888         | 28.07/0.799         | 30.68/0.977         | 36.74/0.978           | 32.16/0.915         | 28.01      |
| Perceive-IR (TIP’25)  | 34.13/0.934         | <b>31.53</b> /0.890 | <b>28.31</b> /0.804 | 30.87/0.975         | 38.29/0.980           | 32.63/0.917         | 42.02      |
| AdaIR (ICLR’25)       | <u>34.12</u> /0.935 | 31.45/0.892         | 28.19/0.802         | 31.06/0.980         | 38.64/0.983           | 32.69/0.918         | 28.77      |
| MoCE-IR (CVPR’25)     | 34.11/0.932         | 31.45/0.888         | 28.18/0.800         | 31.34/0.979         | <u>38.57</u> /0.984   | 32.73/0.917         | 25.35      |
| DFPIR (CVPR’25)       | <u>34.14</u> /0.935 | 31.47/0.893         | 28.25/0.806         | <u>31.87</u> /0.980 | <u>38.65</u> /0.982   | <u>32.88</u> /0.919 | 31.10      |
| <b>EvoIR</b>          | <b>34.14</b> /0.937 | <b>31.48</b> /0.896 | <b>28.23</b> /0.811 | <b>32.08</b> /0.982 | <b>39.07</b> /0.985   | <b>33.00</b> /0.922 | 36.68      |

341  
 342 As illustrated in Fig.3, EvoIR significantly enhances texture clarity and preserves structural details.  
 343 In particular, for local red regions in the first line for denoising comparison, our method effectively  
 344 restores fine local textures better than DFPIR and MoCE-IR, significantly improving visual clarity  
 345 and realism. Structural elements, including edges and object boundaries, are distinctly sharper and  
 346 more coherent compared to baseline methods, indicating EvoIR’s superior capability in handling  
 347 spatially variant degradation.

348  
 349 **Five-Degradations Setting (“**N+H+R+B+L**”).** Tab. 2 shows the performance under a more chal-  
 350 lenging scenario. EvoIR maintains superior performance with an average PSNR of 30.83 dB and  
 351 SSIM of 0.918. It still surpasses several recent methods like Perceive-IR, AdaIR, and DFPIR in both  
 352 PSNR and SSIM. Even as the degradation types increase, EvoIR demonstrates remarkable stability,  
 353 outperforming all SOTAs in PSNR and the second average SSIM (marginally -0.001).

354 Considering that our EvoIR has 36.68M parameters, it is on the same scale as other methods with  
 355 better results. These consistent improvements validate the robustness and generalization capability  
 356 of EvoIR under complex degradation scenarios.

### 358 4.3 ONE-BY-ONE RESTORATION RESULTS

360 We evaluate EvoIR under the *One-by-One* setting, where each restoration task is trained and tested  
 361 independently. Top lines are task-specific and general methods, and the bottom lines refer to AiOIR  
 362 methods.



376 Figure 3: Visual comparisons of EvoIR with state-of-the-art All-in-One methods under “**N+H+R**”  
 377 setting. More visualization results are illustrated in appendix.

378 Table 2: Performance comparison (PSNR/SSIM) under All-in-One (“**N+H+R+B+L**”) setting. De-  
 379 noiseing results only reports noise level under  $\sigma = 25$  following Zhang et al. (2023). Results are  
 380 partially sourced from Perceive-IR Zhang et al. (2025a).

| Method                 | Denoising<br>CBSD68 | Dehazing<br>SOTS    | Deraining<br>Rain100L | Deblurring<br>GoPro | Low-light<br>LOL    | Average             | Params (M) |
|------------------------|---------------------|---------------------|-----------------------|---------------------|---------------------|---------------------|------------|
| TAPE (ECCV’22)         | 30.18/0.855         | 22.16/0.861         | 29.67/0.904           | 24.47/0.763         | 18.97/0.621         | 25.09/0.801         | 1.07       |
| Transweather (CVPR’22) | 29.00/0.841         | 21.32/0.885         | 29.43/0.905           | 25.12/0.757         | 21.21/0.792         | 25.22/0.836         | 37.93      |
| AirNet (CVPR’22)       | 30.91/0.882         | 21.04/0.884         | 32.98/0.951           | 24.35/0.781         | 18.18/0.735         | 25.49/0.846         | 8.93       |
| IDR (CVPR’23)          | <b>31.60</b> /0.887 | 25.24/0.943         | 35.63/0.965           | 27.87/0.846         | 21.34/0.826         | 28.34/0.893         | 15.34      |
| PromptIR (NeurIPS’23)  | <u>31.47</u> /0.886 | 26.54/0.949         | 36.37/0.970           | 28.71/0.881         | 22.68/0.832         | 29.15/0.904         | 32.96      |
| Gridformer (IJCV’24)   | 31.45/0.885         | 26.79/0.951         | 36.61/0.971           | 29.22/0.884         | 22.59/0.831         | 29.33/0.904         | 34.07      |
| InstructIR (ECCV’24)   | 31.40/0.887         | 27.10/0.956         | 36.84/0.973           | <u>29.40</u> /0.886 | 23.00/0.836         | 29.55/0.907         | 15.84      |
| Perceive-IR (TIP’25)   | 31.44/0.887         | 28.19/0.964         | 37.25/0.977           | <u>29.46</u> /0.886 | 22.88/0.833         | 29.84/0.909         | 42.02      |
| AdaIR (ICLR’25)        | <u>31.35</u> /0.889 | 30.53/0.978         | 38.02/0.981           | 28.12/0.858         | 23.00/0.845         | 30.20/0.910         | 28.77      |
| MoCE-IR (CVPR’25)      | 31.34/0.887         | 30.48/0.974         | <u>38.04</u> /0.982   | <b>30.05</b> /0.899 | <u>23.00</u> /0.852 | 30.58/0.919         | 25.35      |
| DFPIR (CVPR’25)        | 31.29/0.889         | <u>31.64</u> /0.979 | 37.62/0.978           | 28.82/0.873         | <b>23.82</b> /0.843 | <u>30.64</u> /0.913 | 31.10      |
| <b>EvoIR</b>           | <b>31.42</b> /0.895 | <b>31.66</b> /0.980 | <b>38.68</b> /0.984   | 28.78/0.876         | <u>23.59</u> /0.855 | <b>30.83</b> /0.918 | 36.68      |

395  
 396 As shown in Tab. 3, EvoIR achieves the best denoising performance on Kodak24, consistently ranking  
 397 first in all noise levels. Notably, it reaches 35.30 dB at  $\sigma = 15$ , surpassing Perceive-IR and  
 398 Restormer by +0.46 dB and +0.52 dB, respectively. On the dehazing task, EvoIR leads on SOTS  
 399 (32.21/0.984), outperforming DehazeFormer and other strong baselines without relying on task-  
 400 specific priors. For deraining, it achieves 39.23/0.986 on Rain100L, better than the second best  
 401 method Perceive-IR, highlighting its adaptability to fine-scale textures. HI-Diff and FSNet rank  
 402 first and second in deblurring, while all AiOIR methods fail to deblur well in this setting. As most  
 403 task-specific and general methods contain modules designed for blurry regions, it is suitable that  
 404 EvoIR performs poorly. In low-light enhancement, EvoIR ranks the third in PSNR and first in SSIM  
 405 (24.09/0.850), only trailing Retinexformer and MIRNet while outperforming all methods.

406 Overall, EvoIR consistently delivers leading or near-leading results across four single tasks except  
 407 deblurring, confirming its robustness in diverse degradation scenarios.

#### 409 4.4 COMPOSITE DEGRADATION RESULTS

411 Besides the standard 3D/5D protocols, we add a composite degradation evaluation on CDD covering  
 412 single (L/H/R/S), all pairwise double, and representative triple mixes. Results are illustrated in Tab.  
 413 4. EvoIR obtains the best average (28.88 dB / 0.885), surpassing OneRestore (28.47/0.878, +0.41 dB  
 414 / +0.007) and ranking 1st on 8/11 subsets (the rest 2nd). These results indicate that EvoIR maintains  
 415 strong performance not only on single degradations but also under co-occurring artifacts, consistent  
 416 with the design goal of frequency-aware modulation plus stage-wise training stability.

417  
 418 Table 3: Single-task restoration results, including denoising, dehazing, deraining, deblurring, and  
 419 low-light enhancement. **Bold** denotes best overall; underline highlights the second.

| Denoising<br>Kodak24 | PSNR          |               |               | Dehazing<br>SOTS | PSNR/SSIM<br>Rain100L | Deraining<br>Rain100L | PSNR/SSIM<br>GoPro  | Deblurring<br>GoPro | PSNR/SSIM<br>LOL    | PSNR/SSIM     |                     |
|----------------------|---------------|---------------|---------------|------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|---------------|---------------------|
|                      | $\sigma = 15$ | $\sigma = 25$ | $\sigma = 50$ |                  |                       |                       |                     |                     |                     |               |                     |
| DnCNN                | 34.60         | 32.14         | 28.95         | DehazeNet        | 22.46/0.851           | UMR                   | 32.39/0.921         | DeblurGAN           | 28.70/0.858         | URetinex      | 21.33/0.835         |
| FFDNet               | 34.63         | 32.13         | 28.98         | FDGAN            | 23.15/0.921           | LPNet                 | 33.61/0.958         | Stripformer         | 33.08/0.962         | SMG           | 23.81/0.809         |
| ADFNet               | 34.77         | 32.22         | 29.06         | DehazeFormer     | <u>31.78</u> /0.977   | DRSformer             | 38.14/0.983         | HI-Diff             | <b>33.33</b> /0.964 | Retinexformer | <b>25.16</b> /0.845 |
| MIRNet-v2            | 34.29         | 31.81         | 28.55         | Restormer        | 30.87/0.969           | Restormer             | 36.74/0.978         | MPRNet              | 32.66/0.959         | MIRNet        | 24.14/0.835         |
| Restormer            | 34.78         | 32.37         | 29.08         | NAFNet           | 30.98/0.970           | NAFNet                | 36.63/0.977         | Restormer           | 32.92/0.961         | Restormer     | 22.43/0.823         |
| NAFNet               | 34.27         | 31.80         | 28.62         | FSNet            | 31.11/0.971           | FSNet                 | 37.27/0.980         | FSNet               | <u>33.29</u> /0.963 | DiffIR        | 23.15/0.828         |
| AirNet               | 34.81         | 32.44         | 29.10         | AirNet           | 23.18/0.900           | AirNet                | 34.90/0.977         | AirNet              | 31.64/0.945         | AirNet        | 21.52/0.832         |
| IDR                  | 34.78         | 32.42         | 29.13         | PromptIR         | 31.31/0.973           | PromptIR              | 37.04/0.979         | PromptIR            | 32.41/0.956         | PromptIR      | 22.97/0.834         |
| Perceive-IR          | <u>34.84</u>  | <u>32.50</u>  | <u>29.16</u>  | Perceive-IR      | 31.65/0.977           | Perceive-IR           | <u>38.41</u> /0.984 | Perceive-IR         | 32.83/0.960         | Perceive-IR   | 23.79/0.841         |
| <b>EvoIR</b>         | <b>35.30</b>  | <b>32.86</b>  | <b>29.78</b>  | <b>EvoIR</b>     | <b>32.21</b> /0.984   | <b>EvoIR</b>          | <b>39.23</b> /0.986 | <b>EvoIR</b>        | 29.57/0.891         | <b>EvoIR</b>  | <b>24.09</b> /0.850 |

432 Table 4: Results of different image restoration methods under composite degradation images  
433

| Methods     | Single-L                                        | Single-H          | Single-R          | Single-S          | Double-L+H        | Double-L+R        | Double-L+S        | Double-H+R        | Double-H+S        | Triple-L+H+R | Triple-L+H+S | Average |
|-------------|-------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|--------------|---------|
| AirNet      | 24.83/77824.21/95126.55/89126.79/919            | 23.23/.779        | 22.82/.710        | 23.29/.723        | 22.21/.868        | 23.29/.901        | 21.80/.708        | 22.24/.725        | 23.75/.814        |              |              |         |
| PromptIR    | 26.32/80526.10/96931.56/94631.53/960            | 24.49/.789        | 25.05/.771        | 24.51/.761        | 24.54/.924        | 27.05/.925        | 23.74/.752        | 23.33/.747        | 25.90/.850        |              |              |         |
| WeatherDiff | 23.58/.76321.99/.90424.85/.88524.80/.888        | 21.83/.756        | 22.69/.730        | 22.12/.707        | 21.25/.868        | 21.99/.868        | 21.23/.716        | 21.04/.698        | 22.49/.799        |              |              |         |
| WGWNNet     | 24.39/.77427.90/.98233.15/.96434.43/.973        | 24.27/.800        | 25.06/.772        | 24.60/.765        | 27.23/.955        | 27.65/.960        | 23.90/.772        | 23.97/.711        | 26.96/.863        |              |              |         |
| OneRestore  | 26.48/.82632.52/.99033.40/.96434.31/.973        | 25.79/.822        | 25.58/.799        | 25.19/.789        | 29.99/.957        | 30.21/.964        | 24.78/.788        | 24.90/.791        | 28.47/.878        |              |              |         |
| EvoIR       | <b>27.06/.83032.24/.99134.03/.97035.80/.981</b> | <b>25.92/.824</b> | <b>26.02/.806</b> | <b>25.96/.802</b> | <b>29.76/.965</b> | <b>30.17/.971</b> | <b>25.43/.797</b> | <b>25.31/.797</b> | <b>28.88/.885</b> |              |              |         |

440  
441 4.5 REMOTE SENSING IMAGERY RESULTS  
442

443 To better prove the effectiveness of our method, we include one new AiOIR task on remote sensing  
444 imagery. We evaluate on the recently proposed MDRS-Landsat all-in-one remote sensing bench-  
445 mark. As is shown in Tab. 5, without any modification or special fine-tuning, EvoIR (37 M) outper-  
446 forms prior SOTAs and even surpasses the remote-sensing-specialized Ada4DIR-d (41 M) across all  
447 four degradations.

448 Table 5: Results of different image restoration methods under remote sensing imagery  
449

| Methods      | Blur PSNR/SSIM      | Dark PSNR/SSIM      | Haze PSNR/SSIM      | Noise PSNR/SSIM     |
|--------------|---------------------|---------------------|---------------------|---------------------|
| NAFNet       | 33.10/0.8120        | 30.40/0.9516        | 31.56/0.9642        | 33.08/0.8263        |
| Restormer    | 35.23/0.8559        | 37.86/0.9872        | 36.18/0.9867        | 34.53/0.8589        |
| DGUNet       | 29.64/0.7822        | 27.15/0.9010        | 27.45/0.9338        | 30.31/0.7314        |
| TransWeather | 33.45/0.8159        | 36.33/0.9705        | 35.02/0.9689        | 33.69/0.8428        |
| AirNet       | 28.27/0.7887        | 28.38/0.9472        | 24.39/0.9331        | 30.30/0.7446        |
| PromptIR     | 36.41/0.8861        | 39.09/0.9900        | 37.61/0.9897        | 34.99/0.8729        |
| IDR          | 36.57/0.8902        | 35.19/0.9865        | 36.99/0.9892        | 34.88/0.8681        |
| SrResNet-AP  | 34.63/0.8479        | 33.87/0.9823        | 34.78/0.9825        | 34.70/0.8620        |
| Restormer-AP | 35.75/0.8732        | 37.27/0.9885        | 37.36/0.9888        | 34.96/0.8697        |
| Uformer-AP   | 34.64/0.8488        | 36.58/0.9899        | 36.06/0.9877        | 34.39/0.8533        |
| Ada4DIR-d    | 37.20/0.9004        | 43.85/0.9954        | 41.06/0.9938        | 35.14/0.8724        |
| EvoIR        | <b>37.48/0.9069</b> | <b>44.73/0.9959</b> | <b>41.28/0.9943</b> | <b>35.18/0.8774</b> |

463  
464 4.6 ABLATION STUDY  
465466 4.6.1 EFFECTS OF EACH COMPONENTS  
467

468 As shown in Tab. 6, we evaluate the effectiveness of various components through comparisons  
469 with the baseline method (index a). We incrementally integrate the Frequency-Modulated Module  
470 (FMM) (index b), Evolutionary Optimization Strategy (EOS) (index c), and finally, combine both  
471 components into our full EvoIR framework (index d). The average PSNR and SSIM under the three-  
472 degradation setting clearly indicate that both FMM and EOS significantly enhance the restoration  
473 performance.

474 Table 6: AiOIR performance of different components under the “N+H+R” setting.  
475

| Index | TB | FMM | EOS | avg PSNR↑     | avg SSIM↑      |
|-------|----|-----|-----|---------------|----------------|
| (a)   | ✓  |     |     | 32.50 (+0.00) | 0.914 (+0.000) |
| (b)   | ✓  | ✓   |     | 32.68 (+0.18) | 0.916 (+0.002) |
| (c)   | ✓  |     | ✓   | 32.58 (+0.08) | 0.915 (+0.001) |
| (d)   | ✓  | ✓   | ✓   | 33.00 (+0.50) | 0.922 (+0.008) |

482  
483 4.6.2 EFFECTS OF EOS  
484

485 To further validate the effectiveness of the proposed Evolutionary Optimization Strategy (EOS) in  
accelerating convergence, we provide additional analysis beyond quantitative comparisons. Specifi-

486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
cally, we visualize both the training loss curves and the performance curves (in terms of PSNR and SSIM) over epochs, comparing scenarios with and without EOS.

As illustrated in Fig. 4, the training loss curve employing EOS exhibits a notably steeper decline in the early training stages, indicating more rapid initial convergence and efficient optimization. Correspondingly, the PSNR and SSIM curves clearly demonstrate that EOS achieves superior performance earlier and maintains consistently higher restoration quality throughout training. These results empirically confirm that EOS effectively alleviates gradient conflicts and enhances training stability, leading to faster and more robust convergence.

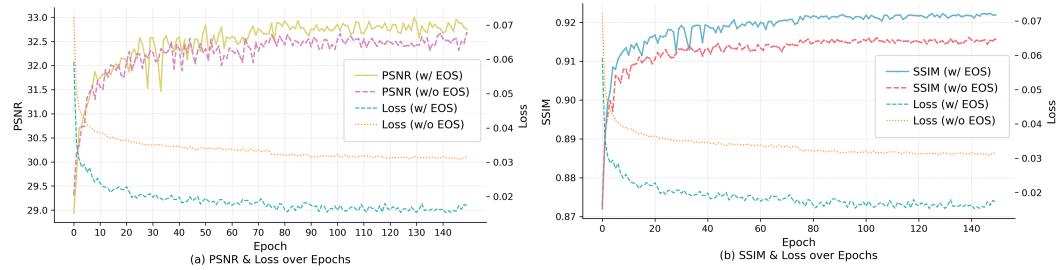


Figure 4: PSNR, SSIM and loss comparisons w/ and w/o Evolutionary Optimization Strategy (EOS) on 3D setting. We can find that model with EOS can converge faster and perform better.

To better evaluate the cost of EOS during the training stage, we instrument EOS steps and report per-epoch overhead in Tab. 7: EOS wall-clock 1.417 s (0.1% of the epoch), broken down into evaluation 1.272 s (89.8%), communication 0.094 s (6.6%), and residual 0.051 s (3.6%). EOS uses  $T=500$ , population  $P=5$ , generations  $G=3$ , and is triggered 3 $\times$  per epoch (which corresponds to 24 per-rank calls across 8 GPUs). The average per global trigger is 472.3 ms, the GPU kernel time during evaluation is 390.7 ms/trigger, the payload is 94.4 MB/epoch, and the peak extra memory at EOS steps is 84.1 MB. Despite this periodic cost, Fig. 4 shows improved time-to-target PSNR/SSIM and higher final quality. In short, EOS is compute-light: on our 8 $\times$ GPU setup it adds only 0.1% per-epoch wall time (1.417 s/epoch for 3 triggers) with a peak extra memory of 84.1 MB, while preserving the quality gains.

Table 7: EOS overhead per-epoch during the training stage.

| EOS wall (s)  |                    | Eval (s)     | Comm (s)            | Resid. (s) |
|---------------|--------------------|--------------|---------------------|------------|
| 1.417 (0.1%)  |                    | 1.272        | 0.094               | 0.051      |
| Avg/call (ms) | Eval GPU (ms/call) | Payload (MB) | Peak extra mem (MB) |            |
| 59.0          | 48.8               | 94.4         | 84.1                |            |

## 5 CONCLUSION

We present EvoIR, an All-in-One Image Restoration framework unifying frequency-aware modulation and a population-based evolutionary loss scheduler. FMM performs spectral gating on low-frequency components and spatial masking on high-frequency details; EOS searches  $(\alpha, \beta)$  on a held-out validation set every  $T$  iterations, yielding a data-driven balance between fidelity and perception with modest overhead. To the best of our knowledge within AiOIR, EvoIR is the first work to introduce a population-based evolutionary algorithm for dynamic loss balancing. Extensive experiments demonstrate superior results across diverse degradation—achieving SOTA or highly competitive performance under multiple degradation protocols. Ablation studies attribute the gains to the synergy between FMM and EOS.

## REFERENCES

Yuang Ai, Huabo Huang, Xiaoqiang Zhou, Jieyang Wang, and Ran He. Multimodal prompt perceiver: Empower adaptiveness, generalizability and fidelity for all-in-one image restoration. In

540 Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 25432–25444, 2024.  
 541

542 Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hier-  
 543 archical image segmentation. *IEEE Trans. Pattern Anal. Mach. Intell.*, 33(5):898–916, 2010.

544 Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao. Dehazenet: An end-to-end  
 545 system for single image haze removal. *IEEE Trans. Image Process.*, 25(11):5187–5198, 2016.

546

547 Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, and Yulun Zhang. Retinexformer:  
 548 One-stage retinex-based transformer for low-light image enhancement. In *Proc. IEEE/CVF Int.*  
 549 *Conf. Comput. Vis. (ICCV)*, pp. 12504–12513, 2023.

550

551 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and  
 552 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proc. IEEE/CVF*  
 553 *Int. Conf. Comput. Vis. (ICCV)*, pp. 9650–9660, 2021.

554

555 Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.  
 556 In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, pp. 17–33, 2022.

557

558 Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learning a sparse transformer network for  
 559 effective image deraining. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp.  
 5896–5905, June 2023a.

560

561 Zheng Chen, Yulun Zhang, Ding Liu, Bin Xia, Jinjin Gu, Linghe Kong, and Xin Yuan. Hierarchical  
 562 integration diffusion model for realistic image deblurring. In *Proc. Adv. Neural Inf. Process. Syst.*  
 563 (*NeurIPS*), pp. 29114–29125, 2023b.

564

565 Marcos V Conde, Gregor Geigle, and Radu Timofte. High-quality image restoration following  
 566 human instructions. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, pp. 1–21, 2024.

567

568 Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Image restoration via frequency selection.  
 569 *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(2):1093–1108, 2023a.

570

571 Yuning Cui, Yi Tao, Zhenshan Bing, Wenqi Ren, Xinwei Gao, Xiaochun Cao, Kai Huang, and Alois  
 572 Knoll. Selective frequency network for image restoration. In *Proc. Int. Conf. Learn. Represent.*  
 573 (*ICLR*), 2023b.

574

575 Yuning Cui, Mingyu Liu, Wenqi Ren, and Alois Knoll. Hybrid frequency modulation network for  
 576 image restoration. In *Proc. Int. Joint Conf. Artif. Intell. (IJCAI)*, pp. 722–730, 2024.

577

578 Yuning Cui, Syed Waqas Zamir, Salman H. Khan, Alois Knoll, Mubarak Shah, and Fahad Shahbaz  
 579 Khan. Adair: Adaptive all-in-one image restoration via frequency mining and modulation. In  
 580 *Proc. Int. Conf. Learn. Represent. (ICLR)*, 2025.

581

582 Yu Dong, Yihao Liu, He Zhang, Shifeng Chen, and Yu Qiao. FD-GAN: generative adversarial  
 583 networks with fusion-discriminator for single image dehazing. In *Proc. AAAI Conf. Artif. Intell.*  
 584 (*AAAI*), pp. 10729–10736, 2020.

585

586 Rich Franzen. Kodak Lossless True Color Image Suite, 1999. [Online]. Available: <http://r0k.us/graphics/kodak/> [Accessed: Oct. 24, 2021].

587

588 Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dynamic scene deblurring with parameter  
 589 selective sharing and nested skip connections. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern*  
 590 *Recognit. (CVPR)*, pp. 3848–3856, 2019.

591

592 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple  
 593 baseline for image restoration with state-space model. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,  
 594 pp. 222–241, 2024a.

595

596 Yu Guo, Yuan Gao, Yuxu Lu, Huilin Zhu, Ryan Wen Liu, and Shengfeng He. Onerestore: A universal  
 597 restoration framework for composite degradation. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*,  
 598 volume 15077, pp. 255–272, 2024b.

594 Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. Efficient frequency  
 595 domain-based transformers for high-quality image deblurring. In *Proc. IEEE/CVF Conf. Comput.*  
 596 *Vis. Pattern Recognit. (CVPR)*, pp. 5886–5895, 2023.

597 Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiří Matas. Deblur-  
 598 gan: Blind motion deblurring using conditional adversarial networks. In *Proc. IEEE/CVF Conf.*  
 599 *Comput. Vis. Pattern Recognit. (CVPR)*, pp. 8183–8192, 2018.

600 Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.  
 601 Benchmarking single-image dehazing and beyond. *IEEE Trans. Image Process.*, 28(1):492–505,  
 602 2018.

603 Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restora-  
 604 tion for unknown corruption. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,  
 605 pp. 17452–17462, 2022.

606 Ziyang Lihe, Qiangqiang Yuan, Jiang He, Xianyu Jin, Yi Xiao, Yuzeng Chen, Huanfeng Shen, and  
 607 Liangpei Zhang. Ada4dir: An adaptive model-driven all-in-one image restoration network for  
 608 remote sensing images. *Inf. Fusion*, 118:102930, 2025.

609 Lin Liu, Lingxi Xie, Xiaopeng Zhang, Shanxin Yuan, Xiangyu Chen, Wengang Zhou, Houqiang Li,  
 610 and Qi Tian. Tape: Task-agnostic prior embedding for image restoration. In *Proc. Eur. Conf.*  
 611 *Comput. Vis. (ECCV)*, pp. 447–464, 2022.

612 Minghao Liu, Wenhan Yang, Jinyi Luo, and Jiaying Liu. Up-restorer: When unrolling meets prompts  
 613 for unified image restoration. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, pp. 5513–5522, 2025.

614 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling  
 615 vision-language models for universal image restoration. *arXiv preprint arXiv:2310.01018*, 2023.

616 Jiaqi Ma, Tianheng Cheng, Guoli Wang, Qian Zhang, Xinggang Wang, and Lefei Zhang. Prores:  
 617 Exploring degradation-aware visual prompt for universal image restoration. *arXiv preprint*  
 618 *arXiv:2306.13653*, 2023a.

619 Jiaqi Ma, Guoli Wang, Lefei Zhang, and Qian Zhang. Restoration and enhancement on low exposure  
 620 raw images by joint demosaicing and denoising. *Neural Netw.*, 162:557–570, 2023b.

621 Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei  
 622 Zhang. Waterloo exploration database: New challenges for image quality assessment models.  
 623 *IEEE Trans. Image Process.*, 26(2):1004–1016, 2016.

624 David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented  
 625 natural images and its application to evaluating segmentation algorithms and measuring ecological  
 626 statistics. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, volume 2, pp. 416–423, 2001.

627 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network  
 628 for dynamic scene deblurring. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*,  
 629 pp. 3883–3891, 2017.

630 Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, and Fahad Shahbaz Khan. Promptfir: Prompt-  
 631 ing for all-in-one blind image restoration. In *Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)*, pp.  
 632 71275–71293, 2023.

633 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 634 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 635 models from natural language supervision. In *Proc. Int. Conf. Mach. Learn. (ICML)*, pp. 8748–  
 636 8763, 2021.

637 Hao Shen, Zhong-Qiu Zhao, and Wandi Zhang. Adaptive dynamic filtering network for image  
 638 denoising. In *Proc. AAAI Conf. Artif. Intell. (AAAI)*, pp. 2227–2235, 2023.

639 Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing.  
 640 *IEEE Trans. Image Process.*, 32:1927–1941, 2023.

648 Zhentao Tan, Yue Wu, Qiankun Liu, Qi Chu, Le Lu, Jieping Ye, and Nenghai Yu. Exploring the  
 649 application of large-scale pre-trained models on adverse weather removal. *IEEE Trans. Image*  
 650 *Process.*, 33:1683–1698, 2024.

651

652 Xiangpeng Tian, Xiangyu Liao, Xiao Liu, Meng Li, and Chao Ren. Degradation-aware feature  
 653 perturbation for all-in-one image restoration. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern*  
 654 *Recognit. (CVPR)*, pp. 28165–28175, 2025.

655

656 Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip  
 657 transformer for fast image deblurring. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, pp. 146–162,  
 658 2022.

659

660 Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M Patel. Transweather: Transformer-based  
 661 restoration of images degraded by adverse weather conditions. In *Proc. IEEE/CVF Conf. Comput.*  
 662 *Vis. Pattern Recognit. (CVPR)*, pp. 2353–2363, 2022.

663

664 Tao Wang, Kaihao Zhang, Ziqian Shao, Wenhan Luo, Bjorn Stenger, Tong Lu, Tae-Kyun Kim, Wei  
 665 Liu, and Hongdong Li. Gridformer: Residual dense transformer with grid structure for image  
 666 restoration in adverse weather conditions. *Int. J. Comput. Vis.*, 132(10):4541–4563, 2024.

667

668 Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light  
 669 enhancement. In *Proc. Brit. Mach. Vis. Conf. (BMVC)*, 2018.

670

671 Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. Uretinex-  
 672 net: Retinex-based deep unfolding network for low-light image enhancement. In *Proc. IEEE/CVF*  
 673 *Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp. 5901–5910, 2022.

674

675 Zhijian Wu, Wenhui Liu, Jingchao Wang, Jun Li, and Dingjiang Huang. Freprompter: Frequency  
 676 self-prompt for all-in-one image restoration. *Pattern Recognit.*, 161:111223, 2025.

677

678 Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang,  
 679 and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In *Proc. IEEE/CVF*  
 680 *Int. Conf. Comput. Vis. (ICCV)*, pp. 13095–13105, 2023.

681

682 Xiaogang Xu, Ruixing Wang, and Jiangbo Lu. Low-light image enhancement via structure modeling  
 683 and guidance. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp. 9893–9903,  
 684 2023.

685

686 Wenhui Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep  
 687 joint rain detection and removal from a single image. In *Proc. IEEE/CVF Conf. Comput. Vis.*  
 688 *Pattern Recognit. (CVPR)*, pp. 1357–1366, 2017.

689

690 Mingde Yao, Ruikang Xu, Yuanshen Guan, Jie Huang, and Zhiwei Xiong. Neural degradation  
 691 representation learning for all-in-one image restoration. *IEEE Trans. Image Process.*, 33:5408–  
 692 5423, 2024.

693

694 Rajeev Yasarla and Vishal M Patel. Uncertainty guided multi-scale residual learning-using a cy-  
 695 cle spinning cnn for single image de-raining. In *Proc. IEEE/CVF Conf. Comput. Vis. Pattern*  
 696 *Recognit. (CVPR)*, pp. 8405–8414, 2019.

697

698 Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yuedong Tan, Danda Pani Paudel, Yulun Zhang, and  
 699 Radu Timofte. Complexity experts are task-discriminative learners for any image restoration. In  
 700 *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp. 12753–12763, 2025.

701

702 S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao. Learning enriched  
 703 features for fast image restoration and enhancement. *IEEE Trans. Pattern Anal. Mach. Intell.*, 45  
 704 (2):1934–1948, 2022a.

705

706 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-  
 707 Hsuan Yang, and Ling Shao. Learning enriched features for real image restoration and enhance-  
 708 ment. In *Proc. Eur. Conf. Comput. Vis. (ECCV)*, pp. 492–511, 2020.

702 Syed Waqas Zamir, Aditya Arora, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-  
 703 Hsuan Yang, and Ling Shao. Multi-stage progressive image restoration. In *Proc. IEEE/CVF Conf.*  
 704 *Comput. Vis. Pattern Recognit. (CVPR)*, pp. 14816–14826, 2021.

705 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-  
 706 Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *Proc.*  
 707 *IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp. 5728–5739, 2022b.

708 Jinghao Zhang, Jie Huang, Mingde Yao, Zizheng Yang, Hu Yu, Man Zhou, and Feng Zhao.  
 709 Ingredient-oriented multi-degradation learning for image restoration. In *Proc. IEEE/CVF Conf.*  
 710 *Comput. Vis. Pattern Recognit. (CVPR)*, pp. 5825–5835, 2023.

711 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:  
 712 Residual learning of deep cnn for image denoising. *IEEE Trans. Image Process.*, 26(7):3142–  
 713 3155, 2017.

714 Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward a fast and flexible solution for cnn-  
 715 based image denoising. *IEEE Trans. Image Process.*, 27(9):4608–4622, 2018.

716 Xu Zhang, Jiaqi Ma, Guoli Wang, Qian Zhang, Huan Zhang, and Lefei Zhang. Perceive-ir: Learning  
 717 to perceive degradation better for all-in-one image restoration. *IEEE Trans. Image Process.*, pp.  
 718 1–1, 2025a.

719 Xu Zhang, Huan Zhang, Guoli Wang, Qian Zhang, Lefei Zhang, and Bo Du. Uniuir: Considering  
 720 underwater image restoration as an all-in-one learner. *arXiv preprint arXiv:2501.12981*, 2025b.

721 Shihao Zhou, Jinshan Pan, Jinglei Shi, Duosheng Chen, Lishen Qu, and Jufeng Yang. Seeing the un-  
 722 seen: A frequency prompt guided transformer for image restoration. In *Proc. Eur. Conf. Comput.*  
 723 *Vis. (ECCV)*, volume 15074, pp. 246–264, 2024.

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A USAGE OF LLMS**  
757758 We used LLM as a general-purpose assist tool only for language polishing; all technical content is  
759 original and verified by the authors. LLMs are not authors.  
760761 **B CODE AND MODELS**  
762763 Anonymous code and models for evaluation can be found here.  
764765 **C EXPERIMENTAL SETTINGS**  
766767 **C.0.1 DATASETS**  
768769 For the datasets used for AiOIR aforementioned: **N+H+R** (Noise, Haze, Rain) and **N+H+R+B+L**  
770 (Noise, Haze, Rain, Blur, Low-light). We summarize all details as follows in Tab. 8.  
771772 Table 8: Dataset summary under two training settings.  
773

| 774 <b>Setting</b>    | 775 <b>Degradation</b> | 776 <b>Training dataset (Number)</b>                                                                                          | 777 <b>Testing dataset (Number)</b>                                                                          |
|-----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 778 <b>One-by-One</b> | Noise ( <b>N</b> )     | N: BSD400 +WED (400+4744)                                                                                                     | N: CBSD68 +Urban100 +Kodak24 (68+100+24)                                                                     |
|                       | Haze ( <b>H</b> )      | <b>H</b> : RESIDE- $\beta$ -OTS (72135)                                                                                       | <b>H</b> : SOTS-Outdoor (500)                                                                                |
|                       | Rain ( <b>R</b> )      | <b>R</b> : Rain100L (200)                                                                                                     | <b>R</b> : Rain100L (100)                                                                                    |
|                       | Blur ( <b>B</b> )      | <b>B</b> : GoPro (2103)                                                                                                       | <b>B</b> : GoPro (1111)                                                                                      |
|                       | Low-light ( <b>L</b> ) | <b>L</b> : LOL (485)                                                                                                          | <b>L</b> : LOL (15)                                                                                          |
| 780 <b>All-in-One</b> | <b>N+H+R</b>           | BSD400+WED+RESIDE- $\beta$ -OTS+Rain100L<br><b>Number</b> : 400+4744+72135+200<br><b>Total</b> : 77479                        | N: CBSD68 (68)<br><b>H</b> : SOTS-Outdoor (500)<br><b>R</b> : Rain100L (100)<br><b>N</b> : CBSD68 (68)       |
|                       |                        | BSD400+WED+RESIDE- $\beta$ -OTS+Rain100L<br>+GoPro+LOL<br><b>Number</b> : 400+4744+72135+200+2103+485<br><b>Total</b> : 80067 | <b>H</b> : SOTS-Outdoor (500)<br><b>R</b> : Rain100L (100)<br><b>B</b> : GoPro (1111)<br><b>L</b> : LOL (15) |

790 **C.0.2 BASELINES**  
791792 We compare EvoIR with a comprehensive set of baselines under both the All-in-One and One-by-  
793 One settings. We apply PSNR, SSIM as evaluation metrics. In all tables, the best and second-best  
794 results are marked in **bold** and underlined, respectively.795 **All-in-One setting:** For “N+H+R” setting, we include the following recent All-in-One models: Air-  
796 Net Li et al. (2022), IDR Zhang et al. (2023), ProRes Ma et al. (2023a), PromptIR Potlapalli et al.  
797 (2023), NDR Yao et al. (2024), Gridformer Wang et al. (2024), InstructIR Conde et al. (2024),  
798 Up-Restorer Liu et al. (2025), Perceive-IR Zhang et al. (2025a), AdaIR Cui et al. (2025), MoCE-  
799 IR Zamfir et al. (2025), DFPIR Tian et al. (2025). For “N+H+R+B+L” setting, we also include  
800 TAPE Liu et al. (2022), TransWeather Valanarasu et al. (2022).801 **One-by-One setting:** We adopt task-specific and general methods tailored to individual degradation  
802 types. For *Denoising*: DnCNN Zhang et al. (2017), FFDNet Zhang et al. (2018), ADFNet Shen  
803 et al. (2023), MIRNet-v2 Zamir et al. (2022a), Restormer Zamir et al. (2022b), NAFNet Chen  
804 et al. (2022); *Dehazing*: adding DehazeNet Cai et al. (2016), FDGAN Dong et al. (2020), Dehaze-  
805 Former Song et al. (2023), FSNet Cui et al. (2023a); *Deraining*: adding UMR Yasarla & Patel (2019),  
806 LPNet Gao et al. (2019), DRSformer Chen et al. (2023a); *Deblurring*: adding DeblurGAN Kupyn  
807 et al. (2018), Stripformer Tsai et al. (2022), HI-Diff Chen et al. (2023b), MPRNet Zamir et al.  
808 (2021); *Low-light enhancement*: adding URetinex Wu et al. (2022), SMG Xu et al. (2023), Retinex-  
809 former Cai et al. (2023), MIRNet Zamir et al. (2020), DiffIR Xia et al. (2023). We report All-in-One  
methods retrained under the One-by-One setting for comparison.

810 **D ADDITIONAL ABLATIONS OF BLOCK NUMBER**  
811812  
813 In this study, we investigate the impact of varying the number of FMM blocks across the four stages  
814 of EvoIR. For example, (index 6) adopts 4, 1, 1, and 1 FMM blocks in Stages 1 through 4, respectively.  
815 We report the average PSNR and SSIM across three degradation settings.816 As shown in Tab. 9, (index 8) achieves the best performance in both average PSNR and SSIM. Comparisons  
817 between (index 2) & (index 3), and (index 4) & (index 5), indicate that introducing FMM  
818 blocks to multiple stages enhances restoration quality. Moreover, the parameter cost for early stages  
819 is relatively low (e.g., only 0.12M and 3.71M for Stages 1 and 2, respectively), while later stages  
820 impose significantly higher computational overhead. Notably, allocating more FMM blocks to early  
821 stages yields greater performance gains than doing so in later stages. These findings suggest that a  
822 favorable design choice for EvoIR is to prioritize block allocation in earlier stages while keeping the  
823 latter ones lightweight. The configuration in (index 8)—with 4, 2, 2, and 1 blocks—offers a balanced  
824 trade-off between performance (33.00 dB / 0.922) and model complexity (36.68M).825 Table 9: Average performance of different numbers of FMM blocks in each stage.  
826

| Index | Stage |   |   |   | avg PSNR ↑ | avg SSIM ↑ | Params (M) |
|-------|-------|---|---|---|------------|------------|------------|
|       | 1     | 2 | 3 | 4 |            |            |            |
| (1)   | 0     | 0 | 0 | 0 | 32.58      | 0.915      | 25.44      |
| (2)   | 1     | 1 | 1 | 1 | 32.86      | 0.921      | 30.94      |
| (3)   | 2     | 1 | 1 | 1 | 32.91      | 0.922      | 31.06      |
| (4)   | 3     | 1 | 1 | 1 | 32.94      | 0.922      | 31.18      |
| (5)   | 3     | 2 | 1 | 1 | 32.89      | 0.922      | 34.89      |
| (6)   | 4     | 1 | 1 | 1 | 32.96      | 0.922      | 31.30      |
| (7)   | 4     | 2 | 1 | 1 | 32.99      | 0.922      | 35.01      |
| (8)   | 4     | 2 | 2 | 1 | 33.00      | 0.922      | 36.68      |

837  
838  
839  
840 **E VISUALIZATION**  
841842 E.1 T-SNE VISUALIZATION FOR DEGRADATION FEATURES  
843844  
845 We provide stage-wise visualizations that reveal how representations become degradation-aware  
846 by stages. EvoIR is a three-stage encoder-decoder architecture with a bottleneck block between  
847 encoders and decoders. After training, we take the output of Stage 1-3, perform global pooling to  
848 obtain one embedding per image, and plot t-SNE colored by degradation label for 3D AiOIR.849 As is shown in Fig. 5, we anticipate that Encoder Stage 1-3 embeddings mix degradations (capturing  
850 shared low-level content), while Decoder Stage 1-3 show stronger clustering by degradation,  
851 aligning with FMM’s design: spectral gating on low-frequency structure and spatial masking on  
852 high-frequency details, fused and refined deeper in the hierarchy.853  
854 E.2 VISUAL COMPARISON UNDER THREE DEGRADATIONS  
855856 Due to page limitations, we provide additional visual comparisons for the three-degradation setting  
857 (“**N+H+R**”). As shown in Fig. 6, 7, 8, 9, and 10, we compare our EvoIR against recent state-of-the-  
858 art methods, including AdaIR Cui et al. (2025) (ICLR’25), DFPIR Tian et al. (2025) (CVPR’25),  
859 and MoCE-IR Zamfir et al. (2025) (CVPR’25).860 Across all degradation types, EvoIR consistently preserves higher fidelity while maintaining fine  
861 textures and structural details. The zoomed-in regions further highlight EvoIR’s superiority in re-  
862 covering sharp edges and realistic patterns compared to other approaches. These visual results are  
863 consistent with the quantitative improvements reported earlier.

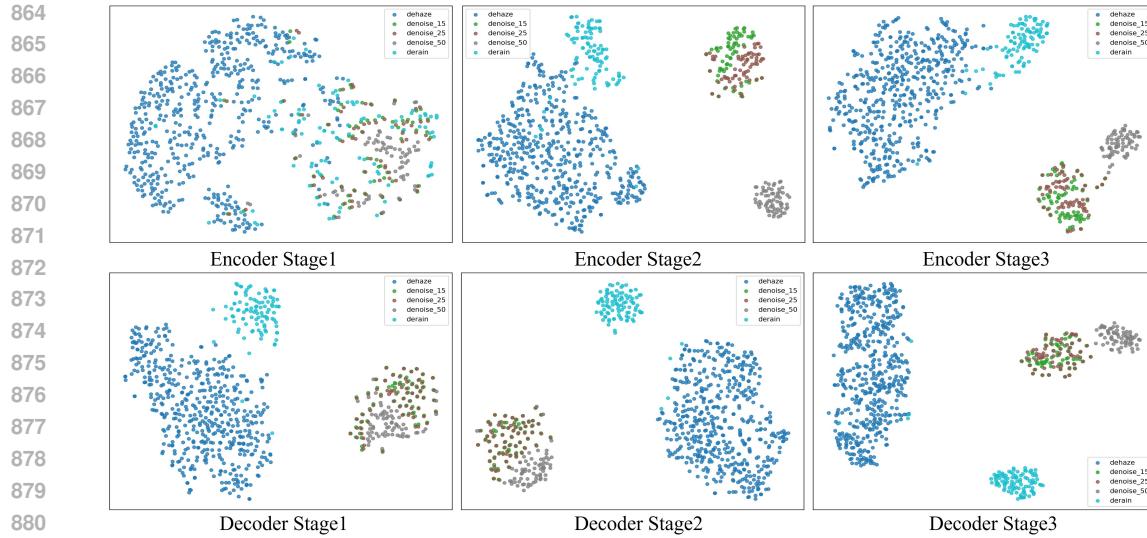


Figure 5: The t-SNE visualization of features after each stage of encoders and decoders.

### E.3 VISUAL COMPARISON UNDER FIVE DEGRADATIONS

As some methods do not provide visual results under the five-degradation setting (“**N+H+R+B+L**”), we select InstructIR Conde et al. (2024) (ECCV’24) and MoCE-IR Zamfir et al. (2025) (CVPR’25) for comparison with our EvoIR.

Zoom-in views in Fig. 11, 12, 13, 14, and 15 reveal that EvoIR better preserves both textural and structural details, producing results that are visually closer to the reference images. These observations indicate better restoration quality compared to the competing methods.

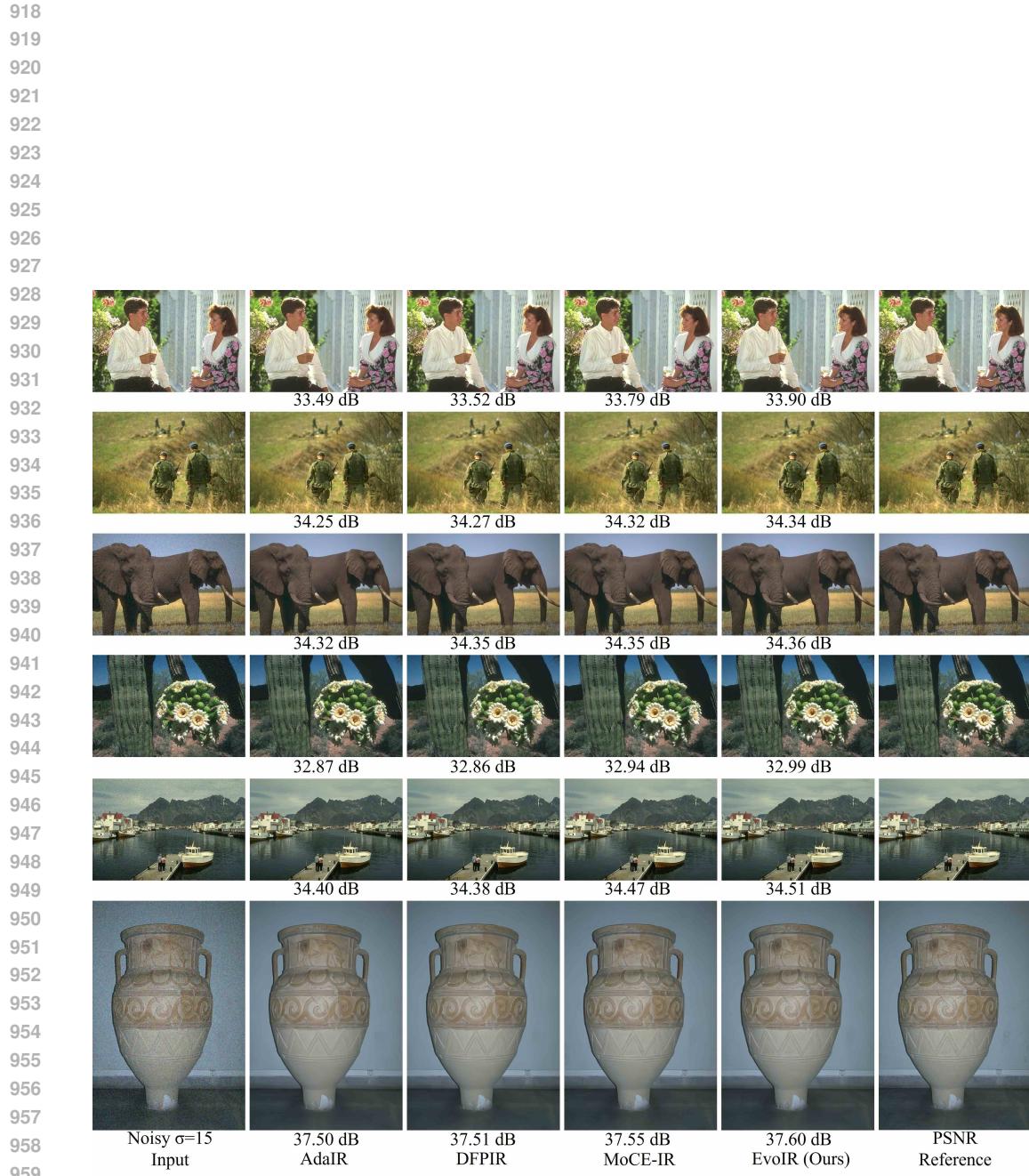


Figure 6: Denoising ( $\sigma = 15$ ) visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R” setting.

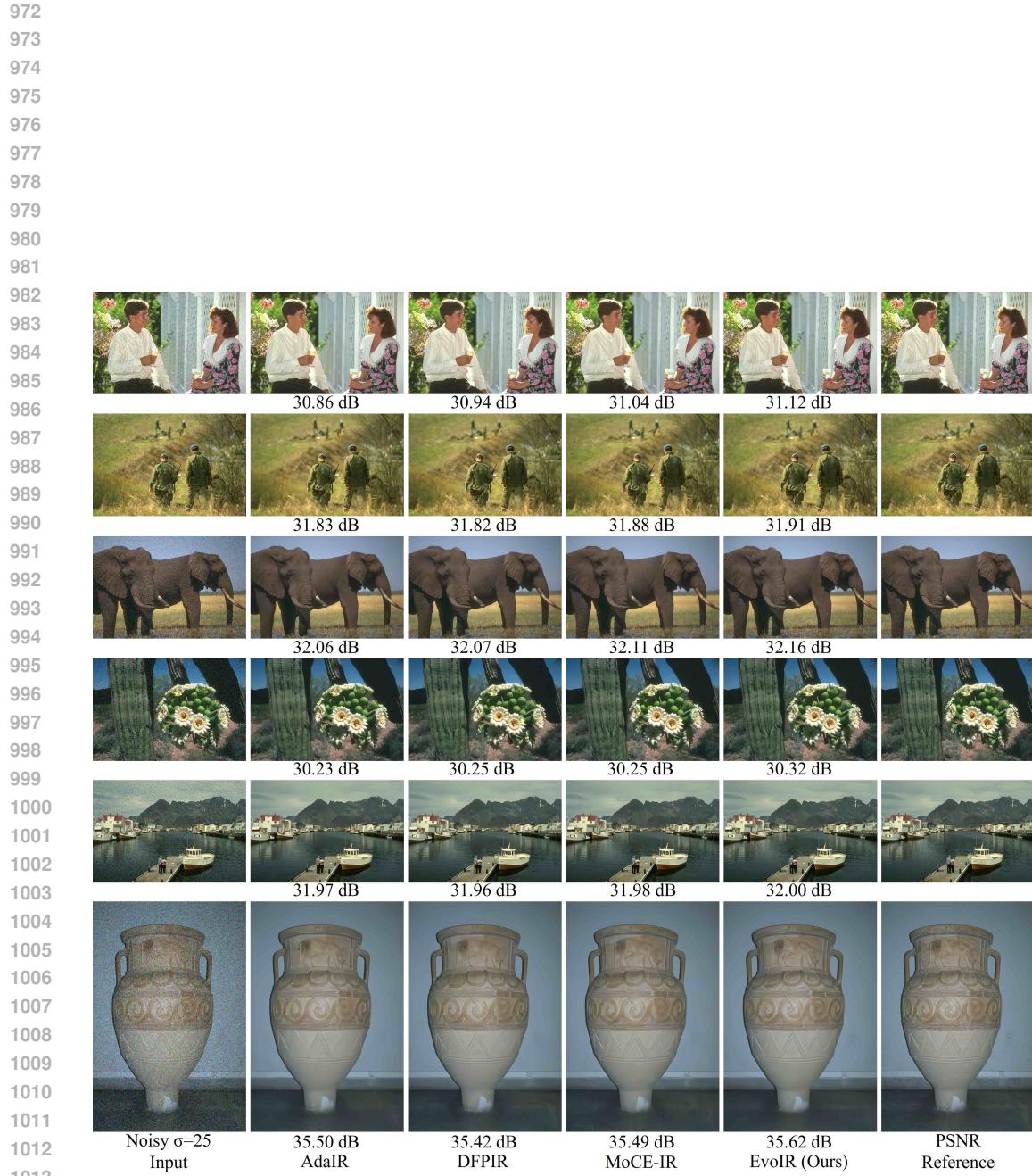


Figure 7: Denoising ( $\sigma = 25$ ) visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R” setting.

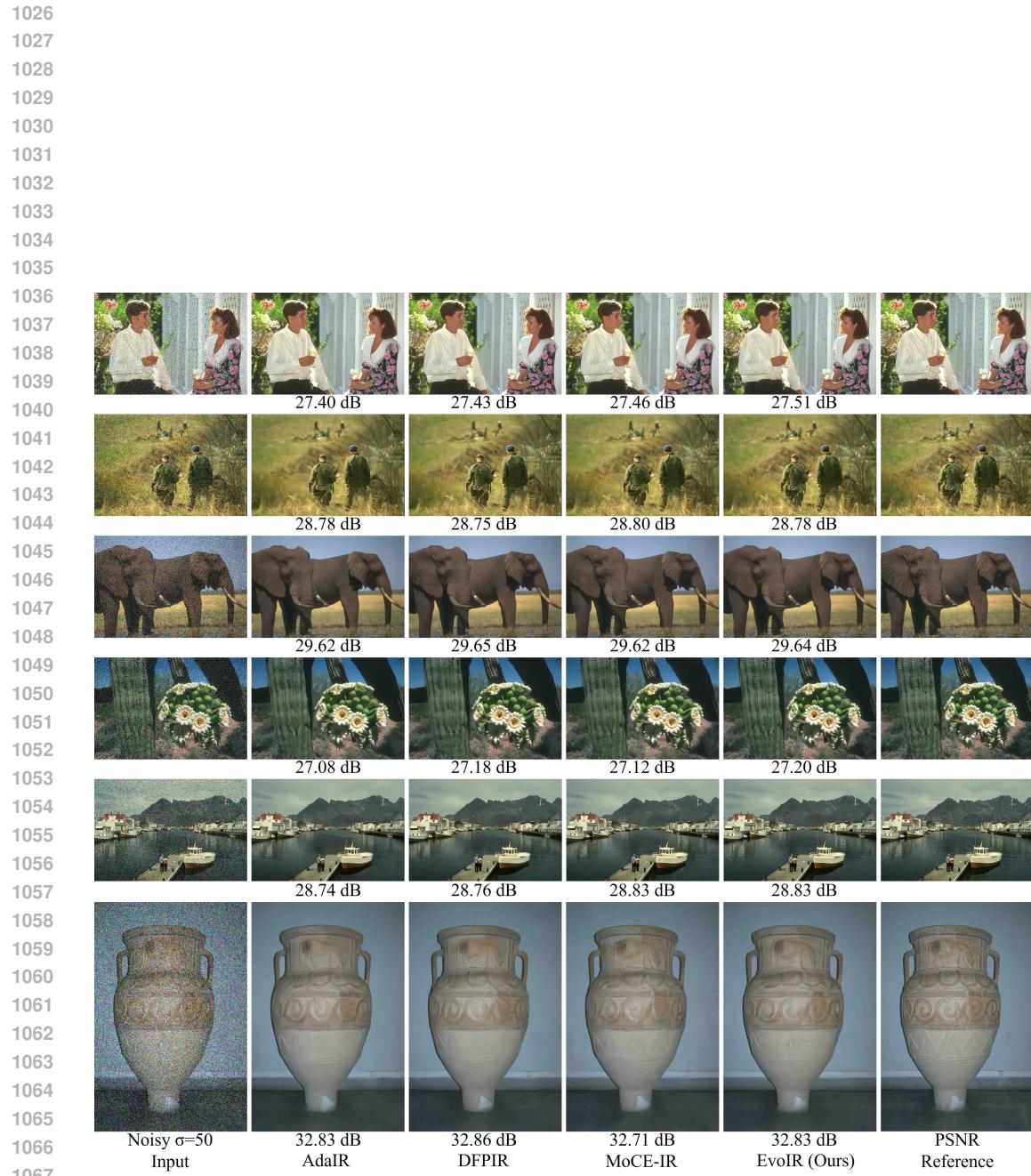


Figure 8: Denoising ( $\sigma = 50$ ) visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R” setting.

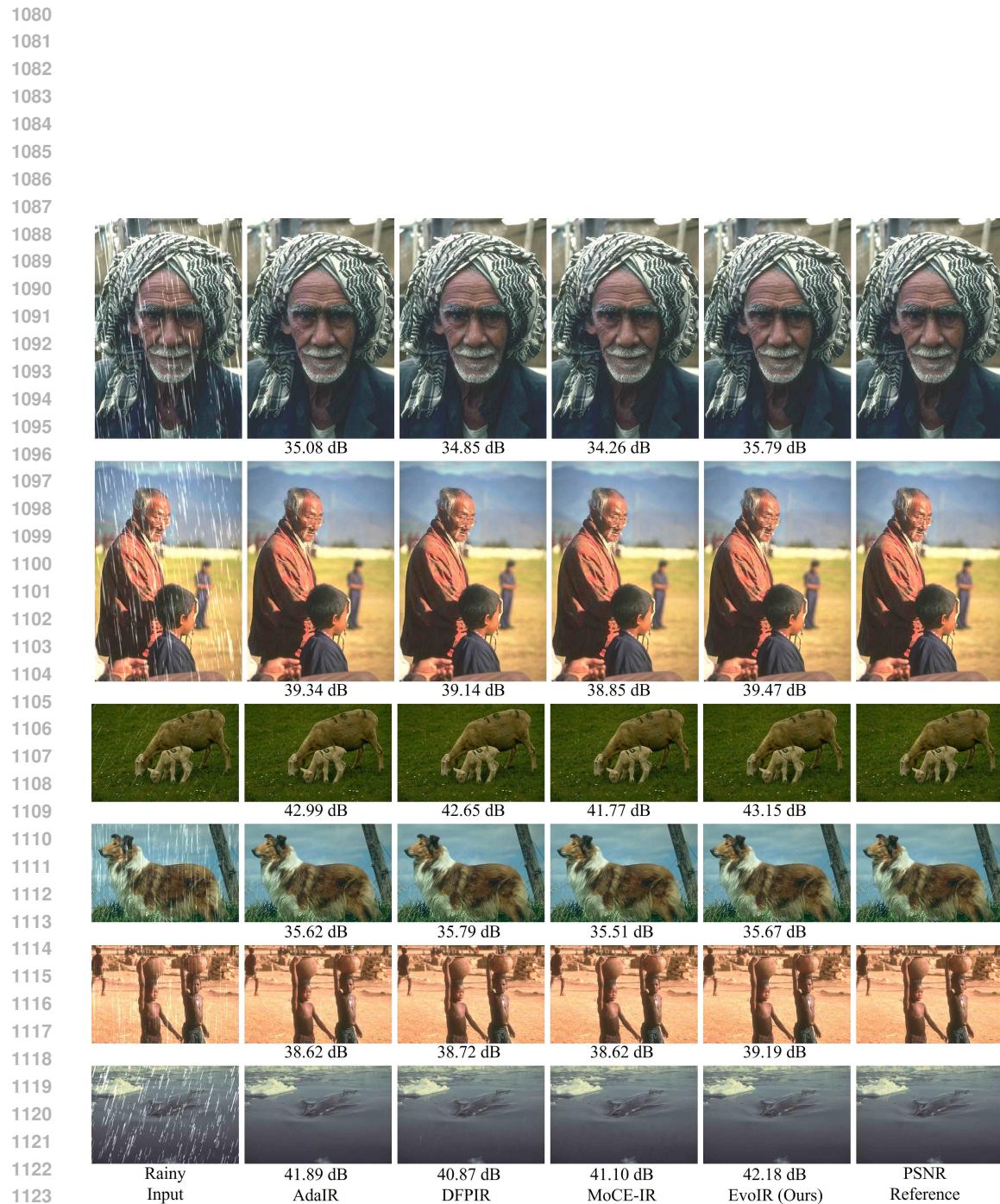


Figure 9: Deraining visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R” setting.

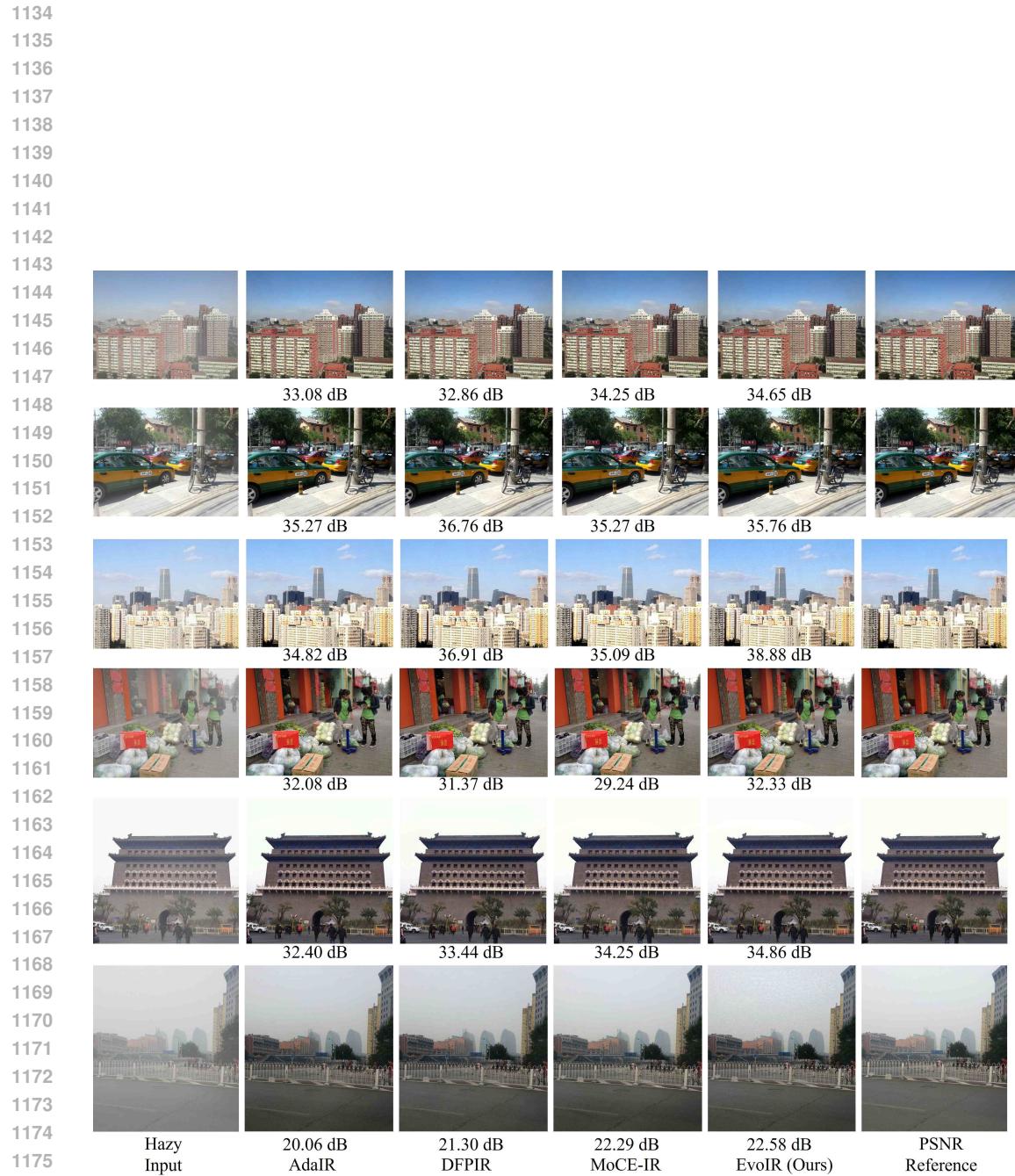


Figure 10: Dehazing visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R” setting.

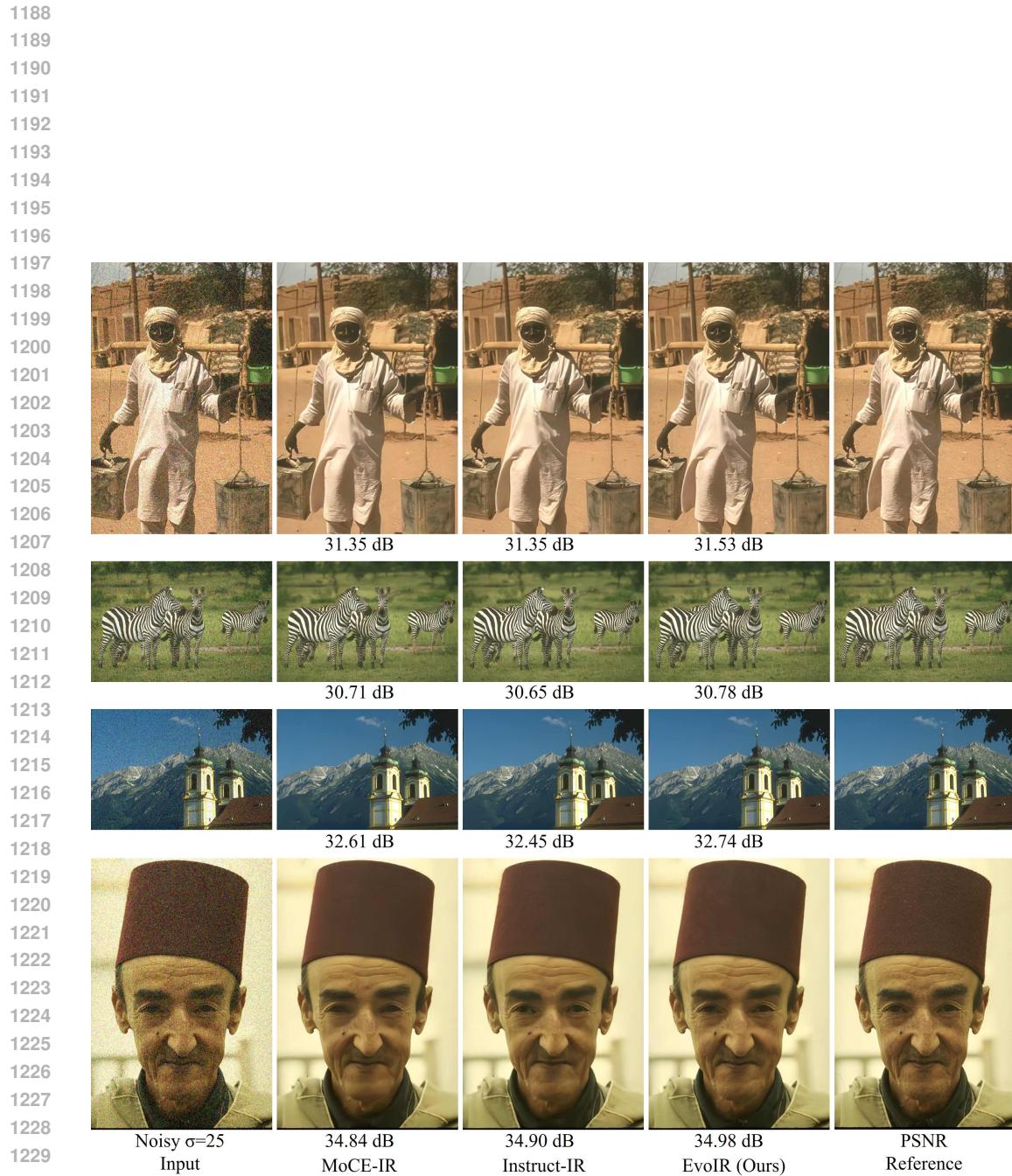


Figure 11: Denoising ( $\sigma = 25$ ) visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R+B+L” setting.

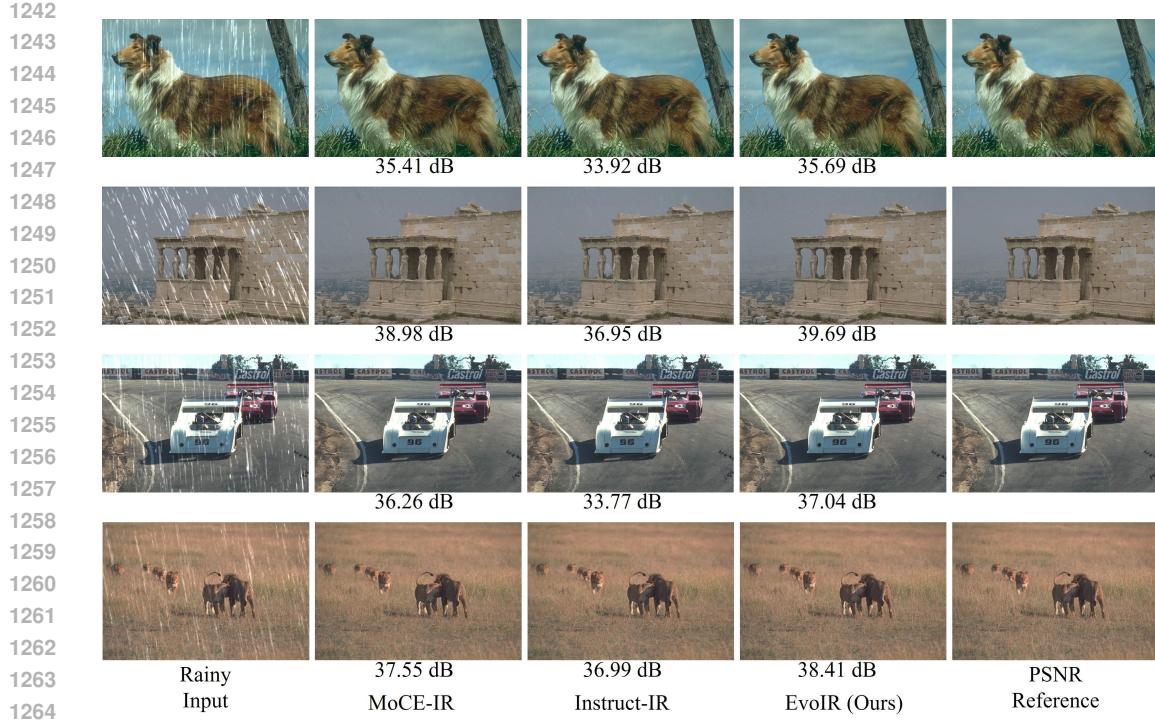


Figure 12: Deraining visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R+B+L” setting.



Figure 13: Dehazing visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R+B+L” setting.

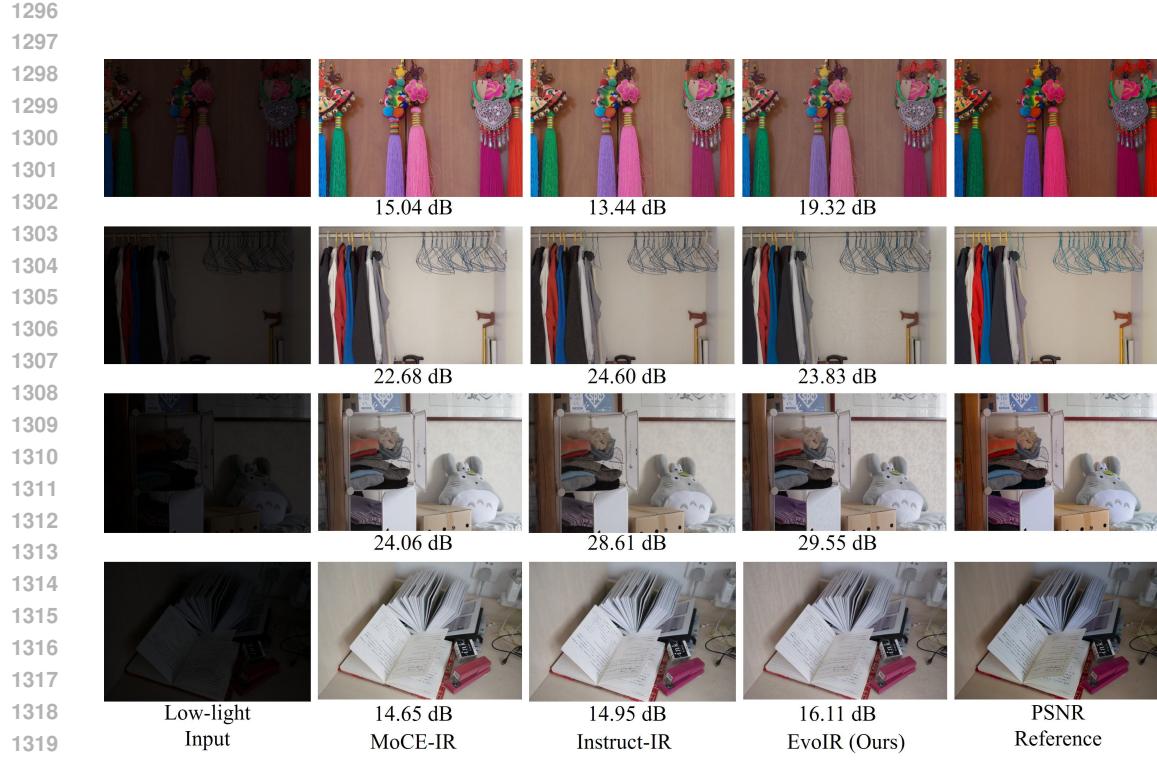


Figure 14: Enhancement visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R+B+L” setting.



Figure 15: Deblurring visual comparisons of EvoIR with state-of-the-art All-in-One methods under “N+H+R+B+L” setting.