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Abstract

This paper introduces the confounded pure exploration transductive linear bandit
(CPET-LB) problem. As a motivating example, often online services cannot directly
assign users to specific control or treatment experiences either for business or prac-
tical reasons. In these settings, naively comparing treatment and control groups that
may result from self-selection can lead to biased estimates of underlying treatment
effects. Instead, online services can employ a properly randomized encouragement
that incentivizes users toward a specific treatment. Our methodology provides
online services with an adaptive experimental design approach for learning the
best-performing treatment for such encouragement designs. We consider a more
general underlying model captured by a linear structural equation and formulate
pure exploration linear bandits in this setting. Though pure exploration has been ex-
tensively studied in standard adaptive experimental design settings, we believe this
is the first work considering a setting where noise is confounded. Elimination-style
algorithms using experimental design methods in combination with a novel finite-
time confidence interval on an instrumental variable style estimator are presented
with sample complexity upper bounds nearly matching a minimax lower bound.
Finally, experiments are conducted that demonstrate the efficacy of our approach.

1 Introduction

In this study, we present a methodology for adaptive experimentation in scenarios characterized
by potential confounding. Online services routinely conduct thousands of A/B tests annually [23]].
In most online A/B/N experimentation, meticulous user-level randomization is essential to ensure
unbiased estimates of treatment effects at the population level, commonly known as average treatment
effects (ATE). In this setting, firms are often interested in understanding the treatment with the highest
average outcome if presented to all members of the population. However, in many settings firms
may not be able to randomize, for example if a feature must be rolled out to all users for various
business reasons [30]. In such instances, users may choose to engage with a feature or not based on
potentially unobservable preferences. Thus the resulting measured outcome may be correlated with
the decision to engage in a specific feature. I.e. the underlying characteristics of the user confound
the relationship between the decision to use the feature being evaluated and the effect of the feature.
Thus, naively comparing the average outcome for users who engage with a feature with those who do
not suffers from a (selection) bias. This setting is captured in Figure[T}

A potential solution is for services to employ encouragement designs where users are presented
with incentives that encourage users to engage with a specific feature [4} [7, [12]]. As a concrete
example, many online services have introduced membership levels with different offerings and
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prices available to all users. Given a set of membership level options, the service is interested in
knowing the counterfactual of which level has the optimal outcome (e.g., total revenue) if every user
chooses to join that membership level. In this setting, encouragements could be coupons or trials for
corresponding membership levels. In these settings, the firm can use intent-to-treat (ITT) estimates for
the treatment effect which naively compare the average outcomes between the groups given different
encouragements. In practice, given an encouragement a user may not engage with the corresponding
feature choosing either the control or a different feature. Hence, the resulting ITT estimate may
be a diluted estimate of the ATE [3]. However, all is not lost: if the encouragement presented
to a user is properly randomized, and the service guarantees that the encouragement only affects
the outcome through the choice of user treatment, then the encouragement acts as an instrumental
variable. Standard analysis from the econometrics and compliance literature show that two-stage
least squares (2SLS) estimators can then be used to provide consistent estimates of treatment effects.

At the same time, firms are also increasingly utilizing

adaptive experimentation techniques, often known as pure 7 X v
exploration multi-armed bandits (MAB) algorithms [26/[15]], User Shoice ’Outwme
to accelerate traditional A/B/N testing. Pure exploration | s

MAB techniques promise to deliver accurate inferences in 1 7

a fraction of the time and cost as traditional methods. Sim- g
ilar to A/B testing, bandit methods assume users are prop- @
erly randomized and can fail to learn the optimal treatment

if naively used and may be sample inefficient if they fail
to take the confounded structure into account. Figure 1: Causal graph of the model.

Contributions. In this work, we provide a methodology

for experimenters seeking to use adaptive experimentation in settings with confounding where
encouragements are available. We formulate this work in the more general and novel setting of
confounded pure exploration transductive linear bandits (CPET-LB) (Section [I.T). We present
algorithms using experimental design for the CPET-LB problem and analyze the resulting sample
complexity. As we demonstrate, even in the simple multi-armed bandit setting described above,
computing an effective sampling pattern requires using the machinery of linear bandits. Without
knowledge of the underlying structural model, existing linear bandit approaches could lead to sub-
optimal sampling. The main technical challenge we face is simultaneously improving our estimate of
the structural model while designing with inaccurate estimates (Section3)). This approach crucially
relies on our development of novel finite-time confidence bounds for two-stage least squares (2SLS)
style estimators that may be of independent interest (Section[2.2). Moreover, we provide worst-case
sample complexity lower bounds that are nearly matched by our sample complexity upper bounds
(Appendix D). Though the goal of this work is primarily theoretical, we empirically show the efficacy
of our method over existing solutions (Appendix [E).

1.1 General Problem Formulation

A confounded pure exploration transductive linear bandits (CPET-LB) instance consists of finite
collections of measurement vectors Z C R® and evaluation vectors W C R?. At each time ¢ € N,
the learner selects z; € Z and observes a pair of noisy responses z; € X C R? and y; € R generated
via the structural equation model

o =T"z+n, w=1a0+e, (1

where I' € R%*? and # € R? are model parameters We define the history H:—1 = {(2s, Zs, Ys) }s<t
and E;_;[-] = E[-|;—1] denoting the conditional expectation under the filtration generated by H;_1.
The noise {n:}72, and {e;}$2, satisfy the following set of assumptions unless otherwise noted.

Assumption 1. We assume &; | H;_; is 1-sub-Gaussian (and thus E[e; | H¢—1] = 0). Furthermore,
N | He1 is Jf,-sub—Gaussian vectors (and thus E[n; | H;_1] = 0), i.e.,

2
VB €R, max Elexp(8(a,n))] < exp( 5 n) )

a:|lal|2<1

'We assume throughout that T € R**¢ is an invertible matrix.



Goal. The objective is to identify w* := argmax,cyy w6 with probability at least 1 — § for
d € (0,1) while taking a minimum number of measurements.

In the setting where I' = I, = 0 and E;_1[e¢|z;] = 0, our setting reduces to the standard pure
exploration transductive linear bandit problem [33[15]. In general, the joint noise process [nt, st]
may be dependent across the entries. In particular, we are allowing for the data generating process to
be endogenous, meaning that E;_1 [e¢]|x:] # 0. That is, ; can affect not just y;, but also z; given a
choice of z;. The presence of endogeneity is a key challenge in the CPET-LB problem.

Assumption 2 (Exclusion Restriction). We assume that E;_; [z:¢;] = 0, or alternatively that z; is
uncorrelated with ;.

The variable z; is commonly referred to as an instrumental variable |3]]. We consider algorithms
for the CPET-LB problem that stop at a {;-measurable time 7 € N, and produce a recommendation
w € W. The goal is 6-PAC algorithms with efficient sample complexity guarantees.

Definition 1.1 (6-PAC). We say an algorithm is 6-PAC for a CPET-LB problem with W, Z C R? if
forall § € R% and I € R it holds that Py 1 (@ # w*) < & for § € (0, 1).

1.2 Encouragement Designs

The CPET-LB feedback model generalizes the classical compliance setting.

Compliance as a Special Case. In compliance problems, a decision-maker has access to a set
of treatment that can be offered to users, while the users themselves have the option to accept the
treatment they are presented or instead opt-in to a different treatment. The goal is to identify the
treatment with the optimal average outcome if all users were to accept it. Specifically, given a finite
set A ={1,2,...,d}, a decision-maker presents user ¢ € N with an encouragement for a treatment
i € A, the user then selects treatment j € A where potentially j # 4, and an outcome %; results.
To capture compliance with the CPET-LB framework, we set Z = X = W = {e1, - ,eq} and
the parameter I' captures the probability of accepting a treatment given an encouragement for a
potentially different treatment. Specifically, I'(7, j) = ]P’(xt =e; |z = ej), and a straightforward

computation shows that z; = I'T z; + 1; where E[n;|z;] = 0 with

T
e = Ty — {]P)(el | Zt)»"' a]P(ed | Zt)} . 2)

Moreover, y; = ] 6 + ¢, gives the resulting reward, which is clearly correlated with the user choice
so that cov(n;, &¢) # 0. Finally, e, § = 6; gives the expected value of treatment i over the population
and our goal is to identify w* = arg max, ¢y e 0. Note that when I' = I, we automatically have
that 7, = 0 and there is no confounding. This reduces to the standard MAB setting.

Motivating Compliance Example. As a motivating compliance example representing the mem-
bership level discussion from the introduction, consider a location model that assumes each user
t € N arriving online has an underlying unobserved one-dimensional preference u; ~ N (0,02). If
an algorithm presents the user with encouragement z;, = ey, for I; € A, then the user selects into
the membership level given by .J; = minje 4 |I; + us — j| so that z; = e,. This process captures a
user being more likely to opt-in to membership levels that are closer to the encouragement that they
were presented. The outcome is then given by y; = x] 0 + u;.

We conduct an experiment with this problem instance (see Fig.[2]and Appendix [B]for more details).
Specifically, d = 6,0 = [1 —0.95 0 0.45 0.95 0.99], and o2 = 0.35. Observe that w* =

€1 = argmax,,cyy, w' . An upper confidence bound (UCB) selection strategy is simulated that

maintains estimates of the mean reward of each encouragement ¢ € A, namely j1; ; = Z’;:l 1{z =
e; }yt, and then pulls the one with the highest UCB. The UCB selection strategy is combined with
a pair of recommendation strategies. The UCB-OLS algorithm estimates the mean reward of each

treatment using an OLS estimator, namely 6.7 = S M = ety S 1{z: = e}, and
recommends arg max,c 4 9{; Moreover, the UCB-IV algorithm uses an instrumental variable-

estimator (see the next section) that incorporates knowledge of I' similar to 2SLS to deconfound

2Qur setting differs slightly from the traditional compliance setting based on a potential outcomes frame-
work [3]]. Our setting is equivalent to one where we assume that there is a constant treatment effect. See Chapter
4 of [3] for further discussion of the differences. Thus in our setting, learning 6; and the local average treatment
effect (LATE) on compilers are the same.
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Figure 2: (a) A bar chart showing E[ylz = w] = w'6 and E[y|z = w] = 2z'T0 for all w € W.
This chart shows that the optimal evaluation vector is w* = e1 = argmax,.y Elylz = w], while
es = argmax,c, Ely|z = w] and consequently estimation based on this quantity is problematic. (b)
The probability of identifying w* = e; for a collection of algorithms on the CPET-LB instance from Section

estimates of the mean rewards of each treatment and recommends the treatment with the maximum
estimate. The results over 100 simulations are shown in Fig.[2] UCB-OLS completely fails to identify
0, = argmax;cq6; due to a biased estimate, whereas UCB-IV does better. However, UCB-IV
methods seem to have a constant probability of error. To see why, note that the expected reward from
pulling z = e; is e; T'0. These values are plotted in orange in Figure In particular, with some
constant probability, UCB zeroes in on arm 6 becauses of the mean estimates on the z’s, and as a
result fails to give enough samples to learn that arm 1 is indeed the best. In contrast, our proposed
method CPEG, Algorithm [Tmanages to find the best arm with significantly higher probability.

Notation. Let A(Z) = {\ € RI¥l : X > 0,3 _- A, = 1} denote the set of probability dis-
tributions over the set Z. Given a distribution A € A(Z) and matrix I' € R¥*?, define the
operator A(A\,T) := 3> _-A.T"2z'T. Given Z € RT*% and I' € R?*?, define the operator
A(Z,T) = Zle I['T22/T = TTZTZT where 2, € R? denotes row t of Z. Given a vector
r € R? and a symmetric positive-definite matrix A € R4 we let ||z||% = 2T Ax. We adopt the
standard notation that (a VV b) = max{a, b} and (a Ab) = min{a, b} fora,b € R. onin(A), Omax(4)
denote the minimum and maximum singular value of a matrix A. We denote by polylog(x1, ..., 2,)
any polylogarithmic factors of x1, ..., x,.

1.3 Related Works

Our work is at the intersection of several parallel tracks of literature, pure exploration linear bandits,
causal bandits, and econometrics. The most relevant work on pure exploration in linear bandits is the
RAGE algorithm of [[15,133]]. RAGE is nearly instance optimal for linear bandits in the non-confounded
setting. Extensions of RAGE to various noise models including logistic and heteroskedastic noise have
been considered [35)20]. Other algorithms for pure exploration linear bandits have been proposed -
and we leave it for future work to extend the ideas of this paper to those settings [27} [10].

Confounding in bandits was first considered in the regret minimization setting by [5]. They introduces
the Multi-armed bandit with unobserved confounders (MABUC) problem. They empirically demon-
strate traditional bandit algorithms can have linear regret in this setting and provide an algorithm that
effectively employs observed intuition. The early work of [21] also assumes there is an additional
unobserved latent class at each time that determines confounding in a compliance setting. They
provide novel notions of regret, relative to the instrument with the highest reward (argmax Z ' I'T
in our notation), the highest treatment (arg max,, w'h), regret relative to the best latent class at each
time, and regret on the set of “compliers”. They discuss the suitability of these various notions of
regret, and discuss when sublinear regret is possible. We remark that their approach is similar to
ours in the sense that they assume a form of homogeneous effects across the population, and use
an estimate of I'. Recently [24] also consider the problem of compliance, however they don’t take
explicit non-confounding into account and assume an explicit parametric model that determines the
non-compliance. This is analogous to the Heckman selection model considered in econometrics [[18].



The recent works of [[L1, |36} [17]] considered an online setting where at each time they observe a set
{(x, zt)} where x; is the action of interest and z; is an associated instrument. If action I; is selected,
the reward observed is y; = x}';ﬂt + €4, where x; may be endogeneous. Similar to the standard
linear bandit setting [[1, 26], the goal is to minimize regret relative to the best action at each time. We
remark that this setting is very different from ours. Effectively, we are choosing which instrument to
select at each time to learn the best-performing treatment - in particular we can’t choose a particular
intervention. In their setting, they are choosing an intervention at each time and using the instrument
purely for de-confounding the result. Experimental design for instruments to have more effective
estimation has been considered by [8]].

In the causal bandit problem, an underlying causal graph between a set of interventions and a reward
value is assumed. Actions correspond to intervening (i.e. a “do” operation [31]]) at one or more
specific nodes in the causal graph and then observing the corresponding value at the reward node.
Causal bandits have been studied extensively in the regret setting [25} 28, 16] and the pure exploration
setting [32]. Though past works have allowed for unobserved confounders in the graph e.g. [29]], their
goal is to learn the best performing intervention, which in our setting would be arg max.cz z ' I'f
instead of w*.

Encouragement designs have been considered in many applications in online and offline settings.
One of the earliest works on encouragement designs is [7]], which considers the problem of using
encouragements to determine the impact of coupons at a grocery store. More recent applications
include [4}130,13] all in the context of online services and treatments that are required to be served to
all users. Most of these works consider a small number of treatments and a heterogeneous treatment
effect - hence are interested in LATE estimator. As far as we are aware, we are the only work that
considers adaptive encouragement design in the context of the model given in Equation [T]and for
multiple treatments.

2 Estimators and Inference

We now present estimators for the unknown parameter 6 and prove the associated statistical properties.
The estimators discussed in this section are critical to our algorithmic solution outlined in Section 3]

2.1 Estimators

Before describing our solution concept, we quickly review potential options for estimating 6 based on
a dataset Zp = [2’1, s 7ZT]T S RTXd,XT = [l‘l, s ,.Q?T]T S RTXd, Yr = [yl, s 7yT]T S RT,
assumed to be generated according to the model in Eq. (T). Recall that the ordinary-least-squares
(OLS) estimator for 6 is given by

Org := arg ming pq Zthl(yt — x;'—é\)2 = (X} X7) ' X Yr =0+ (X} X7)" ' X} er.  (3)

Observe that 65 is potentially a biased and inconsistent estimator for 6 in the presence of endogenous
noise since E[e;|z;] # 0. To remediate this problem, we define a general class of estimators that
includes several standard estimators. Given an invertible matrix ¥ € R%*4, let X1 := Zr U, and
consider corresponding estimators termed W-IV estimators of the form

Oy = (XL X)X Yy = (VT 2] Zp0) T ZL Yy = (24 Z00) 1 2] Yo, “4)

When ¥ = I we recover the OLS estimator. In the rest of the paper, we will focus on two different
potential options for .

Case 1: Oracle. ¥ = T. To begin, observe that the structural equation model from Eq. (I)) can be
combined by substituting the second equation into the first to obtain the reduced form

ye =2, 1O+ 0+ ¢ (5)

Since z; is independent of the i.i.d. process 7, 6 + &, the least squares estimator which regresses y;
onto z, T is unbiased for estimation of § and given by

Ooracte = (X7 X7) ' X} Yy = (2] Z7T) ' Z) Y. (6)

This estimator will be used to design our general solution concept presented in Section[3} Of course
in practice we cannot expect to know I', but we may be able to estimate it.



Case 2: P-2SLS. ¥ = I. We consider a setting where T is an (unbiased) estimator of I', learned
using least-squares from an independent dataset Zg, = [z, -+ , 2y, ], X1, = [2],- -+, 27, | collected

non-adaptively Thatis, T’ = (24, Z1,)" "2}, X1, and:
Op-osis = (T 23 Z; D)\ 21 v,

We refer to the resulting estimator as a pseudo two stage least squares (P-2SLS) estimator. The main
advantage of the P-2SLS estimator over standard 2SLS (given in Appendix [C) is easier inference
since now {e; };<7 of our dataset is independent of the measurements of the first dataset Zp, , X .
In the econometrics literature, such an estimator is referred to as a two-sample 2SLS estimator [19]].

2.2 Confidence Intervals

In the section that follows, we develop a general algorithmic approach that relies on experimental
design aimed at reducing the uncertainty in our estimates of the optimal treatment. To this end, we
first develop finite-time confidence intervals for estimators presented in the previous section given
data generated according to the model in Eq. (I)) and collected from non-adaptive designs.

We begin by characterizing the properties of the noise structure in the combined model of Eq. (§)
with the following set of results.

Lemma 2.1. Under Assumption I} the noise process v := 10 + ¢ is o2-sub-Gaussian where
oy = 2(a7||0]13 4 1), specifically when the instance is compliance, o, = 2(4]|0[3 + 1).

Oracle Confidence Interval. As in the last section, we assume that we have access to a dataset
(Z7, X1, Yr) generated according to Eq.|l|and collected non-adaptively. Given Lemma it can

be shown that w " fypacie is a sub-Gaussian random variable satisfying the following.
Lemma 2.2. With probability at least 1 — 6 for § € (0,1) and w € R,

w7 (Beracte = O)] < /202 [wll% 5, - log(2/9),

where o2 is the sub-Gaussian parameter of the noise v :=n' 0 + ¢ characterized in Lemma

The proof of this result is in Appendix [G.2]

P-2SLS Confidence Interval. We now present a novel finite-time confidence interval for the P-2SLS
estimator. As discussed in the previous section with respect to this estimator, we assume access a set
of data (Zr,, Xr,) generated according to Eq. (I)) and collected non-adaptively for the purpose of
estimating I". Moreover, assume access to a separate set of data (Zrp,,, X1, Y7, ) generated according
to Eq. (1)) and collected non-adaptively for the purpose of estimating 6.

Theorem 2.3. Suppose that I' = (Z]. Z1,)"* 2], X1, and Op_z5s = (U Z1, Z1,0) "' T 2], Y.
Then, for any w € W, with probability at least 1 — § for 6 € (0,1),

. 4 —
T @o-zns = O = oll gz 70y 272108 5 ) + sy, 2190/ 738 Z1,.0/4).

where

— 2T L2 2:64 4
log(Z7r,0) :==8dIn | 1+ £ +161In | —-log
( ) d(2 A omin(Z7, Z1,)) B *\ 2N owin(Z7, Z1,)

The proof is presented in Appendix[G.3] Observe that the first term in the P-2SLS estimator confidence

interval given by \/ 202 Hw||ii (Zp, Ty log(4/6) matches the Oracle estimator confidence interval
Ty,

r)

in Lemmawhenf = I'. The second term scaling like O([|wl| 55, 5-1/l0]l20y/d + log(1/6)),
-

is an upper bound on the approximation error w " (IA“*lF — 1)@ for any w € R%, assuming that Tis
learned from an OLS estimator (see Theorem [G.3|for details).

*Formally, we say that a set of data (Zr, X7, Yr) generated via the model in Eq. () is collected non-
adaptively from an experimental design if z; is Ho measurable forall 1 <¢ < T



We will see that the form of this confidence interval is particularly convenient for our algorithmic
approach given in Section 3| In particular, the form of the variance [|w||% (Zz, 1)—1 On the first term
.

only depends on a design over instruments. Thus, we can choose an experimental design over Z’s
which reduces this variance optimally.

Remark 2.4. In practice we expect the first stage of samples, (Z7,, X1, ) to be collected from either
a burn-in period or from existing historical data. We remark that assuming two stages of samples
is common in the orthogonal and double machine learning for estimating nuisance parameters in
the data generating process (e.g. I') [9]. Our result matches the existing literature on the asymptotic
variance of two sample 2SLS estimators (e.g., Theorem 1 of [19])).

Remark 2.5. The asymptotic variance of standard 2SLS is known to involve a factor o2, instead of
03 as we have [18]]. Recent work by [[11]] shows a variance involving da?. However, it’s unclear how
to use the form of their confidence interval directly for experimental design. In addition, their work is
not sufficiently general to handle the general forms of noise that we consider in Lemma[2.1]

3 Adaptive Experimental Design Algorithms

We now present adaptive experimental design algorithms for the CPET-LB problem. Our main insight
utilizes Eq. [I|by plugging the model for  into the top equation resulting in the relationship

y=2"T0+0"n+e.

When I is known, by Eq.[5] we see that CPET-LB reduces to a standard pure exploration transductive
linear bandit problem where the measurement set is given by {T'T z}.cz C R?, the evaluation set
is W C R, and the feedback model is given by y = v + v where the noise v = 07 + ¢ is
sub-Gaussian and as before the goal is to identify arg max,,c)y w ' . An existing approach to this
problem is given by the RAGE algorithm [15]], which we use as the basis of our approach. Addressing
the case of unknown I is our major algorithmic contribution, where we develop solutions to improve
our estimate of I' and learn w* simultaneously. As a warm-up to this approach, we first consider the
setting when I is known.

3.1 Warm-Up: Known Structural Model

Algorithm [[|assumes a parameter L,, which acts as an upper bound on the sub-Gaussian constant

of the noise v = 67 + <. In each round , an active set of potentially optimal vectors W, C W is
maintained. CPEG aims to sample in such a way that reduces the uncertainty of the estimates on the

gaps (w —w') " 6 for each pair w,w’ € Wk maximally each round. In any given round the algorithm
takes N}, samples Zy, , the confidence interval of Lemma shows that the error in estimating (w —

w') "6 scales with ||w—w’ ||?FT 2T Zn 1)1 This motivates utilizing an experimental design approach
k

where we choose a distribution A, € A(Z) to minimize max,, 3, [w — w’||(zzeg ALTT 22TT)~ 1.
The number of resulting samples taken from this design Ny, is chosen to guarantee that the confidence
interval of Lemma is less than 27%. Then, the elimination step in Line 8 guarantees that all
w € W such that (w* —w) " > 2-27* are then eliminated from the active set by round k + 1 of the
procedure. To actually choose our samples, as is common in this literature [15]], we use an efficient
rounding procedure, ROUND that requires a minimum number of samples 7 (w).

Sample Complexity Guarantee. The sample complexity of Algorithm[T|depends on the following
problem-dependent quantity p*(-y) that captures the underlying hardness of a problem instance in
terms of WV, Z,T', ), when v = 0, we abbreviate p*(0) = p*,

[lw* — w”%z ATT22TI)-1
* — . zez Nzl R ) 7
P () AénAl?z)we{/Ivl%?w*} (w* — w,0)2 V2 @

Theorem 3.1. Algorithm|l|is 6-PAC and terminates in at most c(1 + w)L,p*log(1/8) + cr(w)
samples, where c hides logarithmic factors of A := min,, (w* — w, ) and |W|, as well as constants.

The proof of this result is in Appendix [H.I] In the unconfounded case when I' = I and ) =
0,E;_1[e¢|z¢] = O this matches the sample complexity of [13]. In particular, for the case where
Z = X = W, the problem further reduces to a standard multi-armed bandit, and if € is 1-sub-

Gaussian noise, [33]] shows that p* = O(Zf:2 (61 —6;)72)), which is the optimal sample complexity



of best-arm identification for multi-armed bandits. The following lemma shows that the conditioning
of I' can have a strong impact on the resulting sample complexity.

<

. . . . o L . 2
Lemma 3.2. For the compliance setting, we have minye x« max; j |le; —e;o|| (5 AT T ereTT) -1 S

dmax; ;[T (e; — ej:)||3. Furthermore, p* < %F)l.

min

To further illustrate the impact of

I, imagine an extreme setting where  Algorithm 1 CPEG:Confounded pure exploration with T’
I'=(1-¢)/d11" +eland e ~ 0,

. . . 1: Input Z W,V =T,6,L, > 02, w,
ie. T is a perturbation of 1/d11". 9. Inﬁialize: k=1, = W_C;T—L;
It’s straightforward to show that the 3. Set f(w, w', T, ) := ||w — w'||?

. g : YW, L, (X.ez Al Tz2Tr)— L
upper bound in the first display of . .. We| > 1 do
Lemma is of the order O(de™?) 4. Ak = arg minyea(z) MaXy,wew,, f(w, w’, T, A).
(this is also a lower bound - see Ap- . p(Wi) = minyea(z) maxy, o ey, f(w,w', T, )
pendix [K.T). In particular, the upper oh ’ )
bound on the sample complexity is - = [2(1 +w)27p(Wi) L 10%(4k |W\/5>1 Vr(w)
of the form dsfz/Amm This is in 8 Pull arms in Zn, = ROUND(Ag, Nj) and observe Y, .
sharp contrast to the linear bandit case, . Compute ok — ( 25 7w, F) AZX, -
when I' = I and we are guaranteed k , k , ~
asample complexity of no more than 10 Wit1 = Wi\{w € Wi[3w" € Wi, (v’ — w,0r) >

d/AZ%. samples. To gain some in- 2 bk k1

tuition, regardless of the choice of A, llf end Whl.le

S AT el T ~ T. Asaresult, % Output: w € Wi

p* — 0o as € — 0. Intuitively in the limit, regardless of which instrument ¢ < d is being pulled, the
resulting distribution on the treatments is uniform (the instruments are weak). Thus, it is impossible
to deconfound the measurement noise, and recover an estimate of §. This is a phenomenon which
does not arise in the standard multi-armed bandit case with unconfounding.

Remark 3.3. We also consider a setting where instead of given I directly, we are given an estimate r
of I' based on offline data. We discuss such an adaptation of Algorithm I]to this setting in Appendix[l]
and provide a sample complexity which reflects the error in I" (scaling with p*(v) for v > 0). We
remark that this result is subsumed by the approach of Section[3.2]and so we omit it in the main text.

Lower bound. Due to the noise model from confounding and the dependence of the noise 6 "1 + ¢,
the instance-dependent lower bounds of [[15] do not immediately apply. We develop a lower bound
tailored for the confounding setting that nearly match the upper bounds of our algorithms. What’s
more, our lower bound illustrates the additional difficulty that arises from confounding by an
additional factor of d? compared to the standard transductive linear bandit problem in the most
general setting where entries of 7 are sub-Gaussian, but not necessarily independent nor bounded.
Due to space limit, we defer it to Appendix [D]

3.2 Fully Unknown Structural Model

We now consider the setting where I' is fully unknown. The difficulty of this setting is that the data
collection process needs to support both estimation of I" and § simultaneously. Our algorithm,
built upon Algorithm T} is summarized in Algorithm[3] At its core, each phase of the algorithm is
divided into two sub-phases, for estlmatmg I'and 6 respectlvely Specifically, the second sub-phase is

essentially same as Algorlthmlﬂwnh I'% in place of I" where I‘k is estimated from the first sub-phase.
The main novelty of our algorithmic design lies in the first sub-phase, which resolves the challenge
of performing the optimal design for estimating I'. To explain this challenge, the confidence interval
for P-2SLS estimators of Theorem [2.3]indicates that one should pull arms so that we control both
12 12
v || Iy ||A(ZTl,fk)
(error from I';) to be below the target error O((?) at each phase (ignoring unimportant factors for
discussion). Controlling D5 is trivial, which is done in the second sub-phase as we described above.

Dy = maxy  ||lw —w ) (error from ép,gsLs) and D; 1= maxy, . ||[w —w
k

However, for Dy, a similar strategy cannot be done because the estimate fk is computed directly by
sampling arms in Z7, . That is, the ideal design, based on which we will collect data points zy, . . ., 2,

requires access to the random matrix fk that can only be computed after sampling z1, ..., zp,. This



Algorithm 3 CPEUG: Confounded pure exploration with with unknown I

IHPUt 37W7 55 LV Z 0-1%7]477 2 0—7277w7’7min S )‘miﬂ(r)v)‘E7 Ko
Initialize: £k = 1, W, = W,fo =1,G=1

32L,

Define f(w, w',T\A) := lw —w'llts___ pracorry-1 M= g VL b= g3

while Wi | > 1 do
T) =T — estimator (Wk, fkfl, Cry 0 /K% w, A, M, L,,) > Step 1: update r
55_251_5 =0 — estimator (1/\/;€7 §/K2 G, fk, w, L,,) > Step 2: update 0
W1 = Wi\ {w € Wi | Fw' € Wy, s.t., <w’ —w, §§,2SLS> > Ck} > Step 3: elimination
E—k+1,¢=27"

end while

Output: Wy

creates a cycle that seems impossible to resolve. Such an issue, to our knowledge, has not been seen
in existing work on pure exploration, and thus resolving it is our key technical contribution.

Our solution is to compute the design based on fk from the previous phase. We then perform a
doubling trick where we double the sample size (while following the computed design) until D,

becomes smaller than the target error O(¢7). The intuition is that in later phases the estimate Iy
from the previous phase will be accurate enough to ensure that the design is efficient. Note that this
novel algorithm induces extra randomness in how many samples we end up collecting in the first
sub-phase, which remains random even after conditioning on the history, unlike the second sub-phase.
This makes the analysis challenging, which we describe after the main result.

Our algorithm additionally employs
the so-called E-optimal design to
ensure that the covariance matrix
of the collected data used to esti-
mate I' is well-conditioned. This Input W, 6,¢, T, w, L.,

conditioning is required to ensure = arg MinyeA(z) MAXyp, 0/ e flw,w', T, )
that T';, concentrates fast enough p(W) = minyea(z) MaXey wew f(w,w’,f,/\)

to I' as shown in the analysis. The s AW
E-optimal design is a well-known V2 = {2(”‘”)4 POV)Ly log(Tﬂ Vrw)

des%gn ObJeCt_We n exp.erllmental get Ny samples per design X denoted as {Z2,X2,Y2} »>via
design that aims to maximize the ROUND

Algorithm 2 § — estimator

smalle?st singular Valuei:1 Ny = update Op_ss1s = (I1 Z3 Zo1) " 'T ' Z3 Yz
arg minyea(z) Tmax(V7H(N)), Output: é\p_QSLs

where V. = > __A.zz'. We

denote Hal = UmaX(V_l()‘E)) =

o1 (V(\%)) as the smallest singular value achieved by the E-optimal design.

We present our analysis result Theorem [3.4] where we show that, even without knowledge of I, the
sample complexity scales with the key problem difficulty p* almost matching the sample complexity
of Algorithm[I| which relies on knowledge of T".

Theorem 3.4. Algorithm[3]is §-PAC and terminates in at most
(1+ w)((Ly log(1/8) + Ly[10]l5(d + log(1/5)))p* + (d + log(1/8))(Ly||0]l300 + M))
pulls, ignoring both of the additive and multiplicative logarithms of A, |W)|, p*, po, M, where
32L,
’ylznino-min (A(AE’ I))

Note that po does not get hurt by (w* — w, 8), (p* does). It comes from the fact that in the first phase,
we initialize that algorithm with E-optimal design.

V1.

— * 2 —
Po = we%i‘?{w*} ||w — w”(ZzeZ A .TT2zTD)~1s and M =

The challenge of the analysis can be summarized in two-fold. First, since the concentration result

in Theorem is w.r.t. I',, we need to analyze how the random matrix I';, concentrates around I’
and how this impacts the sample complexity. For this, we develop a novel concentration inequality



Algorithm 4 I" — estimator
Input W, T, ¢, 6,w, A, M, Ly,
Define Stop(W, Z, T, §) := max,, v ew||w — w’HA(Z ry-1 110121 / Lylog(Z,6)

Initialize { = 1, Noo =0 > doubling trick initialization
if ' =1 then
while £ = 1 or Stop (W, Zou, TV, 5;,) > 1do
get 2671 (r(w) v 3—0) samples denoted as {Zo,¢, Xo,¢, Yo,¢ } per design Ag > via ROUND
Update I by OLS on {Zo¢, Xo,e}, £ + £+ 1
end while
else

A = argminjyea(z) MaXey,wew f (W, w'7f, A)
N — {4ng In (1 +oM (d n Li) n 2M2ng) +8MIn (%) v r(w)J

while £ = 1 or Stop(vv, Zoo U Zyg, T, 5«) > ¢ do

Nie=2'N’ & doubling trick update
get Ny o samples per A denoted as {Z1.¢, X1,0, Y1,0} > via ROUND

No = {2ng In (M(d+ Nie+ L2)) +4M1n (%) Vrw) V2

get (No,e — No,¢—1) samples per Ag augmented to {Zo,¢—1, Xo,¢—1} and get { Zo,¢, Xo,¢}
Update I by OLS on {Zo,c U Z1,¢, X0, U X1}, £ < £+ 1
end while
endif
Output: I

that relates the confidence width involving I" from Theorem with the same quantity involving
T in place of I". Second, our algorithm creates a long-range error propagation, which is highly
nontrivial to analyze. To see this, the quality of I, is affected by the design objective function
maxy, o f(w,w’, f‘k,l, A), which depends on the error of the estimate f‘k,l from the previous

phase. This error is, in turn, affected by the error of | by the same mechanism. This is repeated
all the way back to the first phase. Thus, any abnormal behavior from the first iteration will have
a cumulative impact to even the end. In our analysis, we successfully analyze how the error is
propagated from the previous iterations, which forms a complicated recursion. Resolving this
recursion is our key novelty in the analysis.

Remark 3.5. Our algorithm requires knowledge of a lower bound iy of Apin(I"). The knowledge
of ymin is for simplicity only as one can obtain such a lower bound that is at least half of the true
value Apin(T") via an efficient sampling procedure that we describe in Appendix

Experiments. We provide experiments for the instance of Section in the Appendix |[E| The
experiments show that our approach is more sample efficient than natural passive baselines (e.g. A/B
testing), or naively applying existing Pure-Exploration linear bandit methods and performs similarly
to the oracle complexity.

4 Conclusion

This work introduces the CPET-LB problem in which the learning protocol is characterized by a
linear structural equation model governed by parameters I" and 6. We provide a general solution that
simultaneously estimates the structural model while optimally designing to learn the best-arm. The
key ideas behind our approach are based on linear experimental design techniques, an instrumental
variable estimator whose variance can be controlled by the design, and novel finite-time confidence
intervals on this estimator. This paper presents a number of directions for future work including
considering situations where the d, # d,, analysis to improve the dependence on the underlying
noise variance, and the pursuit of a tight information-theoretic instance-dependent lower-bound. We
hope that this line of work motivates increased discussion of the real impact of confounding on
applicability of adaptive experimentation.
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A Broader Impacts

This work is algorithmic and not tied to a particular application that would have immediate negative
impact.

B Illustrative Example

We now present an illustrative experiment that highlights the challenges of endogenous noise and the
insufficiency of standard experimentation approaches used in the absence of confounding.

Instance Definition. Toward connecting back to membership example in Section[I] consider that a
service has d membership options given by the set A = {1,...,d}. Let the set Z = {e1, -+ ,eq}
represent encouragements (incentives or advertisements) for the corresponding membership options
given by W = X = {e1, - ,eq}. We consider a location model that assumes each user t € N
arriving online has an underlying unobserved one-dimensional preference u; ~ AN (0,02). If an
algorithm presents the user with encouragement z;, = ey, for I; € A, then the user selects into the
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membership level given by J; = min;ec 4 |I; + us — j| so that 2y = e,. For a visual depiction, see
Figure [3a] This process captures a user being more likely to opt-in to membershlp levels that are
closer to the encouragement that they were presented. The outcome is then given by y; = x] 0 + u;.
This problem instance is a specific compliance instance. For this experiment, we take d = 6, let
f=[1 —095 0 045 0.95 0.99] and o2 = 0.35. Observe that the optimal evaluation vector

is w* = e; = argmax,, ) w' 0.

We simulate a UCB strategy which maintains estimates of the average reward of each of the possible
d incentives, namely fi; ; = 2221 1{z: = e;}y: and then pulls the one with the highest upper
confidence bound. This models current practice of using a bandit algorithm to select which incentive

to show a user. Our results averaged over 100 simulations are in Figure 3d At each round we

estimate the average reward of each level using an OLS estimator, i.e. 0975 = Y°!_ 1{z; =

ei}y:/ St_, 1{x; = e;}, and check whether it matches the true value (denoted as UCB-OLS).
We also consider an instrumental variable-estimator (see the next Section) which incorporates
knowledge of I' similar to 2SLS to deconfound our estimate (UCB-IV). As the plot demonstrates,
UCB-OLS completely fails to identify 6; = arg max;cq 6; (this line is hard to see it is at 0) due to a
biased estimate, whereas UCB-IV does better. However, UCB-IV methods seem to have a constant
probability of error. To see why, note that the expected reward from pulling z = e¢; is e, ['0. These
values are plotted in orange in Figure[3c| In particular, with some constant probability, UCB runs
on the empirical rewards from pulling z’s zeroes in on arm 6, and as a result fails to give enough
samples to learn that arm 1 is indeed the best. In contrast, our proposed method CPEG, Algorithm T]
manages to find the best arm with significantly higher probability (the algorithm was run with § = .1)
in the given time horizon.

C Standard 2SLS estimator

Consider ¥ = fQS LS = (ZQT ZT)_lZ; Xr. In this setting, we recover the standard two-stage-least-
squares (2SLS) estimator,

Ossis = (X7 Z0(23 Z0) 23 X)) " XF (20 Z0) 28 Y = (27 Xp) "1 2] Y.
Note that the 2SLS estimator is a biased, but consistent estimator of the parameter 6 [3.[18].

Note that in particular, the asymptotic variance of 2SLS is known to be o2 ||w|| (Floe 28 Zo Tass) 1 8]
2SLS

Recent work by [II] provides a confidence interval of the form |w' (925L5 - 6)] <
O(do?||w|| (PLLe 23 ZrToms) 1 | /log(T'/§)). However, it’s unclear how to use the form of their con-

fidence interval directly for experimental design due to the dependence of I'>s1s on the random
quantity X. In addition, their work is not sufficiently general to handle the general forms of noise
that we consider in Lemma2.1]

D A non-interactive lower bound

Due to the noise model from confounding and the dependence of the noise 6 ') + ¢, the instance-
dependent lower bounds of [15] do not immediately apply. In this section, we develop a lower bound
tailored for the confounding setting.

Toward characterizing the optimal sample complexity, we develop a lower bound for a specific
non-adaptive algorithm A that has access to the matrix I governing the structural equation model.
In particular, suppose that the non-adaptive algorithm A is allowed to select a sequence of T'
measurements {zy, , ... zy, ..., 21, } to query prior to collecting any observations, where I; represents
the index of the vector z € Z chosen at time ¢ € {1,...,T}. Then, given the observations
{y1,..+,--.Yt,. .., yr} generated by the environment, a candidate optimal vector w € W is returned
by the algorithm. We are interested in the necessary number of observations 7" that must be collected
in order to ensure P(w # w*) < ¢ for some § € (0,1). Thus, it is natural that the optimal

non-adaptive algorlthm A using the estimator Horacle forms a recommendation rule such that w =

arg max,,cyy w 9orac1e We now state our lower bound result with respect to the non-adaptive
oracle algorithm.
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Figure 3: (a) A visual depiction of the problem instance from Section The user is presented with
encouragement I; € A and the user choice is given by J, where J, = minje 4 |I; + u; — j| and
u; ~ N(0,02). b) A heat-map showing the structural parameter I" for the problem instance from
Section B} (c) A bar chart showing E[y|r = w] = w'6 and E[y|z = w] = 2"T0 for all w € W.
This chart shows that the optimal evaluation vector is w* = e; = arg max,, ¢y E[y|z = w|, while
e = arg max,, )y E[y|z = w] and consequently estimation based on this quantity is problematic.
(d) The probability of identifying w* = e; for a collection of algorithms on the CPET-LB instance
described in Section[B] Standard optimistic sampling approaches in combination with an ordinary
least squares estimator leads to faulty inferences. Given an instrumental variable estimator, these
experimental designs eventually give high probability identification but do so inefficiently compared
to our proposed approach (see Section @)

Theorem D.1 (Non-Adaptive Oracle Lower Bound). Consider a problem instance characterized
by W C R4 Z c R4 T € R¥™? and 6 € RY. Assume T is known, 0 is unknown, and the noise
process is jointly Gaussian and defined by v := [n €] ~ N(0,%) where ¥ € R(@+DX(d+1) js gp
arbitrary correlation matrix. For 6 € (0,0.05), if the non-adaptive oracle algorithm acquires T <
a?p* log(l/é) /2 samples on the problem instance where o2 := v Yv and v := [0 1] € Rt
then P(w # w*) > 0.

Corollary D.2. There exists a problem instance characterized by W C R4, Z Cc R4, T' € R4*4, and
6 € R? with a noise process satisfying Assumptionsuch that if the non-adaptive oracle algorithm

acquires T < max{d||6]|3,/d||6]|2}p* log(1/6) /2 samples, then P(w # w*) > & for 6 € (0,0.05].

The proof of Theorem [D.1]is in Appendix [FI] Notably, the result is reminiscent of lower bounds for
the standard pure exploration transductive linear bandit problem without confounding [15} 22]] when
given the measurement set {FTZ}Zew, evaluation set Z, and parameter 6.

Notably, the upper bounds for our algorithms nearly match the lower bound of Theorem However,
it is interesting to observe that the sample complexity incurs an additional factor of d-~ relative to
the standard transductive linear bandit problem in the most general setting where entries of 1 are
sub-Gaussian, but not necessarily independent nor bounded. This illustrates the additional difficulty
that arises from confounding. We point out that this is not likely to be a tight lower bound. In
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particular, it is a lower bound with respect to a non-adaptive algorithm that uses the particular choice
of estimator. We leave improved lower bounds to future work.

E Experiments

We now present experiments a collection of experiments on CPET-LB problem instances. The
experiments demonstrate that our approach produces efficient designs for inference and estimation.

E.1 Comparison Algorithms

The baselines that our approaches are compared with are discussed below. We run experiments both
when I' is known and when I is fully unknown.

E.1.1 KnownI.

To standardize the experiments, the baselines considered run in rounds mirroring the structure of
Algorithm Specifically, in round & € N a sampling algorithm selects a design A\, € A(Z), collects
Ny, samples from the design, and forms a ¥ — IV estimate of § with ¥ = T" that is combined
with a confidence interval (Lemma [2.2]to either eliminate evaluation vectors or validate a stopping
condition. The number of samples N, taken in round k € N by any of the algorithms is given by
Ny = |—2(1 +w)C];2P(WR)LV 10g(4k‘2|W|/5)-| \/T(w) where p(Wk) = MaXy,w eWy, f(wa U}/, T, )‘)
for design A\, € A(Z) and an active set of evaluation vectors Wj,. The round sample count guarantees
that given any experimental design, all vectors w € W such that (w* — w) " > 2-27% can be
determined to be suboptimal by the end of round k. The sampling methods we consider are now
described.

* Static Oracle. This design selects A, = arg minj ¢ 5 (z) MaxXyew\ {w+} f (0, w', T, ).
* Static XY-Optimal. This design selects A\, = arg miny e a(z) maxy, wew f(w, w', T, A).
* Static Uniform. This design selects A\, , = 1/|Z|V z € Z.

* Adaptive Uniform (SE). This design selects A\, ,, = 1/Wg| V w € Wj. Note that this
algorithm is effectively an adaption of action-elimination [14]] .

The static designs are independent of the round and simply terminate when all evaluation vectors can
be eliminated except for a recommended optimal vector w.

E.1.2 UnknownTI.

For this set of experiments, we compare Algorithm 3|against a collection of variations of the sampling
procedures. Specifically, we compare against methods that either replace only the experimental design
for estimating I, or only the experimental design for estimating 6, or both with uniform sampling.
We label the approaches as N — [N, where N represents the sampling approaches (XY or uniform)
for I" and 6 respectively. Moreover, to make our approach more practical, we modify the algorithm so
that log(Zr, ) = 4d + 1og(1 / 5). The step of incrementally adding more E-optimal design samples
is also removed, so we collect E-optimal design samples only once in the beginning of Algorithm ]
We find that even with these modifications to the algorithm, correctness is maintained empirically.

E.2 Experiment 1: Jump-Around Instance

We first return back to the location model of Section Recall that Z =W = X = {eq, - ,eq}.
For this experiment, we take d = 6, let § = [1 —-0.95 045 045 0.95 0.45} and 03 = 0.275.
The results of the experiment are shown in Figure[dafor the case of known I'. We see that Algorithm [I]
performs much better than the baselines and nearly matches the oracle design. Delving into the
approach, it is able to quickly eliminate all but w; and wg—; and then puts more mass on z; and
z4—1 to reduce the uncertainty on w; and wq—1. For the case of unknown I, the results are shown in
Figure[dd| where 05 is reduced to 0.9 so that all approaches could finish.
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Figure 4: Sample complexity for algorithms on CPET-LB problems. Our approach is consistently
competitive across the experiments.)

E.3 Experiment 2: Interpolation Instance

Let Z =W = X = {ej, -+ ,eq} define the measurement, evaluation, and observation sets. We

first consider that I' := %ldl;{ + el for a parameter € € (0, 1) where 1, is a d-dimensional
vector of 1’s and I; is the d-dimensional identity matrix. For this experiment, we take d = 4 and
let 0 = [0.5 0.583 0.67 0.75]. As in all compliance instances, 17, = x; — I'" 2z, and in this
simulation 7; = 0.47," v;, where v; = ©;/||04||2 and ©; ~ N(0, I). The results of the experiment
are shown in Figure 4b|for ¢ € {1,0.9,0.8,0.7} with I known. Note that Static-XY and Uniform
overlap, and SE and CPEG overlap. We see that Algorithm [I] and the adaptive uniform strategy
perform similarly and near optimally. This is to be expected since the most efficient way to gather
observations for treatments is to encourage that treatment, given that if the encouragement is not
followed each of the alternatives is equally likely and provides no additional information of interest.
Moreover, as discussed earlier, the problem gets more challenging as I" — 1dl;lr /d. Note that the
identity matrix could be replaced with a permutation matrix, in which case uniform sampling with
elimination becomes highly suboptimal. The results for the case of I' unknown are shown in Figure[d¢]
with € = 0.99. This shows the value that comes from the experimental design for estimating both I"
and 6.

To demonstrate the superiority of our algorithm over SE, we also consider that I := (1%;5) 1dl;lr +ell,
where [ g is a permutation matrix as follows,

=

= o oo
SO O
[ Nal ]
o= OO

All other settings remain the same as in the previous interpolation instance. The results for the
known T' case, shown in Figure 4] indicate that SE exhibits significant underperformance due to its
sampling rule not accounting for the permutation effect in I'. In contrast, CPEG consistently achieves
near-optimal performance. Note that Static-XY and Uniform still overlap. Figure 4| presents the
results for the unknown I' case, where we can notice that, comparing with Figure estimating
different permutation matrices (with the identity matrix as a special case) does not affect problem
difficulty.
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F Proofs of the lower bound

F.1 Proof of Theorem D.I]

Theorem- Consider a problem instance characterized by W C R4, Z ¢ R4, T' € R%*9, and
6 € R, Assume I is known, @ is unknown, and the noise process is Jomtly Gaussian and defined
by v := [n €] ~ N(0,%) where £ € R@FD>X(4+1) i5 an arbitrary correlation matrix. For
S (0, 0.05], if the non-adaptive oracle algorithm acquires 7' < ¢%p* log(1/6) /2 samples on the
problem instance where 02 := v'Svand v := [§ 1] € R¥, then P(@ # w*) > 6.

Proof. We begin by recalling the framework of the non-adaptive oracle algorithm and discussing the
properties of its estimator for the noise structure described in the statement of the result.

Non-Adaptive Oracle and Instance Definition. The non-adaptive oracle algorithm A selects T’
measurements to query prior to collecting any data. Let I; represent the index of the vector z € Z
chosen at time t € {1,...,T}. The noise process for the instance under consideration is assumed
to be jointly Gaussian and defined by v, := [1: &¢] ~ N(0,%) where & € R(FTD>(d+1) j5 an
arbitrary positive semidefinite matrix. Defining Z;, :=I' " z7,, v := [9 1] cR™land vy :=v "y,
the feedback model can be described as follows:
Yt = x:0 + &

=(T2r) 0 +n/ 0+

= (PT2,) 0 +v

= j}c@ + Vt.
Observe that the noise is independent and identically distributed as v; ~ N(0, 02) where 02 := v " Zv

since ¢ ~ N (0,X). Moreover, the noise process is exogeneous with E[v4|Z;,] = 0 since Zy, is
deterministic given the index choice I;.

Let {21, }{_1, {1, }{—1, and {y};_, denote the observations collected by the non-adaptive oracle
algorithm A and define Z7 € RT*? X € RT*4 and Y7 € R7 to contain the respective stacked
observations. Algorithm A obtains an estimate 0y;ac1. by minimizing the sum of squares as follows:

~

Ooracle := arg min§6Rd ZZ:l(yt - 3_7]1,5)2 = (X’J—EXT)ilX’JTYT = (Z;ZTF)ilz;rYT

Given 9c>rac1e, the non-adaptive oracle algorlthms A returns a recommendation defined by w =

arg max,,cyy w Goracle Note that since Qoracle is obtained by least squares with exogeneous,
independent and identically distributed mean-zero Gaussian noise, it is straightforward to verify the
estimator is distributed as

é\Oracle -0~ N<Oa 02 : A(ZTa F)il)a (8)
where

A(Zp,T) = (ZF oz, ) = X} X7 =072] Zs0.

Proof by Contradiction. To begin, recall that

N . |w* — w||,24(>\’r)—1
p = min max
AEA(Z) weW\fur}  (w* — w, H)?

Suppose for the sake of contradiction that the number of samples collected by the non-adaptive
oracle algorithm A is T < o%p*log(1/6)/2 and P(@ # w*) < & for 6 € (0,0.05]. To reach a

contradiction, we analyze the distribution of (w — w*)T§ for some w # w* and show that with
probability at least § it is positive. We remark that this proof follows similar techniques to that of the
proof of Theorem 3 of [22].
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Let A\ € A(Z ) represent the empirical sampling distribution of the algorithm A, which is defined
such that X, = = Zt 1 I{z1, = z} for each z € Z. Moreover, define

_ lw* = w]]? 5 . lw* = wll% 50y
p*(\) == max " A(A’I;) " and we arg max - A()"I;) '
weW\{w*} <’LU —w, 0> weEW\{w*} <’LU —w, 9>

Note that p*()\) > p* and observe by definition,

SR ! XZFT -1 T 1 B
ACDT  Legdl 2 U (ST sr) = Aze )

T T

Thus, by Eq. (8),

_ AN, )

_ O ~ 2, 2\

eﬂracle 9 N(Oa o T ) )

o 5 o — @
(IE B w*)T(HUracle — 9) 2 woow A(X>F)71
(0" — @, 6) N (0.0 T (0 —,0)2 ):

Furthermore, by the definition of p* (), the assumption 7' < 6?p* log(1/6) /2, and the fact p*(X) >
p*, we obtain
* 12 /Y
Wagm-1 . 5 ') 2
2 =0 > .
T {(w* —w,0)? T  ~ log(1/9)

({E - w*)T(é\Dracle - 0) o 2 ||U)
V( ) — 5 ©)

(w* — w, )
Now, consider a random variable W ~ N(0,1).
anti-concentration result showing that for all { > 0,

1 1 1 2
POW 2 Q)2 (7 =)=/ 10

W20z 5)m (10
We apply this result to the quantity (w — U}*)T(é\gracle —0)/{w* — w, ) to conclude that (w —

w*)T§gracle > 0 with probability at least §. Toward doing so, let ¢ € (1,1.15] be a constant and
define

Proposition 2.1.2 of Vershynin [34] gives an

2 )) and W::L and v := ¢

7W 2/10g(1/5) Q/T(l/é).

Observe that W ~ A/ (0, 1). The following analysis holds for § € (0, 0.05] given that ¢ € (1,1.15]
as assumed:

WNN(O

IP’( (@ = lz’w)T_(agaei =05 c) > P(W > ¢) (By Eq.)
B w c
- HD( \/2/ log(1/6) - \/2/log(1/5))
=P(W >+)

—) —26_72/ 2 (Proposition 2.1.2 Vershynin 34)
7T

) 1 52/4

> (
( cy/log( 1/5 ,/10 (1/6)

The final inequality can be verified computatlonally. Thus, with probability at least ¢ for 6 € (0, 0.05],
we obtain

(W —w T 90rac1e > c(w* — w)TH + (w w*)TQ
=c(w* —w) 0 — (w* —w)'8
=(c— 1w —) "0
> 0.
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Observe that the final inequality holds since ¢ > 1 and (w* — @) '@ > 0 by definition.

This result directly implies that with probability at least 6 for § € (0, 0.05], the vector w returned
by algorithm A is not w*. This is a contradiction, so we conclude that if the non-adaptive oracle
algorithm A acquires T < 2 p* log(1/4) /2 samples, then P(@ # w*) > § for § € (0, 0.05].

O

F.2  Proof of Corollary[D.2]

Corollary[D.2] There exists a problem instance characterized by W € R%, Z ¢ R, T € R¥*?, and
6 € R with a noise process satisfying Assumption such that if the non-adaptive oracle algorithm
acquires 7' < max{d||0||3, v/d||0||2}p* log(1/5) /2 samples, then P( # w*) > & for § € (0,0.05].

Proof. To begin, consider the specifications of Theorem [D.T|and its result. That is, a problem an
arbitrary instance characterized by W C Rd, Z Cc R4 T € R¥™4 and § € R where the noise
process is jointly Gaussian and defined by v := [ ¢] ~ N(0, %) where ¥ € R(¢+1D>x(4+1) jg an
arbitrary correlation matrix. Observe that the noise process defined by +y satisfies Assumption
The result states that if the non-adaptive oracle algorithm acquires T' < o2 p* log(l / 5) /2 samples
on the problem instance where 02 := v'Svand v := [0 1] € R4, then P(@ # w*) > § for
d € (0,0.05]. From this point, we show that there exists a parameter 6 and correlation matrix X such
that 2 := v Yv > max{d||6]|2, v/d||f||2} in order to reach the stated conclusion.

Notation. Let (,, . € [—1, 1] denote the correlation between 7; and € for ¢ € {1, ...,d}. Similarly,
let ¢y, m; = Gy € [—1,1] denote the correlation between n; and 7; for i # j € {1,...,d}.
Note that the correlation of 7; with itself fori € {1,...,d} is Ufh = (y;,p; = 1 and similarly the
correlation of ¢ with itself is 02 = (. . = 1. The correlation matrix ¥ is then given by
¢ 1 anl,m o Cnam Gem
71,7 T Nd 7! €1
o e
: : " : : : T 1|’
7€
Cﬂlﬂ?d CT]QJId T 1 Caﬂ?d
Cmﬁ Cﬂz,f T C”'ld;E
where
¢ 1 47721,771 T g”]dﬂ]l Cmﬁ
se= | e L) and o= || e -1
Cnlv"ld Cm,nd e 1 Cndus

Moreover, we use the notation E;i € R? to denote the i—th row of ¥, or equivalently the i—th
column of ¥y, forany 7 € {1,...,d}.

Lower Bounding Noise Variance. Given the above notation, we now work toward lower bounding

02 := v " Sv. Observe that by algebraic manipulations,
T
T L 0 29 Cn,e 0
=] e
0
= {engJ Flne 07200+ Cpne - 0785 4+ Cue 07 Cpe+ 1} H

d d
=07 %50+ > Ccli+0" G+ 1

=1 =1
=060 +20"¢, + 1.

Since Y is a real symmetric matrix, an eigendecomposition exists such that ¥g = QAQ " where
A = diag(\q,. .., \g) € R%*? s a diagonal matrix containing the eigenvalues of ¥g and @ € R4*¢

20



is an orthogonal matrix with columns corresponding to the eigenvectors of Xy. Let ¢; == Q.
denote column ¢ of the matrix @ fori = {1,...,d}, which is equivalently eigenvector i of Xy for
i =1{1,...,d}. Without loss of generality, assume that the eigenvectors are of unit length so that
llgillo = 1 foralli ={1,...,d}.

Given this information, suppose that the parameter ¢ in the instance is equal to a scalar multiple
of the eigenvector of ¥y corresponding to the maximum eigenvalue. Note this is equivalent to the
statement that 6 is equal to some scalar multiple of the column ¢, € R? of the matrix () where ¢,
is the eigenvector of ¥y corresponding to the maximum eigenvalue A*. Thus, we take 0 = ¢ - g.
for some ¢ € R and observe that ||§||2 = ¢. Toward quantifying the value of v " %o for the problem
instance, we begin by characterizing 6 T %46 for the choice of #. Consider the following analysis:

0720 =0"QAQT O

= (cq*)TQAQT(cq*) (0 = cq.)
—1003¢] (@1 - @ o aAla o @ - ad g
. N T
=10]3[0 -+ llall3 -+ O]diag(Ar,..., A% A)[00 - g3 - 0]
(¢ 45 =0 Vi # j)
= [|0]l2A". (lg«ll2=1)

Thus, in general for this choice of 6,
v Sgv = ||0|IZN +207¢, . + 1.

To conclude, take Yy := ldlg where 1,4 represents the d-dimensional vector of all ones. Since this
is a rank-1 matrix, the maximum eigenvalue is A\* = 1dTld = d and the remainder of the eigenvalues
are zero. Observe that ¢, = 14/+/d is an eigenvector corresponding to the maximum eigenvalue
since 141, ¢« = dg.. Thus,
v v = ||B]IZNF + 26T§n75 +1
= ||0]12A* + 2]|0]]21 14/Vd + 1 (0 = cq. := ||0||]214/Vd = and (,, - == 14)
= d||0]|2 + 2v/d||0]]> + 1
> max{d||6][3, Vd||9]l2}.

This completes the proof since we have shown that there exists a parameter 6 and correlation matrix

¥ such that 62 := v Yo > max{d||0||2, v/d||0|»}, which by Theoremallows us to make the
stated conclusion. O

G Proofs of the confidence interval

G.1 Proof of Lemma[.1]

The first statement is an immediate consequence of Lemma|G.2]and the second statement is proven
in Lemma

Lemma G.1. In the compliance model, the noise n' 6 + ¢ follows a (8||9||§ + 2) -sub-Gaussian
distribution.

Proof. In compliance, we have z,x € {e, - ,eq}, and
.
n=x— (]P(el | 2),-+ ,P(eq | z)) .
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Let us figure out the sub-Gaussian parameter of the random vector 7. Fix any unit vector a. First, we
have E[(n, a)] = 0. Second, we have

‘nTa‘ <nll, (Cauchy-Schwarz inequality)

x — (]P’(el | 2),-+ ,P(eq | z))T )

.
< | |zl + H(]P’(el | 2),-- ,P(ea | z))
) (@ € {er-+ ea) and [z, < o], V)
1

<

(s

=2

Thus, i a is bounded and zero-mean and thus 22-sub-Gaussian. This implies that

V3, max E[exp(ﬁ(n,a»} < exp<ﬁ2222> .

a:llal|<1

and thus 7 is a 22-sub-Gaussan random vector. Then, 1§ is (2]|]|)?-sub-Gaussian.
Using Lemma we have that "6 + ¢ is 2(4/|0||? + 1)-sub-Gaussian.
O

Lemma G.2. Let A and B random variables that are each c%- and o%-sub-Gaussian but are
correlated. Then, A + B is 2(0% + 0%)-sub-Gaussian.

Proof. By definition of sub-Gaussian, we have for any 7 € R,
E[exp(1(4 + B)) | = E[exp(yA4) exp(1B)]
< VE[exp(294)] {/E[exp(2yB)] (Cauchy-Schwarz)
< \Jexp(2y20%) Jexp(2420%)

< exp (272(031 + 0%))-

G.2 Proof of Lemma[2.2]

Lemmal[2.2] Suppose that T" observations are collected non-adaptively from the structural equation
model in Egs. () and I’ € R%* is known. Then, with probability at least 1 — § for § € (0, 1) and
w € Re,

07 Boxacre = O] < /2020l 420111 108(2/9).

where o2 is the sub-Gaussian parameter of the noise process v := 7' § + ¢ as characterized in
Lemma 2.}

Proof. Given the knowledge of I", we have the oracle 2SLS estimator

—1 —1
T T T T T
n T T
eoracle = § Zs (F Zs) § ZsYt = § Zskg r E ZsYt-
t=1 t=1 t=1

t=1

Note that

.
yo=a/0+e = (FTZt> 0+n'0+e.

22



Denote v; := 7,' 0 + ;. For any w € W, we have

1
T T
<§oracle - 97w> = < ZZSZ;FF Zzsyt - 97U)>
t=1 =
-1

t=1
T T
Z zsstF Z Zs (z:FG + l/t) -0, w>
t=1

Il
MN/\/\/\

T T T
Z zsz;rf Z zsz;rl"ﬁ + Z zsly | — 6, w>
t=1 =

T T
E zsstF E 2V, W
t=1

T
E 252y T Zq, W )Vq.
g=1 t=1

By Lemma the noise v; is af-sub-Gaussian, we have
-1

T
E ZSZIF Zg,W )V

t=1

2
—1
. T T 2 .
is <(Zt_1 ZsZg F) 2q, w> o} -sub-Gaussian. Thus

1 2

t T
P <§oracle - 07w> Z 22< ZZSZSTF zq,w> 0'3 10g<§> S 5
q=1 t=1

Concisely,
-1 2 -1 1\ T
t T T t T
E E zsz;rF 2g, W =w' E ZSZIF E zqz;r E ZSZIF w
a=1\ \t=1 t=1 q=1 t=1
1\ T
T
—w'T! E 252 T w
t=1
-1
T
=w' | T E zezd |7 w. (11)
t=1
Thus,

-1

T
~ 1
P <90rac1e -0, w> > (2w | DT g 2524 |T wo? 10g(5> < 4.

t=1

We can further write it as

~ , 1
P <90racle - 07 'lU> > \/2“’(1)” (FT (23;1 ZEZ;F)F>—1O'1% log<5> <.
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By taking a union bound over, we have the confidence interval for the absolute value as in the
statement of the lemma. O

G.3 Proof of Theorem[2.3]

Theorem Suppose that T is estimated through a design matrix Zp, € RT1xd gpd é\p_QSLS is

estimated through a design matrix Z7, € R72%?, Then, for any w € W, with probability at least
1-9,

N 4 —
T @oezns = 0] < ol 10y 202108 5) + Tl gy 181/ o08 (20,0,

where o2 is the sub-Gaussian parameter of the noise v :=n' 0 + ¢, 072] is the sub-Gaussian parameter
of the noise 7, and

2TL? d

+161n | 29 10g2 1
A2 N owin (27 213)) 5%\ 2N 0m(Z], Z1,)

log(Zr,6) := 8d1n (1 +

Proof. For the pseudo 2SLS estimator, we have

-1
T2 T2

~ T

Op_asLs — 0 = E 21y Z]tF E z2rye — 0
t=1

~+
=

-1

T>
= ZZL,ZZF 21, (ZZF9+Vt) -0
t=1

e

o~
Il
-

T2 T2

T
E zItzItFQ—l—E zrve | — 0
t=1 t=1

_ T
= E zr,zp, T

o
L
/

t=1
T, 1o

= ZZL,ZZF zZr, v + (ffll“f])é).
t=1 t=1

For any w € W, we have

<§P—2SLS -0, w> =

-1

T 1o
zItzZF ZZItVt“‘ (F_1F—1>9,w>
t=1

|
T T

zltz;:f sztut,w>+<(f—11“—])0,w>

Il
[ !
—

T>
ZZItZITtF qu,w>uq+<<F—1F—I>9,w>
t=1

q=1

Ty Ty -1
Z< Zzltz;:f qu,w>Vq + <(f1 — I‘l)I‘G,w>. (12)
q=1 t=1

We upper bound the first term and the second term separately. For the first term, by

—1
; 2 : T T T :
Lemma [2.1, we know 1 is o.-subGaussian, we have ) q_1<( o1 z;g,ﬁf) z;q,w>uq is

2
-1
ZqTil < (ZtTil 21, zZF) 21,5 w> o2-subGaussian. Thus by the concentration inequality of sub-
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Gaussian random variables, we have

_ _ 2
T T R ! T T R ! 9 5
P Z z;tzITtF 21,,W )Vq > 22 Zzltzgf 21,,W a,%log((S) < 7
q=1 t=1

q=1 t=1

By similar calculation as (TT)), we have with probability at least 1 — g,

-1 -1

Ts Ts N . T2 ~ 2
Z< Zzltz;zr qu,w>uq§ wT | TT ZZItZITt r wa?,log((s)

q=1 t=1 t=1

2
s%w||i(ZT2,f>_1azlog(5). (13)
Thus with probability at least 1 — %,

~ | 2 ~
<9p_QSLS — 0,’(U> S ||wHA(ZT2,IA1)*1 20'3 10g<5) + <(F1 — F1>F0,’UJ>

By Theorem we have with probability at least 1 — g,

<(f1 - Fl)re,w> < Nwll 5z, -1 1011y 03108 (21, 5/2) 14

Combining (T3) and (T4), we have with probability at least 1 — ¢, for any w € W,

N 9 —
(s = 0,0 < ol 7101 202108 (5 ) + ollaczy 10101y 08 (Z1,.0/2).

By a union bound, we have the confidence interval for the absolute value of the inner product,

N 4 —
o Gocsis = 00 < Nz, 2203108 (5 ) + Tz, 1011 /o3108 211 0/).

O

Theorem G.3. Suppose that the least square estimator T is estimated through a design matrix
Zr, € RTv}4 then it satisfies, with probability at least 1 — 6,

((F=1) 00 ) < [l 7y 1011 o3i08(Zr,.0)
for any w € W.

Proof. Define V = Zj, Zr,, S € RT1*% as the matrix with i-th row being 7, , the stacked noise, i.c.,
the data collection process of the design matrix Zz, is X = Zp,I' + S. Then we have

<(f1 — rl)ro,w> —wT (f*l _ F*l)ro
-1
—wT(D+V'Zf,S) V2], 5TTH (Lemma[I.12]
—w TV Y2y 1271 56
[ty zysof

SHWHA(ZT1 -1

varzEs| el
op

<Noll 50z, 7y 16110308 (Z2,. ).
where the last inequality is due to Lemma O
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Lemma G.4. Suppose we have zy,...,27 € R and ny,...,nr € R such that nr |
215Ny e v s ZT—1, NT—15 2T IS a%—sub—Gaussian vector (defined in Assumption . Let Z,8 € RTxd

be matrices whose t-th row is z, and n/ respectively. Suppose ||z|| < L.,Vt. Let V.= Z" Z. Then,
Vo € (0,1), we have, with probability at least 1 — 0,

9T L2 2.60 4
< din |14+ ——EF—— 16ln | —-1 — | |.
s n( * d(2/\crmin(V))> 10 “( 58 (2/\crmin(V)>>

We abbreviate 1og(Zr,0) := 8dIn (1 + %) +161n ( -log (m))

HV—WZ;S

Proof. By the definition of operator norm, we have

HV*/?ZJS - Hv WZK%H
op
{o m n
= sup \/xTSTZTV—lZ:,TSm
{zlll=ll,=1}
sl -
{mmxn

Considering a fixed w € R%, by Lemma we have with probability at least 1 — 4,

2T'[,2 2 4
T < Tz —- N .
HZT SmHV—l - \/50—77 dln (1 * d(2 A O'min(V))> - 2 <5 10g2 <2 A UInin(V))>

By Lemma|G.6]and a union bound, for the e-covering C., we have the following event happens with
probability no more than §:

9T L2 2(C.| 4
E:=4<3 C ZTSH > V2 dn(14+ ——"-2— 21 Llog? ([ —M—
v € Corl| 22 Saf] |, 2 V2o, jdln 1+ 95 0y ) 2 | e logs { 57—
We abbreviate lz)Tg(ZT,d \f\/dln 1+ d(gAQ::n%,,(V))) +2In (ﬂ%l.logg (2/\om4;n(V)>)
When £ does not happen, we have
HV_1/2ZTS’ = sup HZ;SmH -
®  {alllzll=1} v
min HZ}—S(x—y—l-y)H )
{xmwn 1} {vlvece} Ve
min HZ;S(Q:—y)H —|—HZ7TSyH >
{mmxn 1}{yly€C}( v v
swp i (V2278 el + ouzr))
{xll\wl\ 1} {ylvec:} op
<e V—l/QZ;sH + olog(Zr, 0).
op
Thus,

-

0- —~
< T log(Z7,9).
opil—ﬁog( T,)

By choosing € = % and Lemma we have

2T L2 2-64 4
< n(14+ —»--""F2 16In | =— log? [ ———— .
S <o (14 gy ) + 6“( 5 °g2<2mmin<v>>>

O

v
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Lemma G.5. [Self-Normalized Bound for Vector-Valued Martingales] Suppose we have z1, . .., z; €
R and ny,...,n: € R such that n; | 21,01, .., 2t—1, M1, 2t iS Uf]-sub-Gaussian vector (defined

in Assumption . Let Z,S € R**4 be matrices whose s-th row is z] and n/ respectively. Suppose

S

llzs|| < L.,Vs. Let Vi, = Z T Z. Then, Vb € R, § € (0,1), we have, with probability at least 1 — 6,

2tL2 2 4
zT bH < V2||b din {1+ ——"2—— 2In [ =-logs [ ————— | |.
S Vt_l o fH ||2077 . ( * d(2 A O-min(‘/;f))> * " <5 0g2 2 A O'rnin(‘/;f)

Proof. Since each row of S is a o-subGaussian vector, we have that (Sb);/||b]| is o2-subGaussian.
Using Lemma|G.7| with e, = (Sb);/||b|| completes the proof. O

Vt21,’

Lemma G.6. [26]][Lemma 20.1] There exists a set C. C R% with |C.| < (g)d such that for any
v e {z|zeRY ||, =1}, there exists ay € C. such that ||z — y||, < e.

Lemma G.7. Let 21, 20,... € {z € R?: ||z||a < L.} and &1, €9, . .. € R be random variables such
) . t
that e | 21,61, -+, 2t—1,Et—1, 2t I8 Ug-sub—Gausszan. Let V; =5 =1 zsst. Then,

! /8 212 2, 4
1—-6<P|Vt>1 sEs < V2 dl 1+ —-—2 21 —-1 _—
SEVEZLID 2 o “( *dmamm(m))* "5 °g2<2mmm<vn)

s=1 —
s v, 1

Proof. Let Z; € R**4 be the design matrix and define ¢; := (£1,...,6;)" € R’ Let us omit the
subscript ¢t from Z;, ¢; and V;. Note that
T T T T
127l =127l gviavyr <127 el visomnoin— < V22 el 1opnwn-

It remains to bound || Z T ¢|| (Vtomm(v)1)~1- We use union bound with the standard self-normalized

inequality of Lattimore and Szepesvari [26][Theorem 20.4 and Note 20.2]. Specifically, let A\, =
2-k+1 for k > 1. Then,

112 (72/6)k2
1= <P|e={VkeN V=12 el yirn < ag\/dln (1 + m) L2 (5

Under the event £, we have two cases:

* omin(V) > 1: choose k = 1. Then,

||ZT€H(V+U",m(V)I)_1 < ||ZT€H(V+I)—1

< JE\/dln (1 4 tLdQ) o ((w‘;/6>>

e omin(V) < 1: choose k = [logs(20min(V)™1)] > 2, which is the k that satisfies A\ <
Omin(V) < Ak—1. Then,

||ZT€||(V+a'min(V)I)*1 < ||ZT5H(V+)\;€I)*1

tL? (72/6)k?
< i T
Us\/dln(l—i— )\k>+2ln< ;

< ¢ (1 1) o (ool V) 1Y

Ak = $Mo—1 > $0min(V); def’n of k)

Altogether, we have

2 -1 2 -1 2
12l vypyos < ey dln (1 LAV Zamw») ol ((w /LY Doga(20 (V)] )) |

We conclude the proof by simplifying the RHS. O
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H Proofs of sample complexity when given I’

H.1 Proof of Theorem[3.1]

Algorithm 5 Confounded pure exploration with known I"
Input Z,W,T',6,¢, L, > o2
Initialize: k = 1,0V, =W
Define f(w,w’, T, A) := |Jw — w’||%E
while [V}, > 1do

Ap = arg miny g a (z) MaXey,wew, f(w,w’,T',A)
p(Wy) = minyea(z) maxy, wew, f(w,w’,T';\)
Gr=2""

2
Ny = ’72(1 + W) 2p(We) Ly, log(w)-‘ Vr(w)

Zn, = ROUND(\g, Ng)
Pull arms in Z, and observe Yy,

ez DT AL22TT)7t

1
Compute é?fracle = (Z]—\r,k Zn, F) Z]—\r,k_ Y,
Wk’-‘rl = Wk\ {’LU €Wy ‘ Ju' € Wi, s.t., <’LU/ —w, éz;cracle> > Ck}
k=k+1

end while

Output: Wy

Theorem Algorithm (1| is §-PAC for the CPET-LB problem and terminates in at most ¢(1 +
w)L,p*log(1/8) + cr(w) samples, where c hides logarithmic factors of A and |[W)|.

Proof. Part 1 §-PAC

By the confidence interval in Lemma we have, with probability at least 1 — %QL\W\’

i . . AR2|W)
‘<90racle_07w_w >‘ < Hw_w ”(FT(ZSkIZItZ}Z)F)_l\/20-310g< 5 >

V1+W||w_W*||(FT/\zZZTF)*1 k2w
< 202log| ——
v N 0

<

VI +wllw —w*| 22TT) 7!
(PTA.227T) \/20310g<4kzw>
\/ {2(1 +w)G 2p(W) L, 1og(4"‘ilwﬂ Vr(w)
< G-

Define a good event & ,, for each k and W, as

S (T—

SCk}-
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We claim that with probability at least 1 — §, the event (),—,

. wew, Ek,w holds. It can be proved by
a union bound.

c

P ﬁ N Eun gi > p(s)

k=1 weWy k=1 weWy

<0, 15)

where the last step is by the fact that 33,7, 77 = %2 < 2. Under the event (V;Z; (e, Ew ks 1O
show that the best arm is never eliminated, it suffices to show that for any sub-optimal arm w € W,

<w —w", 5§rac1e> = <w - w*7§§racle - ‘9> +(w — w*,0)
< <w - U’*»azfracle - 9>
< Ck-

Thus the best arm w* never satisfies the elimination condition. Next we show that at the end of stage
k, any suboptimal arm w that satisfies

0, w* —w) >2(k

is eliminated. To show this, we need to show that w satisfies the elimination condition,

~ o~ «

wIlIéav)v{k<goracle’ U}/ - w> Z<eorac1e’ w = w>
:</9\]o€racle - 97712* - w> + <9,’UJ* - w>
> — Gk + 2Gk
:Ck.

This implies that with probability at least 1 — §, w* always survives.
Part 2 sample complexity

Define Sy, = {w e W | (w* —w,0) <4¢;}. Thus with probability at least 1 — &, we have
i {Wr C Si}. This implies the following is true with probability at least 1 — ¢ for all &

. . 112
p(We) = min pmax o —wic pey Ly

< mi — WP -
N )‘énAl(nZ) ’U’%?éxsknw v H(Zzez ITA.227T) !

= p(Sk)-

Define A to be the minimum gap between w* and any other w € W, ie., A :=
min, ey {w+}(w* —w,d). Then for k > {log(élA*l)—‘ , we have S = {w*} with probability
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at least 1 — 4. The total sample complexity is the summation of the number of samples in each round,

|'log(4A71)-|

2
= 4(1 + w) ¢ 2p(We) Ly, log<4k ;W|> Vr(w)

< ¥ 8(1+w)22kp(Wk)Lulog<4k2(lW|>\/r(w)

2
< 8(1 4 w)2% p(Sk) L., log<4k ('SW|> Vrw) . (16)

On the other hand, we have

H’LU* - wH%ZzeZFT/\zZZTF)fl

* = min max

AEA(Z) weW\{w*} (w* —w, 0)?
. Hw* 7w||%ZZEZFT>\ZZZTF)—1
= min max max
AEA(Z) Kk wESk (w* —w, 0)?
log(4A—1 %
1 . [ g( )1 ||w _w”%zzez T A 2zTD)-1
>—— = min Z max
[log(4A-1)] xea(z) & wesy (w* —w, 6)2
[10g(4A71)-|
1 2k : * 2
> - _
~16[log(4A1)] kz::l 27 i e e = wllis, sy
1 [log(4A_1)-‘
> - 22k : a2 B
~64[log(4A71)] kz::l A s, e = el ey
1 [log(“leﬂ
=T 2% p(Sk), (17)
64[log(4A=1)] —

where the last inequality is by the triangle inequality, i.e.,

max Hw — le?Z

2
* * /
wow' €55 cesDTA22TI)—1 gw,lgul’ae}%k <|U) —w H(Zzez ITAzzTT)-1 + ||w —w H(Ezez FTAzzzTF)_l)

*(2
<4 qine%f”w - w ||(ZzEzFT)\ZZZTF)71'

Combining (T6) and (I7), we have

o) st
ST Ne <l +w)Lylog(4a71) log |+ log (447" )r(w),
k=1
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I Proofs of sample complexity when given r

Algorithm 6 Confounded pure exploration with known r

InputZWF(SEL > o2, L, ><7

Initialize: & = 1,V), = W, calculate ~ using (T8)
Define f(w,w’, T, \) := ||w — w’||2

ezl T Az2TD) 1
while Jw, w’ € Wy, s.t., <w - w,@omcle> > 4y or(, > ydo
A = argminy e a (z) MaXy,wew, f(w, w’, T, A)
p(Wi) = minyea(z) maxy, wew, f(w,w',T;N)
Go=27F
2
Ny, = { (1+w) (ck 72>,0(Wk)Ly 1og(4’<5'W'ﬂ Vr(w)
Zx, = ROUND(\y,, Ny)
Pull arms in Z, and observe Yy,

1
Compute A% o ¢ = (Z;k Zn, F) ZN YN,

W1 = W\ {w €Wy | Fw' € Wy, s.t,, <w’ - w,@,f_QSLS> > (i + 7}

E=k+1
end while
Output: any w € Wy

Theorem L.1. Suppose that we have T that is an OLS estimate Sfrom an offline dataset {Zr, X1}
collected non- adapnvely through a fixed design & and the efficient rounding procedure ROUND, as
well as T' > mlog (ZT, 5/2) AlgOrlthmngarantees that with probability at least 1 — 6,

a 6y-good arm is returned, where

T wIBaEXWHw W] iz, 51 1615 m (18)

Also, the algorithm terminates in at most

J%@(ZTv 6) p(€7 ’7)
Omin (A(gaF)) T

samples, where c hides logarithmic factors of A and |W)| and ~.

c(1+ w)L, log(1/8)p*(7) + (1 + w)?L, log(1/6) Voer(w)

||w w||A (AI)-1

A =
p(A,7) wGW\{w*} (w* —w,0)2 V2

and

. [Jw w”A()\ r)-1
min
)\EA(Z)wEW\{w } (w* —w,0)2 VA2’

p*(y) =
Proof. The proof can be divided into four steps:

e The best arm w™ is never eliminated.

* At the end of stage k, any suboptimal arm w that satisfies (9, w* —w) > 2¢; + 27 is
eliminated.

* The stopping condition is met in finite time.

* When the stopping condition is met, there are only 6y-good arms left.
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 The upper bound of the sample complexity.

Step 1: The best arm w™ is never eliminated.

Bydthe co)r/l\lzidence interval in Theorem we have, with probability at least 1 — %+W’ for any k
and w € Wi,

: ] ] ealldd
’<é\§—ZSLS —0w—w >’ < lw—w ||A(sz ,f)—l\/QUg 10%((;) +7

V1+wlw—w* Sy_1 4k2
< | lax.B) 20?,10g( k‘(|;W|> oy

vV Ng
VIFwllw = w4, 7)1 02 log(4k2W> o
< : Plog| —5—
\/[2(1 + W) 2pW) Ly, 1og(4kgwﬂ vV r(w)

<k +7.

Define a good event & ,, for each k and w € W, as

Epw = {’<§§-25Ls —Q,w—w*>’ < Ck+7}~

By the same calculation as (I3), we claim that with probability at least 1 — 4, the event
Ni=1 Nwew, Ek.w holds. Under the event (2, (), Ew,k- to show that the best arm is never
eliminated, it suffices to show that for any sub-optimal arm w € W,

<w —w", tzjg-zsLs> = <w —w", @;—QSLS - l9> + (w —w*, 0)
< <w —w", 5§—QSLS - 9>
< (k4.

Thus the best arm w™ never satisfies the elimination condition.

Step 2: At the end of stage k, any suboptimal arm w that satisfies (0, w* — w) > 2(;, + 2 is
eliminated.

To prove this, we show that such arm w must satisfy the elimination condition,
max <§é 218y W — w> ><§§ asLs W — w>
w' €Wy - - -
:<§§—QSLS - 07 w* — w> + <97 w* — ’LU>
>—Ce—7+2G+2y
=Ck +7-

Thus the arm w is eliminated.
Step 3: The stopping condition is met in finite time.

Given the result in Step 2 and the fact that ( is an exponentially decreasing sequence, we know
that all of the arms w satisfying (6, w* — w) > 2~ will be eliminated in finite time. This means
that only the arms w satisfying (6, w* — w) < 2+ will remain. We need to show that Yw, w’ €

Wi, <w’ —w, @_QSLS> < 47y can be achieved in finite time. When (;, < v, (which will happen in
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finite time),

Nk Nk
<w/ - wveP—QSLS> =(w —w+w" —w*, 0. QSLS>

< /
<w* — 0p QSLS> + <w —w 791:’ 2SLS>
< *

w _wepzsLs 9+9>+<w *55-2SLS_9+9>

:<w —w, 0 ,es 9> + (w* —w, 0) + <w'7w*,§§_QSLS 70> + (w' -

<C+Y+2y+ G+
=4~.

Step 4: When the stopping condition is met, there are only 6-good arms left.

For any w € W, we have

(w* —w,0) :<U)* —w,0 — §§-QSLS> + <U)* - w>§§—25LS>
<Ck +v+4y
=6.

Step 5: The upper bound of the sample complexity.

Define W (27) as the set of 2y-good arms, i.e., W(27) : {w EW | (0,w* —w) < 27} Then
the best arm in the set W\W(2v) has a suboptimality gap min,,ew\w(2q) (0, w* —w). We de-
fine Amin(27) = minyew\wey) (0, w* —w) — 27. By the result in Step 2, we know that

after k* := {bg (4Amin(27)_1)—‘ stages, all of the arms in W\W(2v) are eliminated. De-

fine S, = {w e W] (w* —w,0) <4, +2y}. Thus with probability at least 1 — 4§, we have
M Wk C Sk}
The sample complexity of the algorithm is the total number of samples pulled, which is

2
=¥ | |2a+a (e jg>p<wk>Lulog<4’“ ;W'> Vr(w)

| 42 W)
gkz:: 3(1+w)(2 /\Py2>p(Wk)Lylog< 5 )VT(W)

< 3(1+w)(22k ;) 0(Sk) Ly 1og<4k25w> vVrw) |. (19)

Note that the factor of minyea(z)maxy wes, [|[w — w’||31(A ry-1 has the underlying true

T" in it, while the algorithm uses the plugged-in T. We need to relate it to p(Sk) =
minyea(z) MaXy, wes, ||W — ’||A()\ Byt By Lemma and defining \%(S) as the optimal

design for Sy, i.e.,

A\; = argmin max |jw — w/||,24(A -1
AeA(Z) o' €Sk 7
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Define A, = A} + 3£, we have

max [w—w|?, =
w,w’ Wy, A(Ag, D)1

. 2
EEING pmax [Jw— w5

. N2
S )\él’lAl(nZ) w%%)%k“w —w HA()MIA‘)—I

) 2 _ ~_ 2
< min max 3w —w [ g2 max (077 =) (w—w) \A(M),l
2 _ ~ 2
< e 3w =y py 2 e [T =T -
5 160210g(Zr,6/2) 2 1
<o, Sl = loeo- = ey o = gm0

where the last inequality is due to

oo =g+ <l = 9 lapaggeny
2
<l = @'z m)

:ZHw *w/||,24(A;,r)—l’

2
401]

as well as, by Lemma|J.11| when T" > T (A(ET))

1 —4/2, we have

@(ZT, 5/ 2) , we have, with probability at least

w5, (C7T =T (w =) ’i(A;J)l
: Umin(j?zfgfzi 5—/2))5, T)) ww s o - w/”ix(s,r)—l%
SW B L o [[aer)- %

We can lower bound p*(7y) by

p*(y) = min max lw” - w”?“()\yl‘)*1
AEA(2) weW\{w*} (w* —w, 0)2 V 42

. [Jw* — w||,24(>\,p)—1
= min max max
AEA(Z) k weSp\{fw*} (w* —w,0)2V 2

k* * 2
1 [[w* —w]| -1
>— min E max A(;’F) 5
k* xeA(Z) = weSi\{w"} (w* —w,0)2 Vv

k

1 Z 1
> 22k A — . . 9 )
— 16k* k_1< ~? Aéllﬁ?z)we?,}éfw*}ﬂw “’HA(,\,F) 1

o
1 ok 1 . 112
~6ik ; (2 : ’Y2> aain | max v =@l @1
Given (19), (20) and (ZI)), we have
k* y—
o2log(Zr,9) plé.)
Ny, < ce(14+w)L,log(1/8)p*(7) + ¢(1 4+ w)?L, log(1/8) —~ ~ 2+ er(w),
; (1+w) (1/0)p" () + c(1 +w) (/)amin(A(f,F)) s (w)
where ¢ hides logarithmic factors of A and |W)| and ~. O
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J Proofs of sample complexity with unknown I'

Algorithm 7 Optimal design with unknown I"
InplIt Za W7 57 Ll/ 2 012/7 Ln Z 0—%7 W, Ymin S )\min(r)7 )\E7 Ko
Initialize: k = 1, W, = W, Ty =1, =1

._ 2 o 32L o
Define f(w,w',,A) = flw —w'lt __pra sorry-o M= iy VL Gk =
s
K22
hile |W;| > 1 do
fk =I- estimator(Wk, fk_l, Ci, 0,k w, A, M, Ln) > Step 1: update r
@PC_QSLS =0 — estimator (Wk, 0, Ck, fk,w, L, k;) > Step 2: update 0

Wit1 = Wi\ {w € Wy | Fu' € Wy, st <w’ —w, @g_ms> > §k} > Step 3: elimination

k< k+1,¢G =27F
end while
Output: W

The algorithms of I' — estimator and § — estimator we present below are slightly different from
the one in the main text. In the main text, we omit the phase index & in the algorithm for simplicity.

Algorithm 8 I' — estimator
Inpl‘It Wk?7 fk*h Cka 6a k7 w, )‘Ea M7 L’r]
Define Stop(W, Z, T, §) := max,, wew||w — w’||A(Z’F),1 101151/ Lylog(Z, 8)

Initialize £/ = 1, Nj g0 = 0 > doubling trick initialization
if £ = 1 then
while ¢ = 1 or Stop(Wk, Zro0.: Tk, 5,@2) > 1do

get 2671 (r(w) v %) samples denoted as { Zj 0,¢, Xk,0,¢, Yi,0,¢ } per design A > via ROUND

K

Update I', by OLS on {Zk,o.’g, Xkﬁo,g}, b+ (+1
end while
else ~
Ak = argminyea(z) Maxy, wew, f(w,w’,Tr_1,\)

N — {4ng In (1 +2M(d+ L2) + 2M2ng) +8M1n (gk—ﬁd) v r(w)J

while / = 1 or Stop (Wk, Zi0.0U Zk 1, fk, 5k,£> > (i do

Nigae=2'N' > doubling trick update

get Ny, 1 ¢ samples per \;, denoted as {Zk,u, X1, Yk-717g} > via ROUND
qd

Nios = [diM In (M (d+ Niye + L2)) +4MIn (355) v r(w) v ﬂ

get (Ngoe — Nioye—1) samples per Ag augmented to {Zk70_,g_1,Xk70,g_1} and get
{Zk0,0: Xn0.0}
Update I'y, by OLS on { Zk,0.0 U Zj 1,6, X0, U Xiepe s £ €41
end while
endif
Output: T';,
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Algorithm 9 § — estimator
Input ka 5a Cka fkv w, Lua k
Ap = argminyea(z) Maxy wew, f(w,w’, T, A)
p(Wr) = minyeca(z) maxy,wew, f(w,w', Tk, A)
2
Nio = [2(1 + W) 2p(We) Ly, log(W)—‘ Vr(w)
get Ny, o samples per design i denoted as {Zk2, X12,Yi2} > via ROUND
update é?>€-2srus = (ngl&zk@rk)ilrzzl;r,zykﬂ
Output: 9}_255

Lemma J.1. Algorithmand N 1,6, N0, guarantees three properties:
* Property 1: Ny 1,0 > Nio,
* Property 2: 5(Nio,0 4+ Ni1e) < Nioe—1 + Nig1,0-1

* Property 3: Ni,1.1 < Mln(dM).
P ty 8d1n<1+%)+161n<%) - ( )

Proof. For Property 1, recall that Ny, g o and Ny, 1 ¢ are defined as

M 2:6°
Nioe = |2gdM In (M(d + Nee + L2)> +4M1n () v r(w)
and

2.6¢
Nyae=2%4gdM In (1 + 2M(d + Lﬁ) + 2M2ng> +8MIn (5) Vr(w)l.
k,1

We prove the result by induction. For the result for ¢ = 1, note that Ny, ; ; is of the form Ny 1,1 =
2a + 2bIn(1 + 2¢ + 2bd) and N .1 is of the form Ny o1 = a + bln(c + dr), where

a:4M1n<(2sff)
* b=2gdM

s c=M(d+ L?)
cd=M

¢ r= Nk,l,é-

By the contraposition of Lemma[K.3] we have
r>2a+2bIn(1 +2¢+2bd) = r > a+bln(c+ dr).

Thus we have Ny 11 > Nj 0,1. Now we assume the result holds for 7, i.e., Ny 1,0 > Ni,0,¢ and prove
that it holds for £ 4- 1. We have

Nii,e41 = 2Ng 1,0 > 2N 0.0
It suffices to prove that

2Ng0.6 = Nko,0+41-
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We have
2N 0.0

26d
—2|2gdM In <d+Nk1g+L +4M1n

) 2. 6d€2
>2gdM In [ M (d + N1+ L + 8M In Vr(w)

2
>2gdM In (MQ(d+Nk,17g+L )+8 (56 ) +2In(f) | Vr(w)
k,1
2 2.64
>2gdM In (M2 (d+Nk,M +L +4M 5 +2In(l+1) | Vr(w)
k,1

2lnl > 1In(f+ 1) for £ > 2)

2:64(0 +1)°
>2gdM In (M(d + 2Nj 1,0+ Lz)) + 4M In (Eﬁ) V; T(W)
k1

=Ng,0,641-
For Property 2, it suffices to prove that

1
§Nk,0,l < Nio,—1-

This is equivalent to prove that

1
5((1 +bln(c+2dr)) < a+ bln(c+ dr).

We have

(a+bln(c+ 2dr)) < a+bln(c+ dr)

L

1
= ibln(c +2dr) < 24 + bln(c + dr)

1
= bln(x/m) < 3@ + bln(c+ dr)
= Vc+2dr <c+dr
<« c+ 2dr < 2 + 2cdr + d*r?
= dr(dr+2c—2)+c*—c>0.
The last inequality holds because ¢ = M > 1.
For Property 3, we have,
4dM In (1 +2M(d+ L?) + 2MdM) +8MIn (26 k)
8in (14 X252 41600 (2652)
4dMn (1+2M (d + L) + 2MdM ) 0/ 1n (25582)
< +
8dIn (1 + N“Tlm) +161In ( 6;’“2) 8d1n (1 M) +161n ( Gdkz)

Min (1+2M(d+ L2) +2MdM)
2

<
= 5In (1 + ML?) +
<M In(dM).

(loosely apply Ny 1,1 > dM)
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Theorem J.2. Algorithm 3| guarantees that with probability at least 1 — 6, the best arm is returned,
and the algorithm terminates in at most

(1+w) ((L log(1/6) + L,,\|0||§<d + 10g(1/5))>p* + (d + 1og(1/5)) (Ln||0||§po + M))

pulls, ignoring both of the additive and multiplicative logarithms of A, |W)|, p*, po, M, where

2
. lw* —wlless _ arreerry

= ] a ’
p )\énAl(nZ) wElI/IVl\i(w*} (U}* —w, 9>2
and
_ * 2
o= we%e{xw*} |’LU w”(zzgz Mg, I'T2zTD)~1»
and
2L
M= 52l V1.

YininOmin (A(Ap, 1))

Note that po does not get hurt by (w* — w, ). It comes from the fact that in the first phase, we
initialize that algorithm with E-optimal design.

Proof. Part 1: correctness of the algorithm
The idea of the proof is similar to the proof of Theorem|3.1

Recall that the confidence interval of P-2SLS can be break down into two terms (12)).

-1

Ty Ty
<9P—QSLS -0, w> = Z< Z zltzITtF qu,w>l/q + <(F1 _ F71>I‘0, w>

q=1 t=1

Given f, for a w € VW, with probability at least 1 — % the first term satisfies

-1

T> Ty R 4
S Laraf ) ot o < Dol o0y 208005 ):

q=1 t=1

For any w € W, with probability at least 1 — %, the second term satisfies

<(F-1 - F‘l)re,w> < ol azy, 7210124/ o308 (22, 6/4).

Note that by Lemma|[G.4] the above inequality holds for all w € W, and the RHS is essentially a

result of
Hv—l/zZ;sHop < \Jo2log(Zr,5/4).

In the vanilla form of the confidence of P-2SLS, we can define good events as

* for the first term, for any w € W,

-1

Ts T>
Z< ZzltzZF zjq,w>uq < ||w||A(ZT271:),1\/203 log(16k2|W|/6).

qg=1 t=1
V—1/QZ;SHOP < \Jo2log(Zr,6/4).
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For our algorithm design, since we use the doubling trick for the first sub-phase, we need to define
the good event for the first sub-phase as the samples from each doubling trick iteration satisfies the
self-normalized concentration inequality of Lemma[G.4]

We define the good event for ¢-th doubling trick iteration in the first sub-phase of phase & as

2 _ )
1 _ -1/2 5T 2
Ere = {HVN Z’“v‘fs’“’ZHOP = 7ylog <Z’“*" (0 + 1)2) } ’

where Zy ¢y = Zp 00U Zia0, Vi = Z;IeZk-,Z and Sy, ¢ is stacked noise matrix during collecting
samples Zj, ¢ per the model X = ZT" + S. By a union bound, we have

C

P ﬁ ﬁ gl | < iip(g,;f) <5/2.

k=1/¢=1 k=1¢=1

For the second sub-phase in phase k, we define the good event for the second sub-phase in phase k
and w € W as

-1

N 2 N2
gz,w = Z< Z th,z}:rl ZIq’ w>yq S ||w||A(Zk‘2,f)71 \/2012/ 10g(16k2‘W‘/5)

q=1 t=1

By a union bound, we have

P ﬁ N €.l | < f: 3 P(5£7w> <5/2.
k=1 weWy k=1 wew

Under the good event (ﬂ;ozl N1 &, g) N (ﬂzil Nwew, S,fyw), we have with probability at least
1—6,forall kand w € W,

‘<§II§—2SLS — 0w _U’*>‘ < (k-

The rest of proof is same as the proof of Theorem 3.1]
Part 2: sample complexity of algorithm

Sample complexity for first sub-phase

Recall that A\ = arg maxycA(2) Omin (Z )\zzzT) is the E-optimal design to maximize the

z€Z
minimum singular value of ) __~ A2z | and Ky = max) Omin(Q ez A.zz ") is the maximum
minimum singular value of } __ X\.zz!. At the beginning of first sub-phase in phase k, the
algorithm first samples Ny, o o arms according to \g.

Before we proceed to the main proof of the sample complexity, we first address a minor technique
issue to avoid cumbersomeness. For the logarithmic term that appears in the algorithm and confidence
interval,

i oTL? 2.6¢ A
log(Zr,0) := 8d1n (1+ : ))> +161n 76.1og§ () :

d(2 AN O'min(Z;ZT 2N O'min(Z;“rZT)

when 2 A i (V) = 2, it is equivalent to

—~ 2 .Rd
log(T,§) := 8dIn <1 + T§Z> +161n <2§> .

Our algorithm desiﬁl guarantees that 2 A o,in (V') = 2 is always true whenever we need to use the
logarithmic term log(Z7, §), given that the samples of our interest always includes the E-optimal
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design samples Zj, o ¢ and the number of samples from the E-optimal design |Zk,0’ g’ is always larger
than %O So for the remaining part of the proof, we will use log(N, §) instead of log(Z7, §).

Denote the samples of E-optimal design that mixed into the samples from ¢-th doubling trick iteration
in the first sub-phase of phase k as Zj, o ¢ and |Zk,07g| = N0, By Lemma our choice of Ny o ¢

- 77 n 2 2 T 7'n -
Nk,o,é S (A()\E,F)> 1n<0'min (A(/\E,F)) <d+ Nk,l,ZLz + Lz) + O'min(A(AEaF)) In k) 5

is a sufficient condition to guarantee

4902108 (Nk,0,e + Ni1,0, 0k )

N, > vV . 22
k0,6 = Ooin (A(/\E,F)) r(w) (22)
: : Ni,0,0+Nk,1,e
Multiply both sides of (22) by —=%-——%-* and we have
4902@(Nkoe+Nk1ey5kz) Nioe+ Niiyge
N, N, > n i > ? Yy 5t
poe Tt e = Omin (A, T)) ") N
By Property 1 of Lemma we have ay, o == —%— Oj\i’iﬁ\fk — < 1/2, then

1 [ 490210g(Ni.o.o + Ni1.0: 0.
Nio,e+ Ngie > — nlog )

e Omin (A(AE,T)) vr()

_ 49072,10~g(Nk,0,4 + Niae,0ne)  r(w)
Omin (Aar,erp,T)) Ut
49072,16?%(]\/%,0,@ + Ni1,0,05,0)
~ Oumin (A(O‘k,l/\E + (1 = ago)M, r))

Vr(w). (23)

These condition on Ny, o, and Ny, o ¢ + Ni. 1,0 are needed for the proof.

Denote the total number of doubling trick iterations as L for phase k. In the case of Ly = 1,
the samples from the first doubling trick iteration satisfies stopping condition of the first sub-phase
already, and the algorithm will not enter the second doubling trick iteration. Thus the total number of
samples for the first sub-phase is

Nio1+ Ne11 <2Np 11 (Property 1 of Lemmal[J-T)

2.6
<8gdM In (1 oM (d + Li) + 2MngM) +16M In ((56> V r(w).
k,1

In the case of Ly > 1, for ¢ € {1,---, Ly}, denote ¥ as the estimate of T at the end of the /-th
doubling trick iteration. With these notations, we have

At the end of Lj-th doubling trick iteration, the stopping condition is satisfied, i.e.,

7112 27 1 2
wgl/%)‘i/kaw —w HA(ZIC,O‘L,CUZk,l,Lk7ka)71||9H2Lnlog(Nk’o7Lk + Nia Ly Ok,0i) < Ci
(24)

‘We short IOAJg(Nk,O,Z -+ Nk,l,éa 5k’g) = IOAJgk’E.

* Atthe end of (Lj, — 1)-th doubling trick iteration, the stopping condition is not satisfied, i.e.,

712 25 1 2
wglgﬁvkﬂw —w HA(ZIC‘O,L}C—luzk,l,Lk—17i—‘\Lk71)71 10113 Lnlogy, 1, —1 > G- (25)
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Denote &, as the empirical distribution of Zj, o, 1,, U Zj1,1,,.. Then above two conditions imply that
the number of samples for Lj-th and (Lj — 1)-th doubling trick iterations respectively satisfy

e
> ||9||2Ln10gk,Lk

2
Nio,L, + Nij,n, = 2 w’w%’%knw w ||A(5Lk,m)—1~ (26)
and
.~
||9||2Ln10gk,Lk71 /(2
Nio,0-1+ Nija,0,—1 < —a w,w%)évkuw —w HA(ng_l’ka—l)—l' 27)
Note that by Property 2 of Lemma[J1]
1
§(Nlc,07Lk + Nit,ny) < Neonp—1+ Nit,-1-
Thus
2)0113L 108, 1,1 e
Nio,L,, + Nij1,z, < s wyg%fgvkﬂw —w HA(gL,C_l,mﬂ)—r (28)

Forany ¢ € {1,..., Ly}, by Lemma the factor of max., wew, ||w — w’ ||124(& fr)-1 can be upper
bounded by

max[Jw— |,
w,w’ EWy, A(&e,I) 1

2

BON=T _ (BLp_1\—T w— 1w
(T 7T = @F=1)7T)( ) (5. ey

< ~L._ 1.1 +2 max
w,w' €Wy, HA(&I k—1)=1 w,w’ EWy

12 -T RN-T NI
Sgwg%%)é\/knw v HA(Qka*l)il +2’w7g¥2}1§\1k (F B (F ) )(w_w) ’(ZZ EZZZT)71
~ 2
+2 max |0 T = @51 (w— ' ‘ N (29)
w,w’ EWy ( ( ) )( ) (ZZ Ezzz-r)_
We will upper bound the three terms in the RHS of (29) separately.
For the first term, by Lemma([J.6]
12 M2
wglgvkﬂw —w HA({Zkafl)*l < %g&g%”w —w ||A(5\k,f’“k*1)*1’ (30)

where )\, is the optimal design for Wj, in the first sub-phase of phase k£ — 1 (based on the last doubling
trick iteration), i.e.,

A 2
Ap =arg min  max |lw—w' L
gAeA(Z) Huw’EWkH ||A()\,r k—1)—1

Then for any A,

max ||w — w’||124(

S FLp_1y—
w,w’ EW9 Ag,T7R=1)=1

(F—T _ (kafl)—T)(w _ w/) ‘2

<3 max Hw—w’||124()\7r),1+2 max

w,w’ €Wy, w,w’ €Wy A(NT)—?

(Lemmal[J.7)
2
(ZZ )\;sz—r)_l
2
(Zz A;sz—r)71 '

€1y}

where for (b1), we plug in X}, := oA g + (1 — af) A}, with o < 1/2 will be defined later and A}, is
the optimal design for Wy, given I, i.e.,

23 max ||w—w'||124()\;€7r)_1+2 max (F*T—(kafl)*T)(w—w')

w,w’ EWY5 w,w’ EWY5

O — @)= (w —w)

2 2
<6 max Hw - w’HA ye 1 T2 max
w,w €Wy, [CYRY) w,w €Wy,

No=arg min max flw— o[}

AEA(Z) w,w' €Wy A=
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(b2) is due to the fact that o < 1/2. For the second term in the RHS of (3], given the condition
23), i.e.,

49Ln10gk—1,Lk,1
Omin (A(SL;C,1 ) F))

Ni—1,0,L, 1+ Ne—1,1,0,, 4 =
by Lemma[J.TT|we have,
~ 2
T — (T8 " (w—w ‘
H( ( ) )( ) (Zz )\;szT)_l

2L7710/\ék:—1,Lk,1 1 ||w o w,HQ
" Omin (AN, 1)) Ne—1.00, 0 + Ne—11.0,, A€y, 1)1

_ 1 2Lylog,_1 1, _, Ne—1,0,0,, oo - U’IH2
7Nk—1707Lk'—1 Omin (A()\;C’F)) Nk—laOvafl"‘Nk*l,l»kal A<§Lk717r)71

1 2Lylogy 1 1, , Ne—1,0,1 o — |
T Ne-1,0.Ly_, Umin(A(aZAEvr)) Nk*LO»kalJrNkfl,l,kal Aley-p DT

1 2L7710/\ék71,Lk,1 7112 * __
SNkao,Lk_l oo (A T)) |w—w ||A(£Lk,17F)‘1 (setay = ag—1)
b1 1 2
S@Hw - wIHA(ngfl,I‘)*l
ba 6

/2
S@Hw*w HA(ngflkafl)—l' (32)
where for (b1 ), we use the condition (22) on Ni_1,0.z,_,, and (by) is due to Lemmal[l.3} Plug (32)
into (31), we have

o — |
max w w A(

2 3 2
= S Phe-ny-1 S 6 max Hw_w/HA(A,*C,F)fl—F* max Hw_w/HA(

SLp N1
w,w’ EWp g w,w' €Wy €Ly o0 k—1)=1

(33)
Plug (33) into (30), we have the first term in the RHS of (29) can be upper bounded by

mas, o/ o
w,w’ €Wy A&y, TFE—1)—1

n2 12 2
<24, ma, o = laogm- 7 mag, = v, moeos

12 =
=k
9 ||9H2L7710gk71,Lk_1

2
< 24 max Hw - w/HA()\* -1 (Nk—l,O,Lk,1 + Nk—l,l,Lk,1)5 (34)

w,w’ EWg
where for the last inequality we use the fact that the stopping condition is satisfied at the end of
(Ly—1)-th doubling trick iteration for phase k& — 1 per (26).

For the second term in the RHS of (29), by Lemma[J.10] when the condition 23) is satisfied, i.e.,
when
49L7710gk,z

Nio.+ Niae 2 m7

we have
—-T _ (P-T . 2 1 - ,
w,gl’%)é\/k (F (F ) )(UJ w) ‘(Zz Eezz—r)71 Sg w)g%%))(/vkn’w w ||A(€€,F)71
6 2
SEwﬁ%}é\,kHw—w’||,4(g,z,fz),1, (35)

where the last inequality is due to Lemma[J-3]
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For the third term in the RHS of (29), by Lemma[J.11} when the condition (Z3) is satisfied, i.e.,
when

49L7710gk—17Lk,1
Omin (A(ng—1 ) F))

Ni—1,0r0, 1 ¥ Ne—11,0,, 1 =

we have
~ 2
=" — Tk~ (w—w ‘
w,rulzl’%)\i\/k ( ( ) )(w w) (EzfezzT)71
2Lnlog,€717Lk_1 1

max [|w — |},

~ omin (A& T)) Ne—1,0,04_y + Ne1,1,04_, ww' €W €rem D)7

2Ln10gk71,Lk,1 1 I Hw _ w,Hz -
_O'min(A(OégAE,F)) Nk,LO’Lk_l =+ Nk*LLLk—l w,w’ EWYy, A(SLk—pFLk_l)*l

b1 Nig,0,0 + Ni,1,0 1 2logy_1,1,_, Goa
< ,0, »1, 2 Ny _ 4 N _ B —
Nio,0 Ni-1,0,L4y + Ne—11,L,_, Omin(A(Ag,T)) (N0, 24 L) 10l5l0g, 1 1,

<Nk,0,e + Npie 2 Gt
- N o, Umin(A()‘E7F)) ||0H§

2
lgNk,o,e + Ni1s Gt

- (36)
2
49Ln10gk,z ||9||2
where (b1) is due to 26)), (b2) is due to 22)). Plug (34), (33) and (36) into (29), we have
12
pmax v =l 7o
2 36 G
<72 max ||w—w'| . o+ (Nk-1,0,L4—y + Ne—1,1,L,_,)
' €W S [ 7 A e
12 2 2 Ngoe+1 + N <2_
N P T &

! a 0o 2.
g w,aw €Wy g Lnlogk’g ||9||2

With ¢ = Ly, — 1 and the fact that g > 24 whose exact value will be set later, we can rearrange (37) as

2
wggvkﬂw - w/HA(ng,l,fLwl)—l

72 GGy
=k
9 ||9H2L7]10gk71,Lk_1

<144 max Hw — w’Hi(

Ni_1,0,0_ 1 + Np—1,1,1,
w,w’EWk ( k 707 k—1 k IR T} k—l)

AR D)t

4 1 Nko.n, + NiaL, Gt

k| . (38)
2
9 Lylogyr,—1 10l
Note that the LHS of above can be lower bounded by (28)),
CIEQV (Nkor,+ Negi1r,) < max Hw—u/”2 S 1y _1- (39)
2||0H§Lnlog“ 1 o ok w,w €W, A€py -1, 71~
Lk —

Rearrange the terms in (39) and (38) and setting ¢ to be larger enough and using the fact that
Ck = Cr—1/2, we have

72 logy 1, 1

— (Ne—1,0,05 1 + Nk—1.1,1,,_,)-
9 logy_1.1, ,

976 o, —~ 2
Ni,o,0, + Ni,1,1,, STI%H@Hanlng,qu w7g1%}§vk||w —w HA(/\;;,F)—l

Note that by definition 1/()ch§,€7Lk_1 < loNgk’Lk, thus

576 5~ 2 72 logp,
N, + N, <—18||5L,lo max ||lw—w' e ——— (N + Ni_ ).
k,0,Ly, ke, 1, Ly a2 015 Lylogy 1, w,w/GWkH HA(/\;«F) s logkq,Lk_l( k—1,0,Le_1 k—11,Lk_1)
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Denote Dy, := Ny 0,1, + Nk,1,1, and divide both sides of above by lfovgth, we have

72 Dy

9 logy_1,1, ,

Dy, 2 112
— < —0lI5L, max |w—w .
logy. 1, G nw,w’eWkH HA(%F) !

In the case of Lj, = 1, by Property 3 of Lemmal[Jl.1] we have
De N1
logy, 1,  8dln (1 M) +161n (2 6d’f2)

< M In(dM).

Thereby we have

Dy,

Ing,Lk

72 Dy

< max Mha(dM),@H@H;L?7 max —
G w 9 logy_1,1, ,

/
,w'ewkHw -w ||A()\;;7F)—1
(40)
Taking a summation over k on both sides of (@0), we have

P K
D D D
e D +Z Pk @1
k=1 Ing,L,c 10%1,1:1 k=2 logk,Lk

K
D 576 72 Dj_
< +Zmax MIn(dM), —5- ||0H L, o max ||w w ||A()\ -1 LTkl
108;1,L1 k=2 Ci g 10g1c—1,Lk,1
(42)
Dy = 576 72 Dy
-1
<= +ZM1n (dM) +Z = ||9H L, max ||w w HA(A* ry1 t—————
logl N k=2 k=2 w w'eW, 9 logk—Lkal
43)
576 2 72 D
+ Y MIn(dM)+ 0>°L, max |w—w|* . Y Skl
10%1 L1 z:: Z CQ H ? w’w,GWkH HA(/\'“’F) 1 2 I logkﬂ,Lk_l
(44)

Thus by setting g = 72 x 2 and rearranging the terms, we have

K*

Dy 2D +22M1ndM +22576

2
— 5 11015Ly , nax
k=1 logk7Lk 10%1 Ly Ci wEW

||w w HA(,\* -1
(45)

For D, which corresponds to the first sub-phase where we use E-optimal design with doubling trick,
we have the stopping condition,

112 27 1 2
o flw—wllses, o pey - I6l2Lalogs r, < G-

This implies that when the stopping condition is met

5~
H9||2Lnl°g1,L1

Ny ,0,L1 Z Tww W, Hw w HA ELlle),l. (46)
and
2/|6[I5L,log, 1,
NI,O,L171 C12 1 wow’ €W1Hw w HA(ng 1 TL1— -1 (47)
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Since we use E-optimal design for the first phase, the factor of Hw —w' Hi(fL | FLi-1)-1 can be
-1
upper bounded by

Jw —w HA(ng,lfLrl)—l

2 _ NL—1y— 2
S?’Hw - w/HA(ng_l,F)*l + QH(F T (L1 T)(w - w’) ‘(22 ey 2eeT) (Lemmal[J.7)
2 2
<3jw - w/HA()\E,F)*l +2f|w - w/HA()\E,F)*l (Lemma([J.T0)
SGH“’ - w’Hi(/\E,m,l. (48)

Plug (@8) into (@7), and use the fact that 2Ny o, ,,—1 = N1,0,1,,¢1 = 1, we have

Nior, < 24(|0]3Lylog, ,Ly—1, max

712 2,
w, ' €W Hw —w HA(AE,I‘)fl < 24||6H2Ln10g1,1;1 max

= Hw - w/HA(AE,F)—l
49)
Thus we have,

D 2N
e WP F RN 7 <48H9||2 m%x Hw w HA(/\E,F) L = p1.

10%1,1; 10%1 L1

By the same calculation as (T7) and (19), we have

1 2

2 2

16115 Ly Z P w glfg,kaw - w/HA(,\z,F)—l < d||0]l3Ly K" p" =: p2,
=2k :

where ¢ is an absolute constant. Next we lower bound the left hand side of @3). To do this, we first
upper bound log, ;, as

__ D L2 dk2L2
logy, 1, =8dIn (1 k Z) +161n <66k>

ad12
<8dIn (1 >+321n (Lk)+161n (266k )
ad12
<8dIn <1+ ) —|—32ln<1og2<lii )) + 161n (266k )

k 2 6dk2
<32d1n d ———= ] +16In 5 , (50)

where the inequality above uses the fact that Ly, is the index of the last doubling trick iteration for
phase k, by the design of the doubling trick, we have L; < log, (%).

K* Dy - K Dy
=1 108k 1, k=1 8dIn (1 4 Dt ) +161n (%)
o
D
= : (due to (30))

i1 32din (14 222 4161 (209

>Z Dy

k=1 32d1n (1 + W) +161n (2652 )

1 i
= — > Dy.

32d1n <1 + Ek=1deL3> +161n (2092 ) k=

45



Denote p3 := K*M In(dM), looking back at #4)), we have

K" K* 2 d pr*2
. DiL 2-69K
§ Dy, < [ 32dIn <1+E’“—1d’”>+161n<6> (p1+ p2 + p3).
k=1

By Lemma[K3] we have

& 2.69 K *2 212
ZDk <32(p1+p2+p3)n| ——— | +64d(p1 + p2 + p3)In | 3+ (p1 + p2 + p3) 7

)
k=1
(5D

Sample complexity for second sub-phase

The design for the second sub-phase of phase k£ is based on ['L*, the estimate of T" at the end of the
Lj-th doubling trick iteration in the first sub-phase of phase k,

. ) 12
Aw=arg min  max fw—w[l o)

Then for any X, by Lemma[J.7] we have

max ||wfw’||2 <A
w,w EW5, A(,\k7I‘Lk)—1
2

T — (@) ) (w —w')

<3 max Hw—w’”i(%r)ﬂ—l—2 max

w,w’ €Wy, w,w’ €Wy, AN )1

We plug in A := ajAg + (1 — af)A}, with af < 1/2 will be defined later and A, is the optimal
design for Wi,
mas, oo
w,w €Wy, A(Xg,Tlr)-1
‘2
(S =)

2
sy 2

O — (@)~ T (w —w')

2
=3 w,gl/?ﬁvkuw - leA(Ag,F)’l +2 W W

(=T — (T~ (w — ')

2
<6 max |lw—w'|[y, - +2 max

where the last inequality is due to the fact that o <1 /2. For the second term in the RHS of above,
by Lemma[J.TT| we have,
‘ 2

H(I‘—T — (05T (w — ') (5. 7o)

Aol 2
70'm1n(A()\Z7F)) A(Zy 0UZEk )1

1 4L loNgk Nio,L 112
< n U, L _
“ Nio,r, Umin(A()\Z,F)) Nio,L, + Nir, Hw w HA(&LWF)’1

< 1 4Lnf(;5k,Lk Nio,1, Hw B w,H2
~ Nio,Ly, Omin(A(GAE,T)) Nro,L, + Ne,z, A€z, D)~

1 4L7710/vgk,L 2 *
SNk,O,Lk p— (A(/\E,;‘)) [|lw— “’IHA(ng,F)*l (set af = o)
b11 2
§§||“’ - w/HA(ng,F)—l
ba 1

2
3;”“’ _wIHA(ng,ka)flv (53)
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log
where for (by), we have Ny 0., > %’ and (bs) is due to Lemma Plug (33) into (32)),

Omin (A(Ap,T)
we have
mas (o —w'|% 5, ey <6 mas o — o200 max e o,
w,w’%Wk wow A(Ap The) =1 = w,w’%Wk wew AT gw,w’%Wk wow A(ng,FLk)71
2 G

<6 max

w,w’EWkHw B w/|“24(>\1tvr)71 (Nk70’Lk + Nk’l’Lk)’

9 H9||§Ln10gk,Lk
(54

where the last inequality is due to (26). According to the algorithm design, the number of samples in
the second sub-phase of phase k is defined as

_ 4k2W
Nea = 2<1+w><k2p<wk>Lylog< ! > Vi),

with p(Wy) = minyea(z) maxy wew, |w —w'|| Then we have, by setting g > 4,

2 ~
ANTDTR)=

4k W)
5

— 2
Nea & (1 +)6 L0 mas, o=/l - “’g(

) + (14 w)(Neo,0, + Vi),

where * 5’ hides logarithmic factors of [W| for the second term and constants for simplicity. Plug
(34) into the above inequality. Also note that by Lemma we can always set L, = 2(]|0||5L,, + 1).

Thus,

= = 2 4k2W) s
D Ne2 S +w) Y G2y max [lw—w'|y . o 1°g< 5 )“L(l*w)Z(NkaOva + Nea,)
k=1 k=1

w,w’ EWg

k=1
(4K W &
S(14+w)K*L,p 1Og<5||> + (14 w) Z(Nk,o7[,k + Nk1,L,)-
k=1

This essentially means that the sample complexity for the second sub-phase ) N o can be upper
bounded by summation of the sample complexity we pay for Algorithm[T]and the sample complexity

of the first sub-phase Zszl (Nk,0,L, + N1, ). Combine (51 and (53)), we conclude the result.

O
Lemma J.3. Denote
~ Ny oL? 2-64
1Og(Nk,07 5/@',0) - 8dln <1 =+ k;(l)z> =+ 16 ln <5> .
A sufficient condition for
g
g021og (N0, + Ni1,0: 0k,0)
N, > 21 el Y : 55
k0,0 2> o (ACs.T)) r(w) (55)
to hold is
16gdo? 8¢ 32902 264
Neoe > | (a4 N L2+ L2) ) + —— s =2 ).
0L i (AQe, ) n(omin (A(\g, 1)) BT )T i (AOE D))\ 0

Proof. Given

~ N, Ny.1.0)L? 2.64
log(ng,g + Nk717g,5k7z) = 8dIn <1 + ( k0 k’l'l) z) +161In () .

d 0

By Lemma([J:4] for the formula
X >Aln(D+BX)+C

we have
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8gdo}

* A= e D)
L2
° B e =
. . 16go’3, Q-Gd
C= oo ln( 5 )

e D=1 + 7Nk’ld’[Lz .

Thus a sufficient condition for the inequality to hold is

16gdo? 8gdo? NpqoL? L2 32902 2.64
Nio,e 2 Iy kil RN ) I LR P (e
o O'min(A(AE,F)) O'min(A(AE,F)) d d O'min(A()\E,F)) 5

16gdo? 8go? 32902 264
= gao, hl( 9oy (d+Nk,1,eLZ+L§)> +%71n<6 .

Omin (A()\E, F)) Omin (A()\E, F)) Omin (A()\E, I‘)) 1)
O
Lemma J4. Let X > 1, A, B > 0, then a sufficient condition for X > Aln (D + BX) + C'is
X >2AIn(AD + AB) +2C.

Proof. The proof is motivated by Gales et al. [16]. Let f € (0, 1), then
X>Aln(D+BX)+C

X A(D

<:X2A(fjl(—1>+Aln<?<§+B)>+C’ (since In(z) <z —1)

ex- )z an( (R em)) e

1 A (D c
p— = —.
<:>X_1_fA1n<2f<X+B>>+1_f
Set f = 1/2 and by the fact X > 1, we have
X > 2AIn(AD + AB) + 2C.
O

Lemma J.5. Suppose that we have a data set { Z, X1 }. Denote the empirical distribution of ZT as
&. The number of samples satisfies

2
T> _____n
Omin (A(§7 P))
T is the OLS estimate of T based on {Zr, X1}. Then

log(Z7,0) V r(w).

2 2
ool ry- < Slleol e 71

Proof. By Lemma[J.7} we have

2

2 2 -T _§-T
loliery+ <8l r +2| @ T =T Dul|,

2 L2
<3[wll e 7y-1 + §||w”A(§,F)717
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where the last inequality is due to Lemma[J.T0| with g = 2. Rearranging the terms, we have

2 2
lwllage,ry-+ < 6llwllye -1
O

Lemma J.6. Suppose that we use ROUND to sample Ny arms according to Ag denoted as Zy, and
N1 arms according to \1 denoted as Z1, with N1 > Ny. Denote the empirical distribution of all the
collected samples as &, then

2 2
Hw||A(§,F) < 4Hw”A()\1,F)*1'

Proof. Denote the empirical distribution of Zj as £y, and the empirical distribution of Z; as £, then
we have

-1
2 . T T
lwll 3 zyuz, 1)1 =w E: [hzz' T w
z2E€ZoUZy
-1
=w' E FTzle"—i—E z:'r w
zE€Zy zE€Z,

—w ! Ny Z §z70FTZZTF + N1 Z fz71FTZZTF w
z€EZ zZEZ
-1
1 T No TT Ny TT
= w 2ol zz T4+ ———— 21l zz' T w
No+ MV N0+leezf’° N0+leezj’1

-1

1 T N T_.T
< w I''2z'T w
“No+ Ny No + Ny ;.62’1

—1

2 T T T
< 21l r N1 > N,
*N0+N1w Zezzg’l = v (N1 = No)
—1
4 T TT
<— A r
NN Z 1 2z w

2€EZ
e
= w —1-
No+ N, ' HAGeD

The result follows by noting that
1

2 o 2
llfaczpuz m— = 37w Il

O

Lemma J.7. Suppose that we have an estimate T that is invertible, for any x € R? and covariance
matrix V, we have

2

2 2 — -
lolieryry-s < llelferygy o +2[@ T =T Tal| (56)

v-1’
Proof. Suppose we have an estimate L. Then,

2 2 2 2
o R P S
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Note that
TTvD) - @TvD) =T tvoir T Ty p T
=T yip-T Py i T 4oty p Tty ip T
=T v T T )+ @' =T Hy T,
Thus,
Iz fer vy = 2l ypys 42 TV O =T Nz 2T (@ =T VT s

~

T T - FfT)f”HV,l + H(F*T - FiT)mHV“ ]| &y 7y -1

2
< ||xH(fva)—1 + ”xH(FTVI‘)*l
2 1 2 1 _ ~_ 2 1 _ fay 2 1 2
< el yry + glallfryr- + 5| @7 =T al| |+ 5||@T =T e+ Sl -
(AM-GM)

This implies that

. 2
lalltrryry-s < Bllelfrypy o +2|@ T =FTal| .

O
Lemma J.8. Suppose Ay = argmin f(\) and \; = argmin g(\) and f(\) < g(A) + h(X), then

Fr) < g(Ag) + h(Ag).

Proof.
7)< min(g0) + 5V < g(0) +h(\,),

Lemma J.9. Define A} and A
X . 2
A;i=arg min  max [jw— w'||A()\z7F),1,

AEA(Z) w,w’' €W

and
A\, :=arg min max |w — u/H2 _—
AEA(Z) waw' EW A(X: D)
as the optimal design regarding 1" and that regarding its estimate I respectively. Then, we have
‘2

(EZ )\jzzT)il.

max Hw—w’Hi(Xz’f)fl < max 3Hw—w’H124()\*’F),1+ max QH(F_T—f_T)(w—w’)

w,w’ EW T waw' eEW w,w’ EW

Proof. By Lemma for any w,w’ € Wand A\, € Az,
’2

2 2 - I
Hw B w/HA(/\z,f)—l < 3||w o w/HA()\z,F)_l + QH(I‘ T_T T)(w — w/) (Zz )\2227)—1.

Thus
‘2

(Zz )‘zZZT)71 .

2 2 T oAl
w{g?gWHw - leA(Az,f)*l < w{g?gw3||w - wl”A()\z,F)*l + wg}?“gW?H(F T=T D(w—w)

By Lemma([l.§]
‘2

(ZZ )\zzz—r)_l ’

2 2 _ ~_
max o — w35 gy < ma 8w — w3 gy max 2| (07T =) (w - w)

O
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Lemma J.10. Suppose that we have T that is an OLS estimate Sfrom an offline dataset { Z,, X1, }
collected non-adaptively through a fixed design )\ and the efficient rounding procedure ROUND. Let
V= Zi-l‘—l Zr,. Then, for any x € R? and g > 1, we have, with probability 1 — §,

~ 2 1
-T _p-T < 2.l
i Y e s P
when
s Yo Tog(Zz,,6) v 2 (57)
T o (A T)) T
where p is the cardinality of support of \.
Proof. We first show that
T a1 1P
(0T -T )vafl
2
=t TSz v @+ VZ S)*TxH (Lemma[J12)

v-1

1 2 N 2
ally=3p-TSTZp V-I(T + V*lz;lS)*Ttz (| Az|? = HVEA:L‘HQ)
2

1 1 1 2
<|vrrTsTzn vl vt voizds) T

([ Az]| < [[Allgp 1D

op

2 2
STZn V=3 V—%(r+v—12£5)—TxH2 (|AB]|

op

<||lv-ar—T

on op < [14llopl1Bllop)

2
=(rtvoir T (\vetRzg s

op op

T2
VaR(r+vIIZEs) a AT, = I1AI2)

ey (eS|

op op

(Lemma[l.13} (A+ B) ' = A~' — (A4 B) 'BA™Y)

2
<|r7tvinT T \vetRz)s
op op

2

T -T
We can upper bound the the term ’V‘l/QF‘T (V_leT1 S) (F +Vz S) z|| =: Y by
2
noticing that it appears in both of a;, as above. Thus we have the inequality
2 2
v < |rtvoir T [veiezls <Hv1/2rTxH + szz).
op op 2
By rearranging the terms, we have
1 2 2
T < jo=tve | [veezgs|| veerTa|
op op 2

= 2
1= [r=rv=rr=T)| ez s|
op 1 op
By Lemma|G.4] with probability 1 — ¢, we have
2 J—
Hv—l/QZ;lsﬂ < o2log(Zr,,5).
op

Thus, with probability 1 — §, we have

1
< —
T |rtveirT| U%log(ZTl,é)H

op

_ 2
r-ly-ip-T ailog(ZTl,a)Hv—l/QF—Ta:H.

2

Pl

op
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T -7
VIR Ty — v T (VL) (D4 VTIZLS) w

2

2

(HVl/QFTxHZ + HVW’FT (v, S)T (r+ V*lz;ls)qx

2

2

).



To further upper bound U, we first find a sufficient condition on 737 such that
||F*1V*1I"THopoglog(ZTl,5) < i, g > 1. By Lemma , when T > 2p,

_ 202 _
0=tV o2og(z,,0) < Z o8(Z13.,6).
P T10min <Zz62 )\ZFTzzTI‘)
To upper bound the right hand side by i, we need
490727 _
T > log(ZTu(S)' (58)

Omin (ZzEZ )\ZFTZZTF)

With this condition (38), we have with probability 1 — 4,

1 _ 2
v < __ HF*W*1F*T o2log(Zr ,J)HV’I/QF’T;EH
1- HI‘—lV—lF—THOpU%log(ZTI,6) op ! ' 2
2
<t
1-— 35 2¢g 2
]_ 2
gHV*l/?r*TxH . (59)
g 2

O

Lemma J.11. Suppose that we have T that is an OLS estimate Sfrom an offline dataset { Zr,, X1, }
collected non-adaptively through a fixed design X and the efficient rounding procedure ROUND. Let
V be any positive definite matrix. Then, for any x € R%, we have, with probability 1 — 6,

_ ~_ 2 A r—l— — 2
H(r TP T)wa gz”r 117 THopgglog(le,5)||xHA(ZT1I),l,

when

402 _
T Tog(Zp,8) V 2p,
(Tmin(A(AJ?‘)) Og( T ) P

where p is the cardinality of support of \.

T >

Proof.

V-1

2

_ F‘TSTZTIV‘l(F—FV‘leTlS)‘TxHVq (Lemma[J-12)

. 2 L2

ally=3p-T8T 2 VUT + V—IZJIS)—Tx)L (| Az = HVEA,%HQ)

. 2
<|VrrTsTzp V2

op

2
STZp V™32

op

2
VT + V—lijlks*)—Tch2

([Az| < [ Allop 1]

| 2
viicvaizis) el qAB

< [ AllopllBllop)

op —

||| vy s

op op

~T 12
V(D4 vTIZEs) a (AT All,, = 1412
2
2
|r-rv-eT|| vy s

op op

T -T
VIR —vIATT (VL) (D VTiZLS) w
(Lemma (A+B) '=A"1—(4+B) 'BA™Y)

2

rotvoir T vz s

2
op op
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Given the condition (58) holds, we have with probability 1 — 4,
~ 2
o= -5

V-1

-ty

vzl s

op

(Lt I8 et
op 2 2

2 2

|01V [veiezgs

V71/2I‘*TaﬂH
op op 2

<of[p-yr THOpggbg(le,5)||x||(rwr),l,
where (a1) is due to (39) and setting g = 1. O

Lemma J.12. For a least square estimate 1 that is estimated through a design matrix Z and T is
invertible, we have

-~ —1
i1 1= —(r T V*lsz) v-lzTer-t,

Proof. Since [ is a least square estimator, we have
I=r+Vv-'z7s.
By Lemma([J.13] we have

—~ —1
A :(F i V*lsz) !

S (r + vflzTS)_lv*szrl.

O
Lemma J.13. For two invertible matrixes A, B € R4*% we have
(A+B) '=A"'—(A+B)'BA.
Proof. We have
(A+B) '=A"'+(A+B) " -Aa!
— Aty ((A +B) A I)A—l
=A' 4+ (A+B) " (A-(A+B))A™!
A —(A+B)'BA!
O

Lemma J.14. Suppose that we have a design matrix Zr that is sampled from a distribution A € Az,
with the efficient rounding procedure ROUND. Let p represent the cardinality of support of \. We
have, if T' > 2p,
2
< .
op  Towmin (Zz s )\ZFTZZTF)

where omin(+) is the smallest singular value of a matrix.

|izrzer)”

Proof. Suppose that each arm z € Z is sampled ¢, times, the empirical distribution of Zr is

&= (%)zez Thus, we have

1
oin (U1 23 Z7T)
1
Omin (T Yoez SZFTZZTF)
1
a T O min (ZzEZ {zFTzzTF) .

|izrzer)”

op
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By Fiez et al. [15| Proposition 2], we have

Z ET 22 T -a Z ATT22'T,

2€Z 2€Z
(74250 1] when T > 2p.  Given the fact that both of > &I 22T
and >, - A.I'"2z'I are positive definite, we have omin (Zzez §ZFTzzTF) >

QO min (Zzez )\ZFTZZTF). Thus, we have

where a €

< ! .
op T Omin (ZzEZ /\ZI‘TzzTF)

When T > 2p, we have o > 1/2, which implies the result. O

—1
H (FTZ; ZTF)

K Estimating \,;,(I")

In this section, we introduce a simple adaptive procedure that finds a high probability lower bound on
i = Amin(T") that is sufficiently accurate (i.e., within a constant factor of % ). For simplicity,
we assume ||z;|| < 1, V¢ in this section.

Our algorithm leverages confidence bounds to adaptively determine how many samples we like to
take. Let I'; := (Z " Z)"1Z T X be the least square estimate of I" after sampling ¢ times to obtain

{(2s,75) Y, where Z € R and X € R**“ are the design matrices. Let V; := >\ _, 2.2/ . We
define the lower and upper confidence bound for ~;; ;,, as follows:

LCB(t) := Amin(Ts) — ﬁ UCB(t) := Amin () + ﬁ
where

] 2t 267 |2 1
v =0 (%) (8‘““ (1 Ty ) 16 <5'10g2 (Trew) )) |

and LCB(0) := —oo and UCB(0) := cc.
The following lemma shows that LCB(¢) and UCB(¢) form a valid anytime confidence bound for

’y;knin'
Lemma K.1. (Correctness of the confidence bounds)

1—6 <P(Vt>1,LCB(t) < 7, < UCB(1))

Equipped with the confidence bounds, we are now ready to describe our algorithm for learning ;" ;|
(see Algorithm [T0). Since the tightness of the confidence bounds depends on the smallest eigenvalue
of V4, it is natural to use the E-optimal design as defined in Section[3.2] Recall that the solution of the
E-optimal design is A}, and g is the smallest singular value achieved by A},. We take in a rounding
procedure for the E-optimal design ROUND g (\, ) that takes in ¢ samples and design A and outputs
integer sample count assignments { N, } . = so that if we sample according to these counts then we
have
. -1

o—min(g‘/t) S (]‘ +w)/€0 (60)
After determining the base sample counts {m },cz by ROUND(A}, [r(w)], w), we start doubling
the sample size until we satisfy the condition LCB(t) > 1 UCB(t). Note that the sampling scheme in
the while loop is designed such that the total number of samples collected up to (and including) j-th
iteration is 2771 [r(w)]. Once the loop stops, we return LCB(t) as the claimed lower approximation
of the v . .

Let N, be the total number of samples we used in Algorithm[I0] Then, the next theorem shows that
the estimate returned by our algorithm is both a valid lower bound to ~;;, and sufficiently accurate.
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Algorithm 10 Learning A, (T')

Input: Arm set Z, rounding procedure ROUND £ for the E-optimal design, rounding accuracy w

Initialize: j = 1,¢t = 0.

Compute the E-optimal design A}, for Z.

Compute {m}.cz by ROUNDEg (A%, [r(w)]).

while LCB(t) < UCB(t) do
t« 297 r(w)].
For each arm 2z € Z, sample 29 "1m, — 1{j # 1} 2772m, times.
Estimate I'; using all samples collected so far (total ¢ data points)
j<—J3+1L

end while

Output: LCB(?)

Theorem K.2. (Correctness of Algorithm[I0) The total number of samples denoted by N, used in
Algorithm[IOsatisfies that, with probability at least 1 — 6,

i < LCB(Ny) < Yiin

We next analyze the sample complexity of the algorithm, which essentially shows the scaling of

W even if the algorithm does not need knowledge of 7 ; ..

Theorem K.3. (Sample complexity of Algorithm[I0) Then, with w = 1, we have, with probability at
least 1 — 9,

Ny =0 (r(0) + ()25 (dpolog(r5n) % 5" ) + n(2/6)) )
We remark that Allen-Zhu et al. [2] provides a rounding procedure with r(¢) = O(d/?).

Proof of Lemma|K1] Note that P=r+ V, 1 Z7 S where Z, S € RY*¢ is the design matrices with
s-th row being 2] and 1] respectively. Using Lemma we have, with probability at least 1 — 6,

N 2 _ 2
vt > 1|0 =Tl = IV, 127 S|,
~1/2,2 —1/2 2
<1V 2V 22T,
1

—~1/2 2
= ——1V /ZTSHOp

to’min(%v})

1 2t 267 4
<——— | 8dhn (14 —7———= 16ln | —-1 —_—
= t0min(1Ve) “( i d(mo—mm(m)) i “( 5 <2Aomm(v;>)>
(Lemmal[G.4)
1
=Y
The well-known Weyl’s theorem implies that max;, [\ (I'y) — Ax ()| < [Ty — ||, where A, (A) is

the k-th largest singular value of the matrix A. Choosing k& = d and combining it with the display
above conclude the proof. O

Proof of Theorem We assume V¢ > 1, LCB(t) < ~,, < UCB(t), which happens with proba-
bility at least 1 — 0. Then, it is trivial to see that LCB(V,,) < 7%,

For the other inequality, we use the fact that the stopping condition was satisfied with N,,:
1 P)/:nin
LCB(N,) > §UCB(Nw) > 5

This concludes the proof. O
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Proof of Theorem [K.3] We assume V¢ > 1,LCB(t) < Apin(I") < UCB(t), which happens with
probability at least 1 — . In this proof, we let Jmin := Amin(I'n,, ) @and 5. := Amin (T) for brevity.

If N,, = [r(1)], then there is nothing to prove. Otherwise, the loop in the algorithm was iterated
more than once. Then, since the stopping condition was satisfied with V,,, we have that in the
previous iteration where ¢t = N,,,/2 the stopping condition was not satisfied. Thus,

2LCB(N,,/2) < UCB(N,,/2) .

Using the following two inequalities:

YN, /2 YN, /2
2LCB(N,/2) > 2 | Ain — 1/ —ml2 | > 2 [ %, — 2, [ L2/
(Nw/2) > 2| 4 \/Nw/2 Yemin N../2
YN, /2 YN, /2
UCB(Nyy /2) < Fmin + 1] =22 < i + 24 | L2
(Nw/2) < Ymin + N,./2 Yomin N, /2

we have
YN, /2 72
Fo<fy | N2 Ny < :
Ymin = Nw/2 = (,y:;lin)g 7#]\fw/Q

On the other hand, with the rounding procedure, we have

N 1 1 1 1 & o 1 P
Tt (22050 ) = 3o (7 243 ) = Fpomas ((zv 2w ) ) < ptwm = gro
t=1 t=1 t=1

since w = 1. Using this and the fact that N,, > d, it is easy to see that there exists an absolute
constant ¢; such that

2
YN, /2 < cikgt (dln (1 + N, + ﬁal) +In (5>> .

Then, there exists an absolute constant ¢, such that

2
Ny < (Ymin) " 2-c2rig ! (dln (1 + Ny + ngl) +1In (5)>

We have N, on both sides. We invoke Lemma[K.3|with r = 1 + IV, to obtain

2
N, <1+ 202(7&11)_2%61 (d ln(l + 2/@0_1(1 + CQd(’y;lin)_Q)) +1In (5>> .

O
Lemma K.4. Let A, T € R where A is symmetric positive semi-definite. Then,
Omin (FTAF) 2 Umin(r)20min(A)
Proof.
(Omin(CTAD)) = DA T,

T o 1A o IT ™ o (submultiplicity of the operator norm)

= Omin (F) _2Umin (A) !
Taking the inverse on both sides concludes the proof. O
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K.1 Proof of Lemma[3.2]

Define A = ijl Aieie; , i.e. the diagonal matrix with \ on the diagonal.

Note that

minmax(e; —e;)  (TATT) " (e; —¢j) = minmaXZ o
PN PN AL

So for an upper bound, we consider A = 1/d1,

minmax(e; — ;) (TAL") ™ (e; — ¢;) < dmax [T (e; — ¢;)]I3
,] 2,]

The result about p* follows immediately.

WhenT = (1 —¢)/d11" + €I, a computation using Sherman-Morrison shows that [ =1 = 1/¢[I —
(1—¢)/d117]. Thus

T —e;))T(TAT ") (e; — e;) = e *minmax(e; —e;) ' A7 (e; — ¢;)

min max(e;
A4 A4

= ¢ ?minmaxe; TA te; + ejAflej
X i
1

=g 2 m)%n maxe; TA te; + ejA" e
1,3
> g2 m)%nmaxeiTAflei =724
1
where the last line follows from the Kiefer-Wolfowitz Theorem [26]].

K.2 lemma for solving x less than In(x)
Lemma K.5. Leta,b,c,d > 0. Then, for every r,
r<a+bln(c+dr) = r <2a+2bIn(1 + 2¢c + 2bd)

Proof. 1f dr < ¢, then
r<a+bln(2c) <a+bln(l+ 2¢)
If dr > c, then,

r < a+bln(2dr)

—a+bhn (2d2rb~2b>
<a+b (;b —14 1n(4bd)) (In(z) <z — 1)
— r<2a+2bln (ibd)
< 2a + 2b1n(2bd)
Either case, we have

r<2a+2bIn((1+2¢) V 2bd) < 2a+ 2bIn(1 + 2¢ + 2bd)

Lemma K.6. Let oo, 5 > 0. Then, for any r,

r<aln(l+r)+ 8 = r<2aln(e+a)+28
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Proof.

r < aln(r(i + 1)) +0

< aln(;a-%u(i + 1)) + 8

§a<2ra—1+1n(2a(i+1)>>+,6 (Vz,In(z) <z —1)
2 1
= rSQaln(ea(r-Fl)) +8

If r < 2q, then there is nothing to prove. If r > 2q, then r < 2aIn(1 + «) + 20. Either case, we
have r < 2aln(e + o) + 25. O
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made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: For example, we explain our limitations on lower bound.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are given is the beginning of the paper and referred later
when necessary.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Details on the experiment setup are given. It is mainly a theoretical paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: It is mainly a theoretical paper. We attach the code used for the simulation.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: It is mainly a theoretical paper with some simulations in appendix. No deep
learning or other complicated training involved. But we attach our code for reference.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bar is reported, e.g., Fig 2b.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: It is mainly a theoretical paper. Some simulations are given in the appendix.
No need for heavy computation resource.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper conforms all the code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: we discuss it in the appendix. It is mainly a theoretical and algorithmic paper,
without any sensitive data, very unlikely to have negative impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks, no such data or model involved.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not produce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use anything like crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use anything like crowdsourcing.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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