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ABSTRACT

Masked diffusion language models (MDLMs) are trained to infill positions in ran-
domly masked sequences, in contrast to traditional next-token prediction (NTP)
models. Discussions around MDLMs focus on two benefits: (1) multi-token de-
coding and 2) any-order decoding. However, we observe that for math and coding
tasks, any-order algorithms often underperform or behave similarly to left-fo-right
sampling, and standard multi-token decoding significantly degrades performance.
At inference time, MDLMs compute the conditional distribution of all masked po-
sitions. A natural question is: How can we justify this additional compute when
left-to-right one-token-at-a-time decoding is on par with any-order decoding al-
gorithms? These findings warrant rethinking how MDLMs are utilized. First, we
propose multi-token entropy decoding (MED), a simple adaptive sampler that min-
imizes the error incurred by decoding positions in parallel based on the conditional
entropies of those positions. MED preserves performance across benchmarks and
leads to 3x fewer steps. Second, we propose a reasoning-as-infilling framework.
By using MDLMs to infill a reasoning template, we can structure outputs and dis-
tinguish between reasoning and answer tokens. In turn, this enables measuring
answer uncertainty during reasoning. This enables early exits when the model
converges on an answer. Combined with MED, this leads to a 69% speed-up on
GSM8K with a minimal (0.1%) effect on accuracy. Finally, given an answer, our
framework enables sampling from the posterior over reasoning traces conditioned
on the answer, even when the model is incorrect. On GSM8K, this enables gener-
ating correct reasoning traces for 43% of problems originally solved incorrectly.
Our work demonstrates that the training objective and compute used by MDLMs
unlock many new possibilities for inference and post-training methods.

1 INTRODUCTION

The current dominant approach for language modeling is based on next-token prediction (NTP)
training. NTP language models learn the conditional distribution of the next token, given the previ-
ous tokens in a sequence (Shannon, 1951; Radford et al., 2019). The resulting language model is
sampled auto-regressively left-to-right, one token at a time. Recent work proposes MDLMs (Austin
et al., 2021; Sahoo et al., 2024; Shi et al., 2024) as an alternative to NTP models. MDLMs are trained
to in-fill sequences with randomly masked positions. The resulting model learns the distribution
po (2| Xyx-maskep) at every masked position 1.

While modeling all masked positions requires additional compute, MDLMs have several potential
benefits, such as parallel token decoding (Sahoo et al., 2024; 2025), and flexible decoding orders
(Kim et al., 2025) that lead to significant improvements on logic puzzles, such as Sudoku. Addi-
tionally, Bachmann & Nagarajan (2024); Prabhudesai et al. (2025) show that multi-token prediction
objectives can achieve better likelihoods and accuracy on tasks, and access to the distribution and
samples from masked positions supports controllable generation (Schiff et al., 2024; Singhal et al.,
2025).

In our work, we first examine two purported benefits of MDLMs: multi-token and any-order decod-
ing, on mathematical reasoning and coding benchmarks. Despite the flexibility enabled by MDLMs,
we observe that decoding one token in a left-to-right order, identically to an NTP model, is a strong
decoding choice for MDLM models. Even decoding just two tokens in parallel substantially reduces
performance on popular benchmarks. These findings raise questions about the substantial extra
compute MDLMs spend to model the distribution of all masked positions.
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Figure 1: MDLMs learn the conditional distributions at each masked token position. A) We utilize
the entropy of these distributions to adaptively set the number of tokens decoded at each step. B) We
also reframe reasoning as infilling a prompted reasoning template, which enables directly modeling
answer token probabilities during reasoning. This provides several benefits, like C) enabling early
exits and also post-hoc reasoning given a pre-filled answer.

In this work, we show how this compute can be made useful. We demonstrate that (a) the access
that MDLMs provide to the conditional distributions of all masked positions and (b) their ability to
in-fill, unlocks new sampling and post-training capabilities that are not readily available for NTP
models.

First, we revisit multi-token decoding. Decoding multiple positions in a single step results in sam-
ples that are not from the MDLM’s learned distribution, as typically pp(z®, 27 | Xux-masken) 7
Po (2 | Xun-maskep)Po(27 | Xun-maskep). However, by making use of the entropy of the masked
positions to inform decoding, we can control how much multi-token decoding deviates from single
token sampling. We propose Multi-token Entropy Decoding (MED), an adaptive multi-token de-
coder that decodes multiple positions only if the conditional entropy of those positions falls below
a specified threshold. We find that MED leads to 2-3 x fewer function calls, with a minor or no drop
in performance.

Next, we demonstrate that the ability of MDLM to in-fill opens up new model prompting paradigms.
In this work, we propose prompting-as-infilling, where we add the user-specified context in multiple
positions, not just the beginning of the sequence, unlike NTP models. Specifically, we consider
reasoning-as-infilling. Here we pre-fill an explicit reasoning template, with specific reasoning and
answer positions (see fig. 1). This enables explicit control over the length and format of the reasoning
trace. We demonstrate that infilling this template provides many other significant advantages. By
explicitly distinguishing token answer positions, we make use of the conditional distributions of the
masked positions provided by MDLMs to measure the uncertainty of the answer while reasoning.
In turn, this enables early exits once the model converges on an answer, further reducing inference
costs.

Additionally, reasoning-as-infilling has consequences for analyzing model behavior and improving
performance. Given access to an answer, we can sample from the MDLM’s posterior distribution
of reasoning traces conditioned on the answer, py(r | c,a). This enables generating high-quality
post-hoc reasoning traces for use in model fine-tuning.

Contributions.

* Examining MDLM sampling benefits. We evaluate MDLM models, such as Dream (Wu et al.,
2025) and LLaDA (Nie et al., 2025), on several tasks. We find that the any-order sampling
capability of MDLM provides limited benefits, and that standard multi-token decoding degrades
performance.
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* Multi-token Entropy Decoding: We propose MED, an adaptive sampler that provides a 2 — 3 x
speed-up, without any loss in performance on math and coding benchmarks.

* Reasoning-as-Infilling. We propose reasoning-as-infilling for MDLMs, which leverages their in-
filling capabilities. We then show that distinguishing reasoning and answer tokens can provide
several benefits, such as:

— Early exits, which lead to a 3.3 x speed when combined with MED.

— Post-hoc reasoning with MDLMs, where given question-answer pairs, we generate reasoning
traces conditioned on the answer. On the GSM8K dataset, sampling from the posterior dis-
tribution finds correct reasoning traces for 43% of the questions the original model failed to
solve. Given answers, we can also estimate the correctness of the MDLM reasoning process
at intermediate steps without an external verifier.

2 RELATED WORK

Multi-Token Prediction and Speculative Decoding. Gloeckle et al. (2024) show that models
trained with the multi-token objective can enable parallel multi-token decoding, or speculative de-
coding, without making use of another model. However, unlike MDLMs, Gloeckle et al. (2024) limit
to predicting the next 2,4 tokens. Several other works (Leviathan et al., 2023; Chen et al., 2023)
show that using smaller draft models for generation and then rejection sampling can also enable
parallel decoding with NTP models. However, MDLMs offer many possibilities beyond left-to-right
parallel decoding, such as in-filling, and error correction through re-masking of unmasked tokens
(Wang et al., 2025). Israel et al. (2025) propose an adaptive multi-token decoder which samples from
the product of an NTP and MDLM model. Unlike MED, their approach relies on rejection sampling
based on an external NTP model.

Post-hoc reasoning. Zelikman et al. (2022) proposes generating and fine-tuning on reasoning
traces with language models that are generated given a correct answer. Phan et al. (2023); Ruan et al.
(2025) propose fine-tuning a model on samples from approximations of the posterior py(r | c,a). In
contrast, MDLMs enable exact sampling from the posterior of the reasoning traces given the answer
by simply in-filling the answer in the answer block provided in the reasoning-as-infilling frame-
work.

Concurrent Work. Concurrent to our work, Ben-Hamu et al. (2025) propose entropy-bound (EB)
sampler, an adaptive multi-token decoder, which similar to MED controls the error incurred by multi-
token decoding. EB sampler adds multiple positions to unmask based on the difference between
the sum of the positions added and the maximum entropy until the difference exceeds a specified
threshold . MED unmasks positions based on the individual entropies rather than thresholding
based on the sum. We observe that MED leads to fewer NFEs while getting higher accuracies, see
tables 6 and 7 in Ben-Hamu et al. (2025) versus table 4 for a comparison.

3 MASKED DIFFUSION LANGUAGE MODELS

MDLMs (Sohl-Dickstein et al., 2015; Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024) are
a class of generative models for modeling discrete data. These models are trained by taking data
X ~ (qaa, Where x is an arbitrary length sequence where each position takes values in a finite
vocabulary V. For training, the sequence x ~ ¢qa is masked randomly, and the model learns to
predict the distributions of the masked positions for a fixed length sequence:

1 .
- E 1 J ; 1
wex IMASKED-SET| _ 08 Po(7” | Xun-masked; ©) M
]EMASKED—SET

where c is the context and MASKED-SET is the set of positions that have been masked. Sampling
from an MDLM is performed by iteratively un-masking positions. Notably, an MDLM can also be
viewed as any-order auto-regressive model (Uria et al., 2014; Ou et al., 2024), where given a decod-
ing order o = [o01,...,0¢] With o; € {1,2,..., ¢}, the sampling model can be defined as:

01
po(x | c,0) = [[ po(2°9) | xo(< ), €) 2
F=0
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where o; refers to the position decoded at step j and x,(<;) refers to all positions decoded prior
to step 5. Additionally, block-sampling (Sahoo et al., 2024; Nie et al., 2025; Arriola et al., 2025)
approaches define a left-to-right sequence of fixed length blocks and decode within each block in an
arbitrary order.

3.1 PRELIMINARY OBSERVATIONS

In our work, we first examine two purported benefits of MDLMs: any-order and multi-token de-
coding, on popular mathematical reasoning, GSM8K (Cobbe et al., 2021a) and MATH500 (Luo
et al., 2024), and coding benchmarks, HUMANEVAL (Chen et al., 2021) as well as Sudoku (Shahab,
2025):

1. Does any-order decoding help for text? Popular sampling approaches for MDLMs select posi-
tions to unmask based on confidence (e.g. token probability (Chang et al., 2022) or entropy (Kim
et al., 2025; Ye et al., 2025b)). We find that these any-order decoding algorithms either sample a
large portion of tokens in a left-to-right order or underperform left-to-right sampling. For exam-
ple, on GSM8K, the best configuration of any-order entropy decoding samples ~ 50% of tokens
left-to-right. Without block sizes (Arriola et al., 2025) that enforce a semi-auto-regressive (AR)
left-to-right structure, any-order significantly affects performance, see table 1. A notable excep-
tion where any-order sampling provides a significant benefit is Sudoku. We include additional
analysis in appendix A.

2. Does parallel decoding work? We observe that even decoding two tokens in parallel at a time
can severely hurt model performance across all tasks, see table 2. The resulting distributions also
have high KL with respect to a one-token sampling algorithm, see table 3.

These findings show that the decoding order from NTP models is performant for MDLM models,
despite their any-order and multi-token decoding capacities. Despite these findings, we show that
the additional compute and capacities offered by MDLMs have many possible benefits.

Decoding order GSMSK Math500 HumanEval Sudoku (4)
Llada Dream Llada Dream ILlada Dream Llada Dream
Left-to-right 75.96  74.98 294 29.2 1524 53.65 36.13 17.28

Any-order decoding  53.44  34.11 12.0 206 1097 3292 47.64 61.26

Block any-order (8) 7695 75.73 334 296 1646 37.17 38.74  44.50
Block any-order (32) 78.01 75.81 324 28.2 1524 48.17 47.64* 61.26*
Block any-order (64) 74.14 57.69  30.0 28.2 14.63  47.56 - -

Llama3.1-8B 70.81 26.80 62.20 2.09

Table 1: Left-to-right sampling is a competitive sampling algorithm for reasoning and coding.
When performing entropy decoding (Ye et al., 2025b), we observe that full any-order sampling
results in poor performance on all tasks but Sudoku. Left-to-right block decoding is required to
make any-order sampling performant, and left-to-right sampling (block size = 1) is always within
a few percent of the best configuration. We also observe in appendix A that performant block
any-order configurations sample a large portion of tokens left-to-right.*For Sudoku, we consider
sequences of length 32, otherwise we use a sequence length of 128.

Parallel Tokens GSMSK Math500 HumanEval Sudoku
Llada Dream Llada Dream Llada Dream Llada Dream

1 7695 75.73 334 29.6 1646 51.82 47.64 61.26
2 62.31 57.69 19.6 16.6 487 20.12 50.79 57.59
4 33.58  28.50 7.0 3.6 487 12,19 2932 4293

Table 2: MDLMs can generate multiple fixed tokens in parallel, but this degrades accuracy. We
decode 1, 2, 4 tokens in parallel, with block any-order (8) entropy decoding. We note that decoding
even two tokens in parallel leads to a significant drop on all tasks but Sudoku.
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4 NO COMPUTE LEFT BEHIND

MDLMs are trained to in-fill sequences by modeling the distributions pg (xj | Xun-masked, €) for masked
positions j € MASK-SET given un-masked text Xy, masked and a context c.

Typically, MDLMs are prompted similarly to NTP models, and the additional compute spent on these
position distributions is only used for sampling a fixed number of positions. The remaining distribu-
tions are discarded. In this work, we show that the ability of MDLMs to in-fill and to access the dis-
tribution of all masked positions unlocks many new sampling and post-training capabilities.

* Multi-token Entropy Decoding. We introduce MED, an adaptive multi-token decoding algorithm
that controls the error incurred by multi-token decoding by decoding multiple positions only if the
conditional entropies of the decoded positions falls below a threshold.

* Reasoning-as-Infilling for Control, Early Exits, and Post-Training Benefits. We propose in-
filling a user-specified prompt in multiple parts of the sequence. Specifically for reasoning tasks,
we first pre-fill a reasoning template that differentiates between reasoning and answer positions,
then infill with the MDLM model. This method of prompting enables controlling the length of the
reasoning process, and measuring the uncertainty of the answer block during the reasoning process
for early exiting. We also demonstrate how this approach supports new post-training directions
for MDLMs.

Assumptions. We assume that the masked conditional distributions learned by the MDLM model
define a consistent joint distribution (Majid et al., 2025).

4.1 MULTI-TOKEN ENTROPY DECODING

As MDLMs learn the conditional distribution pg (l'j | Xun-maskep) for all masked tokens, they support
unmasking multiple tokens in parallel. However, decoding even two positions, * and =7 in parallel
can result in samples that may not be likely under the MDLM joint distribution py(x), as typically

Pe(fﬂi,fj | XUN—MASKED) # pa(l‘i ‘ XUN»MASKED)pe(l'j | XUN—MASKED)~ In table 2, we observe that
decoding even 2 tokens in parallel hurts performance.

However, for any set of positions A C MASK-SET C {1, ..., ¢}, we can upper bound the Kullback-
Leibler (KL) divergence between the joint distribution py (XA | Xun-masked, €) and the factorized dis-
tribution [ [, 4 Po (2" | Xun-masked, €) With the sum of the entropies of the masked tokens:

KL <p9 (XA ‘ Xun-masked y C)

H Do (1'2 | Xun-masked s C)) S Z H(xl ‘ Xun-masked C) (3)

icA icA
where H is the entropy of the distribution pg(xi | Xun-masked, €). For a proof, see appendix E.

In this work, we propose multi-token entropy decoding, which makes use of the entropies of the
masked positions 27 to decide whether to decode multiple positions in parallel. Given un-masked
teXt Xyn-masked, @ decoding threshold A and a maximum number of tokens to be decoded k, we
propose two definitions of the set A for selecting positions to un-mask:

* MED: We sort the position entropies in an ascending order and decode positions with that satisfy
H(x" | Xyn-masked; €) < A and select k such tokens. If no position has entropy lower than A, we
choose the position with the lowest entropy.

* AR-MED: We decode at most k tokens in a contiguous left-to-right order for positions that satisfy
H (2" | Xyn-masked; €) < A, or the left most position if no position has entropy below .

Both MED and AR-MED allow for upper bounding the KL divergence in eq. (3) by A\k.

4.2 REASONING-AS-INFILLING WITH MDLMS

Generally, NTP models are controlled at inference-time with a prompt prefix that is inserted at the
beginning of the sequence. However, for MDLMs we propose pre-filling the output sequence with
user-specified tokens. In the case of reasoning tasks, where a model produces a reasoning trace prior
to answering, we can pre-fill the output sequence with a reasoning template that distinguishes the
reasoning and answer token positions:
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[MASK]; [MASK]s ... [MASK]r <Answer Delimiter> [MASK|gy+1 ... [MASK]y

reasoning block answer block

Here the answer delimiter is a user-specified choice (e.g. "The answer is: " for math tasks, or func-
tion definitions for a coding task). In this reformulation of prompting, the context ¢ now includes
both the prompt and the answer delimiter, see fig. 1.

This prompting technique offers several advantages. For instance, we can control the amount of
compute spent on reasoning before generating an answer. More critically, by distinguishing between
reasoning and answer tokens, we can:

* Measure the uncertainty of the answer block while reasoning, allowing for early exits when the
model converges on an answer.

* With access to an answer, sample from the posterior distribution of the reasoning traces condi-
tioned on the answer. This enables generating reasoning traces for post-training.

Early exits with the answer entropy upper-bound. By having explicit positions for the answer
block and modeling the distribution of those positions, we can measure the uncertainty of the an-
swer while reasoning. Access to the distributions pg(a’ | Tun-masked; €), allows us to compute the
conditional entropy of those positions. We define the quantity:

Hyg (a | T'UN-MASKED C) = Z H(aj | T'UN-MASKED C)~ 4)

JjE{ANSWER-BLOCK }

While this quantity, in general, is not equal to the conditional entropy H (a | ryx-uaskep, €)> Hus
upper-bounds it.

H(a | TUN-MASKED C) < Hyp (a | T'UN-MASKED C)~ (5)

See appendix E for a proof. When Hy; falls below a user-specified threshold )\, we can exit the
reasoning process and generate the answer, reducing the inference requirements. Additionally, we
observe that answer uncertainty can provide some information about problem difficulty.

Generating reasoning traces conditioned on the answer. In this section, we demonstrate how
the in-filling capacity and the reasoning template can enable new training capacities for MDLMs.
Phan et al. (2023); Ruan et al. (2025) propose training a model py to maximize the probability of an
answer a given a context ¢, by maximizing the marginal log-likelihood:

log ps(a | ) = log / poa,r | )dr. ©)

r

While it is intractable to estimate this integral exactly, its gradient can be estimated as:
Vo 10gp«9 (a | C) = Epg(r | a,c)v9 10gp9 (aa r | C)' (7

Sampling from the posterior pg(r | a, c) is intractable for NTP models, therefore, Phan et al. (2023);
Zelikman et al. (2022) make use of approximate posterior sampling methods, which require signifi-
cant prompting engineering to yield reasoning traces given answer hints.

With MDLMS, using the reasoning-as-infilling template, one can simply in-fill the answer block po-
sitions, enabling exact sampling from the posterior distribution over the reasoning traces, assuming
that the masked conditional distributions define a consistent joint distribution.

5 EXPERIMENTS

In this section, we first study the effectiveness of multi-token entropy decoding for parallel sam-
pling. Then, we examine the inference-time and post-training benefits of the proposed reasoning-
as-infilling framework, such as (1) early-exits based on answer certainty Hyg(a | Tun-masked; €) and
(2) the ability to bootstrap high-quality reasoning traces given (question, answer) pairs.
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Dataset Sampler Model Accuracy{ KL | NFEs]|

LLaDa 78.01 0.0 128.0
Dream 75.81 0.0 128.0

LLaDa 36.24 92.6 64.0
Dream 19.79 99.5 64.0

OENTROPY, k=1

OENTROPY k=2

GSMBK LLaDa 7801 05 884
OMED,\=0.1 Dream 75.81 04 92.5

LLaDa 78.01 1.5 84.8

OMED,A=0.2 Dream 75.82 1.9 79.9

LLaDa 77.86 2.7 81.2

OMED,\=0.3 Dream 75.44 3.3 75.7

LLaDa 15.24 0.0 128.0

TENTROPY, k=1 Typanm 48.17 0.0 128.0

LLaDa 4.87 85.5 64.0

OENTROPY, k=2 yponm 4.87 77.0 64.0

HumanEval LLaDa 15.24 0.7 70.0
OMED,A=0.1 Dream 48.17 0.5 68.5

LLaDa 15.85 2.0 61.8

OMED,\=0.2 Dream 48.17 1.5 60.4

LLaDa 16.46 3.6 57.8

OMED,A=0.3 Dream 48.17 2.2 57.0

Table 3: MED enables parallel token decoding without any loss in performance. We compare
MED decoding with different A thresholds to entropy decoding with a fixed number of tokens & €
{1,2}. We observe that MED significantly reduces the number of NFEs while matching accuracy
and maintaining a low KL.

5.1 ACCELERATED SAMPLING WITH MULTI-TOKEN ENTROPY DECODING

In this experiment, we show that entropy-thresholded multi-token decoding (MED) enables parallel
decoding without incurring the distributional error and performance degradation that forced multi-
token decoding incurs.

For these experiments, we use two open-source MDLMs models, Dream 7B Instruct (Ye et al., 2025a)
and LLaDA 8B Instruct (Nie et al., 2025). We consider two popular benchmarks, (1) GSM8K (Light-
man et al., 2023), a mathematical reasoning dataset, and (2) HumanEval (Chen et al., 2021), a cod-
ing benchmark. As baselines, we consider the entropy decoding scheme ognrropy,r (Chang et al.,
2022; Ye et al., 2025b), which decodes a fixed number of k tokens in each step. We consider
ke {1,2}.

For evaluations, we measure the task accuracy and the number of function evaluations (NFES)
for varying values of k in the fixed token decoding scheme as well as varying values of A\ €
{0.1,0.2,0.3} in MED with £ = 32 as the maximum number of tokens decoded in parallel. We
fix a generation length £ = 128 and a block size of 32. Additionally, we also measure the KL
divergence between the likelihoods of the single-token decoding scheme with the multi-token de-
coding schemes. The likelihood for each decoding scheme o = (01, 09,...,0,) is computed as
H?Zl po(xs, | €,X,_,) where n < ¢ and oy denotes the position(s) decoded at step t. When decod-
ing multiple tokens in a single step, we use the conditionally independent factorization.

In table 3, we observe:
* Decoding just £ = 2 tokens in parallel results in a large drop in accuracy on GSM8K for both

LLaDA and Dream (> 40%). We observe that decoding k¥ = 2 also leads to a significant increase
in KL.
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* MED with A = 0.2, provides significant speed-ups and no loss in accuracy for both LLaDA
and Dream. For HUMANEVAL, MED results in identical accuracy with a 2.2x speed-up, and on
GSM8K, we observe a 1.5x speed-up with no loss in performance. In contrast to fixed decoding
with & = 2 tokens, the KL divergence is substantially lower even with fewer NFEs, and scaling A
offers a trade-off between fewer NFEs and KL.

5.2 THE BENEFITS OF Reasoning-as-Infilling

Early exits. We investigate the inference-time benefits of the proposed reasoning-as-infilling
framework on two mathematical reasoning datasets, GSM8K (Lightman et al., 2023) and MATH500
(Cobbe et al., 2021b), with the Dream 7B and LLaDA 8B models.

For both tasks, we consider the sequence length £ = 256 with block size 32. We pre-fill the answer
delimiter “The answer is \boxed{..", and allocate 10 answer tokens. As a baseline, we compare
against allocating a sequence of length 256 with no-reasoning template. For sampling, we examine
early exits with one-token decoding and both MED and AR-MED with A = 0.2.

In table 4, we observe:

* For both Dream and LLaDA, early exiting reduces the total number of NFEs, and increasing the
early exit threshold ~y enables trading faster inference for task accuracy. For example, for LLaDA,
we observe a 23% speed up on one-token entropy decoding with only a < 1% drop in performance
versus baseline reasoning template. Early exits combined with MED and AR-MED provide further
savings. LLaDa with MED and v = 0.1 outperforms the base configuration on GSM8K with a
3.3% speedup.

* Notably, the benefits of early exits are more pronounced for LLaDA than Dream, which requires
higher exit thresholds for speedups. This may be due to Dream’s adaption from an NTP model
(Gong et al., 2024; Ye et al., 2025a). See appendix A for a discussion of the sampling behavior of
Dream and LLaDA.

GSMSK Math500
Model Sampler Exit Param NFEs Acc. Exit Param NFEs Acc.
LLaDA  ogntropy,k=1  NO TEMPLATE 256 76.6 NO TEMPLATE 256 33.8
LLaDA  ognrropy, k=1 NO EXIT 256 79.4 NO EXIT 256 334
LLaDA  ogntropy,k=1 v=0.1 193 78.6 v=0.3 221 31.9
LLaDA  owygp,a=0.2 NO EXIT 94 79.9 NO EXIT 143 334
LLaDA  oygp,a=0.2 v=0.1 77 79.3 v=0.3 129 32.0
LLaDA 0 ar-mEp,A=0.2 NO EXIT 105 79.2 NO EXIT 143 334
LLaDA O AR-MED,A=0.2 Y= 0.1 93 78.1 v = 0.3 128 31.7
Dream  ognrropy,k=1 ~ NO TEMPLATE 256 80.1 NO TEMPLATE 256 334
Dream  Ognrropy, k=1 NO EXIT 256 79.8 NO EXIT 256 35.6
Dream  Ognrropy, k=1 v=0.7 225 76.7 v=0.7 245 33.2
Dream  owgp,a=0.2 NO EXIT 135 79.2 NO EXIT 147 35.6
Dream  Owygp,2=0.2 v=0.7 121 79.3 v=0.7 141 354
Dream  0ar-mep,A=0.2 NO EXIT 148 77.1 NO EXIT 151 35.6
Dream  0xr-mep,A=0.2 v=0.7 131 73.9 v=0.7 136 35.0

Table 4: Early-exits can accelerate MDLM inference. We evaluate reasoning-as-infilling with
early exits on a generation length of 256. Varying the early exit threshold ~ enables trading faster
inference for task accuracy. Lower values of ~ preserve performance.

Next, we investigate how a dataset of question-answer pairs {(c;,a;)} Y ;, can be used to analyze
and improve MDLMs. Due to limited compute, we generate and evaluate these traces, rather than
use them for training.

The answer posterior is a source of high-quality reasoning traces. Here, we evaluate reasoning
traces r generated from the posterior distribution py(r | c,a). A key challenge for training better



Under review as a conference paper at ICLR 2026

Judge Posterior Reasoning Scores
Qwen2.5-Math-PRM 38%
GPT-40 43%

Table 5: The MDLM reasoning posterior yields high-quality traces for problems that the origi-
nal model fails to solve. We perform posterior inference on the 1419 training samples that LLaDa
with greedy decoding fails to solve, and evaluate the resulting traces with two judges, QWEN2.5-
MATH-PRM (Zhang et al., 2025a) and GPT-40 (Hurst et al., 2024). Both models rate 40% of these
reasoning chains as correct.

reasoning models is collecting high quality reasoning traces (Zelikman et al., 2022). We investigate
whether the MDLM posterior distribution can provide these traces, even when an MDLM incorrectly
solves the original task.

To do this, we utilize question-answer pairs from GSM8K (Lightman et al., 2023). In this experiment,
we generate samples from the LLaDA-8B instruction fine-tuned model with MED (block size of 32).
On the GSMS8K training dataset, the model answers 1419 out of 7473 problems incorrectly. We use
these question-answer pairs to generate reasoning traces from the MDLM posterior (i.e. with the
answer pre-filled).

To evaluate these reasoning traces for correctness, we use GPT4o (Hurst et al., 2024), and the
Qwen2.5-Math-7B PRM (Zhang et al., 2025a), see appendix C for the system instructions to the
GPT40 model. We observe that both judge models rate ~ 40% of the posterior reasoning traces as
correct. In appendix D, we include examples of reasoning traces generated from the posterior and
the regular model with different judge labels. We observe that the posterior traces judged correct by
GPT4o0 contain accurate reasoning steps, correcting the original model’s behavior.

Scoring partial reasoning traces. (Lew et al., 2023; Singhal et al., 2025) show that intermediate
rewards can be used to generate samples that score higher rewards. In appendix B, we show that
MDLMs offer several methods for scoring whether the reasoning process will generate a correct
answer, which could be utilized for these approaches.

6 DISCUSSION

Much of the current tooling around pre-training, post-training, and inference for text generation has
been built around a key modeling choice: next-token prediction training. MDLMs are an expres-
sive class of models trained to in-fill masked sequences, requiring additional training and inference
compute. In our work, we find that this additional compute has many uses beyond just accelerat-
ing inference and warrants rethinking how these models are utilized. For instance, the ability to
in-fill unlocks new prompting techniques, like the proposed reasoning-as-filling framework, along
with new data generation and post-training methods. Large-scale language models trained on next-
token prediction have revolutionized text generation. Our work provides evidence that models such
MDLMs, trained on alternative objectives, unlock new capabilities not readily available to NTP ap-
proaches.

6.1 LIMITATIONS

State-of-the-art NTP language models achieve significant benefits from long reasoning chains (Guo
et al., 2025; OpenAl, 2025). While the MDLM framework introduces new possibilities, MDLMS
come with computational costs that make the current available models impractical for long-context
tasks. Most notably, for a sequence of length ¢, an NTP model needs to make ¢ predictions, while
an MDLM model makes O(¢?) predictions. Moreover, current MDLMs do not naturally support
inference-optimizations, such as caching, for any-order decoding. We are hopeful that our findings,
which highlight the benefits and sampling behavior of current models, can help guide architectural
decisions for future models that address these limitations.
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A  MDLM ANY-ORDER SAMPLING BEHAVIOR

We study the effects of greedy any-order entropy decoding (Ye et al., 2025a) for LLaDA (Nie et al.,
2025) and Dream (Ye et al., 2025a), as well as any-order with different block lengths (Sahoo et al.,
2024; Arriola et al., 2025; Nie et al., 2025; Ye et al., 2025a). The block length is the contiguous
region of consecutive positions considered by the sampling algorithm, where the model can decode
in any order. Blocks are unmasked left-to-right.

We included our results in table 1. On Sudoku, any-order sampling significantly improves per-
formance.! However, for the remaining datasets, left-to-right sampling with a block length of 1
is a competitive approach. In some cases (e.g. for Dream on HUMANEVAL (Chen et al., 2021)),
left-to-right block length 1 sampling is the most performant configuration. Additionally, purely
any-order decoding (i.e. when the block size = generation length), leads to a massive drop in per-
formance.

In what order are tokens decoded? In table 7 and appendix A, we analyze the behavior of these
different configurations on a portion of GSM8K and HUMANEVAL. We compute the fraction of
non-EOS tokens decoded from the leftmost masked position, the average distance from the leftmost
position, and the total number of non-EOS tokens. For GSM8K, we also include the average step at
which the answer appears in the decoded sequence.

Notably, top performing block-length configurations often behave very autoregressively. On
GSM8K, when the block size is 32, both LLaDA and Dream sample the leftmost unmasked position
approximately 50% of the time. Additionally, the average distance of the unmasked position from
the left-most mask is approximately 3 tokens. Gong et al. (2025) similarly observe the left-to-right
sampling behavior of Dream for coding.

Why are block lengths necessary? We find that that purely any-order decoding from current
MDLMs results in less auto-regressive generation, fewer non-eos tokens, and very early answers,
not utilizing the full allocated generation length. Reviewing samples from any-order decoding, we
observe two specific pathological behaviors: 1) Models first greedily decoding low entropy end-of-
text tokens, leading to shorter or empty texts that do not fully utilize the assigned tokens, and 2)
decoding only an answer, or decoding answers first, before reasoning chains.

Config Model Acc. % Leftmost Dist. Left Non-EOS Tokens Answer Step

Block()  Dream  764%  100.0% 0.0 105.1 78.1
LLaDA  79.0%  100.0% 0.0 115.3 84.3
Dream  77.6%  52.1% 2.9 103.1 763
Block(32) [1.pA 768%  47.1% 33 112.3 82.8
Dream  342%  73.1% 65 243 18.7
AO(I28) 1 .DA 534%  40.8% 202 75.0 16.9

Table 6: Decoding Behavior, GSM8K We evaluate the autoregressiveness of different sampling
configurations by measuring the percent of non-EOS tokens decoded from the leftmost position,
the average distance of these positions from left, the total number of non-EOS tokens, and at what
timestep the answer is decoded. We consider generation lengths of 128 on a portion of GSM8K
(n = 500)

B POSSIBILITIES FOR ANALYZING MODEL BEHAVIOR

Additionally, we observe that the conditional distributions of the answer block positions provide
information about correctness during the reasoning process, see fig. 2. Without access to any answer,
the conditional entropy upper bound Hygs(a | Tun-masked, €) is weakly correlated with correctness
(Pearson correlation of 0.28).

However, with gold labels a, the conditional distributions learned by MDLM provide a “process re-
ward model" that scores partial generations for correctness. During reasoning, the log probabilities

'Of note, on Sudoku, diffusion models with auto-regressive sampling significantly outperform Llama 8B.
This may reflect benefits of the MDLM training objective.
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Config Model Acc. % Leftmost Dist. Left Non-EOS Tokens

Block(ly | Pream 537%  100.0% 0.0 95.0
LLaDA 11.0%  100.0% 0.0 119.8
Dream  482%  43.1% 38 96.8
Block(32) [y pA 1520  44.7% 41 119.5
Dream  32.9%  44.5% 6.8 56.4
AOU28)  [1.DA 11.0%  29.7% 19.7 123.8

Table 7: Decoding Behavior, HumanEval Similar to table 7, we measure autoregressiveness for
generation lengths of 128, on a portion of HumanEval (n = 500)

Correlation with Correctness

—e— Answer Log-Probs
Answer Block Neg. Entropy
<— Qwen2.5-Math-PRM

0.8
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0.0
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Figure 2: MDLMs enable scoring their own reasoning process without an external process
verifier. We score GSM8K reasoning traces, generated left-to-right with LLaDA, at intermediate
steps using (a) gold answer log probabilities, (b) the answer block entropy bound, and (c) and an 8B
process reward model (PRM) (Zhang et al., 2025b). Gold answer probability at intermediate steps
is more predictive of final correctness than PRM scores. Even without gold labels, the answer block
entropy is weakly correlated with correctness.

of the gold answer tokens log py(a j | ¢, Tyn-masked) are more strongly correlated with final answer cor-
rectness at intermediate steps than a pretrained process reward model (Zhang et al., 2025a).

Qualitatively, we observe that drops in these gold answer probabilities at intermediate steps can cor-
respond to reasoning mistakes (See Appendix). This indicates that MDLM pre-training unlocks other
new post-training capabilities: low-quality reasoning chains could terminated early, the reasoning
process could be steered towards correction solutions, reflection tokens could be automatically in-
serted at reasoning failures, and new sources of dense feedback could incorporated into fine-tuning
objectives.

C EVALUATING REASONING TRACE CORRECTNESS

We evaluate reasoning trace correctness with GPT4o (Hurst et al., 2024). We use the following
template to evaluate the reasoning chain:

SYSTEM_INSTRUCTIONS = """
You are a strict grader.
You are given a question and a model’s response.

Return a answer of either:
— 1 if both the model’s final answer AND reasoning chain are correct.

- 0 otherwise.

Your final answer should be the digit 0 or 1.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

wnw

PROMPT_TEMPLATE = """Grade the submission.

[Question]
{question}

[Model Response]
{reasoning}

[Reference Answer]

{reference_answer}
mmwn

We use 512 tokens for all judge models, and default hyperparameters.

D REASONING TRACE EXAMPLES

Below, we include reasoning traces from the model pyp(a | r,c)pg(r | ¢) and the posterior traces
po(r | a,c). We include samples where LLaDA originally fails to correctly answer the question.
In two cases, the posterior succesfully provides an alternative correct reasoning trace, and in two it
fails to do so.

D.1 CORRECT POSTERIOR TRACES

Question: Ms. Warren ran at 6 mph for 20 minutes. After the run, she walked at 2 mph for
30 minutes. How many miles did she run and walk in total?

Incorrect LLaDA output:

I Ms. Warren ran at 6 mph for 20 minutes, which is S$\frac{20}{60} =
\frac{1}{3}$ hours. So, she ran $6 \times \frac{l}{3} = 2$
miles.

3 Ms. Warren walked at 2 mph for 30 minutes, which is $\frac{30}{60}
= \frac{1}{2}$ hours. So, she walked $2 \times \frac{l}{2} = 2
miles as well.

5 The answer is \boxed{4} miles.
Correct LLaDA posterior:

I Ms. Warren ran at 6 mph for 20 minutes, which is 20/60 = 1/3 of an
hour.

So, she ran 6 mph » 1/3 hour = 2 miles.

After the run, she walked at 2 mph for 30 minutes, which is 30/60 =
1/2 of an hour.

4 So, she walked 2 mph * 1/2 hour = 1 mile.

5 In total, Ms. Warren ran and walked 2 miles + 1 mile = 3 miles.

The answer is \boxed{3}

w o

[=

\. J

Question: Each week Jaime saves $50. Every two weeks she spends $46 of her savings on
a nice lunch with her mum. How long will it take her to save $135?

Incorrect LLaDA output:
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5 The answer is \boxed{5}

Jaime saves $50 each week, so in two weeks she saves $50 x 2 = $100.
Every two weeks she spends $46, so in two weeks she saves $100 -
$46 = $54.

To save $135, she needs to save $135 - $54 = $81 more.

Since she saves $54 every two weeks, it will take her $81 / $54 = 3
more two weeks to save $135.

The answer is \boxed{3}+2 = 6 weeks.

Correct LLaDA posterior:

Jaime saves $50 each week, so in two weeks she saves $50 x 2 = $100.

However, she spends $46 every two weeks, so her net savings every
two weeks is $100 - $46 = $54.

To find out how long it will take her to save $135, we divide $135
by her net savings every two weeks: $135 / $54 = 2.5.

Therefore, it will take her 2.5 two weeks to save $135.

D.2 INCORRECT POSTERIOR TRACES

® N L R W N

) —

w
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Question: Tommy is making 12 loaves of bread. He needs 4 pounds of flour per loaf. A
10-pound bag of flour costs $10 and a 12-pound bag costs $13. When he is done making his
bread, he has no use for flour and so he will throw away whatever is left. How much does he
spend on flour if he buys the cheapest flour to get enough?

Incorrect LLaDA output:

Tommy needs 12 loaves of bread, and each loaf requires 4 pounds of
flour.
Therefore, he needs a total of 12 x 4 = 48 pounds of flour.

The cheapest option is to buy 12-pound bags of flour.
Since Tommy needs 48 pounds, he will need 48/12 = 4 bags.
Each bag costs $13, so the total cost for 4 bags is 4 % 13 = $52.

The answer is \boxed{52}.
Incorrect LLaDA posterior:

Tommy needs 12 loaves of bread, so he needs a total of 12 x 4 = 48
pounds of flour.

If he buys 10-pound bags, he will need 48/10 = 4 bags,

which will cost 4 x 10 = 40.

If he buys 12-pound bags, he will need 48/12 = 4 bags, which will
cost 4 « 13 = $52.

Therefore, Tommy should buy 10-pound bags to save money.

The answer is \boxed{50}.

Question: Thomas started saving for a car almost 2 years ago. For the first year, his weekly
allowance was $50. In the second year, he got a job that pays $9 an hour at a coffee shop and
worked 30 hours a week, so his parents discontinued his allowance. If the car he wants to
buy is $15,000 and he spends $35 a week on himself, how much more money does Thomas
need to buy the car by the end of the 2 years?

Incorrect LLaDA output:
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I In the first year, Thomas earned $50 x 52 = $2600.

2 In the second year, Thomas earned $9 x 30 x 52 = 7980.
3 Thomas saved $2600 + $7980 = 10580.

4 Thomas spent $35 x 52 = 1820.

5 Thomas still needs $15000 - 10580 - 1820 = 2600 more.
6 The answer is \boxed{2600}.

Incorrect LLaDA posterior:

I In the first year, Thomas earned $50 x 52 = $2600.

> In the second year, Thomas earned $9 x 30 x 52 = 8760.

3 Thomas spent $35 x 52 x 52 = 8360.

4 In total, Thomas saved $2600 + $8760 — $8360 = 3000.

5 To buy the car, Thomas still needs $15000 - 3000 = $2000.
6 The answer is \boxed{2000}

E PROOFS

MED KL upper-bound Here we prove that for any set A C {1,...}/un-masked, the following
upper bound holds:

KL | ps (XA ‘ Xun-masked C) Hpe(ﬂfi | Xun-masked s C) < Z l‘v_l(l'Z ‘ Xun-masked 5 C) ®)
€A I€EA
Note that:

KL Do (XA | Xun-masked s C) H Do (l_z | Xun-masked C)

€A
= EPG (x4 | Xun-maskedC) log Pbo (XA ‘ Xun-masked s C) - log H Do (xl | Xun-masked C) (9)
€A
= Epg (x4 | Xun-masked,C) IOg Do (XA ‘ Xun-masked s C) - Z log Do (xl I Xun-masked s C) (10)
iI€EA
= _H(XA I Xun-masked s C) + Z H(Xi | Xun-masked s C) (11)

i€A
Now, since the entropy for discrete random variables is positive, H(x* | Xyn.masked; €) > 0, which
implies:

*H(XA ‘ Xun-masked y C) + Z H(XZ | Xun-masked C) S Z H(XZ | Xun-masked s C) (12)
1€A 1€EA
Hence, we have that for any set A, we have that:
KL | ps (XA ‘ Xun-masked C) H p@(wi | Xun-masked C) < Z H<xz ‘ Xun-masked C) (13)
€A i€EA
Entropy upper-bound Next, we prove that:
H(a | T'UN-MASKED» C) < HUB(a | T'UN-MASKED 5 c) (14)
where Hy; (a | I'UN-MASKED 5 C) = Ez H(ai | TUN-MASKED C)~

Next, we note that KL(pg(a | Tyx-masken, €) | [1pe(a® | Yux-masken,€) > 0, which implies that,
similar to eq. (11), we have

_H(a | TUN-MASKED C) + Hyg (a | TUN-MASKED 5 C) = KL(pg (a | TUN-MASKED C) | Hpe (ai ‘ T'UN-MASKED C)

*H(a | TUN-MASKED» C) + Hyg (a | T'UN-MASKED C) 0 (15)
]{UB(a-|rUN—MASKEDaC) }1(a-|rUN-MASKED7C) (16)



	Introduction
	Related Work
	Masked Diffusion Language Models
	Preliminary Observations

	No compute left behind
	Multi-token Entropy Decoding
	Reasoning-as-Infilling with MDLMs

	Experiments
	Accelerated sampling with Multi-token Entropy Decoding
	The benefits of Reasoning-as-Infilling

	Discussion
	Limitations

	mdlm Any-Order Sampling Behavior
	Possibilities for analyzing model behavior
	Evaluating Reasoning Trace Correctness
	Reasoning Trace Examples
	Correct Posterior Traces
	Incorrect Posterior Traces

	Proofs

