Under review as a conference paper at ICLR 2026

RETHINKING REASONING WITH MASKED DIFFUSION
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Masked diffusion language models (MDLMs) are trained to in-fill positions in ran-
domly masked sequences, in contrast to traditional next-token prediction (NTP)
models. Discussions around MDLMs focus on two benefits: (1) any-order de-
coding and 2) multi-token decoding. However, we observe that for math and
coding tasks, any-order algorithms often underperform or behave similarly to left-
to-right sampling, and standard multi-token decoding significantly degrades per-
formance. At inference time, MDLMs compute the conditional distribution of all
masked positions. A natural question is: How can we justify this additional com-
pute when left-to-right one-token-at-a-time decoding is on par with any-order de-
coding algorithms? These findings warrant rethinking how MDLMs are utilized.
First, we propose reasoning-as-infilling. By using MDLMs to infill a reasoning
template, we can structure outputs and distinguish between reasoning and an-
swer tokens. In turn, this enables measuring answer uncertainty during reasoning,
and early exits when the model converges on an answer. Next, given an answer,
reasoning-as-infilling enables sampling from the MDLM posterior over reasoning
traces conditioned on the answer, providing a new source of high-quality data
for post-training. On GSM8k, we observe that fine-tuning LLaDA-8B Base on its
posterior reasoning traces provides a performance boost on par with fine-tuning
on human-written reasoning traces. Additionally, given an answer, reasoning-as-
infilling provides a method for scoring the correctness of the reasoning process
at intermediate steps, without requiring expensive rollouts or an external model.
Second, we propose multi-token entropy decoding (MED), a simple adaptive sam-
pler that minimizes the error incurred by decoding positions in parallel based on
the conditional entropies of those positions. MED preserves performance across
benchmarks and leads to 2.7 x fewer steps. Combined with early exits, MED leads
to a 3.3x speed-up on GSM8k with a minimal (0.1%) effect on accuracy. Our
work demonstrates that the training objective and compute used by MDLMs un-
lock many new possibilities for inference and post-training methods.

1 INTRODUCTION

The current dominant approach for language modeling is based on next-token prediction (NTP)
training. NTP language models learn the conditional distribution of the next token given the previ-
ous tokens in a sequence (Shannon, 1951; Radford et al., 2019). The resulting language model is
sampled auto-regressively left-to-right, one token at a time. Recent work proposes MDLMs (Austin
et al., 2021; Sahoo et al., 2024; Shi et al., 2024) as an alternative to NTP models. MDLMs are trained
to in-fill sequences with randomly masked positions. The resulting model learns the distribution
po (x| Xyx-maskep) at every masked position 1.

While modeling all masked positions requires additional effort, MDLMs have several potential ben-
efits, such as parallel token decoding (Sahoo et al., 2024; 2025), and flexible decoding orders (Kim
et al., 2025) that lead to significant improvements on logic puzzles, such as Sudoku. Addition-
ally, Bachmann & Nagarajan (2024); Prabhudesai et al. (2025) show that multi-token prediction
objectives can achieve better likelihoods and accuracy on tasks, and access to the distribution and
samples from masked positions supports controllable generation (Schiff et al., 2024; Singhal et al.,
2025).

In our work, we first examine two benefits of MDLMs: any-order and multi-token decoding, on
mathematical reasoning and coding benchmarks. Despite the flexibility enabled by MDLMs, we

Under review as a conference paper at ICLR 2026

Prompt (B) Reasoning Block Answer Block
Q duck I 1 I 1
:Janet’s ducks
lay eggs per day, |_ e A || |Step o/n
she eats three ... = - - —
To I | A:| _ stepi/n
Multi Token
Entropy Decoding| To || get || the A: I . 1 Step 2/n
(A) - - - -
v N2 N2 N N2 N2 N2 v v
To get the | | total A: I 1 Step k/n
To get the total A: 1 8 Early Exit
o (C)

Figure 1: MDLMs learn the conditional distributions at each masked token position. A) We reframe
reasoning as infilling a prompted reasoning template, which enables directly modeling answer token
probabilities during reasoning. This provides several benefits, like B) enabling early exits or post-
hoc reasoning given a pre-filled answer. C) We also utilize the entropy of these distributions to
adaptively set the number of tokens decoded at each step.

observe that decoding one token in a left-to-right order, identically to an NTP model, is a strong
decoding choice for MDLM models. Even decoding just two tokens in parallel substantially reduces
performance on popular benchmarks. These findings raise questions about the substantial extra
compute MDLMs spend to model the distribution of all masked positions. In this work, we show
how this compute can be made useful. We demonstrate that the access that MDLMs provide to the
conditional distributions of all masked positions, and their ability to in-fill, unlocks new sampling
and post-training capabilities that are not readily available for NTP models.

First, we demonstrate that the ability of MDLM to in-fill opens up new model prompting paradigms.
In this work, we propose prompting-as-infilling, where we add user-specified contexts in multiple
positions, not just the beginning of the sequence, unlike NTP models. Specifically, we consider
reasoning-as-infilling. Here we pre-fill an explicit reasoning template, with specific reasoning and
answer positions (see fig. 1). This enables sampling reasoning traces conditioned on a reasoning
budget and format. We demonstrate that the in-filled template provides many advantages. By ex-
plicitly distinguishing token answer positions, we can make use of the conditional distributions of the
masked positions provided by MDLMs to measure the uncertainty of the answer while reasoning. In
turn, this enables early exits once the model converges on an answer, reducing inference costs. For
instance, on GSM8k this leads to 24% fewer function calls with no degradation in accuracy.

Reasoning-as-infilling has consequences for analyzing model behavior and improving performance.
Given access to an answer, we can sample from the MDLM’s posterior distribution of reasoning
traces conditioned on the answer, pg(r | ¢,a). This easy sampling from the posterior in MDLMs
enables generating high-quality post-hoc reasoning traces for use in model fine-tuning.

Next, we revisit multi-token decoding. Decoding multiple positions in a single step results in sam-
ples that are not from the MDLM’s learned distribution, as typically the joint distribution and factor-
ized distributions do not align, pg (2", 7 | Xyn-maskep) 7 Po (2" | Xun-masken)Po (27 | Xun-waskep)-
However, by making use of the entropy of the masked positions to inform decoding, we can con-
trol how much multi-token decoding deviates from single token sampling. We propose Multi-token
Entropy Decoding (MED), an adaptive multi-token decoder that decodes multiple positions only
if the conditional entropy of the additional positions falls below a specified threshold. We find that
MED leads to 2-3 x fewer function calls, with a minor or no drop in performance.

Contributions. In this paper, we:

¢ Evaluate MDLM models, such as Dream (Wu et al., 2025b) and LLaDA (Nie et al., 2025), on
several tasks and find that the any-order sampling capability of MDLM provides limited benefits on

Under review as a conference paper at ICLR 2026

coding and mathematical reasoning benchmarks, and that standard multi-token decoding degrades
performance.

* Introduce reasoning-as-infilling for MDLMs, which leverages their infilling capabilities. We then
show that distinguishing reasoning and answer tokens can provide several benefits, such as:

— Early exits, where if the model is certain about the answer, we then skip the remaining reasoning
steps. This leads to a 3.3x speed when combined with multi-token entropy decoding (MED).

— Post-hoc reasoning, where given question-answer pairs, we generate reasoning traces condi-
tioned on the answer. On the GSM8k dataset, we find that supervised fine-tuning on these rea-
soning traces can improve the model more than supervised fine-tuning on the human-annotated
GSM8k reasoning traces.

— Scoring reasoning traces, where given an answer, we can score the reasoning process for cor-
rectness at intermediate steps using the distributions of the answer block, without an external
verifier or roll-outs. These scores correlate with whether the reasoning steps lead to a correct
answer.

» Propose MED, an adaptive sampler that provides a 2-3 x speed-up, without any loss in performance
on math and coding benchmarks.

2 RELATED WORK

Multi-Token Prediction and Speculative Decoding. Gloeckle et al. (2024) show that models
trained with the multi-token objective can enable parallel multi-token decoding, or speculative de-
coding, without making use of another model. However, unlike MDLMs, Gloeckle et al. (2024) limit
to predicting the next 2,4 tokens. Several other works (Leviathan et al., 2023; Chen et al., 2023)
show that using smaller draft models for generation and then rejection sampling can also enable
parallel decoding with NTP models. However, MDLMs offer many possibilities beyond left-to-right
parallel decoding, such as in-filling, and error correction through re-masking of unmasked tokens
(Wang et al., 2025). Israel et al. (2025) propose an adaptive multi-token decoder which samples from
the product of an NTP and MDLM model. Unlike MED, their approach relies on rejection sampling
based on an external NTP model.

Ben-Hamu et al. (2025) propose entropy-bound (EB) sampler, an adaptive multi-token decoder for
MDLMs, which similar to MED controls the error incurred by multi-token decoding. EB sampler adds
multiple positions to unmask based on the difference between the sum of the positions added and
the maximum entropy until the difference exceeds a specified threshold . MED unmasks positions
based on the individual entropies rather than thresholding based on the sum. Wu et al. (2025a)
propose accelerating inference with MDLMs using KV-caching and parallel decoding. Similar to
Ben-Hamu et al. (2025), they propose an adaptive greedy strategy, instead decoding tokens with
confidences above a fixed probability threshold, unlike MED, which thresholds based on entropy.
Additionally, the method proposed in Wu et al. (2025a) is designed to accelerate arg max sampling
from MDLMs, whereas MED is compatible with inference-time steering methods and post-training
methods that require multiple samples per prompt, such as RLOO (Ahmadian et al., 2024) and GRPO
(Shao et al., 2024; Zhao et al., 2025). We include adaptive sampler comparisons in section A.

Post-hoc Reasoning. Zelikman et al. (2022) proposes fine-tuning language models on reasoning
traces that are generated conditioned on a correct answer. Phan et al. (2023); Ruan et al. (2025) pro-
pose fine-tuning a model on samples from approximations of the posterior py(r | c,a). In contrast,
MDLMs enable exact sampling from the posterior of the reasoning traces given the answer by simply
in-filling the answer in the answer block provided in the reasoning-as-infilling framework.

3 MASKED DIFFUSION LANGUAGE MODELS

MDLMs (Sohl-Dickstein et al., 2015; Devlin et al., 2019; Austin et al., 2021; Sahoo et al., 2024,
Shi et al., 2024) are a class of generative models for modeling discrete data X ~ qgaa, Where
x = (2, 22,...,2") and each position x' takes values in a finite vocabulary V. For training the

model pg(x | ¢), the sequence X ~ @ga is masked randomly and the model learns to predict the

Under review as a conference paper at ICLR 2026

GSM8k MATH500 HumanEval

LLaDA —e— Dream

80

;\3 70 30 F—O\._.\ >0

a 60 25 \. 40

@©

5 50 20 30

|9)

£ 40 15 20
T T T T i T T T T — 1015 T T T T
1 8 32 64 128 1 8 32 64 128 1 8 32 64 128

Block Size Block Size Block Size

Figure 2: Left-to-right sampling with MDLMs is a competitive sampling algorithm for rea-
soning and coding. When performing entropy decoding (Ye et al., 2025b), we observe that full
any-order sampling results in poor performance on all tasks but Sudoku. Left-to-right block decod-
ing is required to make any-order sampling performant, and left-to-right sampling (block size = 1)
is always within a few percent of the best configuration. We also observe in table 7 in section B
that performant block any-order configurations sample a large portion of tokens left-to-right. We
consider sequences of length 128.

distributions of the masked positions for a fixed length sequence by maximizing:

‘C(Xa C, 9) = Eyaskep-set~U Z log pe (CUj | XUN-MASKED C) (1)

JEMASKED-SET

where MASKED-SET is a set of randomly masked positions in {1,2,...,L}. Sampling from an
MDLM is performed by iteratively un-masking positions. Notably, an MDLM can also be viewed as
any-order auto-regressive model (Uria et al., 2014; Ou et al., 2024), where given a decoding order
o= [o1,...,or] witho; € {1,2,..., L}, the sampling model can be defined as:

po(x]c,0) = Hp9 m\x)>€) (2)

where o; refers to the position decoded at step j and x,(<;) refers to all positions decoded prior
to step 5. Additionally, block-sampling (Sahoo et al., 2024; Nie et al., 2025; Arriola et al., 2025)
approaches define a left-to-right sequence of fixed length blocks and decode within each block in an
arbitrary order.

3.1 PRELIMINARY OBSERVATIONS

In our work, we first examine two purported benefits of MDLMs: any-order and multi-token decod-
ing, on popular mathematical reasoning, GSM8k (Cobbe et al., 2021a) and MATH500 (Luo et al.,
2024), and coding benchmarks, HUMANEVAL (Chen et al., 2021) as well as Sudoku (Shahab,
2025):

1. Does any-order decoding help for text? Popular sampling approaches for MDLMs select posi-
tions to unmask based on confidence (e.g. token probability (Chang et al., 2022) or entropy (Kim
et al., 2025; Ye et al., 2025b)). We find that these any-order decoding algorithms either sample a
large portion of tokens in a left-to-right order or underperform left-to-right sampling. For exam-
ple, on GSM8K, the best configuration of any-order entropy decoding samples ~ 50% of tokens
left-to-right. Without block sizes (Arriola et al., 2025) that enforce a semi-auto-regressive (AR)
left-to-right structure, any-order significantly affects performance, see fig. 2. A notable excep-
tion where any-order sampling provides a significant benefit is Sudoku. We include additional
analysis in section B and in table 7 in section B.

2. Does fixed parallel token decoding work? We observe that even decoding two tokens in par-
allel at a time can severely hurt model performance across all tasks, see table 1. The resulting
distributions also have high KL with respect to a one-token sampling algorithm, see table 6.

Under review as a conference paper at ICLR 2026

Parallel Tokens GSMSK MATHS500 HumanEval Sudoku
LLaDA Dream LLaDA Dream LLaDA Dream LLaDA Dream
1 76.95 75.73 334 29.6 16.46 51.82 47.64 61.26
2 62.31 57.69 19.6 16.6 4.87 20.12 50.79 57.59
4 33.58 28.50 7.0 3.6 4.87 12.19 29.32 4293

Table 1: MDLMs can generate multiple fixed tokens in parallel, but this degrades accuracy. We
decode 1, 2, 4 tokens in parallel, with block any-order (8) entropy decoding. We note that decoding
even two tokens in parallel leads to a significant drop on all tasks but Sudoku.

These findings show that the decoding order from NTP models is performant for MDLM models,
despite their any-order and multi-token decoding capabilities. Despite these findings, we show that
the additional capacities offered by MDLMs have many possible benefits.

4 RETHINKING REASONING AND SAMPLING WITH MDLMSs

MDLMs are trained to in-fill sequences by modeling the distributions pg(27 | Xyxmaskep;€) for
masked positions j € MASK-SET given unmasked text Xyxmaskep and a context c. Typically, MDLMs
are prompted similarly to NTP models, and the distributions of the masked positions are used only for
sampling a small fixed number of positions. The remaining distributions are discarded. In this work,
we show that the ability of MDLMs to in-fill and to access the distribution of all masked positions
unlocks many new sampling and post-training capabilities.

* Reasoning-as-Infilling for Control, Early Exits, and Post-Training Benefits. We propose pre-
filling a user-specified prompt in multiple parts of the sequence. Specifically for reasoning tasks,
we first pre-fill a reasoning template that differentiates between reasoning and answer positions,
then infill with the MDLM model. This method of prompting enables controlling the length of the
reasoning process, and measuring the uncertainty of the answer block during the reasoning process
for early exiting. We also demonstrate how this approach supports new post-training directions
for MDLMs.

* Multi-token Entropy Decoding. We introduce MED, an adaptive multi-token decoding algorithm
that controls the error incurred by multi-token decoding by decoding multiple positions only if the
conditional entropies of the decoded positions fall below a threshold.

Assumptions. We assume that the masked conditional distributions learned by the MDLM model
define a consistent joint distribution (Majid et al., 2025).

4.1 REASONING-AS-INFILLING WITH MDLMS

Generally, NTP models are controlled at inference-time with a prompt prefix that is inserted at the
beginning of the sequence. However, for MDLMs we propose pre-filling the output sequence with
user-specified tokens. In the case of reasoning tasks, where a model produces a reasoning trace prior
to answering, we can pre-fill the output sequence with a reasoning template that distinguishes the
reasoning and answer token positions:

[MASK]; [MASK]z ... |[MASK|; <Answer Delimiter> [MASK]xt1 ... [MASK]|L

reasoning block answer block

Here the answer delimiter is a user-specified choice (e.g. "The answer is: " for math tasks, or
function definitions for a coding task). In this reformulation of prompting, the context ¢ now in-
cludes both the prompt and the answer delimiter, see fig. 1. By distinguishing between reason-
ing and answer positions, reasoning-as-infilling offers several advantages for sampling and post-
training.

Early exits. By designating explicit answer block positions, reasoning-as-infilling enables mea-
suring answer uncertainty while generating the reasoning trace. A measure of uncertainty is the
entropy of the answer block given the unmasked reasoning positions. This joint entropy requires ad-
ditional estimation as MDLMs only provide access to the marginals pg(ai | runmaskens €). However,

Under review as a conference paper at ICLR 2026

we show that the marginal distributions can be used to upper-bound the joint entropy,

Hyg := Z H(aj | rUNMASKEDvc) > H(a ‘ TUNMASKED C) 3)

JEANSWER-BLOCK

See section G for a proof. Using this quantity, we propose early exiting based on the answer
uncertainty upper-bound H. That is, given a partial reasoning trace, ryxuasken, We skip filling
in the remaining reasoning tokens if the answer-entropy upper bound falls below a user-specified
threshold v, Hyy < 7.

Post-training MDLMs with reasoning-as-infilling. Typically, post-training a model to reason uses
expensive human demonstrations (Ouyang et al., 2022). Alternatively, Zelikman et al. (2022); Phan
et al. (2023); Ruan et al. (2025) have demonstrated that post-training on model generated reasoning
traces provides an alternative for improving performance (Zelikman et al., 2022; Phan et al., 2023;
Ruan et al., 2025). These methods work off the principle that sampling reasoning traces from the
posterior py(r | c,a) and then training on these sample can increase the likelihood of generating
correct answers. However, sampling from the posterior pg(r | a, ¢) is intractable for NTP models,
therefore, Phan et al. (2023); Zelikman et al. (2022) make use of approximate sampling methods,
which require either significant prompt engineering or training another model to yield reasoning
traces given answer hints.

With reasoning-as-infilling in MDLMs, one can simply pre-fill the answer block positions to en-
able sampling from the posterior distribution, without prompt engineering or having to train an-
other model. These posterior traces can be used for post-training in several ways, including
with STaR (Zelikman et al., 2022), maximum marginal log-likelihood training (Phan et al., 2023;
Murphy, 2023), or maximizing the likelihood on the answer and the posterior reasoning traces:

maxg Zf\il logpg(a;,r; | c;) where the posterior reasoning traces are generated by the model,
r; ~ po(r; | i, a;).

Scoring partial reasoning traces when post-training. Existing fine-tuning algorithms, such as
GRPO (Shao et al., 2024) and RLOO (Ahmadian et al., 2024), do not make use of posterior samples
but score the generations upon completion. These algorithms can benefit from intermediate rewards
(Silver et al., 2016). Recent work shows that guiding the generation process with intermediate
rewards produces samples that improve model fine-tuning (Zhang et al., 2024). These intermediate
rewards are generally provided by an external pre-trained process reward model (PRM) (Lightman
et al., 2023; Zhang et al., 2024; 2025b). Reasoning-with-infilling, given the answer, allows MDLMs
to score arbitrary reasoning traces at intermediate steps. Given a partial reasoning trace r'ynmaskep
and an answer a*, we can Score rynmaskep With:

d(runmasken | €, 2%) == Z 10gp9(aj = a; | €, Tunmaskep)- 4
JEANSWER-BLOCK
The intuition behind the equation is that when the likelihood of individual answer tokens is higher
for the reasoning trace ryxwaskep, then ryxvaskep 18 often more likely to produce the answer.

4.2 MULTI-TOKEN ENTROPY DECODING

As MDLMs learn the conditional distribution pgy (:Ej | Xunmasken) for all masked tokens, they support
unmasking multiple tokens in parallel. However, decoding even two positions, 2 and 27 in parallel
can result in samples that may not be likely under the MDLM joint distribution pg(x), as typically
po(xt, 27 | Xunmaskep) 7 Po (" | Xunmasken)Po (27 | Xunmaskep). In table 1, we observe that decoding
even 2 tokens in parallel hurts task performance.

However, for any set of positions A C MASK-SET C {1, ..., L}, we can upper bound the Kullback-
Leibler (KL) divergence between the joint distribution pg(x* | Xynmasken, €) and the factorized
distribution [[, 4 po (%" | Xunmasken, ¢) With the sum of the entropies of the masked tokens:

KL (pg (XA | Xunmaskeps €)

HPO(xi | XUNMASKED) C)) < Z H(xz ‘ XUNMASKED C) 5)

i€A €A
where H is the entropy of the distribution pg(xi | Xunmasken; €). For a proof, see section G.

In this work, we propose multi-token entropy decoding, which makes use of the entropies of the
masked positions 7 to decide whether to decode multiple positions in parallel. Given unmasked

Under review as a conference paper at ICLR 2026

text Xynmaskep, @ decoding threshold A and a maximum number of tokens to be decoded kyax, We
propose the following definition of the set A for selecting positions to un-mask. In MED, we sort the
position entropies in an ascending order and decode positions that satisfy H (xl | Xunmaskeps €) < A
and select kpax such tokens. If no position has entropy lower than A, we choose the position with
the lowest entropy.

MED allows for upper bounding the Kullback-Leibler divergence in eq. (5) by Aknax, controlling the
error incurred by multi-token decoding.

5 EXPERIMENTS

In this section, we examine the inference-time and post-training benefits of reasoning-as-infilling,
such as (1) early-exits based on answer certainty Hyg(a | ryx-masken, €) and (2) the ability to boot-
strap and score reasoning traces given (question, answer) pairs. In section A, we study the effective-
ness of multi-token entropy decoding (MED) for parallel sampling.

5.1 THE BENEFITS OF REASONING-AS-INFILLING

Early exits. We investigate the inference-time benefits of reasoning-as-infilling on two mathemat-
ical reasoning datasets, GSM8k (Lightman et al., 2023) and MATH500 (Cobbe et al., 2021b), with
the Dream 7B and LLaDA-8B models.

For both tasks, we consider a generation length L = 256 with block size 32. We pre-fill the answer
delimiter “The answer is \boxed{..", and allocate 10 answer tokens. As a baseline, we compare
against allocating a sequence of length 256 with no-reasoning template. For sampling, we examine
early exits with one-token decoding and MED with A = 0.2.

In table 2, we observe:

* For both Dream and LLaDA, early exiting reduces the total number of NFEs, and increasing the
early exit threshold ~ enables trading faster inference for task accuracy. For example, for LLaDA,
we observe a 23% speed up on one-token entropy decoding with only a < 1% drop in performance
versus baseline reasoning template. Early exits combined with MED provides further savings.
LLaDa with MED and v = 0.1 outperforms the base configuration on GSM8k with a 3.3 x speedup.
In section F, we provide examples of reasoning traces with varying exit thresholds.

* Notably, the benefits of early exits are more pronounced for LLaDA than Dream, which requires
higher exit thresholds for speed-ups. This may be due to Dream’s adaption from an NTP model
(Gong et al., 2024; Ye et al., 2025a). See section B for a discussion of the sampling behavior of
Dream and LLaDA.

GSMSK Math500
Model Sampler Exit Param NFEs | Acc. Exit Param NFEs | Acc.
LLaDA Ogntropy,k=1 NO TEMPLATE 256 76.6 NO TEMPLATE 256 33.8
LLaDA ognrropy, k=1 NO EXIT 256 79.4 NO EXIT 256 334
LLaDA ognrropy,k=1 v=0.1 193 78.6 v=10.3 221 31.9
LLaDA owmep,a=0.2 NO EXIT 94 79.9 NO EXIT 143 334
LLaDA owgp a=0.2 v=0.1 77 79.3 v=10.3 129 32.0
Dream Ognrropy,k=1 NO TEMPLATE 256 80.1 NO TEMPLATE 256 334
Dream ognrropy, k=1 NO EXIT 256 79.8 NO EXIT 256 35.6
Dream ognrropy k=1 ~v=0.7 225 76.7 ~v=0.7 245 33.2
Dream owgp,r=0.2 NO EXIT 135 79.2 NO EXIT 147 35.6
Dream Owmep A=0.2 ~v=0.7 121 79.3 ~v=0.7 141 354

Table 2: Early-exits can accelerate MDLM inference. We evaluate reasoning-as-infilling with
early exits on a generation length of 256. Varying the early exit threshold + enables trading faster
inference for task accuracy. Lower values of v preserve performance.

Next, we investigate how a dataset of question-answer pairs {(c;,a;)} Y ;, can be used to analyze
and improve MDLMS.

Under review as a conference paper at ICLR 2026

Model Posterior Reasoning Scores
Qwen-PRM GPT-40

LLaDA Base 0.31 0.36

LLaDA Instruct 0.38 0.43

Table 3: The MDLM reasoning posterior yields high-quality traces for problems that the origi-
nal instruct-tuned model fails to solve. We perform posterior inference on the 1419 training sam-
ples that LLaDa-8B Instruct with greedy decoding fails to solve, and evaluate the resulting traces
with two judges, QWEN2.5-MATH-PRM (Zhang et al., 2025a) and GPT-40 (Hurst et al., 2024).
Both judges rate ~ 40% of the instruct-tuned reasoning chains as correct. Notably, even the poste-
rior reasoning chains from the base model are rated as > 31% correct.

Model Posterior Reasoning Scores
Qwen-PRM GPT-40
Llama STaR (L = 256) 0.39 0.33
Llama STaR (L = 512) 0.39 0.40
LLaDA Base (L = 128) 0.34 0.41
LLaDA Instruct (L = 128) 0.46 0.52

Table 4: The MDLM reasoning posterior scores higher than Llama3-8B STaR reasoning traces.
We perform posterior inference on the 265 test samples that Llama3-8B Instruct with greedy decod-
ing fails to solve, and evaluate the traces similar to table 3. We observe that the LLaDA instruct
model posterior traces score higher than the Llama STaR reasoning traces generated when the an-
swer is provided as a hint.

The answer posterior is a source of high-quality reasoning traces. Here, we evaluate reasoning
traces r generated from the posterior distribution py(r | c,a). A key challenge for training better
reasoning models is collecting high quality reasoning traces (Zelikman et al., 2022). We investigate
whether the MDLM posterior distribution can provide these traces, even when an MDLM incorrectly
solves the original task. To do this, we utilize question-answer pairs from GSM8k (Lightman et al.,
2023). In this experiment, we generate samples from the LLaDA-8B Instruct model with MED and
any-order decoding. On the GSM8Kk training dataset, the model answers 1419 out of 7473 problems
incorrectly. We use these 1419 question-answer pairs to generate reasoning traces from the MDLM
posterior (i.e. with the answer pre-filled). We also generate reasoning traces with the base model
(without instruction tuning).

To evaluate these reasoning traces for correctness, we use GPT4o (Hurst et al., 2024), and the
Qwen2.5-Math-7B PRM (Zhang et al., 2025a), see section C for the system instructions to the GPT40
model. In table 3 observe that both judge models rate ~ 40% of the posterior reasoning traces as
correct. In section D, we include examples of reasoning traces generated from the posterior and
the regular model with different judge labels. We observe that the posterior traces judged correct
by GPT40 contain accurate reasoning steps, correcting the original model’s behavior. Notably, we
also observe that reasoning-as-infilling elicits correct reasoning chains (> 30%) from the base model
checkpoint on these problems. In table 4, we analyze the reasoning traces for problems that Llama3-
8B Instruct (Dubey et al., 2024) solves incorrectly. We note that the LLaDA-8B base and instruct
models generate posterior reasoning traces that score higher than the LLama model prompted with
the answer as a hint.

Posterior data can be used to improve base models. Here, we examine the effectiveness of post-
training on the post-hoc reasoning dataset generated on the full GSM8k training set with the base
model. We post-train the LLaDA-8B Base model using LoRA (Hu et al., 2022).

In table 5, we observe that fine-tuning the model on the posterior generated base model data sig-
nificantly improves performance (4+14.9%). As a benchmark, we observe that fine-tuning on the
GSM8k human annotated reasoning traces produces similar results. These results provide evidence
that maximizing the log-likelihood log pg(a, r | ¢) on the posterior reasoning traces improves accu-
racy on reasoning tasks. We include additional training details section H.

Under review as a conference paper at ICLR 2026

Model Post-training Data GSMSK Test Acc.
LLaDA 8B-Base (No template) - 139 %
LLaDA 8B-Base (With template) - 51.2 %
Finetuned® LLaDA 8B-Base GSM8K (c, reold, agold) (n = 7473) 64.6 (+13.4) %
Finetuned* LLaDA 8B-Base GSM8k Posterior (C, Fposterior, Agold) (N = 7473) 66.1 (+14.9) %
LLaDA-8B Instruct Misc. Instruction Data (n = 4.5 million) 75.96 %

Table 5: Fine-tuning the base model with posterior-generated data improves performance.
Fine-tuning on GSMS8Kk training data and posterior reasoning traces boosts accuracy to 64.6% and
66.1%, respectively. Finetuned* indicates LoRA (Hu et al., 2022) fine-tuning.

Correlation with Correctness

Figure 3: MDLMs enable scoring their

own reasoning process without an exter-

. nal process verifier. We score GSM8k rea-
soning traces, generated left-to-right with
LLaDA, at intermediate steps using (a) gold
answer log probabilities, (b) the answer
block entropy bound, and (c) an 8B pro-

—e— Answer Log-Probs
Answer Block Neg. Entropy
— Qwen2.5-Math-PRM

0.8

0.6

0.4 cess reward model (PRM) (Zhang et al.,
N 2025b). Gold answer probability at inter-
05 e mediate steps is more predictive of final
' ¥ correctness than PRM scores. Even with-
out gold labels, the answer block entropy is

0o ¢ weakly correlated with correctness.

0 20 40 60 80 100 120
Number of Tokens Generated

Scoring partial reasoning traces without an external model. Zhang et al. (2024) show that using
intermediate process rewards for sampling can improve model fine-tuning. However, training these
process rewards requires training an external model. In fig. 3, we compare various strategies for
estimating the final correctness of partial reasoning traces given intermediate rewards. For further
details see section E

Using the LLaDA-8B Instruct model, we greedily sample solutions on the GSM8k test set, left-to-
right, 1 token at a time. We then compute the Pearson correlation between intermediate rewards and
the correctness of the final output. During reasoning, the intermediate reasoning process defined
using the answer log probabilities log py(a; = a; | ¢, run-maskep) are more strongly correlated with
final answer correctness at intermediate steps than a pretrained 7B parameter process reward model
(Zhang et al., 2025a).

Our results provide evidence that MDLM pre-training offers other new post-training capabilities:
low-quality reasoning chains could be terminated early or filtered, the reasoning process could be
steered towards correct solutions, reflection tokens could be automatically inserted at reasoning
failures, and new sources of dense feedback could incorporated into fine-tuning objectives.

6 DISCUSSION AND LIMITATIONS

Much of the current tooling around pre-training, post-training, and inference for text generation has
been built around a key modeling choice: next-token prediction training. MDLMs are an expressive
class of models trained to in-fill masked sequences, requiring additional training and inference com-
pute. In our work, we find that this additional compute has many uses beyond accelerating inference
and warrants rethinking how these models are utilized. For instance, the ability to in-fill unlocks
new prompting techniques, like the proposed reasoning-as-filling framework, along with new data
generation and post-training methods.

Reasoning-as-infilling requires specifying the length of the reasoning and answer blocks, however,
we note that the methods developed with reasoning-as-infilling can be paired with variable sequence
length models (Wu et al., 2025b) that obviate the need to pre-specify the length of reasoning and
answer tokens, and can enable dynamically scaling compute for harder problems.

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models, 2025. URL https://arxiv.org/abs/2503.09573.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981-17993, 2021.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
masked diffusion models via entropy bounded unmasking. arXiv preprint arXiv:2505.24857,
2025.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1131511325, 2022.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021a. URL https://arxiv.
org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,

10

https://arxiv.org/abs/2503.09573
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzman, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,

11

Under review as a conference paper at ICLR 2026

Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqgiang Zhang, Shuqgiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration. arXiv preprint arXiv:2506.20639, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Mahbod Majid, Rattana Pukdee, Vishwajeet Agrawal, Burak Varici, and Pradeep Kumar Ravikumar.
On the consistent recovery of joint distributions from conditionals. In The 28th International
Conference on Artificial Intelligence and Statistics, 2025.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL
http://probml.github.io/book2.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.20050
http://probml.github.io/book2
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992

Under review as a conference paper at ICLR 2026

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Du Phan, Matthew Douglas Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi,
Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
latent-variable inference. Advances in Neural Information Processing Systems, 36:72819-72841,
2023.

Mihir Prabhudesai, Menging Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffusion
beats autoregressive in data-constrained settings. arXiv preprint arXiv:2507.15857, 2025.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Yangjun Ruan, Neil Band, Chris J] Maddison, and Tatsunori Hashimoto. Reasoning to learn from
latent thoughts. arXiv preprint arXiv:2503.18866, 2025.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models, 2024.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. arXiv preprint arXiv:2412.10193, 2024.

Asad Shahab. sudokuLLM: Lim fine-tuning for sudoku solving. https://github.com/
Asad-Shahab/sudokuLLM, 2025. Accessed: 2025-09-24.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):
50-64, 1951.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
alized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models, 2025. URL https://arxiv.org/abs/2501.06848.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256-2265. PMLR, 2015.

Benigno Uria, lain Murray, and Hugo Larochelle. A deep and tractable density estimator. In Inter-
national Conference on Machine Learning, pp. 467—475. PMLR, 2014.

13

https://arxiv.org/abs/2203.02155
https://github.com/Asad-Shahab/sudokuLLM
https://github.com/Asad-Shahab/sudokuLLM
https://arxiv.org/abs/2501.06848

Under review as a conference paper at ICLR 2026

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion 1lm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025a.

Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria
W., Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infill-
ing beyond fixed-size canvas, 2025b. URL https://hkunlp.github.io/blog/2025/
dreamon.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025a. URL https://hkunlp.github.io/blog/2025/dream.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: LIm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735-64772, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025b. URL https://arxiv.org/abs/2501.07301.

Siyan Zhao, Devaansh Gupta, Qinging Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning, 2025. URL https://arxiv.org/abs/
2504.12216.

14

https://hkunlp.github.io/blog/2025/dreamon
https://hkunlp.github.io/blog/2025/dreamon
https://hkunlp.github.io/blog/2025/dream
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2504.12216
https://arxiv.org/abs/2504.12216

Under review as a conference paper at ICLR 2026

GSM8K Accuracy vs Average NFE
MATH500 Accuracy vs Average NFE

Dream Dream
o s _a% .o°; ¢’ ., . ° 08 .1.%..'0? %o
;._.0.02.03.\ o o | o . N
. B o 06{ « =
.

e
w

Accuracy
)
N
Accuracy
o
IS

e
-

® EBSAMPLER ““] e epsampLer

® MED ® MED

® FastDLLM ® FastDLLM
0.0

120 140 160 180 20 40

o
=)

N
ST =

40 60 80 100 80 100 120
LLaDA LLaDA
o

T I
.

o
w

s Tebg B

o
N

Accuracy
Accuracy
o
=

o
a

o

N

o
=)
=)
=)

N
o

40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160
Average NFE Average NFE

Figure 4: Adaptive decoding enables parallel token decoding without any loss in performance.
In contrast to fixed token decoding, adaptive parallel decoding algorithms enable preserving perfor-
mance while reduce the number of function evaluations. Here, we plot results from MED alongside
two recently proposed adaptive samplers, EB-Sampler (Ben-Hamu et al., 2025) and Block-wise
confidence-aware parallel decoding (Wu et al., 2025a). In this experiment, we generate sequences
of length L € {128,256} with varying thresholds for the three samplers. The best sampler depends
on task and NFE budget. For instance, for a 2x reduction in NFEs, MED Yyields the highest accuracies
on MATH500, while producing comparable numbers to EB-sampler for GSM8k.

A ACCELERATED SAMPLING WITH MULTI-TOKEN ENTROPY
DECODING

In this experiment, we show that entropy-thresholded multi-token decoding (MED) enables parallel
decoding without incurring the distributional error and performance degradation that fixed multi-
token decoding incurs.

For these experiments, we use two open-source MDLMs models, Dream-7B Instruct (Ye et al., 2025a)
and LLaDA-8B Instruct (Nie et al., 2025). We consider two popular benchmarks, (1) GSM8k (Light-
man et al., 2023), a mathematical reasoning dataset, and (2) HumanEval (Chen et al., 2021), a cod-
ing benchmark. As baselines, we consider the entropy decoding scheme ogyrropy,r (Chang et al.,
2022; Ye et al., 2025b), which decodes a fixed number of k tokens in each step. We consider
ke {1,2}.

For evaluations, we measure the task accuracy and the number of function evaluations (NFES)
for varying values of k in the fixed token decoding scheme as well as varying values of A €
{0.1,0.2,0.3} in MED with ky,x = 32 as the maximum number of tokens decoded in parallel.
We fix a generation length L € {128,256} and a block size of 32. As baselines, we compare against
EB-Sampler (Ben-Hamu et al., 2025) and block-wise confidence-aware parallel decoding (Wu et al.,
2025a). In fig. 4, we compare the three adaptive decoding schemes with varying thresholds on the
GSMS8K, MATHS500 datasets. We observe that the best sampler depends on task and NFE budget.
For instance, for a 2x reduction in NFEs, MED yields the highest accuracies on MATH500, while
producing comparable numbers to EB-sampler for GSM8k.

In table 6, we observe:

* Decoding just & = 2 tokens in parallel results in a large drop in accuracy on GSM8k for both
LLaDA and Dream (> 40%). We observe that decoding k = 2 also leads to a significant increase
in KL.

* MED with A = 0.2, provides significant speed-ups and no loss in accuracy for both LLaDA

and Dream. For HUMANEVAL, MED results in identical accuracy with a 2.2x speed-up, and on
GSM8Kk, we observe a 1.5x speed-up with no loss in performance.

15

Under review as a conference paper at ICLR 2026

Dataset Sampler Model Accuracy{ KL | NFEs]|
LLaDa 78.01 0.0 128.0
TENTROPY.E=1 Dream 75.81 00 1280

LLaDa 36.24 92.6 64.0
Dream 19.79 99.5 64.0

OENTROPY k=2

GSMBK LLaDa 7801 05 884
OMED,A=0.1 Dream 75.81 0.4 92.5

LLaDa 78.01 1.5 84.8

OMED,A=0.2 Dream 75.82 1.9 79.9

LLaDa 77.86 2.7 81.2

OMED,\=0.3 Dream 75.44 3.3 75.7

LLaDa 15.24 0.0 128.0

TENTROPY, k=1 Typanm 48.17 0.0 128.0

LLaDa 4.87 85.5 64.0

OENTROPY, k=2 yronm 20.12 77.0 64.0

HumanEval LLaDa 15.24 0.7 70.0
OMED,A=0.1 Dream 48.17 0.5 68.5

LLaDa 15.85 2.0 61.8

OMED,\=0.2 Dream 48.17 1.5 60.4

LLaDa 16.46 3.6 57.8

OMED,A=0.3 Dream 48.17 2.2 57.0

Table 6: MED enables parallel token decoding without any loss in performance. We compare
MED decoding with different A thresholds to entropy decoding with a fixed number of tokens & €
{1,2}. We observe that MED significantly reduces the number of NFEs while matching accuracy
and maintaining a low KL.

Decoding order GSMSK Math500 HumanEval Sudoku (4)
Llada Dream Llada Dream ILlada Dream Llada Dream
Left-to-right 75.96 7498 294 29.2 15.24 53.65 36.13 17.28

Any-order decoding 53.44 34.11 12.0 20.6 10.97 3292 47.64 61.26

Block any-order (8) 7695 7573 334 29.6 1646 51.82 3874 4450
Block any-order (32) 78.01 75.81 324 28.2 1524 48.17 47.64" 61.26"
Block any-order (64) 74.14 57.69 30.0 282 14.63 47.56 - -

Llama3.1-8B 70.81 26.80 62.20 2.09

Table 7: Left-to-right sampling is a competitive sampling algorithm for reasoning and coding.
When performing entropy decoding (Ye et al., 2025b), we observe that full any-order sampling
results in poor performance on all tasks but Sudoku. Left-to-right block decoding is required to
make any-order sampling performant, and left-to-right sampling (block size = 1) is always within a
few percent of the best configuration. We also observe in section B that performant block any-order
configurations sample a large portion of tokens left-to-right.*For Sudoku, we consider sequences of
length 32, otherwise we use a sequence length of 128.

B MDLM ANY-ORDER SAMPLING BEHAVIOR

We study the effects of greedy any-order entropy decoding (Ye et al., 2025a) for LLaDA (Nie et al.,
2025) and Dream (Ye et al., 2025a), as well as any-order with different block lengths (Sahoo et al.,
2024; Arriola et al., 2025; Nie et al., 2025; Ye et al., 2025a). The block length is the contiguous
region of consecutive positions considered by the sampling algorithm, where the model can decode
in any order. Blocks are unmasked left-to-right.

16

Under review as a conference paper at ICLR 2026

We included our results in table 7. On Sudoku, any-order sampling significantly improves per-
formance.! However, for the remaining datasets, left-to-right sampling with a block length of 1
is a competitive approach. In some cases (e.g. for Dream on HUMANEVAL (Chen et al., 2021)),
left-to-right block length 1 sampling is the most performant configuration. Additionally, purely
any-order decoding (i.e. when the block size = generation length), leads to a massive drop in per-
formance.

In what order are tokens decoded? In table 8 and section B, we analyze the behavior of these
different configurations on a portion of GSM8K and HUMANEVAL. We compute the fraction of
non-EOS tokens decoded from the leftmost masked position, the average distance from the leftmost
position, and the total number of non-EOS tokens. For GSM8K, we also include the average step at
which the answer appears in the decoded sequence.

Notably, top performing block-length configurations often behave very autoregressively. On
GSM8K, when the block size is 32, both LLaDA and Dream sample the leftmost unmasked position
approximately 50% of the time. Additionally, the average distance of the unmasked position from
the left-most mask is approximately 3 tokens. Gong et al. (2025) similarly observe the left-to-right
sampling behavior of Dream for coding.

Why does block sampling improve performance? We find that that purely any-order decoding
from current MDLMS results in less auto-regressive generation, fewer non-eos tokens, and very early
answers, not utilizing the full allocated generation length. Reviewing samples from any-order decod-
ing, we observe two specific pathological behaviors: 1) Models first greedily decoding low entropy
end-of-text tokens, leading to shorter or empty texts that do not fully utilize the assigned tokens, and
2) decoding only an answer, or decoding answers first, before reasoning chains.

Config Model Acc. % Leftmost Dist. Left Non-EOS Tokens Answer Step

Block(l) Dream 764% 1000% 0.0 105.1 78.1
LLaDA 79.0% 100.0% 0.0 115.3 84.3
Dream 77.6% 52.1% 2.9 103.1 763
Block(32) [y DA 768% 47.1% 33 112.3 82.8
Dream 342% 73.1% 6.5 243 187
AOU28) [1.DA 534% 40.8% 202 75.0 16.9

Table 8: Decoding behavior, GSM8K We evaluate the autoregressiveness of different sampling
configurations by measuring the percent of non-EOS tokens decoded from the leftmost position,
the average distance of these positions from left, the total number of non-EOS tokens, and at what
timestep the answer is decoded. We consider generation lengths of 128 on a portion of GSM8K
(n = 500)

Config Model Acc. % Leftmost Dist. Left Non-EOS Tokens

Block(ly Pream 537% 100.0% 0.0 95.0
LLaDA 11.0% 100.0% 0.0 119.8
Dream 482% 43.1% 38 96.8
Block(32) [y .pA 1520 44.7% 41 119.5
Dream 32.9% 44.5% 6.8 56.4
AOUZ8) 11 DA 152% 29.7% 19.7 123.8

Table 9: Decoding behavior, HumanEval Similar to table 8, we measure autoregressiveness for
generation lengths of 128, on a portion of HumanEval (n = 500)

'Of note, on Sudoku, diffusion models with auto-regressive sampling significantly outperform Llama 8B.
This may reflect benefits of the MDLM training objective.

17

Under review as a conference paper at ICLR 2026

C EVALUATING REASONING TRACE CORRECTNESS

We evaluate reasoning trace correctness with GPT4o (Hurst et al., 2024). We use the following
template to evaluate the reasoning chain:

SYSTEM_INSTRUCTIONS = """
You are a strict grader.
You are given a question and a model’s response.

Return a answer of either:
— 1 if both the model’s final answer AND reasoning chain are correct.
- 0 otherwise.

Your final answer should be the digit 0 or 1.

nmman

PROMPT_TEMPLATE = """Grade the submission.

[Question]
{question}

[Model Response]
{reasoning}

[Reference Answer]

{reference_answer}
nmmon

We use 512 tokens for all judge models, and default hyperparameters.

D REASONING TRACE EXAMPLES

Below, we include reasoning traces from the model pg(a | r,c)ps(r | ¢) and the posterior traces
po(r | a,¢). We include samples where LLaDA originally fails to correctly answer the question.
In two cases, the posterior succesfully provides an alternative correct reasoning trace, and in two it
fails to do so.

D.1 CORRECT POSTERIOR TRACES

Question: Ms. Warren ran at 6 mph for 20 minutes. After the run, she walked at 2 mph for
30 minutes. How many miles did she run and walk in total?

Incorrect LLaDA output:

I Ms. Warren ran at 6 mph for 20 minutes, which is $\frac{20}{60} =
\frac{1}{3}$ hours. So, she ran $6 \times \frac{l}{3} = 2$
miles.

3 Ms. Warren walked at 2 mph for 30 minutes, which is $\frac{30}{60}
= \frac{1l}{2}$ hours. So, she walked $2 \times \frac{l}{2} = 2
miles as well.

W

The answer is \boxed{4} miles.
Correct LLaDA posterior:

I Ms. Warren ran at 6 mph for 20 minutes, which is 20/60 = 1/3 of an
hour.
> So, she ran 6 mph = 1/3 hour = 2 miles.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

3

5
6

After the run, she walked at 2 mph for 30 minutes, which is 30/60 =
1/2 of an hour.

So, she walked 2 mph x 1/2 hour = 1 mile.

In total, Ms. Warren ran and walked 2 miles + 1 mile = 3 miles.

The answer is \boxed{3}

J

3 To save $135, she needs to save $135 - $54 = $81 more.

Question: Each week Jaime saves $50. Every two weeks she spends $46 of her savings on
a nice lunch with her mum. How long will it take her to save $135?

Incorrect LLaDA output:

Jaime saves $50 each week, so in two weeks she saves $50 x 2 = $100.
Every two weeks she spends $46, so in two weeks she saves $100 -
$46 = $54.

Since she saves $54 every two weeks, it will take her $81 / $54 = 3
more two weeks to save $135.
The answer is \boxed{3}+2 = 6 weeks.

Correct LLaDA posterior:

Jaime saves $50 each week, so in two weeks she saves $50 x 2 = $100.

However, she spends $46 every two weeks, so her net savings every
two weeks is $100 - $46 = $54.

To find out how long it will take her to save $135, we divide $135
by her net savings every two weeks: $135 / $54 = 2.5.

Therefore, it will take her 2.5 two weeks to save $135.

The answer is \boxed{5}

D.2 INCORRECT POSTERIOR TRACES

® 9 O L R WD

3 which will cost 4 %= 10 = 40.

Question: Tommy is making 12 loaves of bread. He needs 4 pounds of flour per loaf. A
10-pound bag of flour costs $10 and a 12-pound bag costs $13. When he is done making his
bread, he has no use for flour and so he will throw away whatever is left. How much does he
spend on flour if he buys the cheapest flour to get enough?

Incorrect LLaDA output:

Tommy needs 12 loaves of bread, and each loaf requires 4 pounds of
flour.
Therefore, he needs a total of 12 x 4 = 48 pounds of flour.

The cheapest option is to buy 12-pound bags of flour.
Since Tommy needs 48 pounds, he will need 48/12 = 4 bags.
Each bag costs $13, so the total cost for 4 bags is 4 % 13 = $52.

The answer is \boxed{52}.
Incorrect LLaDA posterior:

Tommy needs 12 loaves of bread, so he needs a total of 12 » 4 = 48
pounds of flour.
If he buys 1l0-pound bags, he will need 48/10

4 bags,

If he buys 12-pound bags, he will need 48/12 = 4 bags, which will
cost 4 x 13 = $52.

19

Under review as a conference paper at ICLR 2026

5 Therefore, Tommy should buy 10-pound bags to save money.
6 The answer is \boxed{50}.

Question: Thomas started saving for a car almost 2 years ago. For the first year, his weekly
allowance was $50. In the second year, he got a job that pays $9 an hour at a coffee shop and
worked 30 hours a week, so his parents discontinued his allowance. If the car he wants to
buy is $15,000 and he spends $35 a week on himself, how much more money does Thomas
need to buy the car by the end of the 2 years?

Incorrect LLaDA output:

In the first year, Thomas earned $50 x 52 = $2600.

In the second year, Thomas earned $9 x 30 x 52 = 7980.
Thomas saved $2600 + $7980 = 10580.

Thomas spent $35 x 52 = 1820.

Thomas still needs $15000 - 10580 - 1820 = 2600 more.
The answer is \boxed{2600}.

Lo Y R S O

Incorrect LLaDA posterior:

In the first year, Thomas earned $50 x 52 = $2600.

In the second year, Thomas earned $9 x 30 x 52 = 8760.
Thomas spent $35 x 52 x 52 = 8360.

In total, Thomas saved $2600 + $8760 — $8360 = 3000.

To buy the car, Thomas still needs $15000 - 3000 = $2000.
The answer is \boxed{2000}

L= Y B S S S

\. J

E SCORING POSTERIOR REASONING CHAINS WITH MDLMS

Given that posterior sampling yields both high-quality and low-quality reasoning chains, a natural
question is: Can we filter these chains without an external model?

We find that answer block log probabilities computed with reasoning-as-infilling can be used to filter
these reasoning chains, and identify traces that GPT4-o rates as correct. To do this, we iteratively
unmask each generated posterior chain, left-to-right, and average the answer log probabilities over
all time-steps. For LLaDA, we observe that correct reasoning traces correspond to higher average
scores, see fig. 5. We also find that thresholding these answer block entropy scores results in a
reasonably performant classifier, with AUC=0.74, see fig. 6.

F EARLY EXIT SAMPLES

Below we demonstrate outputs from LLaDA on the GSM8k dataset. For a sample question from the
test set, we generate a sequence of length 256 with the following settings"

» Sampling from the model, without using the reasoning template or early exits.
* Reasoning template with no exits.
» Reasoning template with varying exit thresholds.

» Reasoning template with the model producing the answer with no reasoning tokens de-
coded.

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the

20

Under review as a conference paper at ICLR 2026

Figure
the 141

~
o

B Correct Reasoning (GPT-40)
[Incorrect Reasoning (GPT-40)

Frequency
N w H u o))
o o o o o

=
o

-6 -5 -4 -3 -2 -1
Mean Log Prob (over t)

5: Distribution of answer block log probability scores for posterior samples. To score
9 posterior reasoning traces, we iteratively unmask each chain left-to-right, and compute
the average answer block log probabilities across all timesteps. Posterior chains rated as correct by

GPT4-o tend to have higher scores.

Figure
MDLM

Answer Log Prob Predicts Posterior Correctness (ROC)
1.0 A

o
@
L

o
@
L

<o
n
L

o
[N
L

True Positive Rate (Positive label: Correct Reasoning)

—— MDLM Answer Log Prob (AUC = 0.74)

=4
o
L

0. 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: Correct Reasoning)

6: Answer block log probability scores predict posterior reasoning trace quality. The
average answer block log probabilities can simply be thresholded to provide a classifier
for predicting GPT4-0 reasoning chain judgments. This classifier provides a potential method for

filtering low-quality posterior samples (e.g. before fine-tuning).

To

[S)

3 1.
4 2.

5 3.
6 4.
Ste

N

farmers’ market?

LLaDA (No reasoning template, No Early Exits):

determine how much Janet makes every day at the farmers’ market,
we need to follow these steps:

Calculate the total number of eggs laid by Janet’s ducks per day.
Subtract the number of eggs Janet eats and bakes for her friends
from the total number of eggs laid.

Determine the number of eggs she sells at the farmers’ market.
Calculate the total revenue from selling the eggs.

p l: Janet’s ducks lay 16 eggs per day.

21

Under review as a conference paper at ICLR 2026

1C

o

S}

w

G

Step 2: Janet eats 3 eggs for breakfast every morning and bakes 4
eggs for her friends every day. Therefore, she eats and bakes a
total of \ (3 + 4 = 7\) eggs per day.

Step 3: The number of eggs she sells at the farmers’ market is \ (16
- 7 = 9\) eggs per day.

Step 4: Janet sells each egg for $2. Therefore, the total revenue
from selling 9 eggs per day is \ (9 \times 2 = 18\) dollars.

So, the amount Janet makes every day at the farmers’ market is
\ (\boxed{18}\) .

LLaDA output (Reasoning template, No Early Exit):

To determine how much Janet makes every day at the farmers’ market,
we need to follow these steps:

Step 1: Calculate the total number of eggs laid by Janet’s ducks
per day.

Janet’s ducks lay 16 eggs per day.

Step 2: Calculate the number of eggs Janet eats for breakfast per
day.

Janet eats 3 eggs for breakfast every day.

Step 3: Calculate the number of eggs Janet bakes for her friends
per day.

Janet bakes 4 eggs for her friends every day.

Step 4: Calculate the number of eggs left after Janet eats some and

bakes some.

Total eggs laid - Eggs eaten for breakfast - Eggs bakes for friends
= Eggs left

16 - 3 -4 =9

So, Janet has 9 eggs left to sell.

Step 5: Calculate the revenue from selling the eggs at the farmers’
market.

Janet sells each egg for $2.

Eggs left x Price per egg = Total revenue

9 x 2 = 18

Therefore, Janet makes $18 every day at the farmers’ market.

The answer is \boxed{18}.

LLaDA output (Reasoning template, Early Exit(y = 0.5)):

To determine how much Janet makes every day at the farmers’ market,
we need to follow these steps:

Step 1: Calculate the total number of eggs laid by Janet’s ducks
per day.

<|mdm_mask|>...<|mdm_mask|> per<|mdm_mask|>...<|mdm_mask|> The
answer 1is \boxed{18}.

LLaDA output (Reasoning template, Early Exit(y = 0.7)):

To determine<|mdm_mask|>...<|mdm_mask|> The answer is \boxed{18}.
LLaDA output (Forced Answer):
<|mdm_mask|>...<|mdm_mask|>. The answer is \boxed{14}.

PROOFS

MED KL upper-bound. Here we prove that for any set A C {1,...}/UN-MASKED, the following
upper bound holds:

KL | pg (XA | XUN-MASKED C) H Do (331 | XUN-MASKED 3 C) < Z H(xl | XUN-MASKED C)
iI€EA i€EA

22

(6)

Under review as a conference paper at ICLR 2026

Note that:

KL (pG(XA ‘ XUN—MASKED7C) Hpe(fi ‘ XUN—MASKED7C)>

i€A

= Epe(xA | Xux-MasKEDC) 10gpe (XA ‘ XUN-MASKED C) - log H Do (JTZ | XUN-MASKED C)] @)
L i€EA

= Epe(xA | Xun-MaskeD »C) log pe (XA ‘ XUN-MASKED 5 C) - Z log pe (331 | XUN-MASKED 5 C) (8)
L 1I€EA
= _H(XA | XUN-MASKED 5 C) + Z H(Xi ‘ XUN-MASKED 5 C))

icA
Now, since the entropy for discrete random variables is positive, (XA | Xun-maskep, €) > 0, which
implies:
4))
*H(X | XUN-MASKED 5 C) + Z H(XZ | XUN-MASKED 5 C) < Z H(XZ | XUN-MASKED 5 C) (10)
i€EA €A

Hence, we have that for any set A, we have that:

KL (pe (XA | XUN-MASKED 5 C) H Do (371 | XUN-MASKED 5 C)) < Z H(-%'? ‘ XUN-MASKED 3 C) (11)
i€A i€EA

Entropy upper-bound Next, we prove that:
H(a | T'UN-MASKED C) < Hyp (a | T'UN-MASKED C) (12)

where HUB(a | I'UN-MASKED C) = Zz H(ai | T'UN-MASKED C)-

Next, we note that KL(pp(a | run-masken, €) | []Pe(a® | Tun-masken;€) > 0, which implies that,
similar to eq. (9), we have

_H(a I T'UN-MASKED C) + Hyg (a I T'UN-MASKED C) = KL(pa (a | T'UN-MASKED C) | Hpe (ai ‘ T'UN-MASKED s C)

_H(a | TUN-MASKED C) + HUB(a | TUN-MASKED C) >0 (13)
Hyg (a | TUN-MASKED C) > H(a | T'UN-MASKED C) (14)

H FINE-TUNING DETAILS

We compare fine-tuning the LLaDA-8B Base (Nie et al., 2025) model on GSM8k (Cobbe et al.,
2021b) reasoning data, versus posterior data sampled from the same model using the training ques-
tions and pre-filled answers.

Data The posterior data is from LLaDA-8B-Base by pre-filling the correct answer and reason-
ing template, and sampling with entropy decoding and a block size of 128. For the gold GSM8k
training data, we preprocess the data by removing the additional computations in angle brackets,
and converting the "####" format to our reasoning template. Additionally, unlike posterior data,
GSMB&k reasoning traces are of varying lengths. As a result, we truncate these traces to L = 144 to-
kens. When traces are longer, we truncate to the lasr 144 tokens. Approximately ~ 12% of GSM8k
samples are truncated.

Training We use a batch size of 1 per GPU, with 8 different noise levels per batch element. We
use LoRA (Hu et al., 2022) with r = 128, « = 32. We fine-tune the model using 2 Nvidia A100
GPUs, with a learning rate of 2.5 x 1075, and 32 gradient accumulation steps. We train both models
for 3300 steps, or 30 epochs.

We modify the supervised fine-tuning code provided by Zhao et al. (2025).

Sampling We greedily sample from both models with left-to-right with a block-size of 1. We
allocate 144 tokens for both models, and do not directly pre-fill a reasoning template.

23

	Introduction
	Related Work
	Masked Diffusion Language Models
	Preliminary Observations

	Rethinking Reasoning and Sampling with MDLMs
	Reasoning-as-Infilling with MDLMs
	Multi-token Entropy Decoding

	Experiments
	The benefits of reasoning-as-infilling

	Discussion and limitations
	Accelerated sampling with Multi-token Entropy Decoding
	mdlm Any-Order Sampling Behavior
	Evaluating Reasoning Trace Correctness
	Reasoning Trace Examples
	Correct Posterior Traces
	Incorrect Posterior Traces

	Scoring Posterior Reasoning Chains with MDLMs
	Early Exit Samples
	Proofs
	Fine-tuning Details

