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Abstract

High-throughput single-cell cytometry data are crucial for understanding the im-
mune system’s role in diseases and treatment response. However, the prevailing
methods used for analyzing cytometry data, specifically manual gating and cluster-
ing methods, have certain limitations with scalability, robustness, and accuracy. In
this study, we propose a single-cell masked autoencoder (scMAE), which offers an
automated solution for immunophenotyping tasks such as cell type prediction. Our
model aims to preserve the cell type definitions designed by the user, making inter-
pretation and cross-study comparisons more accessible. The scMAE model follows
a pre-train and fine-tune paradigm. During pre-training, scMAE utilizes Masked
Single-cell Modelling (MScM) to learn relationships between protein markers in
immune cells without the need for prior labeling information. Subsequently, the
scMAE is fine-tuned on multiple specialized tasks, using a smaller designated
portion of labeled data. Through evaluation experiments, we demonstrated that the
pre-trained scMAE overcomes limitations of manual gating and clustering methods,
providing accurate and interpretable cellular immunophenotyping. The introduc-
tion of scMAE represents a significant advancement in immunology research,
enabling prediction and interpretation of cellular-level in immune disease.

1 Introduction

High-throughput, single-cell protein expression data as acquired through flow and mass cytometry
are essential to understanding the immune system’s role in infectious diseases, autoimmune diseases,
or cancer, and its response after treatment. Cytometry assays typically profile millions of cells from
a biological sample, allowing scientists to quantify cell-type specific biomarkers, even for rare cell
types. For example, we can see which cell populations are differentially abundant, or which proteins
are differentially expressed between subject groups. Immune profiling maps the similarity and
diversity of the immune landscape for all subjects and patients, supporting individual-level prediction
and precision medicine in the clinic.

Currently, the predominant approach for analyzing cytometry data is manual gating: the application
of sequential filters to bivariate plots of protein markers to focus the analysis on particular cell
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subsets of interest [14]. These bivariate plots visually represent the distribution of protein markers,
allowing a human analyst to manually identify and select cells based on their prior knowledge of
the marker distribution. However, manual gating has several serious drawbacks [15, 17]. First, it
is time-consuming for panels larger than a dozen markers, as the number of 2D plots increases
quadratically with the number of markers. Second, results from manual gating may be difficult
to reproduce. Researchers’ diverse gating strategies encompass distinct gating sequences, shapes,
and boundaries which may affect robustness and replicability of cell subsets. The level of gating
stringency also varies between individuals, contributing to inconsistencies in results. Third, manual
gating workflows fail to use all information available in the data, because they only consider two
dimensions at a time, rather than the full multivariate protein expression profile.

The ability to measure multiple protein markers simultaneously has led to high-dimensional data,
prompting the development of automated analysis techniques, particularly unsupervised clustering
methods like FlowSOM [21], PhenoGraph [12], Scaffold Maps [19], and X-shift [18]. While
clustering approaches address the shortcomings of manual gating and offer speed, they also come
with their own set of constraints. First, although unsupervised clustering methods can detect variability
in the data, they cannot distinguish between biological or technical origin. Consequently, clustering
methods are sensitive to batch effects, data distribution shifts and non-specific binding of antibodies
[10]. Another challenge arises in cross-study comparisons, where slight changes in panel choice,
dataset specifics, or stochastic elements can lead to discontinuous changes in cluster boundaries.
For example, CD4 T cells might cluster differently based on memory subtype in one study and
functional subtype in another, making a direct comparison challenging. To strike a balance between
labor-intensive manual analysis and unpredictable unsupervised analysis, we focus on a combination
of unsupervised and supervised learning to develop an automated method in this study. This has the
advantage that our automated method can predict the immunophenotype of cells in future samples
while using the same cell type ontology found in the training data.

In this study, we propose an accurate and interpretable automated immunophenotyper for single-cell
cytometry data through Masked Single-cell Modelling (MScM), which uses self-supervised pre-
training techniques on single-cell cytometry data. During MScM, our model learns the relationships
and dependencies between markers in immune cells by identifying expression patterns in the massive
amount of data itself, without any additional labels. The pre-trained model can then be exported
using a useful representation, giving it an advantage over using the original data in many downstream
tasks. We show here that our model can overcome the limitations of manual gating and clustering
methods. Our model accurately identifies complex cell types and offers interpretability on which
protein markers it paid attention to when predicting targets. We will also demonstrate additional
properties such as scalability and reproducibility. While several pre-trained models for single-cell
RNA sequencing (scRNA-seq) data have been published in similar approachs [20, 8, 24, 7, 6], to our
best knowledge, this is the first model pre-trained using single-cell cytometry data. To the best of our
knowledge, our model is the first pre-trained model using single-cell cytometry data. This approach
to immunophenotyping will have the potential to advance the field of immunology by extending it to
predict and explain the cellular-level and individual-level phenotypes of various immune diseases.

2 Single-cell Masked Autoencoder (scMAE) Algorithm

We propose scMAE, a single-cell Masked Autoencoder model that constructs and employs latent
embeddings of single-cell cytometry data to obtain state-of-the-art performance on several cell-level
tasks. scMAE is built upon a Masked Autoencoder (MAE) [9] backbone structure, consisting of
stacked transformer blocks in both encoder and decoder. Drawing from established practices in the
domains of computer vision and natural language processing, scMAE is trained in two stages: self-
supervised pre-training and supervised fine-tuning (Figure 1a). The main advantage of this approach
is leveraging large-scale, easily obtainable unlabeled data in the first stage, while requiring smaller
amounts of labor-intensive labeled data in the second stage. During pre-training, a random subset
of the protein expression data is masked and fed to an encoder which produces latent embeddings
of the masked data. In turn, these embeddings are fed to a decoder that attempts to reconstruct the
unmasked, original data (Figure 1b, Figure P.1). The encoder-decoder system learns to optimize the
embeddings to minimize reconstruction error. The true goal of pre-training is to obtain informative
embeddings of the data, and the reconstruction of masked data allows the model to accomplish this
goal even in the absence of any ground truth labels. During the second fine-tuning stage, the full
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Figure 1: (a) Overview of Single-cell Masked Autoencoder (scMAE). In the pre-training step, protein
expression data is randomly masked. Unmasked protein expressions are concatenated with its
learnable protein embeddings and inputted into the encoder. The encoder generates unmasked latent
representations, and they are combined with the learnable mask embeddings and fed to the decoder
for reconstruction of the masked values. In the fine-tuning step, the pre-trained encoder produces
latent representations for cells, facilitating cell-level downstream tasks. (b) From left to right, masked,
imputed (reconstructed), and original data. Each row represents a marker protein, and each column
represents a randomly sampled cell. The original data was 25% randomly masked, and those regions
are colored white in the masked data. The masked regions are reconstructed accurately through
scMAE.

protein expression data without masking is used to generate latent cell representations through the
pre-trained encoder in the first stage. This can then be used for several downstream tasks, which
may or may not require labeled data. Cell representations generated by the pre-trained encoder can
be used for unsupervised tasks or plugged into another classifier to solve tasks through supervised
fine-tuning. Specifically, we tested on two cell-level tasks using the pre-trained scMAE: cell type
prediction, and imputation.

2.1 Masked Single-cell Modeling (MScM)

scMAE learns to maximize

P (Vi,masked|Vi,unmasked,Eunmasked) (1)

where i indexes cells, Vi,masked ∈ Rr·p×1 denotes masked protein expressions of cell i, and
Emasked ∈ Rr·p×(d−1) denotes masked protein embeddings after masking. r is a masking ra-
tio, p is the number of proteins in the data, and d is a hidden dimension size. Likewise, Vi,unmasked ∈
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R(1−r)·p×1 denotes unmasked protein expressions of cell i, and Eunmasked ∈ R(1−r)·p×(d−1) de-
notes unmasked protein embeddings.

The encoder (fe) generates a latent representation of the cell. The unmasked latent representation
Hi,unmasked ∈ R(1−r)·p×d of cell i is defined as the following,

Hi,unmasked = fe((Eunmasked ∥ Vi,unmasked) +Punmasked), (2)

where Punmasked ∈ R(1−r)·p×d is sine-cosine positional embeddings for masked proteins. The idea
of the concatenation (∥) of protein embeddings with expression values was inspired from MET [16].

The decoder (fd) reconstructs the masked values as following,

V̂i,masked = fd((Hi,unmasked ∥ M) +P) (3)

Let M denote a learnable mask token embedding represented as a row vector M ∈ R1×d. We
construct a matrix M by stacking this vector rp times, such that the resulting matrix M has dimensions
(r · p× d). P ∈ Rp×d are sine-cosine positional embeddings. To calculate the reconstruction loss,
we use mean square error (MSE) loss for all cells,

Loss =
∑
i

MSE(V̂i,masked, Vi,masked) (4)

2.2 Datasets

We analyzed Cytometry by time of flight (CyTOF) data originating from three distinct COVID-19
studies conducted at the University of Pennsylvania. These data were acquired with a 30-marker
panel and are referred to as the Acute dataset, Vaccine dataset, and iSPY dataset. The Acute dataset
includes 6.5M cells from the 26 individual single-cell cytometry files, corresponding to 13 COVID-19
patients and 13 healthy individuals. The Vaccine dataset was obtained longitudinally from individuals
before and after vaccination for SARS-CoV-2. This dataset is composed of 36.7M cells across 150
files, measuring cells from 44 individuals at 4 timepoints. Lastly, the iSPY dataset was obtained
longitudinally from 42 COVID-19 infected individuals at the time of admission and after one week of
treatment. It includes 11.9M cells from 56 measurements. We used the Acute dataset for pre-training
and used all the three datasets in the downstream evaluations. Each of the datasets underwent a
standard manual cleanup procedure, which involves removing aggregates, debris, doublets, beads,
and dead cells from the data (see Appendix B).

3 scMAE is an Accurate Cell Immunophenotyper

Cell type annotation is the primary outcome of manual gating and clustering methods. Our model
can perform automated cell type prediction on single cell datasets by fine-tuning the model with
cell type labels. A total of 46 cell types obtained for each cell from manual gating were used as
ground truth labels (Figure P.2). We used 60% of the Vaccine data for training, 20% as validation
and the remaining 20% as an internal test set. We used the iSPY dataset and the Acute dataset as
external sets (External set 1 and 2, respectively). We compared scMAE with a gradient boosting
decision tree (GBDT) [4], a fully connected deep neural network (DNN), and a convolutional neural
network (CNN) (see Appendix E) as well as cytometry-specific analysis methods: static gating and
unsupervised clustering with FlowSOM.

Static gating is a baseline method which involves applying the filters manually defined in the training
data to the testing datasets, without adjustments for inter-sample variability (Figure P.3). This is
equivalent to manually constructing a decision tree and then applying it on the testing data. The
other supervised models used here can be seen as refinements of this idea: they attempt to learn a
more robust encoding of the gating information, by using multivariate rather than bivariate expression
patterns. In the case of scMAE, it uses masking in the pre-training stage. Alongside the supervised
classification methods, we include FlowSOM, a popular unsupervised clustering method for cytometry.
To match our supervised paradigm, we add an inference mode to FlowSOM by mapping each unseen
test datapoint to the nearest SOM node (see Appendix E).

Since most of the cells, over 60%, are Neutrophils, an imbalanced cell type distribution, rather than
using Accuracy as an evaluation metric, we used Balanced accuracy (Bacc) to give a fair assessment
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Figure 2: (a) Model comparisons in the cell type prediction. (b) Accuracy of cell type predictions for 5
abundant and 15 rare cell types. Deep neural nets (DNN) denotes the fully-connected neural network
proposed by Cheng, L. et al. [5] and Li, H. et al. [13] for cytometry data analysis. Convolution neural
nets (CNN) denotes a model architecture that removes only pooling layer from the CNN proposed by
Hu. Z et al. [10] for cytomegalovirus (CMV) classification. (c) Few-shot learning performance for
cell type prediction. Each green dashed line represents the performance of the full fine-tuned scMAE
when used all available training set, reported in the (a).

of imbalanced label. The experimental results showed consistently high Bacc on both internal test
sets and two external sets (Figure 2a). The internal test set showed a 93.1% Bacc, while the external
sets showed 82.5% and 81.0% Bacc, respectively. When we looked at performance by cell type, we
found that our model is more accurate than others for most cell types (Figure P.4). In addition, the
fine-tuned scMAE from the pre-trained outperformed the scMAE from scratch (non-pre-trained),
which demonstrates the benefit of pre-training (Table O.1).

Our model performed particularly well on rare cell types. Accurate prediction of rare cell types is
difficult because it is easy for a model to be trained with a bias toward more frequent cell types.
However, when comparing performance on cells with a frequency of less than 0.1% in Figure 2b,
both internal test set and external sets show more accurate predictions for rare cell types than the
comparison models in most cases.

FlowSOM scores lower on our accuracy metrics, as expected, because it makes no use of the training
labels. We included it in the comparison to illustrate one important pitfall of unsupervised analysis:
it uncovers true variability in the data, which nonetheless may not be biologically interesting (for
example, splitting the dominant population of neutrophils into 6 clusters, based on non-specific
binding of anti-CD3 or anti-TCRgd), while missing subtle but biologically meaningful differences
(for example, differences between EM1, EM2, EM3 T cell phenotypes, based on CD27 and CCR7
expression).

These results show that our model is robust to technical variation between datasets, even when applied
to the analysis of datasets derived and processed separately. For example, the cell immunophenotyping
model was trained on the Vaccine dataset, run on frozen samples from healthy subjects in 2021, and
it performed better than all other methods on the Acute dataset, run on fresh samples from subjects
with acute COVID in 2020.
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4 scMAE is a Few-shot Learner

Unlike full fine-tuning, few-shot learning trains a model with a limited amount of training data.
N-shot uses only N samples for each class in the classification problem. A pre-trained large language
model trained by self-supervised learning is known as a good few-shot learner [3]. Similarly, our
model was tested on a cell type prediction task for a few-shot learning setting. We ran 5-shot, 10-shot,
15-shot and 20-shot experiments. Training, validation, testing, and external testing sets are the same
as in the previous cell type prediction tasks.

As expected, the pretrained scMAE approaches the performance of training with the full training set
as the number of N-shots increases (Figure 2c). On the other hand, since the scMAE from scratch
(non-pre-trained) has many parameters and no pre-trained information, we can see that it does not
learn at all with small samples. It is worth noting that GBDT also performed reasonably well, but
scMAE outperformed it based on the pre-trained knowledge. This shows that our pre-trained model
can learn in the right direction even when there is very little labeled data for the new downstream
task.

5 scMAE Enhances Regression Imputation

Current technology for flow and mass cytometry only allows a few dozen markers, and sometimes
cost considerations may reduce the number even further. Traditionally, cytometry technologies were
used by immunologists to answer very specific experimental questions which explains why a limited
panel of markers and manual gating were sufficient at the time. However, it would be helpful to
exploit high-dimensional patterns of protein expression to predict measurements from large panel
sizes using only a smaller, cheaper panel. To investigate the feasibility of this, Becht, E. et al. [2]
proposed Infinity Flow, applying a Gradient Boosting tree model [4] to impute the expression of over
300 markers using only 15. To test whether our cell latent representations can enhance regression
imputation, we conducted experiments in which we masked 7 markers, including those commonly
associated with memory subsets in T cells (CD27, CD28, CD45RA, CD45RO, CD127, CD197).
Then we used the remaining information to predict the masked marker expressions using Infinity
Flow and the scMAE with imputation supervised finetuning. We used the Acute data for training, and
the Vaccine dataset and iSPY dataset as external sets (External set 1 and 2, respectively). R-squared
is used as an evaluation metric.

The scMAE achieved moderate imputation performance (0.2-0.6 R-squared, Figure 3a), despite only
having access to 23 markers not known to be predictive of T cell memory states and their associated
masked markers. Overall, our method showed improvement over Infinity Flow for five of the seven
markers. Moreover, scMAE learned more than just patterns of constitutively expressed proteins,
such as CD45RA in NK cells and CD45RO in neutrophils. Correlations between true and predicted
values are high even when restricted to T cells, or to CD27 expression in B cells (Figure 3b, Figure
P.5,P.6,P.7). This suggests that our method infers information about T cell and B cell memory states,
even in the absence of the standard memory markers.

6 scMAE is an Interpretable Immunophenotyper

A multi-head self-attention of the transformer blocks in scMAE enables interpretable predictions for
downstream tasks. Attention scores show which marker information and relationships are important
to the prediction tasks. High attention score means that marker information is used a lot from the
other markers. We first measured the attention score of each feature for each cell type in cell type
prediction. (Figure 4a) Notably, the marker with the highest attention score in all cell types is CD45,
which distinguishes between the two main immune cell lineages: granulocytes and mononuclear cells.
Aside from this, most markers were highly attended in cell types in which they are highly expressed:
for example, CD19 in B cells, CD123 in basophils and pDCs, CD294 in basophils and eosinophils.

Similarly, we measured the attention score of 23 markers for each cell type used to predict the
expression of 7 markers in the Imputation task (Figure 4b). For cell types where the masked markers
are either constitutively expressed or constitutively not expressed, the model mostly attended to the
available markers which determine the cell type (CD294, CD66b, CD45 for eosinophils; CD16,
CD45 and, interestingly, HLA-DR for neutrophils). In the case of T cells, where knowing the cell
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Figure 3: (a) R-squared comparison between Infinity Flow and scMAE in the imputation task. Total
7 markers were masked and predicted by the two models. (b) Plots of true expression and predicted
expression for each marker in the external set (Vaccine dataset). The dashed line represents the ideal
relationship as a reference line to assess the performance.

type is insufficient for predicting expression of the masked proteins, the model attended to the T
cell marker protein CD3, but also to CD45 and HLA-DR, both of which are shown to be negatively
correlated to CD45RA (Figure P.11).

This cell type-specific attention score shows a consistent pattern with external datasets (Figure P.8).
In addition, the variance of attention scores between samples is not significant (Figure P.9,P.10).
Overall, scMAE attention scores help both to confirm that known marker proteins were used by the
model to make predictions, and to discover possibly unexpected correlations, such as those between
CD45, HLA-DR and CD45RA.
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Figure 4: (a) Interpretation in the cell type prediction by the attention scores for the iSPY dataset
(external set 1). The heatmap shows protein markers with high attention score as bright red for each
cell type. (b) Interpretation in the imputation task by the attention score for the Vaccine dataset
(external set 1). From 23 markers to impute the other 7 markers, it measures which input features
have high attention from the other features during prediction. The heatmap shows the protein markers
with high attention score as bright red for each cell type. For the left figure in (a) and (b), we used
Bertvis [22] for visualization of attention weights.

7 Conclusion

In this manuscript, we introduced scMAE, a masked autoencoder model which builds latent embed-
dings of single-cell cytometry data and uses them to achieve good performance across a range of
cell-level tasks. scMAE employs a training and inference paradigm that enhances scalability and
reproducibility, outperforming alternative methods in making inferences on new datasets. Pre-training
scMAE models with limited label information leads to improved performance, faster convergence,
and stability, with potential for even greater gains by pre-training on larger and more diverse datasets.
Especially, the fine-tuned scMAE is as accurate as manual gating, with the labor-free advantages of
automated analysis. To the best of our knowledge, scMAE is the first such model which specializes
on cytometry data. Our results are a proof of concept for applying a combination of unsupervised and
supervised analysis in the training-inference paradigm to multiple cytometry datasets that use the
same panel. The promise of this approach is that it generalizes easily to thousands of samples across
multiple studies, providing robust and interpretable results while minimizing manual analysis.
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A Single-cell cytometry and single-cell transcriptomics for immunology
research

Single-cell cytometry, encompassing flow cytometry and mass cytometry (CyTOF), focuses on
measuring the expression of a few dozen proteins at the individual cell level by tagging cells with
fluorescent markers or metal isotopes, respectively. The data garnered primarily revolve around
protein expression dynamics, cell phenotype distribution, or cell signaling pathways.

On the other hand, single-cell transcriptomics, employing techniques like single-cell RNA sequencing
(scRNA-seq), delves into gene expression by sequencing the RNA of individual cells. The data here
concern gene expression levels across thousands of genes per cell, paving the way for more complex
modeling that can unveil deeper insights into gene expression patterns, regulatory networks, and the
identification of new cell types or states.

However, the high cost, dimensionality, and computational demands associated with single-cell
transcriptomics make cytometry a more practical choice for many immunology studies. Moreover,
cytometry assays typically measure more cells than scRNA-seq by 1-2 orders of magnitude, offering
better resolution into rare cell types, such as activated or antigen-specific lymphocytes.

B Preprocessing

Fresh (Acute dataset) or frozen (Vaccine and iSPY datasets) whole blood samples were stained
with the MaxPar Direct Immune Profiling Assay and run on a CyTOF 2 instrument. After data
acquisition, .fcs files were gated for beads, debris, doublets, and dead cells using the OMIQ platform;
representative gates are shown in Figure P.12. After gating, DNA intercalator, viability, Gaussian and
bead channels were dropped, and the remaining protein expression channels were transformed using
inverse hyperbolic sine with a cofactor of 5.

In the Vaccine dataset, the definition of secondary immune response was defined as follows. We
labeled a secondary immune response as “Yes” if it occurred after a healthy person received two
vaccines, or after a person with COVID-19 received one vaccine, or after a person with COVID-19
received two vaccines. If a healthy person received a single vaccine, we labeled it “No”.
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C Model details

Transformer block

The transformer block consists of alternating layers of multihead self-attention (MSA) and multilayer
perceptron (MLP) blocks (Equation 5). Layer norm (LN) [1] is applied before every block, and
Drop path (DP) [11] is applied after every block. The MLP contains two linear layers with GELU
activation function.

El = El−1 +DP (MSA(LN(El−1))) (l = 1, · · · , L), (5)

El = El +DP (MLP (LN(El))) (l = 1, · · · , L), (6)

where El−1 denotes output embeddings of the (l− 1)-th layer and input embeddings of the l-th layer
at the same time.

Multihead self-attention

In the multihead self-attention (MSA) layer, we compute query, key, and value matrix (Q,K,V)
from the input embeddings (E) for each head (Equation 7) and compute h heads by weighted sum
of all values by attention weight for each head, where attention weight is calculated by the pairwise
similarity between two elements of the input and their respective query and key representations
(Equation 8). Finally, h heads are concatenated, and the output is linearly projected (Equation 9)

[Q,K,V] = EWqkv(Q,K,V ∈ Rp×dh), (7)

where E ∈ Rp×d is input embeddings Wqkv ∈ Rd×3dh is learnable weight matrix, and dh is set to
d/h.

Attention(Q,K,V) = softmax((QKT )/
√
dh)V, (8)

MSA(Q,K,V) = Concat(head1, · · · , headh)WO, (9)

where headi = Attention(Qi,Ki, Vi)(i = 1, · · · , h), and WO ∈ Rd×d is linear weight matrix.

Single-cell Masked Autoencoder

The whole structure consists of an encoder and a decoder, which are used in the pretraining step. The
encoder is only then used with a single linear layer in the downstream supervised finetuning. The
encoder (fe) consists of 12 layers of transformer blocks. Each block has 12 heads and 768 hidden
dimensions. The number of parameters in the encoder is 85 million. The decoder (fd) is smaller than
the encoder. It consists of 4 layers of transformer blocks with 6 heads and 384 hidden dimensions for
a total of 7 million parameters. The dimension size of latent cell representations for the downstream
tasks is 768. This setting was proposed in the Masked autoencoder.

Why positional embedding is necessary

It might seem that positional embedding is not necessary because the input is a tabular data. However,
the position serves as an index to indicate which protein’s expression value should be reconstructed
by the decoder during MScM. For example, if 2nd, 3rd, and 7th proteins of 10 proteins are masked,
positional embedding provides information to reconstruct the expression of the 2nd, 3rd, 7th proteins.
Therefore, when using scMAE, users make sure to match the order of the proteins.

D Training details

Cell representation

After pretraining, the cell representation (Ci) of cell i is obtained as follows.

Hi = fe((E ∥ V ) +P) (10)

Ci =
∑
k

Hi[k, :] (11)

Then, this cell representation is used as input of a linear layer for cell-level downstream tasks.
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Supervised learning in downstream tasks

Cross entropy loss is employed for classification tasks and Mean squared error (MSE) loss is employed
for regression tasks.

In the cell type prediction task,
ŷi = Linear(Ci), (12)

LossCE = −
∑
i

yilogŷi, (13)

where yi and ŷi indicate the ground truth cell type and the predicted probability for cell type of cell i,
respectively.

In the imputation task,
ŷj = Linear(Cj,unmasked), (14)

LossMSE =
∑
j

(ŷj − yj)
2, (15)

where yj and ŷj denote the ground truth expression value and the predicted value of masked protein
j, respectively.

Impact of Masking ratio during pre-training

To test if masking ratio affects scMAE training, we trained three different versions of the model
with masking ratios of 0.25, 0.5, and 0.75. The result was there was no significant difference in
performance on the cell type prediction tasks (Table O.2). Therefore, all the scMAE experiments
were performed with a 0.25 masking ratio.

Training setting

The configuration includes a batch size of 768, drop path regularization of 0.1, AdamW optimizer
with momentum of 0.9 and weight decay of 0.05, learning rate of 0.0005 with a cosine scheduler, and
label smoothing during fine-tuning.

Computational cost in training and inference

The pre-training required 10 days with four of GeForce RTX 2080 Ti Rev. A to process 6.5M cells
through 200 epochs. Fine-tuning the model for cell type prediction took 13 days on a single GeForce
RTX 2080 Ti Rev. A GPUs to process 29.4 million cells through 100 epochs, with early stopping
implemented. For inference, the runtime was 1.2 hours for 7.3M cells under the Vaccine dataset and
2.1 hours for 18.4M cells under the Acute dataset and iSPY dataset, both on a single GPU.

E Benchmarking models

Manual gating

Each sample from all datasets was manually gated using the OMIQ platform to obtain the 46 terminal
populations used as ground truth labels. A summary of the gating strategy is shown in Figure P.2.

Static gating

For each gate in our hierarchy, we aggregated the candidate gate positions from all training samples
in the Vaccine dataset into one consensus gate. By definition, a point is in the consensus gate if it
falls into at least 30% of all the candidate gates (Figure P.3). We then created a consensus hierarchy
out of all consensus gates and applied it statically to all test samples.

FlowSOM clustering

An unsupervised FlowSOM clustering model was trained using the same 60% of the Vaccine data
samples that were used for fine-tuning scMAE. Version 2.6.0 of the FlowSOM R package was used
with default parameters, except for the total number of metaclusters, which we set to 46 to match the
number of ground truth labels. As an unsupervised clustering algorithm, FlowSOM does not have
an inference mode. We performed inference on testing datasets (20% of the Vaccine dataset as an
internal test set, and the two external test sets) by assigning each datapoint to the nearest SOM node
from the trained model, and preserving the assignment of nodes to metaclusters from the training
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phase. Evaluation of accuracy and balanced accuracy required the extra information of a bipartite
matching between the 46 FlowSOM clusters and the 46 ground truth labels. Following Weber, L. M.
et al.[23], we obtained the matching using the Hungarian algorithm, implemented in the function
solve_LSAP of the R package clue.

Gradient Boosting Decision Tree (GBDT)

We used XGBoost [4] python package for GBDT. We ran XGBoost’s regressor or classifier with 100
estimators and 0.03 learning rate and set early stopping based on the performance change for the
validation set.

Fully connected Deep Neural Network (DNN)

Cheng, L. et al. [5] and Li, H et al. [13] proposed a fully-connected neural network for cytometry
data. Both were designed for a cell representation and cell-level prediction tasks, so we use this
architecture as a comparison model.

Convolutional Neural Network (CNN)

Hu. Z et al. [10] proposed a model using convolutional neural network for cytomegalovirus (CMV)
classification. The original model was designed for subject-level tasks, but since it uses a CNN
structure to draw cell representations and pool them, we modified to the same architecture without
the pooling layer as a comparison model.

F Metrics

Balanced accuracy (Bacc)

For a multi-class imbalanced dataset, we used Balanced accuracy (Bacc) instead of Accuracy. Bal-
anced accuracy is defined as a macro-average of recall scores per class in a multi-class classification.

A Recall score is defined as:
Recall = TP/(TP + FN), (16)

where TP is true positive, and FN is false negative.

R-squared

In a regression task, if ŷi is the predicted value of the i-th sample and yi is the corresponding true
value for total n samples, the R-squared is defined as:

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
, (17)

where ȳ = 1
n

∑n
i=1 yi.

AUROC

A receiver operating characteristic (ROC) curve is widely used for evaluating prediction models. It
plots True Positive Rate (TPR) against False Positive Rate (FPR).

TPR =
TP

TP + FN
, (18)

FPR =
TP

FP + TN
, (19)

Where TP, FP, TN, and FN are the number of true positives, false positives, true negatives, and false
negatives respectively. AUROC stands for the area under the ROC curve.

G Few-shot learning setting in the cell type prediction

For N -shots, we trained using only the first N samples per class in the training and validation sets
and then evaluated on the entire test set. We compared performance for 5, 10, 15, and 20 shots.
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H Imputation

We masked CD45RO, CD45RA, CD27, CD28, TCRgd, CD197, and CD127 expressions and used
the remaining markers to predict the expression of these seven marker expressions. Infinity Flow
used GBDT as the imputer. Similarly, the unmasked cell representations were first extracted from the
pre-trained scMAE and used as input to GBDT to train and then evaluated on the external test sets
(not end-to-end).

I Attention score

From Equation 8, we first obtain the output of softmax function for the interpretation for cell i
(Equation 20) and calculate the attention score Wi by averaging over the query axis (Equation 21).

Ai = softmax
QiKi

T

√
dh

(20)

Wi =
1

p

p∑
k=1

Ai[k, :] (21)

In our experiments, we sampled 2% of all cells for each dataset. To calculate the attention score,
we only used the information from the first layer, because the first layer is the most influential in
determining which inputs to give attention to, and there was no significant difference in attention
between inputs after the second layer.

J scMAE is a Scalable Learner

Due to the popularity and high throughput of cytometry assays, there is an abundance of high-
dimensional cytometry data compared to other single cell modalities. The adoption of standardized
panels, such as the one used in our three datasets, has led to a large number of datasets from many
institutions that are directly comparable. Although manual gating remains the preferred classification
approach among immunologists, this approach is too time- and labor-intensive to support the data
analysis needs of multi-cohort and/or multi-institutional studies, as the scale can be in the over
hundreds of millions or even billions. Our approach, on the other hand, can train on large-scale data
since it is natively trained using a mini-batch approach. The time complexity in the training phase is
linear in the number of samples. Also, scMAE can quickly and accurately make inferences on new
datasets once the model has been trained.

K scMAE is a Reproducible Immunophenotyper

To enable a direct comparison of methods, we adopted a paradigm of training models and then using
them to make inferences on a new dataset. This is not how manual gating or clustering methods are
typically used: manual gating usually imports historical gates, which are then manually adjusted
when necessary for each sample while clustering is used for discovering sources of variability in
each dataset independently. The main advantages of the train-inference paradigm are scalability and
reproducibility: any investigator can apply the exact same model to any dataset, obtaining results that
are directly comparable. Our results show that scMAE outperforms alternative models within this
paradigm.

L Advantages from the Pre-training

Comparing learning without pre-training (from scratch) and with pre-training, we found that first,
learning without any label information was surprisingly effective in distinguishing between batch
information and biological variation and clustering in agreement with cell type. Second, in task-
oriented learning with specific labels, we could see not only performance improvement but also faster
convergence in learning. Finally, even in the few-shot setting, our model was able to learn stably,
while the from-scratch model was not able to learn at all with little training data.
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In this study, we only pre-trained with one of the three available cohorts in order to evaluate the
performance on several downstream tasks using the other two cohorts. In future work, we can
pre-train on a much larger quantity of data from multiple studies, improving the power and robustness
of the model. We hypothesize that it will be better able to distinguish between batch information
and biological variation, and it will have a deeper understanding of protein functions and protein
expression patterns. This, in turn, will lead to more robust and accurate predictions in various
downstream tasks.

M Applicability of scMAE for flow cytometry data

We open-source the model parameters of the pretrained scMAE, as well as the fine-tuned scMAE
for cell type prediction. While these models are trained on only CyTOF data, its application to
flow cytometry data might not be recommended due to inherent technical differences. Specifically,
the methodologies used in flow and mass cytometry yield disparate patterns of protein expression.
However, if scMAE undergo pretraining specifically with flow cytometry data from scratch, it would
indeed become a viable approach for flow cytometry datasets.

N Software

This project would not have been possible without numerous open-source Python packages includ-
ing torch, torchvision, timm, deepspeed, einops, jupyter, matplotlib, numpy, pandas, scikit-learn,
seaborn, FlowCytometryTools, scipy, etc. Specific versions for each package can be found at
https://github.com/JaesikKim/scMAE/blob/master/requirements.txt.

O Supplemental tables

Table O.1: Balanced accuracy comparison between the non-pre-trained and the pre-trained scMAE in
cell type prediction.

Models Internal test set (Bacc) External set 1 (Bacc) External set2 (Bacc)

scMAE from scratch 0.925 0.822 0.810
scMAE with fine-tuning 0.931 0.825 0.810

Table O.2: Cell type prediction using different masking ratios in the scMAE.

Masking ratio Internal test set (Bacc) External set 1 (Bacc) External set2 (Bacc)

0.25 0.931 0.825 0.810
0.5 0.931 0.824 0.813
0.75 0.932 0.825 0.812

P Supplemental Figures
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Single-cell data input

Randomly mask 
25% of proteins

Use the output of the 
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Transformer
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Protein expressions

Figure P.1: Overview of Masked Single-cell Modelling (MScM)

Figure P.2: Standard gating strategies for 46 cell types.
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NonclassicalMonocyte

Figure P.3: Consensus gates of statical approach in manual gating.
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Figure P.4: Full results of cell type prediction.

18



All cell types Neutrophils Eosinophils B cells T cells Others

CD45RO

CD45RA

CD27

CD28

TCRgd

CD197

CD127

R-squared=0.900 R-squared=0.563 R-squared=-0.062 R-squared=0.310 R-squared=0.489 R-squared=0.903

R-squared=0.779 R-squared=0.434 R-squared=0.387 R-squared=-0.207 R-squared=0.513 R-squared=0.918

R-squared=0.772 R-squared=0.506 R-squared=0.336 R-squared=0.556 R-squared=0.507 R-squared=0.782

R-squared=0.744 R-squared=0.432 R-squared=0.283 R-squared=0.155 R-squared=0.658 R-squared=0.678

R-squared=0.784 R-squared=0.624 R-squared=0.416 R-squared=0.308 R-squared=0.386 R-squared=0.788

R-squared=0.750 R-squared=0.331 R-squared=0.277 R-squared=0.383 R-squared=0.724 R-squared=0.712

R-squared=0.729 R-squared=0.515 R-squared=0.713 R-squared=0.163 R-squared=0.478 R-squared=0.709

Figure P.5: The true expression and imputed expression plots for the Acute dataset.
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All cell types Neutrophils Eosinophils B cells T cells Others

CD45RO

CD45RA

CD27

CD28

TCRgd

CD197

CD127

R-squared=0.517 R-squared=0.286 R-squared=-0.288 R-squared=0.061 R-squared=0.379 R-squared=0.543

R-squared=0.415 R-squared=-1.321 R-squared=-1.807 R-squared=-0.326 R-squared=0.240 R-squared=0.573

R-squared=0.662 R-squared=0.125 R-squared=0.044 R-squared=0.405 R-squared=0.425 R-squared=0.407

R-squared=0.513 R-squared=-0.131 R-squared=-0.894 R-squared=-0.006 R-squared=0.545 R-squared=0.272

R-squared=0.196 R-squared=-0.350 R-squared=-3.021 R-squared=-0.018 R-squared=-0.086 R-squared=-0.137

R-squared=0.462 R-squared=-0.450 R-squared=-1.517 R-squared=0.298 R-squared=0.602 R-squared=0.342

R-squared=0.445 R-squared=0.375 R-squared=0.266 R-squared=-0.114 R-squared=-0.277 R-squared=0.475

Figure P.6: The true expression and imputed expression plots for the Vaccine dataset.
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All cell types Neutrophils Eosinophils B cells T cells Others

CD45RO

CD45RA

CD27

CD28

TCRgd

CD197

CD127

R-squared=0.547 R-squared=0.242 R-squared=0.040 R-squared=-0.184 R-squared=0.436 R-squared=0.475

R-squared=0.237 R-squared=-0.622 R-squared=-1.085 R-squared=-0.797 R-squared=0.310 R-squared=0.382

R-squared=0.619 R-squared=0.102 R-squared=0.009 R-squared=0.453 R-squared=0.383 R-squared=0.135

R-squared=0.301 R-squared=-0.289 R-squared=-1.576 R-squared=0.051 R-squared=0.599 R-squared=0.043

R-squared=0.132 R-squared=-0.306 R-squared=-2.620 R-squared=0.058 R-squared=-0.040 R-squared=-0.018

R-squared=0.446 R-squared=-0.182 R-squared=-0.945 R-squared=0.382 R-squared=0.630 R-squared=0.333

R-squared=0.398 R-squared=0.381 R-squared=0.393 R-squared=-0.254 R-squared=-0.813 R-squared=0.374

Figure P.7: The true expression and imputed expression plots for the iSPY dataset.
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Figure P.8: Attention scores of each cell type in the cell type classification and the imputation task.
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Basophil CD4Naive/activated CD4Naive CD8Naive/activated CD8Naive CD8TCM/activated

CD8TCM CD8TEM1/activated CD8TEM1 CD8TEM2/activated CD8TEM2 CD8TEM3/activated

CD8TEM3 CD8TEMRA/activated CD8TEMRA CD45hiCD66bpos CD66bnegCD45lo ClassicalMono

DNT/activated DNT DPT/activated DPT EarlyNK Eosinophil

gdT IgDnegMemB IgDposMemB ILC LateNK MAITNKT

mDC NaiveB Neutrophil nnCD4CXCR5pos/activated nnCD4CXCR5pos pDC

Plasmablast Th1/activated Th1 Th2/activated Th2 Th17/activated

Th17 NonclassicalMono Treg/activated Treg

Figure P.9: Attention scores of each cell type for entire samples in the cell type classification task.

B cells Eosinophil Neutrophil T cells others

Figure P.10: Attention scores of each cell type for entire samples in the imputation task.

Acute iSPY Vaccine

4 5 6 7 4 5 6 7 4 5 6 7

0

2

4

6

CD45

H
LA

−
D

R

0

2

4

6

CD45RA

Figure P.11: CD45 and HLA-DR both ßare negatively correlated to CD45RA in T cells.
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Figure P.12: A standard cleanup procedure, which is a routine manual gating practice. fcs files were
gated for beads, debris, doublets, and dead cells using the OMIQ platform.
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