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Beyond Behavioural Evaluations for Assessing World Models
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Abstract
To predict the future capabilities of agentic sys-
tems, it’s useful to understand the extent to which
foundation models have internal world models.
Agents with robust internal world models gener-
alise better to unseen and out-of-distribution data.
Interpretability evaluations suggest that transform-
ers trained on tasks like Othello have robust world
models. However, behavioural evaluations ques-
tion whether these agents truly have world models
as robust as the interpretability research indicates.
We argue that to claim that an ML model doesn’t
have a robust world model, practitioners must ei-
ther use Interpretability evaluations or provide an
argument for why their behavioural evaluations
are fully elicitating the capabilities of the model.
We hence propose a protocol for combining Eval-
uations and Elicitation to assess the world models
of frontier AI systems.

1. Introduction
Foundation models are difficult to evaluate for the same
reason that they are so useful: they perform a wide variety
of tasks requiring different latent knowledge and we are not
always sure how to analyse what knowledge they possess
and how they leverage such knowledge (Wei et al., 2022a;
Lubana et al., 2024; Brown et al., 2020; Bubeck et al., 2023).

A core question for understanding current AI systems and
how transformative future systems may be is whether AI
agents have an internal world model (Li et al., 2023; Liu
et al., 2024) or whether they merely use shallow heuristics
(Hao et al., 2023; Bender et al., 2021). We may say that
an AI system has a world model if there is a correspon-
dence between the model’s representations and the external
environment (Ha & Schmidhuber, 2018). Recent work in
Interpretability has suggested that Foundation Models are
so effective because they learn an emergent implicit world
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model containing representations that can be used for cog-
nition and planning (Li et al., 2023; Lindsey et al., 2025;
Karvonen, 2024).1 However, behavioural analysis of Foun-
dation Models has suggested that agents may have much
less sophisticated world models than the Interpretability
research suggests (Vafa et al., 2024).

In this paper, we analyse how to evaluate world models in
Foundation Models, comparing the Behavioural Evalua-
tions, Elicited Evaluations and Interpretability Evalua-
tions of world models. We hence show that since there is a
distinction between a model possessing and using a world
model, it is not generally valid to conclude that a model does
not have a world model, or that it’s world model is fragile or
low fidelity or inaccurate, based on Behavioural Evaluations
alone. We hence argue that using Elicited Evaluations or In-
terpretability Evaluations can provide more robust evidence
for the presence of a high fidelity world model.

2. Implicit World Models
A world model (Fodor, 1987) is a mental construct that rep-
resents the dynamics of an external environment internal to
the mind of an agent. Model-based RL systems explicitly
use a model of the environment to plan and make decisions
and this model is separated from the policy (Hafner et al.,
2023; 2020; Sutton et al., 1998; Parr et al., 2022). Recent
work has suggested that through autoregressive token predic-
tion Foundation (Language) Models can learn an emergent
world model which internally represents important features
and dynamics of the AI system’s environment (Li et al.,
2023; Nanda et al., 2023b; Mikolov et al., 2013; Gurnee
& Tegmark, 2023; Engels et al., 2024).2 The finding of
emergent world models in Foundation Models would ex-
plain why language models are able to complete tasks that
seem beyond the shallow statistics of the training data (Wei
et al., 2022a; Kiciman et al., 2023; Delétang et al., 2023).
The explanation for these abilities would be that autoregres-

1 See also Park et al. (2024); Nanda et al. (2023b); Olah et al.
(2020); Jenner et al. (2024); Taufeeque et al. (2024)

2 We do not require that the world model be linearly represented
within the AI system for our purposes. In practise, (Nanda et al.,
2023b; Mikolov et al., 2013; Bricken et al., 2023; Cunningham
et al., 2023; Gao et al., 2024) suggest that often world models are
linearly represented within AI systems which is computationally
and mathematically convenient.
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sive AI systems learn implicit world models: high-fidelity,
compressed representations of the dynamics of the generat-
ing process of their training data distribution which can be
leveraged for learning, adapting and acting.

The Causal World Model Theorem from Richens & Everitt
(2024) states that “any agent capable of adapting to a suffi-
ciently large set of distributional shifts must have learned
a causal [world] model of the data generating process”. In-
tuitively we might expect that agents which have learned a
world model are likely to generalise better out of distribution
compared to models that are using brittle heuristics.

World Models are internal representations within an agent
that correspond to some features of the external environment.
When assessing how effective a world model W is with
respect to a task T, we are interested in three properties of
the world model:

1. Task Relevance: A world model is task relevant if it
contains the relevant information that might be useful
for the task. For example if the task T is exploring New
York City by car, then world models about Chicago or
about the New York transit system are not relevant.

2. Accuracy: A world model is accurate if it accurately
represents the true environment. Even though the world
model may be incomplete, the information that it does
present should be approximately error-free.

3. Fidelity: A world model is high-fidelity if it is of high
resolution and captures sufficient detail about the envi-
ronment.

We say that a world model is effective if it is task-relevant,
accurate and high-fidelity with respect to the task T.

3. Evaluating World Models
There are two main existing approaches to evaluating world
models in the literature: Behavioural Evaluations (Vafa
et al., 2024) and Interpretability Evaluations (Nanda et al.,
2023b). We also discuss a proposed third approach a proto-
col for Elicited Evaluations which also include a Capability
Elicitation stage and an argument for why we should expect
that the elicitation was sufficient to conclude that a model
doesn’t have a certain capability with reasonable likelihood.

3.1. Interpretability Evaluations

A natural approach to assessing the implicit world models
taken by Li et al. (2023); Nanda et al. (2023b); Gurnee &
Tegmark (2023) is to use supervised (linear) probes to assess
whether the model’s representations can recover some state
from the external environment (Hewitt & Liang, 2019; Wu
et al., 2025; Feng et al., 2024; Abdou et al., 2021; Voita &

Titov, 2020).3 Harding & Sharadin (forthcoming) describe
a detailed procedure for how to construct probes for this
purpose.

Using (Mechanistic) Interpretability Evaluations, it is clear
how we can argue for the presence of a world model: if
the probes can recover the state of the environment then we
can conclude that the AI system’s representations contain a
world model of the environment.4

3.2. Behavioural Evaluations

An alternative approach to evaluating world models for
language models is to look at the input-output behaviour of
the AI system. Although world models are internal to the
AI system, we might think that if an AI system performs
tasks that seem to require it to have a world model, then
perhaps we can conclude that it indeed does have a world
model. For example, consider an existing approach in the
game of chess: given some initial sequence of moves in
chess notation, Toshniwal et al. (2022); Li et al. (2023)
compare the next moves suggested by a generative model
to the valid moves from the current state - if the list of
moves generally agree then this provides evidence that the
model has developed a world model of the chess board and
dynamics.

Vafa et al. (2024) appeal to the Myhill-Nerode theorem (My-
hill, 1957; Nerode, 1958) to argue that this next-move test
is insufficient and that a behavioural evaluation should in-
stead analyse “minimal distinguishing sequences” which
may have length greater than a single move. In Vafa et al.
(2024)’s setting, the generative model is evaluated on its abil-
ity to realise that two sequences of moves lead to the same
state and hence that the valid continuations from the shared
state are identical and separately the generative model is
evaluated on its ability to realise that two sequences of
moves lead to different states and hence should have differ-
ent valid continuations.

The Behavioural Evaluation approach is tempting as it has
the following advantages:

• Behavioural Evaluations are easy to conduct and can
be applied with only limited API access to the model
and no access to model weights or finetuning access.

• Behavioural Evaluations clearly map onto the real-

3 A more automated and unsupervised approach to linear prob-
ing is to use an interpreter model like a sparse autoencoder (Bricken
et al., 2023; Cunningham et al., 2023; Gao et al., 2024; McGrath
et al., 2024)

4 Voita & Titov (2020) suggest that the minimum description
length of the probe labels given representations naturally charac-
terise not only the quality of the probe but also the strength of the
regularity in representations with respect to the labels, which can
provide a guide to the world model’s fidelity and task relevance.
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world performance of the model if the task is well-
constructed to be similar to the analogous real-world
task.

• Behavioural Evaluations can be applied to any gener-
ative model regardless of implementation details. In
particular, this means that the same evaluations can
be used for hand-written programs or humans to get
baselines.

However, despite these advantages, we note that there is a
key problem with Behavioural Evaluations - behavioural
evaluations bundle together possessing and using a world
model and can only provide evidence for the existence of
world models that are used for the AI systems behaviour
given the exact task and prompt that is used for the evalua-
tion. We further characterise this problem in Section 4.

4. Possessing And Using World Models
Vafa et al. (2024) use the running example of learning a
internal geographic map of the streets of New York City
which we will adopt and examine.

4.1. New York Map Example

Example 4.1 Suppose that Alice has never been to New
York before and so we provide her with a complete map (i.e.
world model) of the city streets before she visits. She says
that she would like to travel to Central Park and she assures
us that she will bring and use the map. We also ask Alice
to share her GPS location with us so that we can track her
movements in case she gets lost. Suppose that when looking
at the GPS information we notice that Alice has not taken
the direct route to Central Park that was implied by the map.
Can we conclude that Alice is no longer in possession of
the map?

Though we can conclude that Alice did not successfully
use the map to guide her actions, it appears that we cannot
conclude that Alice was not in possession of the map on her
journey. We also cannot conclude that the map was not an
effective map: the map could be highly task relevant with
high accuracy and fidelity.

It is possible that Alice had a map but decided not to use
its directions because she was distracted by the sights of
the city, or because wanted to go via a route that her friend
suggested or because she was unable to read the map or
for any other number of reasons. Looking only at Alice’s
behaviour is not sufficient to make negative claims about her
possessing a world model, to make this claim we would need
to either (1) look to see if she’s holding the map (analogous
to an Interpretability Evaluation) or (2) ensure that before
we ask her to go to Central Park that she has the desire,

capacity and ability to leverage the map to find the shortest
route (analogous to an Elicited Evaluation).

4.2. Possession without Use

We may easily construct an model organism for a generative
model which clearly contains a world model and yet does
not utilise it. Consider a system W which clearly contains
a world model, for example given a Deterministic Finite
Automata (DFA) with N states, take an RNN which encodes
the transition matrix as its state transition function. Now
suppose that we have a generative model V defined by the
following algorithm:

• Given some sequence of tokens x1, x2, . . . , xn, first
apply W in order to find the correct state that the DFA
would be in after processing the sequence of tokens.

• Then, return the <eos> token.

The algorithm represented by V can be realised by adding
a single layer to the end of the RNN W. It is clear that V
does contain an effective world model, after all V contains
W which contains an effective world model. However, V
does not use the world model to produce a policy: the policy
implied by V is to always return the <eos> token regardless
of the input sequence. Upon behaviourally evaluating this
system, we are likely to conclude that it does not, in fact,
possess a world model which would be incorrect.

We provide more realistic examples of agents that possessed
yet do not use their world model in Appendix A.

Note that although if an agent possesses a world model that
it can never access or use then this is not a practical problem:
the societal implications of such an agent are similar to an
agent which doesn’t have a world model at all. However,
if an agent has a world model that it can use, but doesn’t
use in the scope of our evaluation task, then we are likely to
draw false inferences from our evaluation about the model’s
capabilities. This is in particular relevant if other actors may
be able to elicit capabilities from the agent that were not
apparent from the evaluation. Here the elicitation could be
via specialised prompting, agentic scaffolding, supervised
finetuning or reinforcement learning finetuning which allow
the model to use its world model and quickly appear to be
much more behaviourally capable.

4.3. Towards Elicited Evaluations

As we have argued, Behavioural Evaluations fail to provide
evidence against an agent possessing but not using a world
model. To make this claim we would like to confirm that
with significant effort we were not able to elicit behaviour
that corresponds to using the world model from the agent.
We suggest that researchers use the following protocol for

3
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Elicitation Evaluations to make stronger claims about agents
not possessing an effective world model:

• Find or construct a Behavioural Evaluation which ap-
propriately tests for the use of an effective world model
for your task.

• Enumerate a list of elicitation strategies that you will
use to help the model leverage its world model if it has
one.

• For each elicitation strategy, run the Behavioural Eval-
uation.

– If the model still cannot complete the task then
the modeller can have increased confidence in the
claim that the model does not possess an effective
world model.

– If the model now can complete the task, then we
would like to show that the Elicitation technique
was uncovering, rather than adding to, the agent’s
world model. For example, for finetuning elic-
itations, we might show that the same amount
of compute and training for a similar model did
not lead to a significant change in the agent’s out-
put and this amount of compute is generally not
enough to add a new capability to the model.

For example, if the purpose of our evaluations is to show
that malicious actors cannot elicit harmful capabilities from
the agent for cyber-misuse, which would derive from an
agent having an effective world model, then if the elicitation
strategy uses more skilled developer time than the the threat
actors are expected to then we can be confident that the
agent cannot be easily manipulated into exhibiting harmful
behavior by the threat actors.

5. Discussion
Researchers often try to make two types of claims from
evaluations: capability claims (i.e. the agent has capability
X or possesses an effective world model for task T) and
inability claims (i.e. the agent does not have capability X
or possess effective world model for task T). We suggest
that Behavioural Evaluations alone are insufficient to make
inability claims. We can conclude that either (1) that the AI
system does not possess an effective world model or (2) that
AI system does not use its effective world model to produce
an effective policy for the task. Failure on the behavioural
evaluation could be a failure of possessing a world model or
a failure of using the world model that it possesses.

Frontier AI agents often do not demonstrate their full capa-
bilities without targeted elicitation. In particular, we may be
interested in to what extent an agent has a world model but

without targeted elicitation, frontier model developers, poli-
cymakers and safety researchers may underestimate frontier
AI agents. We hence believe that Interpretability Evalua-
tions and Elicitation Evaluations are important for assessing
the current state of model capabilities. Understanding the ca-
pabilities and limitations of frontier AI systems is critical for
Responsible Scaling Policies (OpenAI, 2025), effective AI
governance (Bengio et al., 2025; Emanuilov, 2024), safety
cases (Buhl et al., 2024; Clymer et al., 2024; Hilton et al.,
2025; Buhl et al., 2025), effective feedback loops for AI
researchers and for technical predictions about the impact
of AI systems on society (Phuong et al., 2024).

The possession-use distinction observed in AI systems par-
allels well-documented phenomena in biological cognition.
Humans often demonstrate implicit knowledge through
behavior while failing explicit tests of the same knowl-
edge—such as successfully navigating complex environ-
ments yet being unable exhibit the same behaviour when the
conditions are subtly changed (Kahneman, 2011). Similarly,
while rodent place and grid cells in the hippocampus clearly
encode detailed spatial world models (Hafting et al., 2005;
O’Keefe & Dostrovsky, 1971), behavioural studies show
these animals don’t always utilize this spatial knowledge
optimally, sometimes persisting with suboptimal routes de-
spite having neural representations of better paths (Tolman,
1948). These biological precedents suggest that the gap
between possessing and using world models reflects funda-
mental architectural constraints in how cognitive systems
access internal knowledge.

5.1. Future Work

Though many elicitation methods have been used in pre-
vious work there is not currently a consensus on the best
approach to elicitation which can be used for Elicitation
Evaluations. We would be interested in seeing further work
on approaches to elicitation. We would be excited about
researchers using evaluating how effective different elicita-
tion method are using model organisms methods similar to
(Greenblatt et al., 2024b; Hofstätter et al., 2025).
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A. Examples of Possessing but Not Using
World Models in the Wild

In Section 4.2, we presented a simple example of a model
that possesses a world model but does not use it. Here we
provide some more realistic examples which are likely to
have a mismatch between the possession and usage of world
models.

Firstly, consider the practise of Capability Elicitation for
LLM agents. It has been shown that several elicitation
strategies (such as Chain of Thought prompting, prompt
engineering, agent scaffolding and finetuning) can boost
model capabilities (Wei et al., 2022b; Brown et al., 2020;
Zaharia et al., 2024; Khattab et al., 2023; Guo et al., 2024;
Welleck et al., 2024). These techniques do not generally
teach the model new capabilities but rather help the model
to leverage the capabilities that it already has. Given that
many times in the past, we have discovered new techniques
which make existing agents more capable and reveal world
models that were previously hidden, we might expect future
elicitation work to also reveal other new capabilities.

Secondly, van der Weij et al. (2024) and Greenblatt et al.
(2024a) suggest that future AI models which are situation-
ally aware (Ngo et al., 2022) strategically underperform in
evaluations to hide capabilities from auditors. This inten-
tional hiding of capabilities is known as “sandbagging”. We
may draw an analogy to the Volkswagen emissions scan-
dal (Jung et al., 2017) where the company intentionally
designed their cars to pass emissions tests while actually
emitting more pollutants than allowed, and the cars were
functionally different in the evaluation and deployment set-
tings. Similarly, Perez et al. (2023) found that some LLMs
gave worse answers to users introducing themselves as une-
ducated.

Thirdly, in the process of “grokking” (Power et al., 2022),
Nanda et al. (2023a) find that LMs move from utilising a
memorising strategy to a generalising strategy over time. In
particular, Nanda et al. (2023a) find that the world model
corresponding to the generalising strategy is present before
the generalising strategy is behaviourally used and this gen-
eralising circuit is generally upweighted over time. In this
way we see that during the early stages of grokking, the LM
directly contains the generalising world model but does not
use it.

Fourthly, language model providers often apply finetuning to
agents to make agents more helpful and harmless (Bai et al.,
2022). Throughout this process, some harmful capabilities
that the model has are likely to not be exhibited and hence
behavioural evaluations are likely to suggest that the model
lacks the relevant effective world model to complete the task.
These hidden capabilities can be revealed through elicitation
techniques as well as through jailbreaks (Chao et al., 2023).
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We would be excited about more future work that explores
the extent to which frontier language models possess world
models that are not used for behaviour in practically relevant
settings.
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