

RETHINKING REASONING WITH MASKED DIFFUSION MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Masked diffusion language models (MDLMs) are trained to in-fill positions in ran-
012 domly masked sequences, in contrast to traditional next-token prediction (NTP)
013 models. Discussions around MDLMs focus on two benefits: (1) any-order de-
014 coding and 2) multi-token decoding. However, we observe that for math and
015 coding tasks, any-order algorithms often underperform or behave similarly to *left-*
016 *to-right sampling*, and standard multi-token decoding significantly degrades per-
017 formance. At inference time, MDLMs compute the conditional distribution of all
018 masked positions. A natural question is: *How can we justify this additional com-*
019 *pute when left-to-right one-token-at-a-time decoding is on par with any-order de-*
020 *coding algorithms?* These findings warrant rethinking how MDLMs are utilized.
021 First, we propose *reasoning-as-infilling*. By using MDLMs to infill a reasoning
022 template, we can structure outputs and distinguish between reasoning and an-
023 swer tokens. In turn, this enables measuring answer uncertainty *during* reasoning,
024 and early exits when the model converges on an answer. Next, given an answer,
025 *reasoning-as-infilling* enables sampling from the MDLM posterior over reasoning
026 traces *conditioned on the answer*, providing a new source of high-quality data
027 for post-training. On GSM8k, we observe that fine-tuning LLaDA-8B Base on its
028 posterior reasoning traces provides a performance boost on par with fine-tuning
029 on human-written reasoning traces. Additionally, given an answer, reasoning-as-
030 infilling provides a method for scoring the correctness of the reasoning process
031 at intermediate steps, without requiring expensive rollouts or an external model.
032 Second, we propose multi-token entropy decoding (MED), a simple adaptive sam-
033 pler that minimizes the error incurred by decoding positions in parallel based on
034 the conditional entropies of those positions. MED preserves performance across
035 benchmarks and leads to $2.7\times$ fewer steps. Combined with early exits, MED leads
036 to a $3.3\times$ speed-up on GSM8k with a minimal (0.1%) effect on accuracy. Our
037 work demonstrates that the training objective and compute used by MDLMs un-
038 lock many new possibilities for inference and post-training methods.

1 INTRODUCTION

039 The current dominant approach for language modeling is based on next-token prediction (NTP)
040 training. NTP language models learn the conditional distribution of the *next token* given the previ-
041 ous tokens in a sequence (Shannon, 1951; Radford et al., 2019). The resulting language model is
042 sampled auto-regressively left-to-right, one token at a time. Recent work proposes MDLMs (Austin
043 et al., 2021; Sahoo et al., 2024; Shi et al., 2024) as an alternative to NTP models. MDLMs are trained
044 to in-fill sequences with randomly masked positions. The resulting model learns the distribution
045 $p_\theta(x^i | \mathbf{x}_{\text{UN-MASKED}})$ at every masked position i .

046 While modeling all masked positions requires additional effort, MDLMs have several potential ben-
047 efits, such as parallel token decoding (Sahoo et al., 2024; 2025), and flexible decoding orders (Kim
048 et al., 2025) that lead to significant improvements on logic puzzles, such as Sudoku. Addition-
049 ally, Bachmann & Nagarajan (2024); Prabhudesai et al. (2025) show that multi-token prediction
050 objectives can achieve better likelihoods and accuracy on tasks, and access to the distribution and
051 samples from masked positions supports controllable generation (Schiff et al., 2024; Singhal et al.,
052 2025).

053 In our work, we first examine two benefits of MDLMs: any-order and multi-token decoding, on
mathematical reasoning and coding benchmarks. Despite the flexibility enabled by MDLMs, we

Figure 1: MDLMs learn the conditional distributions at each masked token position. A) We reframe reasoning as infilling a prompted reasoning template, which enables directly modeling answer token probabilities *during reasoning*. This provides several benefits, like B) enabling early exits or *post-hoc* reasoning given a pre-filled answer. C) We also utilize the entropy of these distributions to adaptively set the number of tokens decoded at each step.

observe that decoding one token in a left-to-right order, identically to an NTP model, is a strong decoding choice for MDLM models. Even decoding just two tokens in parallel substantially reduces performance on popular benchmarks. These findings raise questions about the substantial extra compute MDLMs spend to model the distribution of all masked positions. In this work, we show how this compute can be made *useful*. We demonstrate that the access that MDLMs provide to the conditional distributions of all masked positions, and their ability to in-fill, unlocks new sampling and post-training capabilities that are not readily available for NTP models.

First, we demonstrate that the ability of MDLM to in-fill opens up new model prompting paradigms. In this work, we propose prompting-as-infilling, where we add user-specified contexts in multiple positions, not just the beginning of the sequence, unlike NTP models. Specifically, we consider **reasoning-as-infilling**. Here we pre-fill an explicit reasoning template, with specific reasoning and answer positions (see fig. 1). This enables sampling reasoning traces conditioned on a reasoning budget and format. We demonstrate that the in-filled template provides many advantages. By explicitly distinguishing token answer positions, we can make use of the conditional distributions of the masked positions provided by MDLMs to measure the uncertainty of the answer *while reasoning*. In turn, this enables **early exits** once the model converges on an answer, reducing inference costs. For instance, on GSM8k this leads to 24% fewer function calls with no degradation in accuracy.

Reasoning-as-infilling has consequences for analyzing model behavior and improving performance. Given access to an answer, we can sample from the MDLM’s posterior distribution of reasoning traces conditioned on the answer, $p_\theta(\mathbf{r} | \mathbf{c}, \mathbf{a})$. This easy sampling from the posterior in MDLMs enables generating high-quality *post-hoc* reasoning traces for use in model fine-tuning.

Next, we revisit multi-token decoding. Decoding multiple positions in a single step results in samples that are not from the MDLM’s learned distribution, as typically the joint distribution and factorized distributions do not align, $p_\theta(x^i, x^j | \mathbf{x}_{\text{UN-MASKED}}) \neq p_\theta(x^i | \mathbf{x}_{\text{UN-MASKED}})p_\theta(x^j | \mathbf{x}_{\text{UN-MASKED}})$. However, by making use of the entropy of the masked positions to inform decoding, we can control how much multi-token decoding deviates from single token sampling. We propose Multi-token Entropy Decoding (MED), an **adaptive multi-token decoder** that decodes multiple positions only if the conditional entropy of the additional positions falls below a specified threshold. We find that MED leads to 2-3× fewer function calls, with a minor or no drop in performance.

Contributions. In this paper, we:

- Evaluate MDLM models, such as Dream (Wu et al., 2025b) and LLaDA (Nie et al., 2025), on several tasks and find that the any-order sampling capability of MDLM provides limited benefits on

108 coding and mathematical reasoning benchmarks, and that standard multi-token decoding degrades
 109 performance.
 110

- 111 • Introduce reasoning-as-infilling for MDLMs, which leverages their infilling capabilities. We then
 112 show that distinguishing reasoning and answer tokens can provide several benefits, such as:
 - 113 – *Early exits*, where if the model is certain about the answer, we then skip the remaining reasoning
 114 steps. This leads to a $3.3\times$ speed when combined with multi-token entropy decoding (MED).
 - 115 – *Post-hoc reasoning*, where given question-answer pairs, we generate reasoning traces condi-
 116 tioned on the answer. On the GSM8k dataset, we find that supervised fine-tuning on these rea-
 117 soning traces can improve the model more than supervised fine-tuning on the *human-annotated*
 118 GSM8k reasoning traces.
 - 119 – *Scoring reasoning traces*, where given an answer, we can score the reasoning process for cor-
 120 rectness at intermediate steps using the distributions of the answer block, without an external
 121 verifier or roll-outs. These scores correlate with whether the reasoning steps lead to a correct
 122 answer.
- 123 • Propose MED, an adaptive sampler that provides a $2\text{-}3\times$ speed-up, without any loss in performance
 124 on math and coding benchmarks.

2 RELATED WORK

130 **Multi-Token Prediction and Speculative Decoding.** Gloeckle et al. (2024) show that models
 131 trained with the multi-token objective can enable parallel multi-token decoding, or *speculative de-
 132 coding*, without making use of another model. However, unlike MDLMs, Gloeckle et al. (2024) limit
 133 to predicting the next 2, 4 tokens. Several other works (Leviathan et al., 2023; Chen et al., 2023)
 134 show that using smaller draft models for generation and then rejection sampling can also enable
 135 parallel decoding with NTP models. However, MDLMs offer many possibilities beyond left-to-right
 136 parallel decoding, such as in-filling, and error correction through re-masking of unmasked tokens
 137 (Wang et al., 2025). Israel et al. (2025) propose an adaptive multi-token decoder which samples from
 138 the product of an NTP and MDLM model. Unlike MED, their approach relies on rejection sampling
 139 based on an external NTP model.

140 **Ben-Hamu et al. (2025)** propose entropy-bound (EB) sampler, an adaptive multi-token decoder for
 141 MDLMs, which similar to MED controls the error incurred by multi-token decoding. EB sampler adds
 142 multiple positions to unmask based on the difference between the sum of the positions added and
 143 the maximum entropy until the difference exceeds a specified threshold γ . MED unmasks positions
 144 based on the individual entropies rather than thresholding based on the sum. Wu et al. (2025a)
 145 propose accelerating inference with MDLMs using KV-caching and parallel decoding. Similar to
 146 Ben-Hamu et al. (2025), they propose an adaptive greedy strategy, instead decoding tokens with
 147 confidences above a fixed probability threshold, unlike MED, which thresholds based on entropy.
 148 Additionally, the method proposed in Wu et al. (2025a) is designed to accelerate arg max sampling
 149 from MDLMs, whereas MED is compatible with inference-time steering methods and post-training
 150 methods that require multiple samples per prompt, such as RLOO (Ahmadian et al., 2024) and GRPO
 151 (Shao et al., 2024; Zhao et al., 2025). We include adaptive sampler comparisons in section A.

152 **Post-hoc Reasoning.** Zelikman et al. (2022) proposes fine-tuning language models on reasoning
 153 traces that are generated conditioned on a correct answer. Phan et al. (2023); Ruan et al. (2025) pro-
 154 pose fine-tuning a model on samples from approximations of the posterior $p_\theta(\mathbf{r} \mid \mathbf{c}, \mathbf{a})$. In contrast,
 155 MDLMs enable exact sampling from the posterior of the reasoning traces given the answer by simply
 156 in-filling the answer in the answer block provided in the reasoning-as-infilling framework.

3 MASKED DIFFUSION LANGUAGE MODELS

157 MDLMs (Sohl-Dickstein et al., 2015; Devlin et al., 2019; Austin et al., 2021; Sahoo et al., 2024;
 158 Shi et al., 2024) are a class of generative models for modeling discrete data $\mathbf{x} \sim q_{\text{data}}$, where
 159 $\mathbf{x} = (x^1, x^2, \dots, x^L)$ and each position x^i takes values in a finite vocabulary \mathcal{V} . For training the
 160 model $p_\theta(\mathbf{x} \mid \mathbf{c})$, the sequence $\mathbf{x} \sim q_{\text{data}}$ is masked randomly and the model learns to predict the

Figure 2: Left-to-right sampling with MDLMs is a competitive sampling algorithm for reasoning and coding. When performing entropy decoding (Ye et al., 2025b), we observe that full any-order sampling results in poor performance on all tasks but Sudoku. Left-to-right block decoding is required to make any-order sampling performant, and left-to-right sampling (block size = 1) is always within a few percent of the best configuration. We also observe in table 7 in section B that performant block any-order configurations sample a large portion of tokens left-to-right. We consider sequences of length 128.

distributions of the masked positions for a fixed length sequence by maximizing:

$$\mathcal{L}(\mathbf{x}, \mathbf{c}, \theta) := \mathbf{E}_{\text{MASKED-SET} \sim U} \sum_{j \in \text{MASKED-SET}} \log p_\theta(x^j \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \quad (1)$$

where MASKED-SET is a set of randomly masked positions in $\{1, 2, \dots, L\}$. Sampling from an MDLM is performed by iteratively un-masking positions. Notably, an MDLM can also be viewed as any-order auto-regressive model (Uriel et al., 2014; Ou et al., 2024), where given a decoding order $\mathbf{o} = [o_1, \dots, o_L]$ with $o_j \in \{1, 2, \dots, L\}$, the sampling model can be defined as:

$$p_\theta(\mathbf{x} \mid \mathbf{c}, \mathbf{o}) = \prod_{j=0}^{L-1} p_\theta(x^{o(j)} \mid \mathbf{x}_{o(<j)}, \mathbf{c}) \quad (2)$$

where o_j refers to the position decoded at step j and $\mathbf{x}_{o(<j)}$ refers to all positions decoded prior to step j . Additionally, block-sampling (Sahoo et al., 2024; Nie et al., 2025; Arriola et al., 2025) approaches define a left-to-right sequence of fixed length blocks and decode within each block in an arbitrary order.

3.1 PRELIMINARY OBSERVATIONS

In our work, we first examine two purported benefits of MDLMs: *any-order* and *multi-token* decoding, on popular mathematical reasoning, GSM8k (Cobbe et al., 2021a) and MATH500 (Luo et al., 2024), and coding benchmarks, HUMANEVAL (Chen et al., 2021) as well as Sudoku (Shahab, 2025):

1. **Does any-order decoding help for text?** Popular sampling approaches for MDLMs select positions to unmask based on confidence (e.g. token probability (Chang et al., 2022) or entropy (Kim et al., 2025; Ye et al., 2025b)). We find that these any-order decoding algorithms either sample a large portion of tokens in a left-to-right order or underperform left-to-right sampling. For example, on GSM8k, the best configuration of any-order entropy decoding samples $\sim 50\%$ of tokens left-to-right. Without block sizes (Arriola et al., 2025) that enforce a semi-auto-regressive (AR) left-to-right structure, any-order significantly affects performance, see fig. 2. A notable exception where any-order sampling provides a significant benefit is Sudoku. We include additional analysis in section B and in table 7 in section B.
2. **Does fixed parallel token decoding work?** We observe that even decoding two tokens in parallel at a time can severely hurt model performance across all tasks, see table 1. The resulting distributions also have high KL with respect to a one-token sampling algorithm, see table 6.

Parallel Tokens	GSM8K		MATH500		HumanEval		Sudoku	
	LLaDA	Dream	LLaDA	Dream	LLaDA	Dream	LLaDA	Dream
1	76.95	75.73	33.4	29.6	16.46	51.82	47.64	61.26
2	62.31	57.69	19.6	16.6	4.87	20.12	50.79	57.59
4	33.58	28.50	7.0	3.6	4.87	12.19	29.32	42.93

Table 1: MDLMs can generate multiple fixed tokens in parallel, but this degrades accuracy. We decode 1, 2, 4 tokens in parallel, with block any-order (8) entropy decoding. We note that decoding even two tokens in parallel leads to a significant drop on all tasks but Sudoku.

These findings show that the decoding order from NTP models is performant for MDLM models, despite their any-order and multi-token decoding capabilities. Despite these findings, we show that the additional capacities offered by MDLMs have many possible benefits.

4 RETHINKING REASONING AND SAMPLING WITH MDLMs

MDLMs are trained to in-fill sequences by modeling the distributions $p_\theta(x^j | \mathbf{x}_{\text{UNMASKED}}, \mathbf{c})$ for masked positions $j \in \text{MASK-SET}$ given unmasked text $\mathbf{x}_{\text{UNMASKED}}$ and a context \mathbf{c} . Typically, MDLMs are prompted similarly to NTP models, and the distributions of the masked positions are used only for sampling a small *fixed* number of positions. The remaining distributions are discarded. In this work, we show that the ability of MDLMs to in-fill and to access the distribution of *all* masked positions unlocks many new sampling and post-training capabilities.

- **Reasoning-as-Infilling for Control, Early Exits, and Post-Training Benefits.** We propose pre-filling a user-specified prompt in multiple parts of the sequence. Specifically for reasoning tasks, we first pre-fill a reasoning template that differentiates between reasoning and answer positions, then infill with the MDLM model. This method of prompting enables controlling the length of the reasoning process, and measuring the uncertainty of the answer block during the reasoning process for early exiting. We also demonstrate how this approach supports new post-training directions for MDLMs.
- **Multi-token Entropy Decoding.** We introduce MED, an adaptive multi-token decoding algorithm that controls the error incurred by multi-token decoding by decoding multiple positions only if the conditional entropies of the decoded positions fall below a threshold.

Assumptions. We assume that the masked conditional distributions learned by the MDLM model define a consistent joint distribution (Majid et al., 2025).

4.1 REASONING-AS-INFILLING WITH MDLMs

Generally, NTP models are controlled at inference-time with a prompt prefix that is inserted at the beginning of the sequence. However, for MDLMs we propose pre-filling the output sequence with user-specified tokens. In the case of reasoning tasks, where a model produces a reasoning trace prior to answering, we can pre-fill the output sequence with a reasoning template that distinguishes the reasoning and answer token positions:

$$\left[\underbrace{[\text{MASK}]_1 \quad [\text{MASK}]_2 \quad \dots \quad [\text{MASK}]_k}_{\text{reasoning block}} \quad \text{<Answer Delimiter>} \quad \underbrace{[\text{MASK}]_{k+1} \quad \dots \quad [\text{MASK}]_L}_{\text{answer block}} \right]$$

Here the answer delimiter is a user-specified choice (e.g. “*The answer is:* ” for math tasks, or function definitions for a coding task). In this reformulation of prompting, the context \mathbf{c} now includes both the prompt and the answer delimiter, see fig. 1. By distinguishing between reasoning and answer positions, reasoning-as-infilling offers several advantages for sampling and post-training.

Early exits. By designating explicit answer block positions, reasoning-as-infilling enables measuring answer uncertainty *while generating the reasoning trace*. A measure of uncertainty is the entropy of the answer block given the unmasked reasoning positions. This joint entropy requires additional estimation as MDLMs only provide access to the marginals $p_\theta(a^i | \mathbf{r}_{\text{UNMASKED}}, \mathbf{c})$. However,

270 we show that the marginal distributions can be used to upper-bound the joint entropy,
 271

$$272 \quad H_{\text{UB}} := \sum_{j \in \text{ANSWER-BLOCK}} H(a_j \mid \mathbf{r}_{\text{UNMASKED}}, \mathbf{c}) \geq H(\mathbf{a} \mid \mathbf{r}_{\text{UNMASKED}}, \mathbf{c}) \quad (3)$$

$$273$$

274 See [section G](#) for a proof. Using this quantity, we propose **early exiting based on the answer**
 275 **uncertainty upper-bound** H_{UB} . That is, given a partial reasoning trace, $\mathbf{r}_{\text{UNMASKED}}$, we skip filling
 276 in the remaining reasoning tokens if the answer-entropy upper bound falls below a user-specified
 277 threshold γ , $H_{\text{UB}} < \gamma$.

278 **Post-training MDLMS with reasoning-as-infilling.** Typically, post-training a model to reason uses
 279 expensive human demonstrations ([Ouyang et al., 2022](#)). Alternatively, [Zelikman et al. \(2022\)](#); [Phan](#)
 280 [et al. \(2023\)](#); [Ruan et al. \(2025\)](#) have demonstrated that post-training on model generated reasoning
 281 traces provides an alternative for improving performance ([Zelikman et al., 2022](#); [Phan et al., 2023](#);
 282 [Ruan et al., 2025](#)). These methods work off the principle that sampling reasoning traces from the
 283 posterior $p_{\theta}(\mathbf{r} \mid \mathbf{c}, \mathbf{a})$ and then training on these sample can increase the likelihood of generating
 284 correct answers. However, sampling from the posterior $p_{\theta}(\mathbf{r} \mid \mathbf{a}, \mathbf{c})$ is intractable for NTP models,
 285 therefore, [Phan et al. \(2023\)](#); [Zelikman et al. \(2022\)](#) make use of approximate sampling methods,
 286 which require either significant prompt engineering or training another model to yield reasoning
 287 traces given answer hints.

288 With reasoning-as-infilling in MDLMS, one can *simply* pre-fill the answer block positions to enable
 289 sampling from the posterior distribution, without prompt engineering or having to train another model.
 290 These posterior traces can be used for post-training in several ways, including with STaR ([Zelikman et al., 2022](#)), maximum marginal log-likelihood training ([Phan et al., 2023](#);
 291 [Murphy, 2023](#)), or maximizing the likelihood on the answer and the posterior reasoning traces:
 292 $\max_{\theta} \sum_{i=1}^N \log p_{\theta}(\mathbf{a}_i, \mathbf{r}_i \mid \mathbf{c}_i)$ where the posterior reasoning traces are generated by the model,
 293 $\mathbf{r}_i \sim p_{\theta}(\mathbf{r}_i \mid \mathbf{c}_i, \mathbf{a}_i)$.

295 **Scoring partial reasoning traces when post-training.** Existing fine-tuning algorithms, such as
 296 GRPO ([Shao et al., 2024](#)) and RLOO ([Ahmadian et al., 2024](#)), do not make use of posterior samples
 297 but score the generations upon completion. These algorithms can benefit from intermediate rewards
 298 ([Silver et al., 2016](#)). Recent work shows that guiding the generation process with intermediate
 299 rewards produces samples that improve model fine-tuning ([Zhang et al., 2024](#)). These intermediate
 300 rewards are generally provided by an *external* pre-trained process reward model (PRM) ([Lightman](#)
 301 [et al., 2023](#); [Zhang et al., 2024; 2025b](#)). Reasoning-with-infilling, given the answer, allows MDLMS
 302 to score arbitrary reasoning traces at intermediate steps. Given a partial reasoning trace $\mathbf{r}_{\text{UNMASKED}}$
 303 and an answer \mathbf{a}^* , we can score $\mathbf{r}_{\text{UNMASKED}}$ with:

$$304 \quad \phi(\mathbf{r}_{\text{UNMASKED}} \mid \mathbf{c}, \mathbf{a}^*) := \sum_{j \in \text{ANSWER-BLOCK}} \log p_{\theta}(a_j = a_j^* \mid \mathbf{c}, \mathbf{r}_{\text{UNMASKED}}). \quad (4)$$

$$305$$

306 The intuition behind the equation is that when the likelihood of individual answer tokens is higher
 307 for the reasoning trace $\mathbf{r}_{\text{UNMASKED}}$, then $\mathbf{r}_{\text{UNMASKED}}$ is often more likely to produce the answer.

308 4.2 MULTI-TOKEN ENTROPY DECODING

310 As MDLMS learn the conditional distribution $p_{\theta}(x^j \mid \mathbf{x}_{\text{UNMASKED}})$ for all masked tokens, they support
 311 unmasking multiple tokens in parallel. However, decoding even two positions, x^i and x^j in parallel
 312 can result in samples that may not be likely under the MDLM joint distribution $p_{\theta}(\mathbf{x})$, as typically
 313 $p_{\theta}(x^i, x^j \mid \mathbf{x}_{\text{UNMASKED}}) \neq p_{\theta}(x^i \mid \mathbf{x}_{\text{UNMASKED}})p_{\theta}(x^j \mid \mathbf{x}_{\text{UNMASKED}})$. In [table 1](#), we observe that decoding
 314 even 2 tokens in parallel hurts task performance.

315 However, for any set of positions $A \subseteq \text{MASK-SET} \subseteq \{1, \dots, L\}$, we can upper bound the Kullback-
 316 Leibler (KL) divergence between the joint distribution $p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UNMASKED}}, \mathbf{c})$ and the factorized
 317 distribution $\prod_{i \in A} p_{\theta}(x^i \mid \mathbf{x}_{\text{UNMASKED}}, \mathbf{c})$ with the sum of the entropies of the masked tokens:

$$318 \quad \text{KL} \left(p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UNMASKED}}, \mathbf{c}) \mid\mid \prod_{i \in A} p_{\theta}(x^i \mid \mathbf{x}_{\text{UNMASKED}}, \mathbf{c}) \right) \leq \sum_{i \in A} H(x^i \mid \mathbf{x}_{\text{UNMASKED}}, \mathbf{c}) \quad (5)$$

$$319$$

$$320$$

321 where H is the entropy of the distribution $p_{\theta}(x^i \mid \mathbf{x}_{\text{UNMASKED}}, \mathbf{c})$. For a proof, see [section G](#).

322 In this work, we propose multi-token entropy decoding, which makes use of the entropies of the
 323 masked positions x^j to decide whether to decode multiple positions in parallel. Given unmasked

324 text $\mathbf{x}_{\text{UNMASKED}}$, a decoding threshold λ and a maximum number of tokens to be decoded k_{\max} , we
 325 propose the following definition of the set A for selecting positions to un-mask. In MED, we sort the
 326 position entropies in an ascending order and decode positions that satisfy $H(x^i | \mathbf{x}_{\text{UNMASKED}}, \mathbf{c}) < \lambda$
 327 and select k_{\max} such tokens. If no position has entropy lower than λ , we choose the position with
 328 the lowest entropy.

329 MED allows for upper bounding the Kullback-Leibler divergence in [eq. \(5\)](#) by λk_{\max} , controlling the
 330 error incurred by multi-token decoding.
 331

332 5 EXPERIMENTS

333 In this section, we examine the inference-time and post-training benefits of reasoning-as-infilling,
 334 such as (1) early-exits based on answer certainty $H_{\text{UB}}(\mathbf{a} | \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c})$ and (2) the ability to boot-
 335 strap and score reasoning traces given (question, answer) pairs. In [section A](#), we study the effectiveness
 336 of multi-token entropy decoding (MED) for parallel sampling.
 337

338 5.1 THE BENEFITS OF REASONING-AS-INFILLING

339 **Early exits.** We investigate the inference-time benefits of reasoning-as-infilling on two mathematical
 340 reasoning datasets, GSM8k ([Lightman et al., 2023](#)) and MATH500 ([Cobbe et al., 2021b](#)), with
 341 the Dream 7B and LLaDA-8B models.

342 For both tasks, we consider a generation length $L = 256$ with block size 32. We pre-fill the answer
 343 delimiter “*The answer is \boxed{..}*”, and allocate 10 answer tokens. As a baseline, we compare
 344 against allocating a sequence of length 256 with no-reasoning template. For sampling, we examine
 345 early exits with one-token decoding and MED with $\lambda = 0.2$.

346 In [table 2](#), we observe:

- 348 • For both Dream and LLaDA, early exiting reduces the total number of NFES, and increasing the
 349 early exit threshold γ enables trading faster inference for task accuracy. For example, for LLaDA,
 350 we observe a 23% speed up on one-token entropy decoding with only a < 1% drop in performance
 351 versus baseline reasoning template. Early exits combined with MED provides further savings.
 352 LLaDa with MED and $\gamma = 0.1$ outperforms the base configuration on GSM8k with a $3.3 \times$ speedup.
 353 In [section F](#), we provide examples of reasoning traces with varying exit thresholds.
- 354 • Notably, the benefits of early exits are more pronounced for LLaDA than Dream, which requires
 355 higher exit thresholds for speed-ups. This may be due to Dream’s adaption from an NTP model
 356 ([Gong et al., 2024; Ye et al., 2025a](#)). See [section B](#) for a discussion of the sampling behavior of
 357 Dream and LLaDA.

358 Model	359 Sampler	360 GSM8K			361 Math500		
		362 Exit Param	363 NFES ↓	364 Acc.	365 Exit Param	366 NFES ↓	367 Acc.
368 LLaDA	$\sigma_{\text{ENTROPY}, k=1}$	NO TEMPLATE	256	76.6	NO TEMPLATE	256	33.8
369 LLaDA	$\sigma_{\text{ENTROPY}, k=1}$	NO EXIT	256	79.4	NO EXIT	256	33.4
370 LLaDA	$\sigma_{\text{ENTROPY}, k=1}$	$\gamma = 0.1$	193	78.6	$\gamma = 0.3$	221	31.9
371 LLaDA	$\sigma_{\text{MED}, \lambda=0.2}$	NO EXIT	94	79.9	NO EXIT	143	33.4
372 LLaDA	$\sigma_{\text{MED}, \lambda=0.2}$	$\gamma = 0.1$	77	79.3	$\gamma = 0.3$	129	32.0
373 Dream	$\sigma_{\text{ENTROPY}, k=1}$	NO TEMPLATE	256	80.1	NO TEMPLATE	256	33.4
374 Dream	$\sigma_{\text{ENTROPY}, k=1}$	NO EXIT	256	79.8	NO EXIT	256	35.6
375 Dream	$\sigma_{\text{ENTROPY}, k=1}$	$\gamma = 0.7$	225	76.7	$\gamma = 0.7$	245	33.2
376 Dream	$\sigma_{\text{MED}, \lambda=0.2}$	NO EXIT	135	79.2	NO EXIT	147	35.6
377 Dream	$\sigma_{\text{MED}, \lambda=0.2}$	$\gamma = 0.7$	121	79.3	$\gamma = 0.7$	141	35.4

378 **Table 2: Early-exits can accelerate MDLM inference.** We evaluate reasoning-as-infilling with
 379 early exits on a generation length of 256. Varying the early exit threshold γ enables trading faster
 380 inference for task accuracy. Lower values of γ preserve performance.

381 Next, we investigate how a dataset of question-answer pairs $\{(\mathbf{c}_i, \mathbf{a}_i)\}_{i=1}^N$, can be used to analyze
 382 and improve MDLMs.

378	379	380	Model	Posterior Reasoning Scores	
			381	Qwen-PRM	GPT-4o
382	383	384	LLaDA Base	0.31	0.36
385	386	387	LLaDA Instruct	0.38	0.43

384 **Table 3: The MDLM reasoning posterior yields high-quality traces for problems that the origi-
385 nal instruct-tuned model fails to solve.** We perform posterior inference on the 1419 training sam-
386 ples that LLaDa-8B Instruct with greedy decoding fails to solve, and evaluate the resulting traces
387 with two judges, QWEN2.5-MATH-PRM (Zhang et al., 2025a) and GPT-4o (Hurst et al., 2024).
388 Both judges rate $\sim 40\%$ of the instruct-tuned reasoning chains as correct. Notably, even the poste-
389 rior reasoning chains from the base model are rated as $> 31\%$ correct.

390	391	392	Model	Posterior Reasoning Scores	
			393	Qwen-PRM	GPT-4o
394	395	396	Llama STaR ($L = 256$)	0.39	0.33
397	398	399	Llama STaR ($L = 512$)	0.39	0.40
400	401	402	LLaDA Base ($L = 128$)	0.34	0.41
403	404	405	LLaDA Instruct ($L = 128$)	0.46	0.52

399 **Table 4: The MDLM reasoning posterior scores higher than Llama3-8B STaR reasoning traces.**
400 We perform posterior inference on the 265 test samples that Llama3-8B Instruct with greedy decod-
401 ing fails to solve, and evaluate the traces similar to table 3. We observe that the LLaDA instruct
402 model posterior traces score higher than the Llama STaR reasoning traces generated when the an-
403 swer is provided as a hint.

404 **The answer posterior is a source of high-quality reasoning traces.** Here, we evaluate reasoning
405 traces r generated from the posterior distribution $p_\theta(r | c, a)$. A key challenge for training better
406 reasoning models is collecting high quality reasoning traces (Zelikman et al., 2022). We investigate
407 whether the MDLM posterior distribution can provide these traces, even when an MDLM incorrectly
408 solves the original task. To do this, we utilize question-answer pairs from GSM8k (Lightman et al.,
409 2023). In this experiment, we generate samples from the LLaDA-8B Instruct model with MED and
410 any-order decoding. On the GSM8k training dataset, the model answers 1419 out of 7473 problems
411 incorrectly. We use these 1419 question-answer pairs to generate reasoning traces from the MDLM
412 posterior (i.e. with the answer pre-filled). We also generate reasoning traces with the base model
413 (without instruction tuning).

414 To evaluate these reasoning traces for correctness, we use GPT4o (Hurst et al., 2024), and the
415 Qwen2.5-Math-7B PRM (Zhang et al., 2025a), see section C for the system instructions to the GPT4o
416 model. In table 3 observe that both judge models rate $\sim 40\%$ of the posterior reasoning traces as
417 correct. In section D, we include examples of reasoning traces generated from the posterior and
418 the regular model with different judge labels. We observe that the posterior traces judged correct
419 by GPT4o contain accurate reasoning steps, correcting the original model’s behavior. Notably, we
420 also observe that reasoning-as-infilling elicits correct reasoning chains ($> 30\%$) from the base model
421 checkpoint on these problems. In table 4, we analyze the reasoning traces for problems that Llama3-
422 8B Instruct (Dubey et al., 2024) solves incorrectly. We note that the LLaDA-8B base and instruct
423 models generate posterior reasoning traces that score higher than the Llama model prompted with
424 the answer as a hint.

425 **Posterior data can be used to improve base models.** Here, we examine the effectiveness of post-
426 training on the post-hoc reasoning dataset generated on the full GSM8k training set with the base
427 model. We post-train the LLaDA-8B Base model using LoRA (Hu et al., 2022).

428 In table 5, we observe that fine-tuning the model on the posterior generated base model data sig-
429 nificantly improves performance (+14.9%). As a benchmark, we observe that fine-tuning on the
430 GSM8k *human annotated* reasoning traces produces similar results. These results provide evidence
431 that maximizing the log-likelihood $\log p_\theta(a, r | c)$ on the posterior reasoning traces improves accu-
432 racy on reasoning tasks. We include additional training details section H.

Model	Post-training Data	GSM8K Test Acc.
LLaDA 8B-Base (No template)	-	13.9 %
LLaDA 8B-Base (With template)	-	51.2 %
Finetuned* LLaDA 8B-Base	GSM8k ($\mathbf{c}, \mathbf{r}_{\text{gold}}, \mathbf{a}_{\text{gold}}$) ($n = 7473$)	64.6 (+13.4) %
Finetuned* LLaDA 8B-Base	GSM8k Posterior ($\mathbf{c}, \mathbf{r}_{\text{posterior}}, \mathbf{a}_{\text{gold}}$) ($n = 7473$)	66.1 (+14.9) %
LLaDA-8B Instruct	Misc. Instruction Data ($n = 4.5$ million)	75.96 %

Table 5: Fine-tuning the base model with posterior-generated data improves performance. Fine-tuning on GSM8k training data and posterior reasoning traces boosts accuracy to 64.6% and 66.1%, respectively. Finetuned* indicates LoRA (Hu et al., 2022) fine-tuning.

Figure 3: MDLMs enable scoring their own reasoning process without an external process verifier. We score GSM8k reasoning traces, generated left-to-right with LLaDA, at intermediate steps using (a) gold answer log probabilities, (b) the answer block entropy bound, and (c) an 8B process reward model (PRM) (Zhang et al., 2025b). Gold answer probability at intermediate steps is more predictive of final correctness than PRM scores. Even without gold labels, the answer block entropy is weakly correlated with correctness.

Scoring partial reasoning traces without an external model. Zhang et al. (2024) show that using intermediate process rewards for sampling can improve model fine-tuning. However, training these process rewards requires training an external model. In fig. 3, we compare various strategies for estimating the final correctness of partial reasoning traces given intermediate rewards. For further details see section E

Using the LLaDA-8B Instruct model, we greedily sample solutions on the GSM8k test set, left-to-right, 1 token at a time. We then compute the Pearson correlation between intermediate rewards and the correctness of the final output. During reasoning, the intermediate reasoning process defined using the answer log probabilities $\log p_{\theta}(a_j = a_j^* | \mathbf{c}, \mathbf{r}_{\text{UN-MASKED}})$ are more strongly correlated with final answer correctness at intermediate steps than a pretrained 7B parameter process reward model (Zhang et al., 2025a).

Our results provide evidence that MDLM pre-training offers other new post-training capabilities: low-quality reasoning chains could be terminated early or filtered, the reasoning process could be steered towards correct solutions, reflection tokens could be automatically inserted at reasoning failures, and new sources of dense feedback could be incorporated into fine-tuning objectives.

6 DISCUSSION AND LIMITATIONS

Much of the current tooling around pre-training, post-training, and inference for text generation has been built around a key modeling choice: next-token prediction training. MDLMs are an expressive class of models trained to in-fill masked sequences, requiring additional training and inference compute. In our work, we find that this additional compute has many uses beyond accelerating inference and warrants *rethinking* how these models are utilized. For instance, the ability to in-fill unlocks new prompting techniques, like the proposed reasoning-as-filling framework, along with new data generation and post-training methods.

Reasoning-as-infilling requires specifying the length of the reasoning and answer blocks, however, we note that the methods developed with reasoning-as-infilling can be paired with variable sequence length models (Wu et al., 2025b) that obviate the need to pre-specify the length of reasoning and answer tokens, and can enable dynamically scaling compute for harder problems.

486 REFERENCES
487

488 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
489 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
490 ing from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

491 Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
492 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
493 sive and diffusion language models, 2025. URL <https://arxiv.org/abs/2503.09573>.

494 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
495 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing
496 Systems*, 34:17981–17993, 2021.

497 Gregor Bachmann and Vaishnav Nagarajan. The pitfalls of next-token prediction. *arXiv preprint
498 arXiv:2403.06963*, 2024.

499 Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
500 masked diffusion models via entropy bounded unmasking. *arXiv preprint arXiv:2505.24857*,
501 2025.

502 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
503 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
504 recognition*, pp. 11315–11325, 2022.

505 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
506 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint
507 arXiv:2302.01318*, 2023.

508 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
509 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
510 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

511 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
512 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
513 Schulman. Training verifiers to solve math word problems, 2021a. URL <https://arxiv.org/abs/2110.14168>.

514 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
515 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
516 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021b.

517 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
518 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
519 the North American chapter of the association for computational linguistics: human language
520 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

521 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
522 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
523 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
524 Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
525 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
526 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
527 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
528 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
529 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
530 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
531 son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
532 Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
533 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vrana, Jason Park, Jay Ma-
534 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
535 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,

540 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Al-
 541 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
 542 Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
 543 Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
 544 Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
 545 nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
 546 Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
 547 Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
 548 Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
 549 gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
 550 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 551 Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
 552 baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
 553 Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
 554 Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
 555 Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
 556 Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
 557 Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
 558 Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
 559 vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
 560 Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
 561 Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
 562 Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
 563 Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
 564 Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
 565 Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
 566 Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
 567 Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
 568 Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
 569 Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
 570 don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
 571 Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
 572 Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
 573 Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
 574 Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
 575 Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
 576 caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
 577 Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
 578 Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
 579 Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
 580 Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
 581 man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
 582 James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
 583 Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
 584 Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
 585 Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
 586 Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
 587 Chawla, Kushal Lakhota, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
 588 Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madi-
 589 an Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
 590 Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
 591 neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
 592 Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
 593 hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
 594 ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
 595 Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
 596 Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
 597 Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
 598 Rachel Rodriguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
 599

594 Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
 595 Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
 596 tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
 597 say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
 598 Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
 599 Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
 600 Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
 601 Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
 602 othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
 603 Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
 604 Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
 605 stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
 606 Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 607 Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
 608 Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
 609 URL <https://arxiv.org/abs/2407.21783>.

610 Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
 611 naeve. Better & faster large language models via multi-token prediction. *arXiv preprint*
arXiv:2404.19737, 2024.

612 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 613 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
 614 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

615 Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 616 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
 617 eration. *arXiv preprint arXiv:2506.20639*, 2025.

618 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 619 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

620 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 621 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
arXiv:2410.21276, 2024.

622 Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
 623 parallel decoding. *arXiv preprint arXiv:2506.00413*, 2025.

624 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
 625 worst, plan for the best: Understanding token ordering in masked diffusions. *arXiv preprint*
arXiv:2502.06768, 2025.

626 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 627 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

628 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 629 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
 630 <https://arxiv.org/abs/2305.20050>.

631 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
 632 Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
 633 automated process supervision. *arXiv preprint arXiv:2406.06592*, 2024.

634 Mahbod Majid, Rattana Pukdee, Vishwajeet Agrawal, Burak Varıcı, and Pradeep Kumar Ravikumar.
 635 On the consistent recovery of joint distributions from conditionals. In *The 28th International*
636 Conference on Artificial Intelligence and Statistics, 2025.

637 Kevin P. Murphy. *Probabilistic Machine Learning: Advanced Topics*. MIT Press, 2023. URL
 638 <http://probml.github.io/book2>.

639 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 640 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL <https://arxiv.org/abs/2502.09992>.

648 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
 649 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
 650 *arXiv preprint arXiv:2406.03736*, 2024.

651

652 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 653 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 654 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 655 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 656 URL <https://arxiv.org/abs/2203.02155>.

657 Du Phan, Matthew Douglas Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi,
 658 Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
 659 latent-variable inference. *Advances in Neural Information Processing Systems*, 36:72819–72841,
 660 2023.

661 Mihir Prabhudesai, Menging Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffusion
 662 beats autoregressive in data-constrained settings. *arXiv preprint arXiv:2507.15857*, 2025.

663

664 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 665 models are unsupervised multitask learners. 2019.

666 Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from
 667 latent thoughts. *arXiv preprint arXiv:2503.18866*, 2025.

668

669 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
 670 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 671 models, 2024.

672 Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
 673 Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. *arXiv
 674 preprint arXiv:2506.01928*, 2025.

675

676 Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
 677 Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
 678 guidance mechanisms for discrete diffusion models. *arXiv preprint arXiv:2412.10193*, 2024.

679

680 Asad Shahab. sudokuLLM: Llm fine-tuning for sudoku solving. [https://github.com/
 681 Asad-Shahab/sudokuLLM](https://github.com/Asad-Shahab/sudokuLLM), 2025. Accessed: 2025-09-24.

682 Claude E Shannon. Prediction and entropy of printed english. *Bell system technical journal*, 30(1):
 683 50–64, 1951.

684

685 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 686 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 687 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

688

689 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
 690 alized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.

691

692 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 693 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 694 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

695

696 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 697 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 698 models, 2025. URL <https://arxiv.org/abs/2501.06848>.

699

700 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 701 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-
 702 ing*, pp. 2256–2265. PMLR, 2015.

703 Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In *Inter-
 704 national Conference on Machine Learning*, pp. 467–475. PMLR, 2014.

702 Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
 703 diffusion models with inference-time scaling. *arXiv preprint arXiv:2503.00307*, 2025.
 704

705 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 706 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion lilm by enabling kv cache
 707 and parallel decoding. *arXiv preprint arXiv:2505.22618*, 2025a.

708 Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria
 709 W., Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infill-
 710 ing beyond fixed-size canvas, 2025b. URL <https://hkunlp.github.io/blog/2025/dreamon>.

712 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 713 Kong. Dream 7b, 2025a. URL <https://hkunlp.github.io/blog/2025/dream>.

715 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 716 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025b.

717 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
 718 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

720 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
 721 self-training via process reward guided tree search. *Advances in Neural Information Processing
 722 Systems*, 37:64735–64772, 2024.

724 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 725 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 726 reasoning. *arXiv preprint arXiv:2501.07301*, 2025a.

727 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 728 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 729 reasoning, 2025b. URL <https://arxiv.org/abs/2501.07301>.

730 Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
 731 large language models via reinforcement learning, 2025. URL <https://arxiv.org/abs/2504.12216>.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Figure 4: Adaptive decoding enables parallel token decoding without any loss in performance.

In contrast to fixed token decoding, adaptive parallel decoding algorithms enable preserving performance while reducing the number of function evaluations. Here, we plot results from MED alongside two recently proposed adaptive samplers, EB-Sampler (Ben-Hamu et al., 2025) and Block-wise confidence-aware parallel decoding (Wu et al., 2025a). In this experiment, we generate sequences of length $L \in \{128, 256\}$ with varying thresholds for the three samplers. The best sampler depends on task and NFE budget. For instance, for a $2\times$ reduction in NFEs, MED yields the highest accuracies on MATH500, while producing comparable numbers to EB-sampler for GSM8k.

A ACCELERATED SAMPLING WITH MULTI-TOKEN ENTROPY DECODING

In this experiment, we show that entropy-thresholded multi-token decoding (MED) enables parallel decoding without incurring the distributional error and performance degradation that fixed multi-token decoding incurs.

For these experiments, we use two open-source MDLMs models, Dream-7B Instruct (Ye et al., 2025a) and LLaDA-8B Instruct (Nie et al., 2025). We consider two popular benchmarks, (1) GSM8k (Lightman et al., 2023), a mathematical reasoning dataset, and (2) HumanEval (Chen et al., 2021), a coding benchmark. As baselines, we consider the entropy decoding scheme $\sigma_{\text{ENTROPY},k}$ (Chang et al., 2022; Ye et al., 2025b), which decodes a fixed number of k tokens in each step. We consider $k \in \{1, 2\}$.

For evaluations, we measure the task accuracy and the number of function evaluations (NFEs) for varying values of k in the fixed token decoding scheme as well as varying values of $\lambda \in \{0.1, 0.2, 0.3\}$ in MED with $k_{\max} = 32$ as the maximum number of tokens decoded in parallel. We fix a generation length $L \in \{128, 256\}$ and a block size of 32. As baselines, we compare against EB-Sampler (Ben-Hamu et al., 2025) and block-wise confidence-aware parallel decoding (Wu et al., 2025a). In fig. 4, we compare the three adaptive decoding schemes with varying thresholds on the GSM8K, MATH500 datasets. We observe that the best sampler depends on task and NFE budget. For instance, for a $2\times$ reduction in NFEs, MED yields the highest accuracies on MATH500, while producing comparable numbers to EB-sampler for GSM8k.

In table 6, we observe:

- Decoding just $k = 2$ tokens in parallel results in a large drop in accuracy on GSM8k for both LLaDA and Dream ($> 40\%$). We observe that decoding $k = 2$ also leads to a significant increase in KL.
- MED with $\lambda = 0.2$, provides significant speed-ups and *no loss in accuracy* for both LLaDA and Dream. For HUMAN EVAL, MED results in identical accuracy with a $2.2\times$ speed-up, and on GSM8k, we observe a $1.5\times$ speed-up with no loss in performance.

	Dataset	Sampler	Model	Accuracy \uparrow	KL \downarrow	NFEs \downarrow
810 811 812 813 814 815 816 817 818 819 820 821 822	GSM8K	$\sigma_{\text{ENTROPY}, k=1}$	LLaDa	78.01	0.0	128.0
			Dream	75.81	0.0	128.0
		$\sigma_{\text{ENTROPY}, k=2}$	LLaDa	36.24	92.6	64.0
			Dream	19.79	99.5	64.0
		$\sigma_{\text{MED}, \lambda=0.1}$	LLaDa	78.01	0.5	88.4
			Dream	75.81	0.4	92.5
		$\sigma_{\text{MED}, \lambda=0.2}$	LLaDa	78.01	1.5	84.8
			Dream	75.82	1.9	79.9
		$\sigma_{\text{MED}, \lambda=0.3}$	LLaDa	77.86	2.7	81.2
			Dream	75.44	3.3	75.7
823 824 825 826 827 828 829 830 831 832 833	HumanEval	$\sigma_{\text{ENTROPY}, k=1}$	LLaDa	15.24	0.0	128.0
			Dream	48.17	0.0	128.0
		$\sigma_{\text{ENTROPY}, k=2}$	LLaDa	4.87	85.5	64.0
			Dream	20.12	77.0	64.0
		$\sigma_{\text{MED}, \lambda=0.1}$	LLaDa	15.24	0.7	70.0
			Dream	48.17	0.5	68.5
		$\sigma_{\text{MED}, \lambda=0.2}$	LLaDa	15.85	2.0	61.8
			Dream	48.17	1.5	60.4
		$\sigma_{\text{MED}, \lambda=0.3}$	LLaDa	16.46	3.6	57.8
			Dream	48.17	2.2	57.0

Table 6: MED enables parallel token decoding without any loss in performance. We compare MED decoding with different λ thresholds to entropy decoding with a fixed number of tokens $k \in \{1, 2\}$. We observe that MED significantly reduces the number of NFEs while matching accuracy and maintaining a low KL.

Decoding order	GSM8K		Math500		HumanEval		Sudoku (4)	
	Llada	Dream	Llada	Dream	Llada	Dream	Llada	Dream
Left-to-right	75.96	74.98	29.4	29.2	15.24	53.65	36.13	17.28
Any-order decoding	53.44	34.11	12.0	20.6	10.97	32.92	47.64	61.26
Block any-order (8)	76.95	75.73	33.4	29.6	16.46	51.82	38.74	44.50
Block any-order (32)	78.01	75.81	32.4	28.2	15.24	48.17	47.64*	61.26*
Block any-order (64)	74.14	57.69	30.0	28.2	14.63	47.56	-	-
Llama3.1-8B	70.81		26.80		62.20		2.09	

Table 7: Left-to-right sampling is a competitive sampling algorithm for reasoning and coding. When performing entropy decoding (Ye et al., 2025b), we observe that full any-order sampling results in poor performance on all tasks but Sudoku. Left-to-right block decoding is required to make any-order sampling performant, and left-to-right sampling (block size = 1) is always within a few percent of the best configuration. We also observe in section B that performant block any-order configurations sample a large portion of tokens left-to-right.*For Sudoku, we consider sequences of length 32, otherwise we use a sequence length of 128.

B MDLM ANY-ORDER SAMPLING BEHAVIOR

We study the effects of greedy any-order entropy decoding (Ye et al., 2025a) for LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025a), as well as any-order with different **block lengths** (Sahoo et al., 2024; Arriola et al., 2025; Nie et al., 2025; Ye et al., 2025a). The block length is the contiguous region of consecutive positions considered by the sampling algorithm, where the model can decode in any order. Blocks are unmasked left-to-right.

We included our results in [table 7](#). On Sudoku, any-order sampling significantly improves performance.¹ However, for the remaining datasets, left-to-right sampling with a block length of 1 is a competitive approach. In some cases (e.g. for Dream on HUMANEVAL ([Chen et al., 2021](#))), left-to-right block length 1 sampling is the most performant configuration. Additionally, purely any-order decoding (i.e. when the block size = generation length), leads to a massive drop in performance.

In what order are tokens decoded? In [table 8](#) and [section B](#), we analyze the behavior of these different configurations on a portion of GSM8K and HUMANEVAL. We compute the fraction of non-EOS tokens decoded from the leftmost masked position, the average distance from the leftmost position, and the total number of non-EOS tokens. For GSM8K, we also include the average step at which the answer appears in the decoded sequence.

Notably, top performing block-length configurations often behave very autoregressively. On GSM8K, when the block size is 32, both LLaDA and Dream sample the leftmost unmasked position approximately 50% of the time. Additionally, the average distance of the unmasked position from the left-most mask is approximately 3 tokens. [Gong et al. \(2025\)](#) similarly observe the left-to-right sampling behavior of Dream for coding.

Why does block sampling improve performance? We find that that purely any-order decoding from current MDLMS results in less auto-regressive generation, fewer non-eos tokens, and very early answers, not utilizing the full allocated generation length. Reviewing samples from any-order decoding, we observe two specific pathological behaviors: 1) Models first greedily decoding low entropy *end-of-text* tokens, leading to shorter or empty texts that do not fully utilize the assigned tokens, and 2) *decoding only an answer, or decoding answers first, before reasoning chains*.

Config	Model	Acc.	% Leftmost	Dist. Left	Non-EOS Tokens	Answer Step
Block(1)	Dream	76.4%	100.0%	0.0	105.1	78.1
	LLaDA	79.0%	100.0%	0.0	115.3	84.3
Block(32)	Dream	77.6%	52.1%	2.9	103.1	76.3
	LLaDA	76.8%	47.1%	3.3	112.3	82.8
AO(128)	Dream	34.2%	73.1%	6.5	24.3	18.7
	LLaDA	53.4%	40.8%	20.2	75.0	16.9

Table 8: Decoding behavior, GSM8K We evaluate the autoregressiveness of different sampling configurations by measuring the percent of non-EOS tokens decoded from the leftmost position, the average distance of these positions from left, the total number of non-EOS tokens, and at what timestep the answer is decoded. We consider generation lengths of 128 on a portion of GSM8K ($n = 500$)

Config	Model	Acc.	% Leftmost	Dist. Left	Non-EOS Tokens
Block(1)	Dream	53.7%	100.0%	0.0	95.0
	LLaDA	11.0%	100.0%	0.0	119.8
Block(32)	Dream	48.2%	43.1%	3.8	96.8
	LLaDA	15.2%	44.7%	4.1	119.5
AO(128)	Dream	32.9%	44.5%	6.8	56.4
	LLaDA	15.2%	29.7%	19.7	123.8

Table 9: Decoding behavior, HumanEval Similar to [table 8](#), we measure autoregressiveness for generation lengths of 128, on a portion of HumanEval ($n = 500$)

¹Of note, on Sudoku, diffusion models with auto-regressive sampling significantly outperform Llama 8B. This may reflect benefits of the MDLM training objective.

918 C EVALUATING REASONING TRACE CORRECTNESS
919920 We evaluate reasoning trace correctness with GPT4o (Hurst et al., 2024). We use the following
921 template to evaluate the reasoning chain:

```

922 SYSTEM_INSTRUCTIONS = """
923 You are a strict grader.
924 You are given a question and a model's response.
925
926 Return a answer of either:
927 - 1 if both the model's final answer AND reasoning chain are correct.
928 - 0 otherwise.
929
930 Your final answer should be the digit 0 or 1.
931 """
932
933 PROMPT_TEMPLATE = """Grade the submission.
934
935 [Question]
936 {question}
937
938 [Model Response]
939 {reasoning}
940
941 [Reference Answer]
942 {reference_answer}
943 """

```

944 We use 512 tokens for all judge models, and default hyperparameters.

945 D REASONING TRACE EXAMPLES
946947 Below, we include reasoning traces from the model $p_\theta(a | r, c)p_\theta(r | c)$ and the posterior traces
948 $p_\theta(r | a, c)$. We include samples where LLaDA originally fails to correctly answer the question.
949 In two cases, the posterior successfully provides an alternative correct reasoning trace, and in two it
950 fails to do so.951 D.1 CORRECT POSTERIOR TRACES
952953 Example 1
954955 **Question:** Ms. Warren ran at 6 mph for 20 minutes. After the run, she walked at 2 mph for
956 30 minutes. How many miles did she run and walk in total?957
958 Incorrect LLaDA output:
959

- 1 Ms. Warren ran at 6 mph for 20 minutes, which is $\frac{20}{60} = \frac{1}{3}$ hours. So, she ran $6 \times \frac{1}{3} = 2$ miles.
- 2
- 3 Ms. Warren walked at 2 mph for 30 minutes, which is $\frac{30}{60} = \frac{1}{2}$ hours. So, she walked $2 \times \frac{1}{2} = 1$ miles as well.
- 4
- 5 The answer is $\boxed{4}$ miles.

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
1806

972
 973 3 After the run, she walked at 2 mph for 30 minutes, which is $30/60 =$
 974 $1/2$ of an hour.
 975 4 So, she walked $2 \text{ mph} * 1/2 \text{ hour} = 1 \text{ mile.}$
 976 5 In total, Ms. Warren ran and walked 2 miles + 1 mile = 3 miles.
 977 6 The answer is \boxed{3}

979 Example 2

981 **Question:** Each week Jaime saves \$50. Every two weeks she spends \$46 of her savings on
 982 a nice lunch with her mum. How long will it take her to save \$135?

984 **Incorrect LLaDA output:**

985 1 Jaime saves \$50 each week, so in two weeks she saves $\$50 \times 2 = \$100.$
 986 2 Every two weeks she spends \$46, so in two weeks she saves $\$100 -$
 987 $\$46 = \$54.$
 988 3 To save \$135, she needs to save $\$135 - \$54 = \$81$ more.
 989 4 Since she saves \$54 every two weeks, it will take her $\$81 / \$54 = 3$
 990 more two weeks to save \$135.
 991 5 The answer is \boxed{3}+2 = **6 weeks.**

992 **Correct LLaDA posterior:**

993 1 Jaime saves \$50 each week, so in two weeks she saves $\$50 \times 2 = \$100.$
 994 2 However, she spends \$46 every two weeks, so her net savings every
 995 two weeks is $\$100 - \$46 = \$54.$
 996 3 To find out how long it will take her to save \$135, we divide \$135
 997 by her net savings every two weeks: $\$135 / \$54 = 2.5.$
 998 4 Therefore, it will take her 2.5 two weeks to save \$135.
 999 5 The answer is \boxed{5}

1001 D.2 INCORRECT POSTERIOR TRACES

1003 Example 1

1004 **Question:** Tommy is making 12 loaves of bread. He needs 4 pounds of flour per loaf. A
 1005 10-pound bag of flour costs \$10 and a 12-pound bag costs \$13. When he is done making his
 1006 bread, he has no use for flour and so he will throw away whatever is left. How much does he
 1007 spend on flour if he buys the cheapest flour to get enough?

1009 **Incorrect LLaDA output:**

1011 1 Tommy needs 12 loaves of bread, and each loaf requires 4 pounds of
 1012 flour.
 1013 2 Therefore, he needs a total of $12 * 4 = 48$ pounds of flour.
 1014 3
 1015 4 The cheapest option is to buy 12-pound bags of flour.
 1016 5 Since Tommy needs 48 pounds, he will need $48/12 = 4$ bags.
 1017 6 Each bag costs \$13, so the total cost for 4 bags is $4 * 13 = \$52.$
 1018 7
 1018 8 The answer is \boxed{52}.

1019 **Incorrect LLaDA posterior:**

1020 1 Tommy needs 12 loaves of bread, so he needs a total of $12 * 4 = 48$
 1021 pounds of flour.
 1022 2 If he buys 10-pound bags, he will need $48/10 = 4$ bags,
 1023 which will cost $4 * 10 = 40.$
 1024 4 If he buys 12-pound bags, he will need $48/12 = 4$ bags, which will
 1025 cost $4 * 13 = \$52.$

1026
 1027 5 Therefore, Tommy should buy 10-pound bags to save money.
 1028 6 The answer is \boxed{50}.

1030 Example 2

1031
1032 Question: Thomas started saving for a car almost 2 years ago. For the first year, his weekly
 1033 allowance was \$50. In the second year, he got a job that pays \$9 an hour at a coffee shop and
 1034 worked 30 hours a week, so his parents discontinued his allowance. If the car he wants to
 1035 buy is \$15,000 and he spends \$35 a week on himself, how much more money does Thomas
 1036 need to buy the car by the end of the 2 years?

1037
1038 Incorrect LLaDA output:

1039
 1040 1 In the first year, Thomas earned $\$50 \times 52 = \2600 .
 1041 2 In the second year, Thomas earned $\$9 \times 30 \times 52 = 7980$.
 1042 3 Thomas saved $\$2600 + \$7980 = 10580$.
 1043 4 Thomas spent $\$35 \times 52 = 1820$.
 1044 5 Thomas still needs $\$15000 - 10580 - 1820 = 2600$ more.
 1045 6 The answer is \boxed{2600}.

1046
1047 Incorrect LLaDA posterior:

1048
 1049 1 In the first year, Thomas earned $\$50 \times 52 = \2600 .
 1050 2 In the second year, Thomas earned $\$9 \times 30 \times 52 = 8760$.
 1051 3 Thomas spent $\$35 \times 52 \times 52 = 8360$.
 1052 4 In total, Thomas saved $\$2600 + \$8760 - \$8360 = 3000$.
 1053 5 To buy the car, Thomas still needs $\$15000 - 3000 = \2000 .
 1054 6 The answer is \boxed{2000}

1055 E SCORING POSTERIOR REASONING CHAINS WITH MDLMS

1056 Given that posterior sampling yields both high-quality and low-quality reasoning chains, a natural
 1057 question is: *Can we filter these chains without an external model?*

1058 We find that answer block log probabilities computed with reasoning-as-infilling can be used to filter
 1059 these reasoning chains, and identify traces that GPT4-o rates as correct. To do this, we iteratively
 1060 unmask each generated posterior chain, left-to-right, and average the answer log probabilities over
 1061 all time-steps. For LLaDA, we observe that correct reasoning traces correspond to higher average
 1062 scores, see [fig. 5](#). We also find that thresholding these answer block entropy scores results in a
 1063 reasonably performant classifier, with AUC=0.74, see [fig. 6](#).

1064 F EARLY EXIT SAMPLES

1065 Below we demonstrate outputs from LLaDA on the GSM8k dataset. For a sample question from the
 1066 test set, we generate a sequence of length 256 with the following settings"

- 1067 • Sampling from the model, without using the reasoning template or early exits.
- 1068 • Reasoning template with no exits.
- 1069 • Reasoning template with varying exit thresholds.
- 1070 • Reasoning template with the model producing the answer with no reasoning tokens de-
 1071 coded.

1072 Example 1

1073
1074 Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and
 1075 bakes muffins for her friends every day with four. She sells the remainder at the farmers'
 1076 market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

Figure 5: Distribution of answer block log probability scores for posterior samples. To score the 1419 posterior reasoning traces, we iteratively unmask each chain left-to-right, and compute the average answer block log probabilities across all timesteps. Posterior chains rated as correct by GPT4-o tend to have higher scores.

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

Figure 6: Answer block log probability scores predict posterior reasoning trace quality. The MDLM average answer block log probabilities can simply be thresholded to provide a classifier for predicting GPT4-o reasoning chain judgments. This classifier provides a potential method for filtering low-quality posterior samples (e.g. before fine-tuning).

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

farmers' market?

LLaDA (No reasoning template, No Early Exits):

1

2 To determine how much Janet makes every day at the farmers' market, we need to follow these steps:

3 1. Calculate the total number of eggs laid by Janet's ducks per day.

4 2. Subtract the number of eggs Janet eats and bakes for her friends from the total number of eggs laid.

5 3. Determine the number of eggs she sells at the farmers' market.

6 4. Calculate the total revenue from selling the eggs.

7 Step 1: Janet's ducks lay 16 eggs per day.

1134
 1135 8 Step 2: Janet eats 3 eggs for breakfast every morning and bakes 4
 1136 eggs for her friends every day. Therefore, she eats and bakes a
 1137 total of $(3 + 4 = 7)$ eggs per day.
 1138 9 Step 3: The number of eggs she sells at the farmers' market is $(16$
 $- 7 = 9)$ eggs per day.
 1139 10 Step 4: Janet sells each egg for \$2. Therefore, the total revenue
 1140 from selling 9 eggs per day is $(9 \times 2 = 18)$ dollars.
 1141 11 So, the amount Janet makes every day at the farmers' market is
 1142 $\boxed{18}$.

1143 **LLaDA output (Reasoning template, No Early Exit):**

1144 1
 1145 2
 1146 3 To determine how much Janet makes every day at the farmers' market,
 we need to follow these steps:
 1147 4 Step 1: Calculate the total number of eggs laid by Janet's ducks
 per day.
 1148 5 Janet's ducks lay 16 eggs per day.
 1149 6 Step 2: Calculate the number of eggs Janet eats for breakfast per
 1150 day.
 1151 7 Janet eats 3 eggs for breakfast every day.
 1152 8 Step 3: Calculate the number of eggs Janet bakes for her friends
 1153 per day.
 1154 9 Janet bakes 4 eggs for her friends every day.
 1155 10 Step 4: Calculate the number of eggs left after Janet eats some and
 1156 bakes some.
 1157 11 Total eggs laid - Eggs eaten for breakfast - Eggs bakes for friends
 1158 = Eggs left
 1159 12 $16 - 3 - 4 = 9$
 1160 13 So, Janet has 9 eggs left to sell.
 1161 14 Step 5: Calculate the revenue from selling the eggs at the farmers'
 1162 market.
 1163 15 Janet sells each egg for \$2.
 1164 16 Eggs left * Price per egg = Total revenue
 1165 17 $9 \times 2 = 18$
 1166 18 Therefore, Janet makes \$18 every day at the farmers' market.
 1167 19 The answer is $\boxed{18}$.

1168 **LLaDA output (Reasoning template, Early Exit($\gamma = 0.5$)):**

1169 1 To determine how much Janet makes every day at the farmers' market,
 we need to follow these steps:
 1170 2 Step 1: Calculate the total number of eggs laid by Janet's ducks
 per day.
 1171 3 $\boxed{18}$. The answer is $\boxed{18}$.

1172 **LLaDA output (Reasoning template, Early Exit($\gamma = 0.7$)):**

1173 1 To determine $\boxed{18}$. The answer is $\boxed{18}$.

1174 **LLaDA output (Forced Answer):**

1175 1 $\boxed{18}$. The answer is $\boxed{18}$.

1180 **G PROOFS**

1181 **MED KL upper-bound.** Here we prove that for any set $A \subset \{1, \dots\}$ /UN-MASKED, the following
 1182 upper bound holds:

$$1183 \text{KL} \left(p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \middle| \prod_{i \in A} p_{\theta}(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \right) \leq \sum_{i \in A} H(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \quad (6)$$

1188 Note that:

$$\begin{aligned}
 1190 \quad & \text{KL} \left(p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \middle| \prod_{i \in A} p_{\theta}(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \right) \\
 1191 \quad & = \mathbf{E}_{p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c})} \left[\log p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) - \log \prod_{i \in A} p_{\theta}(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \right] \quad (7) \\
 1192 \quad & = \mathbf{E}_{p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c})} \left[\log p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) - \sum_{i \in A} \log p_{\theta}(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \right] \quad (8) \\
 1193 \quad & = -H(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) + \sum_{i \in A} H(\mathbf{x}^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \quad (9) \\
 1194 \quad & \\
 1195 \quad & \\
 1196 \quad & \\
 1197 \quad & \\
 1198 \quad & \\
 1199 \quad & \\
 1200 \quad &
 \end{aligned}$$

1201 Now, since the entropy for discrete random variables is positive, $H(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \geq 0$, which
1202 implies:

$$-H(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) + \sum_{i \in A} H(\mathbf{x}^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \leq \sum_{i \in A} H(\mathbf{x}^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \quad (10)$$

1203 Hence, we have that for any set A , we have that:

$$1204 \quad \text{KL} \left(p_{\theta}(\mathbf{x}^A \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \middle| \prod_{i \in A} p_{\theta}(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \right) \leq \sum_{i \in A} H(x^i \mid \mathbf{x}_{\text{UN-MASKED}}, \mathbf{c}) \quad (11)$$

1205 **Entropy upper-bound** Next, we prove that:

$$1206 \quad H(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \leq H_{\text{UB}}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \quad (12)$$

1207 where $H_{\text{UB}}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) = \sum_i H(a^i \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c})$.

1208 Next, we note that $\text{KL}(p_{\theta}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \mid \prod p_{\theta}(a^i \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \geq 0$, which implies that,
1209 similar to eq. (9), we have

$$-H(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) + H_{\text{UB}}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) = \text{KL}(p_{\theta}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \mid \prod p_{\theta}(a^i \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c})) \quad (13)$$

$$-H(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) + H_{\text{UB}}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \geq 0 \quad (14)$$

$$H_{\text{UB}}(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \geq H(\mathbf{a} \mid \mathbf{r}_{\text{UN-MASKED}}, \mathbf{c}) \quad (14)$$

1223 H FINE-TUNING DETAILS

1224 We compare fine-tuning the LLaDA-8B Base (Nie et al., 2025) model on GSM8k (Cobbe et al.,
1225 2021b) reasoning data, versus posterior data sampled from the same model using the training ques-
1226 tions and pre-filled answers.

1227 **Data** The posterior data is from LLaDA-8B-Base by pre-filling the correct answer and reasoning template, and sampling with entropy decoding and a block size of 128. For the gold GSM8k
1228 training data, we preprocess the data by removing the additional computations in angle brackets,
1229 and converting the "####" format to our reasoning template. Additionally, unlike posterior data,
1230 GSM8k reasoning traces are of varying lengths. As a result, we truncate these traces to $L = 144$ to-
1231 kens. When traces are longer, we truncate to the last 144 tokens. Approximately $\sim 12\%$ of GSM8k
1232 samples are truncated.

1233 **Training** We use a batch size of 1 per GPU, with 8 different noise levels per batch element. We
1234 use LoRA (Hu et al., 2022) with $r = 128$, $\alpha = 32$. We fine-tune the model using 2 Nvidia A100
1235 GPUs, with a learning rate of 2.5×10^{-6} , and 32 gradient accumulation steps. We train both models
1236 for 3300 steps, or 30 epochs.

1237 We modify the supervised fine-tuning code provided by Zhao et al. (2025).

1238 **Sampling** We greedily sample from both models with left-to-right with a block-size of 1. We
1239 allocate 144 tokens for both models, and do not directly pre-fill a reasoning template.