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Abstract
Irregular Multivariate Time Series (IMTS) fore-
casting is challenging due to the unaligned nature
of multi-channel signals and the prevalence of ex-
tensive missing data. Existing methods struggle
to capture reliable temporal patterns from such
data due to significant missing values. While pre-
trained foundation models show potential for ad-
dressing these challenges, they are typically de-
signed for Regularly Sampled Time Series (RTS).
Motivated by the visual Mask AutoEncoder’s
(MAE) powerful capability for modeling sparse
multi-channel information and its success in RTS
forecasting, we propose VIMTS, a framework
adapting Visual MAE for IMTS forecasting. To
mitigate the effect of missing values, VIMTS first
processes IMTS along the timeline into feature
patches at equal intervals. These patches are then
complemented using learned cross-channel depen-
dencies. Then it leverages visual MAE’s capabil-
ity in handling sparse multichannel data for patch
reconstruction, followed by a coarse-to-fine tech-
nique to generate precise predictions from focused
contexts. In addition, we integrate self-supervised
learning for improved IMTS modeling by adapt-
ing the visual MAE to IMTS data. Extensive
experiments demonstrate VIMTS’s superior per-
formance and few-shot capability, advancing the
application of visual foundation models in more
general time series tasks. Our code is available at
https://github.com/WHU-HZY/VIMTS.

1. Introduction
Irregular Multivariate Time Series (IMTS)(Weerakody et al.,
2021) forecasting plays a crucial role in various domains, in-
cluding finance (Bai & Ng, 2008), healthcare (Esteban et al.,
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Figure 1. Illustration of our idea: (a) Current IMTS-specific meth-
ods struggle to capture reliable temporal patterns from such data
due to significant missing values. (b) Pre-trained models show po-
tential for modeling sparse data, but are limited to RTS. In contrast,
as illustrated in (c) and (d), VIMTS segments data into time-aligned
patches and imputes missing values at the representation level us-
ing time × channel patchify. It then leverages self-supervised
learning to adapt the visual MAE’s pre-trained capability for han-
dling semantically sparse multi-channel data to IMTS data, leading
to powerful performance and few-shot capability.

2017), transportation (Gong et al., 2021), and meteorology
(Das & Ghosh, 2017). However, unlike structured data
such as images or text, the semantic information in IMTS is
embedded in complex dynamics across multiple channels
over time, which are disrupted by irregular sampling and
missing values. These challenges arise from various factors,
including the randomness of monitored subjects, the relia-
bility issues of data collection devices, and privacy concerns
(Wang et al., 2024), thus complicating downstream tasks
such as traffic flow forecasting and weather forecasting.

Early methods involve statistical imputation methods for
synchronizing timestamps (Hamzaçebi, 2008; Van Buuren
& Groothuis-Oudshoorn, 2011), but they require a deep
understanding of system dynamics and inadvertently dis-
card information contained in missing points (Horn et al.,
2020). Although recent GCN-based methods (Zhang et al.,
2024a) and Neural-ODE-based methods (Chen et al., 2018;
De Brouwer et al., 2019; Rubanova et al., 2019; Schirmer
et al., 2022) show progress in modeling cross-channel de-
pendency and temporal dependencies of irregular samples,
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Figure 2. The illustration highlights VIMTS’s superior Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE) relative to state-
of-the-art methods on the PhysioNet, Human Activity, USHCN,
and MIMIC datasets. Moreover, VIMTS maintains competitive
performance in few-shot scenarios.

GCN-based methods alternately model temporal and chan-
nel information, causing severe cumulative error due to the
sparsity, while N-ODE-based methods struggle to construct
accurate models from some individual channels with signifi-
cant missing values and simultaneously require substantial
computational resources. These challenges lead to unreli-
able pattern capturing and poor few-shot capability.

In parallel, foundation models have revolutionized various
areas (Jin et al., 2024; Das et al., 2024; Brown et al., 2020;
He et al., 2022) by leveraging capability benefiting from
large-scale pre-training to capture important features for
downstream tasks with limited fine-tuning data. VisionTS
(Chen et al., 2025) demonstrates that visual Mask AutoEn-
coders (MAEs) pre-trained on large-scale RGB images are
naturally adaptable to time series data, as they share pat-
tern similarities with natural images in terms of information
density, and multichannel patterns. This suggests signifi-
cant potential for applying visual foundation models to time
series forecasting. Nevertheless, most existing pre-trained
model based methods are designed for RTS data, limiting
their application in more general and practical scenarios.

As illustrated in Fig. 1, motivated by the capabilities of vi-
sual MAEs in modeling semantically sparse multichannel
information and their adaptability to the time series do-
main, we introduce a pioneering framework that leverages
Visual pre-trained MAE for IMTS forecasting (VIMTS).
The core idea is to adapt the powerful capabilities of pre-
trained visual MAEs (He et al., 2022) to IMTS data via self-
supervised latent space mask reconstruction for enhanced
performance and few-shot capability. Specifically, VIMTS

treats IMTS as a time × channel image-like structure. It
divides the data into sections along the timeline at equal
intervals and employs a Transformable Time-aware Con-
volutional Network (TTCN) to extract intra-section feature
patches. This addresses unstructured inputs and tempo-
ral misalignment. These patches that suffer from missing
values are then complemented at the feature-level using
cross-channel dependencies learned by Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2016). These comple-
mented patches are then fed into a pre-trained visual MAE
for understanding and reconstruction. This process mod-
els temporal dependencies for patches within each channel.
Finally, a coarse-to-fine technique generates precise predic-
tions by querying patch-level time period representations
using their corresponding timestamps, thereby focusing on
relevant temporal-channel context. To fully leverage the po-
tential of the visual MAE and fully utilize historical data, we
develop a two-stage training strategy. First, self-supervised
learning is employed to improve IMTS modeling through
adapting visual MAE to IMTS data. Second, supervised fine-
tuning are utilized for more precise prediction. This strategy
leads to significant improvement in forecasting accuracy and
robust few-shot capability. Our main contributions include:
• We introduce VIMTS, a pioneering framework that lever-

ages the powerful capability of visual MAE in modeling
semantically sparse multichannel data for IMTS forecast-
ing. As shown in Fig. 2, extensive experiments on four
real-world datasets demonstrate its superior performance
compared to existing baselines and its robust few-shot
capability, paving the way for applying visual foundation
models to more general time series forecasting tasks.

• We propose a new encoding-decoding strategy. For encod-
ing, IMTS is processed into time-aligned feature patches
along the timeline at equal intervals, which is then com-
pensated with cross-channel information to mitigate the ef-
fect of missing values. For decoding, a coarse-to-fine strat-
egy progressively generates predictions from patches to
specific time points, focusing on related temporal-channel
contexts for enhanced accuracy.

• We develop a two-stage training strategy. First, VIMTS
employs self-supervised learning to improve IMTS model-
ing by adapting the capabilities of visual MAEs to IMTS
data. Second, supervised fine-tuning is proposed for task-
specific adaptation. This strategy leads to significant per-
formance improvement and robust few-shot capability.

2. Methodology
2.1. Overview
The overall methodology is illustrated in Fig. 3. The
architecture of VIMTS consists of three main compo-
nents: time×channel patchify, time-wise reconstruction,
and patch2point prediction. We employ a two-stage train-
ing strategy that encompasses self-supervised learning and
supervised fine-tuning. In the following sections, we will
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Figure 3. The overall architecture of VIMTS. The irregularly sampled data in each channel is divided into sections with equal-intervals
along the timeline. Each section undergoes intra-section feature extraction using Time-aware Convolutional Network (TTCN) and
cross-channel information compensation via Graph Convolutional Networks (GCNs). These compensated patches are then fed into a
pre-trained MAE for patch reconstruction, thereby modeling temporal dependencies among patches within each channel. Finally, a
coarse-to-fine technique gradually generates precise predictions from patch-level to point-level. The training encompasses two stages.
First, self-supervised learning aims to improve IMTS modeling by adapting the capabilities of the visual pre-trained MAE to IMTS data.
Second, the supervised fine-tuning is employed to enhance forecasting performance.

introduce each part of our pipeline in detail.

2.2. Task Definition
IMTS Observation. IMTS data with N variables is rep-
resented by the triplet O = (T ,X ,M). Here, T =
[tl]

L
l=1 ∈ RL contains L unique timestamps, while matrix

X = [[xn
l ]

N
n=1]

L
l=1 ∈ RL×N records observed values xn

l at
the l-th timestamp tl for the n-th variable or ‘NA’ if unob-
served. The mask matrix M = [[mn

l ]
N
n=1]

L
l=1 ∈ {0, 1}L×N

indicates the availability of observation at the l-th timestamp
tl for the n-th variable with mn

l = 1, otherwise mn
l = 0.

IMTS Forecasting. The task is to develop a model Θ that,
given historical observations O and future query timestamps
Q = {[qnj ]

Qn

j=1}Nn=1, where qnj denotes that the j-th query
timestamp of the Qn queries for the n-th variable, to forecast
the corresponding target values X̂ = {[x̂n

j ]
Qn

j=1}Nn=1, where
x̂n
j denotes the ground truth value at the query timestamp

qnj . This process is represented as Θ(O,Q) → X̂ .

2.3. Time × Channel Patchify
This section aims to transform unstructured IMTS data into
patches while mitigating the effect of missing values. To
achieve this, the module first processes IMTS into feature
patches along the timeline at equal time intervals. Each time
interval contains patches from all channels. These patches
that suffer from missing values are then complemented by
information from related channels according to the learned
cross-channel dependencies. This process enables more
reliable inter-patch temporal dependency modeling in MAE.
2.3.1. TIME-WISE DIVIDING AND EMBEDDING

In our method, an IMTS dataset O is divided into P patches
using uniform time windows of size s. Each patch p, for

1 ≤ p ≤ P , spans from tpstart to tpstart + s, where tpstart =
t1 + (p − 1)s, and t1 is the initial time. This approach
ensures section-level temporal alignment and preserves the
multichannel structure (Zhang et al., 2024a).

After dividing, we utilize learnable time embeddings to
capture temporal patterns and encode continuous time infor-
mation (Shukla & Marlin, 2021a). For a given timestamp t,
its embedding ϕ(t) is defined as:

ϕ(t)[d] =

{
ω0 · t+ α0, if d = 0

sin(ωd · t+ αd), if 0 < d < Dte

, (1)

where ωd and αd are learnable parameters and Dte is the
embedding dimension. These embeddings combine linear
and periodic terms to capture non-periodic and periodic
temporal patterns.

2.3.2. TEMPORAL FEATURE EXTRACTION

After time-wise dividing and embedding, we employ a
Transformable Time-aware Convolutional Network (TTCN)
to process variable-length sequences within time intervals
(Zhang et al., 2024b) into patches with aligned shapes and
semantics.

In detail, for the n-th channel, we concatenate the time
embeddings ϕ(tni ) and the observation xn

i within the p-th
time section:

xn
p = [ϕ(tni )∥xn

i ]
rp
i=lp

, tni ∈ [tpstart, t
p
start + s), (2)

where ∥ denotes the ‘concatenate’ operation, lp and rp de-
note the start and end index of the observation respectively
within the p-th time section in the n-th channel.
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TTCN then captures intra-section information within each
channel by employing adaptive convolution filters:

fnd =

[
exp(Fd(x

n
p [i]))∑Lp

j=1 exp(Fd(xn
p [j]))

]Lp

i=1

, (3)

where, for the n-th channel, Lp = lp − rp +1 is the number
of points within the p-th time section, fnd ∈ RLp×Din repre-
sents the filter for the d-th feature map, Din is the number
of filters, and Fd denotes the d-th meta-filter (mlp).

With Din filters derived based on Eq. 3, we attain the p-
th feature patch in the n-th channel hn

p

′
∈ RDin by the

following temporal convolution:

hn
p

′
=

 Lp∑
i=1

fnd [i]
⊤xn

p [i]

Din

d=1

. (4)

To handle sparse IMTS data, we enhance representations by
concatenating a binary mask indicating the availability:

hn,m
p = [hn

p

′
∥mp] ∈ RD, (5)

where D = Din + 1, mn
p = 1 indicates the presence of

observations while mn
p = 0 indicates an empty patch, hn,m

p

denotes the feature patch concatenated with the mask indi-
cator.

We further incorporate channel-specific embeddings to cap-
ture channel-specific traits (e.g., units, stats, missing pat-
terns), thereby distinguishing heterogeneous channels to en-
hance the following cross-channel compensation and inter-
patch temporal modeling within channels. In detail, for the
n-th channel, we define learnable embeddings en ∈ RD,
which is added to the feature patches to create the patches
hn
p for cross-channel dependency modeling:

hn
p = hn,m

p + en. (6)

2.3.3. CROSS-CHANNEL INFORMATION INTERACTION

Due to extensive missing values in IMTS, patches of indi-
vidual channels contain insufficient information for reliable
temporal dependency modeling. To mitigate this, we em-
ploy GCN to model bidirectional channel dependencies and
enrich each channel’s representation with complementary
information from correlated channels.

Inspired by (Zhang et al., 2024a), to learn bidirectional
channel dependency graphs, we fuse static channel char-
acteristics with dynamic patch features to create graph
vertex embeddings. In the beginning, maintain two learn-
able embedding dictionaries Es

1,E
s
2 ∈ RN×Dve which en-

code static characteristics (e.g., representing inflow/outflow
nodes). They are then updated with dynamic patch informa-
tion by a gated mechanism to obtain hybrid embeddings:

Ep,k = Es
k + gp,k ⊙HpW

d
k, k ∈ {1, 2}, (7)

where gp,k = ReLU(tanh([Hp∥Es
k]W

g
k)) controls the fu-

sion of static and dynamic information, Hp = [hn
p ]

N
n=1 ∈

RN×D denotes the hn
p concatenation across N channels,

Wd
k ∈ RD×Dve and Wg

k ∈ R(D+Dve)×1 are learnable
weights. These hybrid embeddings Ep,1,Ep,2 ∈ RN×Dve

are then used to calculate the adaptive adjacency matrix
Ap ∈ RN×N for the p-th time section, which dynamically
captures directional dependencies among channels:

Ap = Softmax(ReLU(Ep,1E
⊤
p,2)). (8)

Then graph convolution operations with skip connections
are applied to exchange information among channels ac-
cording to Ap:

Hgcn
p = ReLU

(
M∑

m=0

(Ap)
mHpW

gcn
m

)
+Hp, (9)

where M is the number of GCN layers.

Finally, to ensure comprehensive representation while pre-
serving original information, we concatenate the original
Hp with Hgcn

p after cross-channel interaction as inputs Hin
p

for MAE, represented as:
Hin

p = [Hp||Hgcn
p ] ∈ RN×2D, (10)

2.4. Time-Wise Reconstruction
After cross-channel complementation, we leverage the ca-
pability of visual MAE for modeling semantically sparse
multichannel data obtained from pretraining to model tem-
poral dependencies among patches within each channel.

2.4.1. INPUT EMBEDDING AND TEMPORAL POSITION
EMBEDDINGS

For a concise representation, if not emphasized in the fol-
lowing, we use [hin

p ]Pp=1 ∈ RP×2D to denote the sequence
of feature patches within each single channel. Before MAE
encoding, we compress the cross-channel information com-
plementation and original information using a linear pro-
jection Wenc ∈ R2D×De , to adapt it to the MAE input
dimension De:

ep = hin
p Wenc. (11)

Next, to enable temporal-aware reconstruction, we employ
learnable temporal period embeddings, similar to positional
embeddings. Specifically, for a sequence of patches of
length P, the temporal period embedding for the p-th patch
is initialized using 2D sine-cosine encoding, represented as:

TPEh
p [2k] = sin(p/100002k/d), (12)

TPEh
p [2k + 1] = cos(p/100002k/d), (13)

TPEw
p [2k] = sin(1/100002k/d), (14)

TPEw
p [2k + 1] = cos(1/100002k/d), (15)

where k ∈ [0, d/4 − 1], and d is half of the encoder em-
bedding dimension De/2 or decoder embedding dimension
Dd/2. The complete time period embeddings for the p-th
patch for encoder and decoder are then represented as:

TPEenc
p = [TPEh

p [0 : De/2]∥TPEw
p [De/2 : De]], (16)
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TPEdec
p = [TPEh

p [0 : Dd/2]∥TPEw
p [Dd/2 : Dd]]. (17)

This strategy treats embeddings as a T × 1 patch sequence,
allowing the model to adapt MAE’s pretrained position
understanding capabilities to temporal representations and
capture periodic features during optimization. We then add
this embedding to ep to get the inputs of the MAE encoder:

eencp = ep + TPEenc
p . (18)

2.4.2. ENCODE AND RECONSTRUCTION

With the input embeddings, MAE aims to learn the temporal
dependencies among patches within each channel along-
side the cross-channel information complementation, and
reconstruct them at target time segments. The embedded
sequence is encoded by the MAE encoder E :

{zp}Pp=1 = E({eencp }Pp=1). (19)

For future patch reconstruction, we append Nrec learn-
able mask tokens {[M ]}Nrec

i=1 to the linearly projected to-
kens {zp}Pp=1Wdec. In addition, we concatenate the corre-
sponding temporal positional embeddings {TPEdec

P+i}
Nrec
i=1

of the target time periods with those of the encoded tokens
{TPEdec

p }Pp=1. The MAE decoder D takes this augmented
sequence as input:

{ẑmP+i}
Nrec
i=1 = D(Z∗ + TPE∗), (20)

Z∗ = [{zp}Pp=1Wdec; {[M ]}Nrec
i=1 ], (21)

TPE∗ = [{TPEdec
p }Pp=1; {TPEdec

P+i}
Nrec
i=1 ], (22)

where [·; ·] denotes sequence concatenation, {ẑmP+i}
Nrec
i=1

represents reconstructed representations of target time peri-
ods, and Wdec ∈ RDe×Dd projects the encoded representa-
tion into the input dimension of the decoder RDd .

This approach leverages the visual pre-trained capabilities
of MAE, enabling historical and future patch reconstruction
during self-supervised training and supervised fine-tuning,
respectively.

2.5. Patch2Point Prediction
We employ a coarse-to-fine technique to generate predic-
tions for specific timestamps. In the coarse phase, period-
level patches are reconstructed via MAE. Then, in the fine-
grained phase, these patches are queried with timestamp
embeddings for point-level predictions.

In detail, given a query timestamp tq, we first generate a
query embedding ϕ(tq) and select its corresponding patch
index iq matching t

iq
start ≤ tq ≤ t

iq
start + s, where s is the

patch size and stride length.

We calculate the TPEdec
iq for the target patch and utilize

the method introduced in Sec. 2.4.2 to reconstruct the iq-th
patch ẑmiq .

The prediction is generated through a 2-layer MLP network
F that takes the query and the reconstructed patch as input:

x̂q = F(ϕ(tq), ẑ
m
iq ). (23)

This strategy offers three key advantages: (1) it enables
flexible and accurate predictions at arbitrary continuous
timestamps within target temporal periods; (2) it compre-
hensively utilizes patch-level temporal patterns and cross-
channel complementary information; (3) it effectively filters
out irrelevant information from other temporal-channel con-
texts, ensuring focused and precise predictions.

2.6. Training Strategy
We employ a two-stage strategy for training: self-supervised
learning and supervised fine-tuning. The rationale is de-
tailed in Appendix A.3.

Self-supervised learning for IMTS modeling. Given a
mask ratio r, we randomly mask a portion of patches be-
fore encoding. Specifically, from the embedded sequence
{eencp }Pp=1, we randomly select |M| = [r · P ] patches to
mask. The remaining patches {eencp }p∈V are encoded:

{zp}p∈V = E({eencp }p∈V), (24)

where V denotes the set of unmasked indices, M denotes the
set of masked indices. The projected tokens {zp}p∈VWdec

are then added with {TPEdec
p }p∈V and concatenated with

learnable mask tokens {[M ]}|M|
i=1 added with {TPEdec

p }p∈M
to reconstruct ẑmih :

{ẑmih}ih∈M = D(Zssl + TPEssl), (25)

Zssl = [{zp}p∈VWdec; {[M ]}|M|
i=1 ], (26)

TPEssl = [{TPEdec
p }p∈V ; {TPEdec

ih
}ih∈M], (27)

The self-supervised training loss is formulated as follows:

Lssl =
1

N

N∑
n=1

1

Hn

Hn∑
h=1

∥F(ϕ(tnh), ẑ
m,n
ih

)− xn
h∥22, (28)

where {[tnh]
Hn

h=1}Nn=1 represents the history query times-
tamps set across N channels with tihstart ≤ tnh ≤ tihstart + s.
For the n-th channel, ẑm,n

ih
denotes the reconstructed ih-th

patch, and xn
h is the ground truth value at tnh .

Supervised fine-tuning for task adaptation. We follow
the same reconstruction and forecasting process detailed
in Sec. 2.4.2 and Sec. 2.5. Here, {TPEdec

P+i}
Nrec
i=1 repre-

sents future TPEs for Nrec target periods. Given future
query timestamps set {[tnq ]

Qn
q=1}Nn=1 across N channels with

t
iq
start ≤ tnq ≤ t

iq
start + s, we minimize the prediction loss:

Lft =
1

N

N∑
n=1

1

Qn

Qn∑
q=1

∥F(ϕ(tnq ), ẑ
m,n
iq

)− xn
q ∥22, (29)

where for the n-th channel, ẑm,n
iq

denotes the reconstructed
iq-th patch, and xn

q is the ground truth value at tnq . Dur-
ing this stage, we selectively optimize some components to
adapt to the forecasting task while preserving basic capabil-
ities, which is detailed in Sec. 3.1.
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Table 1. Overall performance evaluated by MAE and MSE (mean ± std). The best-performing results are highlighted in bold, the
second-best results are highlighted in blue bold, and the third-best results are highlighted in underline. ‘Zero’ and ‘Linear’ are different
imputation methods adapting IMTS to VisionTS. ‘*’ denotes that the performance are reproduced following the original paper.

Algorithms PhysioNet Human Activity USHCN MIMIC
MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2

DLinear 41.86± 0.05 15.52± 0.03 4.03± 0.01 4.21± 0.01 6.21± 0.00 3.88± 0.02 4.90± 0.00 16.29± 0.05
TimesNet 16.48± 0.11 6.14± 0.03 3.12± 0.01 3.56± 0.02 5.58± 0.05 3.60± 0.04 5.88± 0.08 13.62± 0.07
PatchTST 12.00± 0.23 6.02± 0.14 4.29± 0.14 4.80± 0.09 5.75± 0.01 3.57± 0.02 3.78± 0.03 12.43± 0.10
Crossformer 6.66± 0.11 4.81± 0.11 4.29± 0.20 4.89± 0.17 5.25± 0.04 3.27± 0.09 2.65± 0.10 9.56± 0.29
Graph Wavenet 6.04± 0.28 4.41± 0.11 2.89± 0.03 3.40± 0.05 5.29± 0.04 3.16± 0.09 2.93± 0.09 10.50± 0.15
MTGNN 6.26± 0.18 4.46± 0.07 3.03± 0.03 3.53± 0.03 5.39± 0.05 3.34± 0.02 2.71± 0.23 9.55± 0.65
StemGNN 6.86± 0.28 4.76± 0.19 8.81± 0.37 6.90± 0.02 5.75± 0.09 3.40± 0.09 1.73± 0.02 7.71± 0.11
CrossGNN 7.22± 0.36 4.96± 0.12 3.03± 0.10 3.48± 0.08 5.66± 0.04 3.53± 0.05 2.95± 0.16 10.82± 0.21
FourierGNN 6.84± 0.35 4.65± 0.12 2.99± 0.02 3.42± 0.02 5.82± 0.06 3.62± 0.07 2.55± 0.03 10.22± 0.08

GRU-D 5.59± 0.09 4.08± 0.05 2.94± 0.05 3.53± 0.06 5.54± 0.38 3.40± 0.28 1.76± 0.03 7.53± 0.09
SeFT 9.22± 0.18 5.40± 0.08 12.20± 0.17 8.43± 0.07 5.80± 0.19 3.70± 0.11 1.87± 0.01 7.84± 0.08
RainDrop 9.82± 0.08 5.57± 0.06 14.92± 0.14 9.45± 0.05 5.78± 0.22 3.67± 0.17 1.99± 0.03 8.27± 0.07
Warpformer 5.94± 0.35 4.21± 0.12 2.79± 0.04 3.39± 0.03 5.25± 0.05 3.23± 0.05 1.73± 0.04 7.58± 0.13

mTAND 6.23± 0.24 4.51± 0.17 3.22± 0.07 3.81± 0.07 5.33± 0.05 3.26± 0.10 1.85± 0.06 7.73± 0.13
Latent-ODE 6.05± 0.57 4.23± 0.26 3.34± 0.11 3.94± 0.12 5.62± 0.03 3.60± 0.12 1.89± 0.19 8.11± 0.52
CRU 8.56± 0.26 5.16± 0.09 6.97± 0.78 6.30± 0.47 6.09± 0.17 3.54± 0.18 1.89± 0.19 8.11± 0.52
Neural Flow 7.20± 0.07 4.67± 0.04 4.05± 0.13 4.46± 0.09 5.35± 0.05 3.25± 0.05 1.87± 0.05 8.03± 0.19

T-PATCHGNN 4.98± 0.08 3.72± 0.03 2.66± 0.03 3.15± 0.02 5.00± 0.04 3.08± 0.04 1.36± 0.02∗ 6.56± 0.11∗

VisionTS (zero) 42.41± 0.02 13.13± 0.02 8.45± 0.01 6.55± 0.04 7.89± 0.05 5.13± 0.05 8.61± 0.00 18.76± 0.01
VisionTS (linear) 40.50± 0.05 12.85± 0.01 7.77± 0.01 6.27± 0.04 6.77± 0.04 4.32± 0.03 7.74± 0.02 17.06± 0.05

VIMTS(20% data) 4.93± 0.09 3.63± 0.06 2.72± 0.01 3.14± 0.00 5.01± 0.01 3.06± 0.04 1.47± 0.01 6.71± 0.06
VIMTS(50% data) 4.86± 0.09 3.57± 0.05 2.69± 0.01 3.11± 0.01 4.86± 0.01 2.97± 0.08 1.41± 0.01 6.47± 0.12
VIMTS(100% data) 4.81± 0.07 3.54± 0.04 2.65± 0.01 3.08± 0.01 4.86± 0.02 2.98± 0.05 1.36± 0.02 6.40± 0.17

Table 2. Datasets Technical Specifications
Description PhysioNet Human Activity USHCN MIMIC
Samples 12,000 5,400 1,114 23,457
Channels 41 12 5 96
Missing ratio 85.7% 75.0% 77.9% 96.7%
Observation 24 h 3,000 ms 24 months 24 h
Prediction Next 24 h Next 1,000 ms Next month Next 24 h

3. Experiments
3.1. Experimental Setup
Datasets and Evaluation Metrics. To evaluate the perfor-
mance of models on the IMTS forecasting task, we utilize
four datasets from diverse domains: healthcare (PhysioNet
(Silva et al., 2012), MIMIC(Johnson et al., 2016)), biome-
chanics (Human Activity), and climate science (USHCN
(Menne et al., 2015)). Technical specifications for these
datasets are summarized in Table 2. Each dataset is split
into training, validation, and test sets at ratios of 60%,
20%, and 20%, respectively. Performance is measured
using Mean Squared Error (MSE) and Mean Absolute
Error (MAE), where MAE = 1

|Q|
∑|Q|

i=1 |xi − x̂i| and

MSE = 1
|Q|
∑|Q|

i=1(xi − x̂i)
2, with xi, x̂i, and |Q| repre-

senting the ground truth, predicted value, and the number of
queries, respectively.

Implementation Details. Experiments are performed on
individual NVIDIA RTX 4090 GPUs. For VIMTS setups,
we set the hidden dimensions to 32 for USHCN and Phy-
sioNet, 40 for MIMIC, and 64 for Human Activity. The
batch size is 32 for the two training stages of PhysioNet
and Human Activity’s pre-training stage, 64 for the fine-
tuning stage of Human Activity and the two training stages
of USHCN, 12 for MIMIC’s pre-training stage, and 16 for

its fine-tuning stage. We use visual MAE-base (He et al.,
2022) as the backbone, the Adam optimizer with a learning
rate of 1× 10−4 for training, and apply early stopping if the
validation loss does not decrease for 15 consecutive epochs.
To ensure robustness, each experiment is repeated with five
different random seeds, and the mean and standard deviation
of the results are reported. Further hyperparameter details
are elaborated in Appendix A.5.

Parameter Optimization Details. We optimize all pa-
rameters during the self-supervised learning stage. In the
fine-tuning stage, for USHCN, PhysioNet, and Human Ac-
tivity, we freeze the GCN and MAE (except for normaliza-
tion layers); for MIMIC, we only freeze the MAE (except
for normalization layers, position embedding, and patch
projection layer).

Baselines. To establish a comprehensive benchmark for
the IMTS forecasting task, we select baselines from four
methodological domains. Specifically, we include: (1) MTS
Forecasting: DLinear (Zeng et al., 2023), TimesNet (Wu
et al., 2022), PatchTST (Nie et al., 2022), Crossformer
(Zhang et al., 2022), GraphWaveNet (Wu et al., 2019), MT-
GNN (Wu et al., 2020), StemGNN (Cao et al., 2020), Cross-
GNN (Huang et al., 2023), FourierGNN (Yi et al., 2024)
and VisionTS (Chen et al., 2025); (2) IMTS Classifica-
tion: GRU-D (Che et al., 2018), SeFT (Horn et al., 2020),
RainDrop (Zhang et al., 2022), Warpformer (Zhang et al.,
2023); (3) IMTS Interpolation: mTAND (Shukla & Marlin,
2021a); (4) IMTS Forecasting: Latent ODEs (Rubanova
et al., 2019), CRU (Schirmer et al., 2022), Neural Flows
(Biloš et al., 2021), and t-PatchGNN (Zhang et al., 2024a).
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Table 3. Ablation results of VIMTS on four datasets evaluated by MAE and MSE (mean ± std). The best-performing results are highlighted
in bold

Ablation PhysioNet Human Activity USHCN MIMIC
MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1 MSE×10−2 MAE×10−2

Complete 4.81± 0.07 3.54± 0.04 2.65± 0.01 3.08± 0.01 4.86± 0.02 2.98± 0.05 1.36± 0.02 6.40± 0.17

w/o Pre 5.13± 0.04 3.75± 0.04 2.73± 0.02 3.16± 0.02 4.95± 0.01 3.05± 0.08 1.39± 0.02 6.49± 0.08
w/o SSL 5.46± 0.30 3.93± 0.28 2.76± 0.08 3.26± 0.11 5.05± 0.06 3.14± 0.14 1.41± 0.03 6.67± 0.15
w/o Pre & SSL 5.70± 0.42 4.24± 0.33 2.84± 0.06 3.32± 0.09 5.04± 0.04 3.06± 0.06 1.45± 0.05 6.99± 0.33
w/o GCN 4.94± 0.03 3.55± 0.03 2.66± 0.01 3.08± 0.01 4.93± 0.01 2.97± 0.07 2.25± 0.02 8.82± 0.15
rp Transformer 5.57± 0.34 3.99± 0.24 2.84± 0.07 3.32± 0.10 5.09± 0.06 3.14± 0.13 1.40± 0.04 6.66± 0.14

Table 4. Patch2Point vs. Direct Projection of VIMTS on four datasets evaluated by MAE and MSE (mean ± std). In detail, training stages
marked with ✓applied with Patch2Point, the others represent stages with direct projection heads. The best/worst-performing results are
highlighted in bold/red bold.

Patch2Point PhysioNet Human Activity USHCN MIMIC

SSL Finetune MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1 MSE×10−2 MAE×10−2

✓ ✓ 4.81± 0.07 3.54± 0.04 2.65± 0.01 3.08± 0.01 4.86± 0.02 2.98± 0.05 1.36± 0.02 6.40± 0.17

✓ 4.97± 0.07 3.62± 0.05 2.72± 0.01 3.17± 0.02 5.03± 0.02 3.09± 0.13 1.34± 0.01 6.37± 0.08

4.98± 0.07 3.62± 0.03 2.74± 0.01 3.20± 0.01 5.01± 0.04 3.10± 0.10 1.38± 0.02 6.50± 0.15

This selection ensures cross-methodological comparisons
across regular/irregular time series forecasting, classifica-
tion, and interpolation tasks, providing a robust evaluation
of generalization capabilities.

3.2. Main results
We evaluated VIMTS against 20 baseline models across
different domains: clinical (PhysioNet, MIMIC), biome-
chanics (Human Activity), and climate (USHCN), using
MSE and MAE as performance metrics, as shown in Ta-
ble 1. Conventional methods like DLinear, TimesNet, and
PatchTST, while effective for regular time series, struggle
with IMTS due to their inability to handle irregular sam-
pling and cross-channel dependencies, leading to significant
errors. VisionTS, whether using Zero’ orLinear’ interpo-
lation for data adaptation, fails to perform well on IMTS
tasks. This highlights the inadequacy of existing vision
foundation model-based methods in dealing with the miss-
ing values, varying data structures, and complex temporal
and cross-channel dependencies of IMTS data.

In contrast, VIMTS consistently outperforms other meth-
ods, including the currently best-performing baseline, t-
PatchGNN. When only 20% or 50% of training data are
available, VIMTS matches the performance of t-PatchGNN
with complete data and exceeds the performance of all other
methods. Increasing the utilization of training data further
to 100%, VIMTS demonstrates even better performance,
achieving the lowest MSE and MAE across all four real-
world datasets. These results validate VIMTS’s superior
adaptability and effectiveness in handling IMTS forecasting
tasks.

3.3. Ablation Study
To validate the necessity of core components in VIMTS, we
conducted an ablation study comparing multiple variants.
(1) Complete represents the model without any ablation; (2)

w/o Pre removes the visual pre-training of MAE; (3) w/o
SSL skips IMTS-specific self-supervised training; (4) w/o
Pre & SSL trains the model entirely from scratch without
using visual pre-training or self-supervised learning; (5)
w/o GCN removes cross-channel graph convolutions; (6)
rp Transformer replaces MAE with a vanilla Transformer
encoder. In addition, we also explore the effectiveness of
the Patch2Point prediction by replacing the coarse-to-fine
predictor with a flatten-projection layer in self-supervised
learning stage and fine-tuning stage.

As shown in Table 3 and Table 4, replacing MAE with a
standard Transformer leads to a significant performance
drop, demonstrating MAE’s architectural advantage for han-
dling semantically sparse data across multiple channels.
Similarly, removing either visual pre-training (w/o Pre) or
self-supervised learning (w/o SSL) results in notable perfor-
mance declines, highlighting that visual priors provide valu-
able initialization while SSL helps adapt to IMTS-specific
characteristics. Moreover, the ablation of GCN and coarse-
to-fine decoding show their effectiveness: while individual
channels may suffer from missing values, GCN compensates
through cross-channel dependencies. Additionally, ablation
studies on the Patch2Point predictor’s two-stage training
demonstrate its coarse-to-fine strategy enhances forecasting
precision. It achieves this by focusing on relevant tempo-
ral context and reducing interference from unrelated time
periods, thereby outperforming direct timestamp prediction
which is susceptible to irrelevant information.

3.4. Few-Shot Learning
To evaluate the few-shot capability of our method and the
contributions of visual pre-training (Pre) and self-supervised
learning (SSL), we conduct experiments on different few-
shot scenarios (10%, 20%, and 50% of the entire training
data) and ablation settings (complete, w/o Pre, w/o SSL and
w/o Pre & SSL). T-PatchGNN serves as a baseline model.
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Table 5. Few-shot results of VIMTS on four datasets evaluated by MAE and MSE (mean ± std). The best-performing results are
highlighted in bold, the second-best results are highlighted in blue bold.

Model VIMTS t-PatchGNN VIMTS(w/o Pre & SSL) VIMTS(w/o SSL) VIMTS(w/o Pre)

Dataset Ratio MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

Activity
0.1 2.87± 0.02 3.24± 0.03 3.21± 0.07 3.62± 0.10 7.28± 5.72 5.81± 2.95 3.31± 0.14 3.65± 0.10 13.15± 5.07 8.81± 2.35
0.2 2.72± 0.01 3.14± 0.00 3.01± 0.06 3.42± 0.08 4.24± 0.22 3.45± 0.14 3.00± 0.11 3.43± 0.13 4.25± 0.06 4.14± 0.03
0.5 2.69± 0.01 3.11± 0.01 2.90± 0.10 3.35± 0.06 2.91± 0.10 3.36± 0.14 2.91± 0.08 3.35± 0.12 2.92± 0.06 3.31± 0.06

Dataset Ratio MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

PhysioNet
0.1 5.16± 0.26 3.73± 0.17 7.09± 0.24 4.21± 0.18 6.03± 0.45 4.25± 0.17 6.35± 0.71 4.46± 0.42 5.93± 0.06 4.17± 0.06
0.2 4.92± 0.09 3.63± 0.06 7.23± 0.22 4.24± 0.22 5.87± 0.47 4.21± 0.23 6.04± 0.67 4.26± 0.37 5.45± 0.08 3.89± 0.09
0.5 4.86± 0.09 3.57± 0.05 6.97± 0.13 4.03± 0.13 5.60± 0.45 4.09± 0.31 5.80± 0.40 4.07± 0.25 5.29± 0.07 3.8± 0.02

Dataset Ratio MSE×10−1 MAE×10−1 MSE×10−1 MAE×10−1 MSE×10−1 MAE×10−1 MSE×10−1 MAE×10−1 MSE×10−1 MAE×10−1

USHCN
0.1 5.09± 0.07 3.12± 0.04 5.19± 0.02 3.26± 0.06 5.23± 0.05 3.19± 0.15 5.32± 0.08 3.28± 0.11 5.12± 0.01 3.13± 0.05
0.2 5.01± 0.02 3.06± 0.04 5.11± 0.05 3.20± 0.07 5.26± 0.13 3.18± 0.07 5.24± 0.04 3.16± 0.04 5.05± 0.02 3.07± 0.05
0.5 4.86± 0.01 2.97± 0.08 5.04± 0.03 3.07± 0.07 5.10± 0.02 3.16± 0.14 5.10± 0.04 3.15± 0.08 4.99± 0.02 3.13± 0.09

Dataset Ratio MSE×10−2 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−2 MAE×10−2

MIMIC
0.1 1.53± 0.01 7.06± 0.10 1.67± 0.16 7.66± 0.55 1.71± 0.12 7.85± 0.42 1.77± 0.13 8.23± 0.45 1.61± 0.01 7.18± 0.20
0.2 1.47± 0.01 6.71± 0.06 1.46± 0.05 7.07± 0.32 1.64± 0.10 7.62± 0.35 1.57± 0.07 7.30± 0.29 1.53± 0.03 6.90± 0.05
0.5 1.41± 0.01 6.47± 0.12 1.39± 0.02 6.70± 0.13 1.46± 0.03 6.93± 0.19 1.45± 0.03 6.92± 0.14 1.43± 0.00 6.64± 0.08
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Figure 4. Performance comparison of VIMTS model variants under low-resource conditions (10%, 20%, 50%, and 100% data) on MSE
and MAE metrics across Activity, PhysioNet, USHCN, and MIMIC datasets. Variants include models with and without visual pre-trained
initialization and self-supervised learning. T-PatchGNN is used as a baseline. Lower values indicate better performance.

As shown in Figure 4, VIMTS achieves superior perfor-
mance across few-shot settings, with lower prediction errors
and more stable response curves under varying training data
availability. While t-PatchGNN exhibits sensitivity to train-
ing data scarcity, VIMTS demonstrates more substantial
few-shot generalization, which may benefit from integrating
visual pre-training and self-supervised learning. To confirm
this, we conducted ablation studies and found that removing
either component may degrade performance stability. Al-
though trends differ slightly across the four datasets, these
results collectively highlight that the synergistic integra-
tion of cross-domain visual pre-training and self-supervised
learning enables effective key pattern extraction from lim-
ited data, thus advancing sample-efficient IMTS modeling.

4. Analysis of Computational Cost
4.1. Time and Space Complexity Comparison

Parameter Numbers. As shown in Table 6, VIMTS utilizes
visual MAE-base as its backbone. This backbone can be
fine-tuned on a single NVIDIA RTX 4090. Furthermore,
the GCN layers in VIMTS are lightweight, contributing
only around 32.4k parameters. The number of trainable pa-
rameters is acceptable in real-world applications and lower
than other vision foundation model-based methods, such as
ViTST.

Time Complexity. As shown in Table 6, VIMTS has ac-
ceptable training efficiency (87.8 s/epoch) while its infer-
ence speed (4.815 ms/instance) outperforms ViTST (visual
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Table 6. The Temporal and Spacial Complexity of Different Methods.
Methods VIMTS VIMTS w/o GCN ViTST tPatchGNN CRU WrapFormer

Training Time (s/epoch) 87.80 84.96 140.2 17.14 172.45 22.67
Inference Time (ms/sample) 4.82 4.34 7.09 1.60 7.66 5.48
Trainable Param 111.01M 110.98M 212.31M 943.99k 28.65k 178.06K

foundation model, 7.094 ms/instance), CRU (Neural-ODE,
7.655 ms/instance), and WrapFormer (Transformer, 5.475
ms/instance), making it practical for real-world deployment.
Though its inference is slightly slower than lightweight mod-
els like t-PatchGNN (1.604 ms/instance), it’s still efficient
and practical in most accuracy-first application scenarios,
with a sub-5 ms latency.

4.2. The Trade-off between Self-Supervised Learning
and Computational Cost

Self-Supervised Learning (SSL) effectively offers a favor-
able trade-off between computational cost and performance,
which is evident in the following three aspects.

High Data Efficiency and Few-Shot Capability. With
SSL, VIMTS achieves competitive results against state-of-
the-art models on four IMTS datasets while utilizing only
20% of the training data. This significant reduction of re-
quired data volume accelerates model development and de-
ployment, especially in data-scarce environments.

Manageable Model Complexity. Our analysis demon-
strates excellent performance without requiring exces-
sive scaling. VIMTS typically uses approximately three
lightweight GCN layers and several simple MLP predictors,
aside from the MAE backbone. Previous trials show that
scaling MAE beyond its base level doesn’t improve results
and often leads to memory issues, consistent with observa-
tions in VisionTS (Chen et al., 2025), another model that
applies visual MAE to RTS forecasting.

Efficient Inference and Improved Performance. While
Self-Supervised Learning (SSL) increases overall training
time by approximately 40%, the training time per epoch
is still faster compared to CRU and ViTST, which remains
acceptable. Importantly, SSL doesn’t increase inference
cost, allowing VIMTS to maintain faster inference speeds
than most competitors while remaining competitive with
t-PatchGNN. Given that real-world applications often face
data limitations and prioritize inference efficiency over train-
ing expenses, this trade-off, which involves accepting a rea-
sonable increase in training time for improved accuracy and
efficient inference, offers significant practical advantages.

5. Conclusion
This paper introduced VIMTS, a pioneering framework
that leverages the capability of visual pre-trained MAE
for modeling semantically sparse multichannel data for

IMTS forecasting. To mitigate the effect of missing val-
ues, VIMTS processes sparse IMTS along the timeline into
image-like patches with equal-intervals, then complements
these patches with information from related channels using
learned cross-channel dependencies. Then it leverages the
capability of visual MAE for handling sparse multichannel
data for patch reconstruction, followed by a coarse-to-fine
technique that progressively generates precise predictions
from focused context. The framework is trained with a
two-stage strategy. First, self-supervised learning is em-
ployed to enhance IMTS data modeling by adapting visual
MAE’s strengths to IMTS data, while supervised fine-tuning
is applied as follows for task-specific adaptation. Exten-
sive experiments on four real-world datasets demonstrate
VIMTS’ superior performance and robust few-shot capabili-
ties, achieving competitive accuracy even with limited data
compared to baselines trained on full datasets, paving the
way for applying visual foundation models to more general
time series forecasting tasks.

6. Limitations and Future Work
While VIMTS advances IMTS forecasting, limitations per-
sist in scalability and structural flexibility. For scalability,
the design of a larger IMTS foundation model to achieve
more powerful performance and better generalization across
downstream datasets remains a problem, which may be re-
solved by constructing larger-scale pre-training datasets and
developing well-designed fine-tuning strategies. For struc-
tural flexibility, current models are limited to fixed patch
sizes and the number of channels, struggling with dynamic
data structures, thereby hindering true zero-shot capabil-
ities without parameter tuning. Future directions should
prioritize ‘time-contextual scaling’ mechanisms that dynam-
ically adjust semantic hierarchies using timestamp metadata
and a general cross-channel dependency graph foundation
model that flexibly handles information exchange among
any number of channels.
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Impact Statement
This paper aims to advance research in Irregular Multivariate
Time Series (IMTS) prediction. There exist many potential
societal consequences of our work, but none that we feel
require specific highlighting here.
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A. Appendix
A.1. Related Work

A.1.1. IRREGULAR MULTIVARIATE TIME SERIES FORECASTING

Irregularly sampled time series forecasting poses unique challenges due to non-uniform observation intervals across multiple
variables (Shukla & Marlin, 2021b; Horn et al., 2020). Basic approaches include fixed discretization, which simplifies
processing but introduces missing data issues (Marlin et al., 2012; Lipton et al., 2016), and interpolation methods that
improve robustness by leveraging past and future data (Yoon et al., 2018; Horn et al., 2020). Recent advancements have been
made with Neural ODEs (Chen et al., 2018) for continuous dynamics modeling, extended by frameworks like ODE-RNN
(Rubanova et al., 2019) and Neural CDE (Kidger et al., 2020), enhancing efficiency and adaptability. CRU (Schirmer et al.,
2022) integrates probabilistic models for better interval management, while GNN-based approaches, such as RAINDROP
(Zhang et al., 2022), model data point interactions effectively for global understanding.

A.1.2. FOUNDATION MODEL FOR TIME SERIES FORECASTING

Foundation models (Bommasani et al., 2022) have transformed time series forecasting, notably through the adaptation of
masked autoencoders (MAEs) originally designed for visual tasks (He et al., 2022). VisionTS (Chen et al., 2025) innovates
by treating time series forecasting as image reconstruction, achieving zero-shot performance through MAE’s patch-level
reconstruction paradigm. This method captures temporal patterns without modality-specific adaptations, outperforming
language-model-based approaches like Time-LLM (Jin et al., 2024).

A.2. Methodology Comparison and Clarification

A.2.1. CLARIFICATION OF ORIGINALITY AND DIFFERENTIALS FROM (JUNGO ET AL., 2024).

While both works explore patchification, our core innovation lies in the exploration of visual MAE’s architecture and the
capability benefiting from visual initialization and self-supervised learning for unstructured IMTS data reconstruction.
Beyond this, VIMTS distinguishes itself through several key aspects not addressed by (Jungo et al., 2024).

Enhanced Channel Dependency Modeling with GCN. Unlike Jungo’s projection-based forecasting, VIMTS leverages
Graph Convolutional Networks (GCNs) to capture both static and dynamic information. This allows it to model the
bidirectional information flow among channels, which is more consistent with real-world information dependencies and
enables explicit cross-channel compensation to effectively impute missing values. Jungo et al.’s work (Jungo et al., 2024)
solely relies on projection, lacking this sophisticated cross-channel dependency modeling. Our ablation study confirms the
significant performance boost from our GCN module.

Leveraging Vision Pretraining. A crucial aspect of VIMTS is our explicit utilization and exploration of vision pretraining’s
foundational capabilities and their importance for the model’s overall performance. This vital component, which provides a
strong initialization for sparse pattern learning and few-shot learning, is not mentioned or explored in (Jungo et al., 2024).

Fine-Grained Time × Channel Prediction. VIMTS employs a coarse-to-fine prediction strategy, allowing for more precise
predictions at specific time segments and channels. In contrast, Jungo’s projection-based approach operates at a coarser
level. We have even conducted experiments with an encoder architecture using direct projection at different training stages,
similar to (Jungo et al., 2024), which yielded inferior results, further highlighting the advantage of the proposed VIMTS.

A.2.2. COMPARISON WITH OTHER MASK-RECONSTRUCTION METHODS

Our experiments include state-of-the-art masking-based transformer variants such as PatchTST and VisionTS, and demon-
strate VIMTS’ superior performance, which benefits from its ability to effectively handle IMTS irregularities and missingness.
While the transformer-based models with mask reconstruction, PatchTST (Nie et al., 2022) have shown strong performance
on regularly sampled Multivariate Time Series (MTS) data, they lack explicit mechanisms to handle irregular sampling
prevalent in IMTS data. Their design also does not incorporate cross-channel modeling, which is crucial for imputation in the
presence of missingness, leading to significant performance drops. Moreover, VisionTS (Chen et al., 2025), a vision-based
foundation model with masked reconstruction, performs well on MTS but fails to generalize to IMTS tasks due to its reliance
on rigid grid-like patch resizing and normalization, which may cause information loss. Similarly, MOMENT (Goswami
et al., 2024), another transformer-based foundation model with mask-reconstruction underperforms even PatchTST on MTS
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tasks and struggles to address irregular sampling or missing value issues.

A.2.3. COMPARISON WITH VITST (LI ET AL., 2023)

Although both ViTST and VIMTS employ image-like representations for time series, there are key distinctions in Innovation
Points: To extract information from IMTS data, ViTST deals with missingness with interpolation and by transforming
IMTS to images, which causes information loss with additional computational overhead, makes inputs less precise for
understanding patterns in data, and fails to perform well in forecasting. In contrast, our model divides data by time intervals,
patchifies it into time × channel patches, and extracts block features without interpolation, which preserves data integrity
and creates more precise inputs for MAE to model internal data structures without computational overhead from image
construction. Further, it explicitly models cross-channel interaction with GCN, thereby compensating for missingness across
channels. Our analysis is further supported by empirical evidence, which evaluates the model performance on PhysioNet.

Method MSE(×10−3) MAE(×10−2)
VIMTS (Ours) 4.81 ± 0.07 3.54 ± 0.04
ViTST 66.37 ± 0.08 20.16 ± 0.05
VisionTS (Zero Interp.) 42.41 ± 0.02 13.13 ± 0.02
VisionTS (Linear Interp.) 40.50 ± 0.05 12.85 ± 0.01

Table 7. Comparison of different methods.

Note that this experiment also involves VisionTS (Chen et al., 2025) with similar image-based methods, confirming that
despite its powerful visual MAE framework and strong performance on regularly sampled time series, it similarly deteriorates
when processing irregular data.

As for computational cost, VIMTS employs a visual MAE-base with around 3 GCN layers as its backbone. Our hyperparam-
eter experiments show that in general settings, a relatively lightweight configuration is optimal, with no significant benefits
from additional complexity. In comparison, ViTST uses a Swin Transformer as the visual backbone and a RoBERTa as the
text backbone, and requires additional computational cost from image construction, leading to considerable overall costs.
The quantified experimental results shown in Table 6 further validate our claims.

A.3. Discussion about the Effectiveness of Self-Supervised Learning

Our self-supervised learning (SSL) strategy effectively adapts the capability of vision pre-training to multi-channel time
series data, leading to robust few-shot capability. In detail, with the GCN module, which learns cross-channel dependencies
and complements missing values with information from other channels, VIMTS effectively transforms IMTS into regularly
sampled multivariate time series (MTS) at the feature level. Consequently, given that mask-reconstruction-based SSL is
effective in learning temporal dependencies in MTS, applying it to enhance IMTS modeling after cross-channel complemen-
tation is justified. Furthermore, as the vision pre-training is initially performed on 3-channel data (R-G-B), our SSL strategy
is crucial for adapting the model to more diverse application scenarios with a greater number of channels. Our ablation study
and few-shot experiments clearly demonstrate a trend: by learning from domain-specific time-channel contexts through SSL,
our model can effectively generalize from the 3-channel pre-trained state to handle more varied, complex, and limited data.

A.4. Analysis of Fine-Tuning Strategies

Table 8. Comparison of Different Finetune Strategies. ‘*’ denotes a variant of the existing strategy.

Finetune PhysioNet Human Activity USHCN MIMIC
MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2

ALL 4.95± 0.06 3.53± 0.06 2.69± 0.01 3.31± 0.01 4.91± 0.04 2.98± 0.15 1.39± 0.02 6.59± 0.09
Attn 4.91± 0.04 3.55± 0.06 2.67± 0.01 3.12± 0.01 4.90± 0.06 2.91± 0.03 1.41± 0.01 6.58± 0.09
Bias 4.86± 0.05 3.58± 0.03 2.65± 0.01 3.08± 0.01 4.85± 0.01 2.96± 0.06 1.40± 0.01 6.58± 0.08
Frezze 4.98± 0.06 3.64± 0.03 2.65± 0.01 3.08± 0.01 4.82± 0.01 2.90± 0.05 1.43± 0.01 6.65± 0.11
MLP 4.91± 0.03 3.51± 0.04 2.68± 0.01 3.13± 0.01 4.92± 0.04 2.99± 0.12 1.39± 0.01 6.44± 0.04
Norm 4.81± 0.07 3.54± 0.04 2.65± 0.01 3.08± 0.01 4.86± 0.02 2.98± 0.05 1.36± 0.02∗ 6.40± 0.17∗

To identify the optimal fine-tuning strategy for maximizing the potential of our architecture, we systematically evaluate
three distinct approaches, with the results demonstrated in Table 8. (1) ALL: Updates all model parameters; (2) Freeze:
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Retains the pre-trained MAE and the GCN module, and optimizes the remaining parts; (3) Partial Tuning: Selectively
updates specific components within the retained parts of Freeze, including Attn (attention layers), Bias (bias terms), MLP
(MLP blocks), and Norm (normalization layers). A variant of Norm, marked with ‘’*, includes GCN, normalization layers,
position embeddings, and patch projection layers, and is adapted for datasets with a greater number of channels.

Experiments on three IMTS datasets (PhysioNet, Human Activity, USHCN) reveal that fine-tuning solely the normalization
layers (Norm) achieves the best overall results, offering an optimal balance in performance across datasets and metrics.
Therefore, we have chosen the Norm strategy as our default fine-tuning method, which allows for efficient adaptation and
maintains the semantic sparse modeling capabilities acquired from visual pre-training. For the MIMIC dataset, which has a
larger number of channels, we utilize the variant of Norm marked with ‘*’. This adjustment enables the capture of more
intricate cross-channel dependencies while retaining the advantages of the standard Norm strategy. Comparisons of various
tuning strategies on the MIMIC dataset confirm that this approach delivers the best overall performance.

A.5. Hyperparameter Sensitivity

We analyze the sensitivity of critical hyperparameters: hidden dimension, patch size, mask ratio, GCN layer depth, and time
embeddings dimenson in TTCN (TE) and graph vertex embeddings dimenson in GCN (VE), on all four datasets (PhysioNet,
Human Activity, USHCN, MIMIC). We vary each parameter’s value while fixing others to their optimal settings derived
from preliminary experiments.

Hidden Dimension. We test different hidden dimension to balance model performance and computational efficiency.
Observations across all three datasets (PhysioNet, Human Activity, USHCN, MIMIC) in Fig. 5 indicate that a hidden
dimension size of 32 yields the optimal results for Physionet and USHCN, 64 for Human Activity, while 40 for MIMIC.
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Figure 5. Sensitivity of Hidden Dimension

Patch Size. As shown in Fig.6, we evaluate patch sizes to find the optimal temporal granularity for each dataset. Too small
sizes lack sufficient information due to data sparsity and may cause memory issues, while too large sizes miss fine-grained
temporal changes. Based on the results, we select a patch size of 300 (time steps) for Human Activity, 8 for PhysioNet and
MIMIC, and 1 for USHCN.
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Figure 6. Sensitivity of Patch Size

Mask Ratio. During self-supervised learning, we vary mask ratios from 0.1 to 0.9 in Fig. 7. For the Human Activity dataset,
a ratio of 0.7 provides the best performance. The PhysioNet dataset, which is larger and faces out-of-memory issues, benefits
most from a ratio of 0.6. For USHCN and MIMIC, which is larger than PhysioNet, the ratio of 0.4 is optimal.
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Figure 7. Sensitivity of Mask Ratio

GCN Layer Depth. Testing GCN layers from 1 to 5, we find that the optimal depths are 2 for the Human Activity dataset, 3
for PhysioNet, USHCN and MIMIC, in Fig. 8. These configurations provide the best balance between model complexity
and performance, ensuring effective learning without unnecessary computational overhead and risking overfitting.
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Figure 8. Sensitivity of GCN Layer Depth

TE and VE Dimension. For effective time × channel feature extraction, as shown in Fig. 9, we test different time TE and
VE dimension. For Human Activity and PhysioNet, 5 is optimal. For USHCN, 10 is the best. And for MIMIC, 40 is the
best.
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Figure 9. Sensitivity of TE and VE Dimension
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B. Baseline
The performances of the models marked with ‘†’ are reported from (Zhang et al., 2024a), as they share the same task setting,
evaluation protocols, and datasets split ratios.

B.1. Explanation of Results on MIMIC Dataset

We identified issues in t-PatchGNN’s preprocessing pipeline for MIMIC (refer to their GitHub issues), thus failing to
reproduce their results. Utilizing the same configuration as the original paper, after re-evaluating with corrected preprocessing
in normal and few-shot settings, VIMTS exhibits competitive MSE, superior MAE compared to t-PatchGNN, and robust
few-shot capability. This validates that VIMTS is able to effectively scale to complex and real IMTS data.

B.2. MTS Forecasting

DLinear† (Zeng et al., 2023) decomposes the time series into trend and remainder components using a moving average
kernel, then applies two single-layer linear networks to model each component for forecasting. This approach enhances
prediction performance on data with clear trends by explicitly handling the trend component.

TimesNet† (Wu et al., 2022) introduces a novel approach for time series analysis by transforming 1D time series into
2D tensors to capture both intra-period and inter-period variations, thereby enhancing representation capability. It utilizes
TimesBlock, a task-general backbone featuring a parameter-efficient inception block, which can adaptively discover
multi-periodicity and extract complex temporal dynamics from the transformed 2D tensors for improved forecasting
accuracy.

PatchTST† (Nie et al., 2022) is a Transformer-based model that segments time series into subseries-level patches as
input tokens and employs channel independence, allowing each univariate time series to share the same embeddings and
Transformer weights. This design retains local semantic information, significantly reduces computational and memory
demands, and enables the model to consider a longer history.

Crossformer† (Zhang & Yan, 2023) is a Transformer-based model designed to address multivariate time series (MTS)
forecasting by effectively capturing both cross-time and cross-dimension dependencies. It utilizes a Dimension-Segment-
Wise (DSW) embedding to preserve time and dimension information, followed by a Two-Stage Attention (TSA) layer to
model these dependencies efficiently. Through its Hierarchical Encoder-Decoder (HED) structure, Crossformer integrates
information at various scales for enhanced forecasting performance.

Graph Wavenet† (Wu et al., 2019) is a CNN-based method that utilizes a self-adaptive adjacency matrix, learned through
end-to-end supervised training, to capture hidden spatial dependencies in graph data. It employs stacked dilated causal
convolutions to efficiently model long-range temporal dependencies with an exponentially growing receptive field. This
enables Graph WaveNet to effectively handle spatial-temporal graph data for forecasting, combining cross-dimension and
cross-time dependency modeling with a gated mechanism.

MTGNN† (Wu et al., 2020) tackles spatial and temporal dependencies through a novel graph learning layer, a graph
convolution module, and a temporal convolution module. It extracts a sparse graph adjacency matrix adaptively based
on data to address spatial dependencies, specifically designed for directed graphs to avoid over-smoothing. The temporal
convolution module uses modified 1D convolutions to discover temporal patterns with multiple frequencies and handle very
long sequences, effectively capturing cross-dimensional relationships and cross-temporal dependencies.

StemGNN† (Cao et al., 2020) is designed to model intra-series temporal patterns and inter-series correlations by transforming
multivariate time-series data into the spectral domain using Graph Fourier Transform (GFT) and Discrete Fourier Transform
(DFT). This approach enables clearer pattern recognition and more effective predictions by converting structural multivariate
inputs into orthogonal time-series representations and then further into frequency domain representations.

CrossGNN† (Huang et al., 2023) models MTS forecasting by constructing multi-scale time series with varying noise levels
using an Adaptive Multi-Scale Identifier (AMSI). It then applies a cross-scale GNN to capture dependencies between
different scales and a cross-variable GNN to handle homogeneity and heterogeneity among variables, using positive and
negative edge weights. By focusing on high-saliency edges, CrossGNN achieves linear complexity.

FourierGNN† (Yi et al., 2024) improves MTS forecasting by transforming features into Fourier space to handle large-scale
graphs more efficiently. Using Fourier Graph Operators (FGO) instead of traditional graph operations, it performs matrix
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multiplications in Fourier space, achieving log-linear complexity and high expressiveness. Stacking FGO layers enables
effective pattern capture with reduced computational load. Theoretical analysis confirms FGO’s equivalence to time-domain
graph convolutions.

B.3. IMTS Classification

GRU-D† (Che et al., 2018) is a GRU-based model designed to handle irregularly sampled time series by incorporating
representations of missing data patterns through masking and time intervals. Masking indicates which inputs are observed
or missing, while time intervals, enhanced with a decay term, capture the patterns of input observations.

SeFT† (Horn et al., 2020) reimagines time series classification by treating time series as a set of observations, bypassing the
need for ordered sequence processing, which can be disadvantageous in scenarios with irregular sampling or unsynchronized
measurements. SEFT leverages advanced set function learning to classify unaligned and irregularly sampled time series,
offering improved classification performance and scalability.

RainDrop† (Zhang et al., 2022) is a graph neural network designed to model the temporal dynamics and evolving
relationships of sensor dependencies in irregularly sampled multivariate time series. By leveraging neural message passing
and temporal self-attention, RAINDROP adapts to cross-sample shared relationships between sensors and dynamically
estimates unaligned observations, improving the accuracy and interpretability of predictions.

Warpformer† (Zhang et al., 2023) is a Transformer-based model that handles intra-series irregularities and inter-series
discrepancies by using a specialized input representation. This encoding captures signal values, sampling times, and intervals.
A warping module then aligns all series to a unified scale through down-sampling or up-sampling. Subsequently, a doubly
self-attention module processes the synchronized data for enhanced representation learning, improving the handling of
irregular time series and predictive performance.

B.4. IMTS Interpolation

mTAND† (Shukla & Marlin, 2021a) handle multivariate, sparse, and irregular time series using a continuous-time approach
with learned embeddings and a time attention mechanism. This model re-represents time series data at fixed reference
points, using an encoder to convert irregular inputs into fixed-length latent representations and a decoder for reconstruction
or forecasting. By replacing fixed similarity kernels, mTANs offer greater flexibility and can be adapted for forecasting by
modifying the interpolation queries.

B.5. IMTS Forecasting

Latent-ODE† (Rubanova et al., 2019) enhances traditional RNNs by modeling continuous-time dynamics with neural
ODEs. It serves as both a standalone autoregressive model and a recognition network in the Latent ODE model, which
evolves an initial latent state over time for generating time series data. This approach integrates continuous-time dynamics
into RNNs, offering better management of continuous-time data and more expressive temporal patterns.

CRU† (Schirmer et al., 2022) is a probabilistic architecture for modeling irregularly sampled time series, mapping
observations into a latent space governed by a linear SDE. Using the Kalman filter’s continuous-discrete formulation, CRU
propagates latent states and integrates new observations. This approach provides explicit uncertainty estimates, ensures
optimal state updates in locally linear spaces, and enables analytical resolution of latent states, thus avoiding numerical
integration.

Neural Flow† (Biloš et al., 2021) is a neural network approach that directly models the solution curves of ordinary
differential equations (ODEs), eliminating the need for expensive numerical solvers required in traditional methods. By
designing flow architectures that meet specific conditions, the model significantly improves computational efficiency while
retaining the modeling capabilities of neural ODEs.

t-PatchGNN† (Zhang et al., 2024a) transforms univariate irregular time series into transformable patches with a unified
time horizon, bypassing pre-alignment and capturing richer local semantics. This approach aligns IMTS in a consistent
temporal resolution, addressing asynchrony issues. It uses a time-aware convolution network to encode patches into latent
embeddings, which are processed by a Transformer for intra-series dependencies. Time-adaptive graph neural networks
then model inter-series correlations through dynamic graphs, with a final MLP layer generating forecasts based on the
comprehensive latent representation.
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IMTS is Worth Time × Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction

VisionTS (Chen et al., 2025) explores the use of pre-trained visual models for time series forecasting (TSF) by interpreting
pixel variations in images as temporal sequences. This approach leverages the similarities between images and time series,
such as their continuous nature, real-world origins, information density, and shared features. Focusing on a visual masked
autoencoder (MAE), a popular computer vision model, VisualTS reformulates TSF as a patch-level image reconstruction
task. By transforming 1D time series data into 2D matrices and rendering them as images, the method aligns the forecasting
window with masked image patches, enabling zero-shot forecasting without further adaptation. This innovative approach
bridges the gap between pre-training on images and downstream TSF tasks, offering a promising direction for leveraging
visual models in TSF. During training, it applies a learning rate of 1e−4 and and aligns the input sequences to a uniform
temporal grid via linear or zero interpolation, with an interpolation resolution of 30 points per patch for the output.
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