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What animal is in area [region0]?

It is a ferret [box0].

Cool, what is the animal [region1]? 
Are they the same one?

No, the animal [box1] is a ferret, 
which is a different one from the 

one [box0]. They are not the same 
ferret.

How to make the food [region0]
with available ingredients?

To make a sandwich [box0] with available ingredients,
1. You can prepare the sandwiches by placing the
sliced turkey [box1] on one bread, and the sliced
cheese [box2] on another.
2. To assemble the sandwiches, press the two halves
of the sandwich together, and you can use the knife
[box3] or your hands [box4] to hold them together if
needed. Once you have a complete sandwich, you can
use the knife to cut it into quarters or halves, and serve
it on a plate [box5].
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Figure 1: Ferret enables referring and grounding capabilities for multimodal large language model
(LLM). In terms of referring, a user can refer to a region or an object in point, box, or any free-form
shape. The regionN in the input will be replaced by the proposed hybrid representation before being
fed into the LLM. In terms of grounding, Ferret is able to accurately ground any open-vocabulary
descriptions. The boxN in the output denotes the predicted bounding box coordinates.

ABSTRACT

We introduce Ferret, a new Multimodal Large Language Model (MLLM) capa-
ble of understanding spatial referring of any shape or granularity within an image
and accurately grounding open-vocabulary descriptions. To unify referring and
grounding in the LLM paradigm, Ferret employs a novel and powerful hybrid re-
gion representation that integrates discrete coordinates and continuous features
jointly to represent a region in the image. To extract the continuous features
of versatile regions, we propose a spatial-aware visual sampler, adept at han-
dling varying sparsity across different shapes. Consequently, Ferret can accept
diverse region inputs, such as points, bounding boxes, and free-form shapes. To
bolster the desired capability of Ferret, we curate GRIT, a comprehensive refer-
and-ground instruction tuning dataset including 1.1M samples that contain rich
hierarchical spatial knowledge, with 95K hard negative data to promote model
robustness. The resulting model not only achieves superior performance in clas-
sical referring and grounding tasks, but also greatly outperforms existing MLLMs
in region-based and localization-demanded multimodal chatting. Our evaluations
also reveal a significantly improved capability of describing image details and
a remarkable alleviation in object hallucination. Code and data are available at
https://github.com/apple/ml-ferret.

Work done during an internship at Apple. †Equal contribution.
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1 INTRODUCTION

In vision-language learning, how to enable spatial understanding in models is a fundamental research
problem. Two desired capabilities stem from this problem: referring and grounding. Referring
demands that the model can accurately comprehend the semantics of specific given regions (Krahmer
& Van Deemter, 2012; Kazemzadeh et al., 2014; Mao et al., 2016; Yu et al., 2016; Zellers et al.,
2019), whereas grounding necessitates that the model to localize the region in accordance with the
given semantic description (Luo & Shakhnarovich, 2017; Nagaraja et al., 2016; Yu et al., 2017;
Kamath et al., 2021).

Essentially, referring and grounding demand the same type of knowledge: alignment of spatial
information and semantics. Despite this, existing works mostly learn referring and grounding indi-
vidually (Li et al., 2022; Wu et al., 2022; Yu et al., 2017). In comparison, humans can learn from one
task and generalize the shared knowledge to the other task effortlessly, and are able to seamlessly
integrate referring/grounding capabilities with daily dialogue and reasoning (Zellers et al., 2019).
Inspired by the above gap, in this paper, we study three main questions: (i) How to unify referring
and grounding in one framework, and will they benefit each other? (ii) How to represent versatile
types of regions that humans usually use for referring, such as point, box, scribble, and even free-
form shapes? (iii) How to make referring and grounding open-vocabulary, instruction-following,
and robust, which are crucial for practical applications?

Targeting these three questions, we introduce Ferret, a novel refer-and-ground Multimodal Large
Language Model (MLLM). First of all, we choose MLLM as the bedrock of Ferret to leverage their
powerful vision-language global understanding capability (Zhu et al., 2023a; Liu et al., 2023b; Li
et al., 2023c). To unify referring and grounding, Ferret first represents the coordinates of regions in
natural language numerical form,1 as illustrated in Figure 3. However, it is inefficient to use single
point or box coordinates to represent versatile shapes of regions, such as strokes, scribbles, or com-
plex polygons. These shapes are essential for more universal and precise human-model interaction.
To solve this problem, we further propose a spatial-aware visual sampler to acquire the visual fea-
tures for regions in any shape, taking care of the varying sparsity in those shapes. Then, the discrete
coordinates and the continuous visual features are combined together to represent the visual regions
in the input, composing a hybrid region representation in Ferret. Equipped with above methods,
Ferret can deal with input that mixes referred regions with free-form text, and is able to ground the
mentioned objects in its output by seamlessly generating the coordinates for each groundable object
along with generating text. To our best knowledge, Ferret is the first work that is able to process
free-formed region inputs in MLLMs.

In order to make the refer-and-ground capability in Ferret open-vocabulary, instruction-following,
and robust, we collect GRIT, a Ground-and-Refer Instruction-Tuning dataset with 1.1M samples.
GRIT contains multiple levels of spatial knowledge, covering objects, relationships, region descrip-
tions, and complex reasoning. It includes both text-in location-out (grounding) and location-in text-
out (referring) data, as well as data that mixes location and text in both input and output. The ma-
jority of the dataset is converted from existing vision(-language) tasks like object detection (Krishna
et al., 2017) and phrase grounding (Yu et al., 2016; Plummer et al., 2015) with carefully designed
templates to make it instruction-following. Additionally, 34K refer-and-ground instruction-tuning
conversations are collected via the help of ChatGPT/GPT-4 (OpenAI, 2023b) to facilitate training
an instruction-following and open-vocabulary refer-and-ground generalist. Moreover, we conduct
spatial-aware negative data mining, which further promotes model robustness.

Ferret subsumes strong open-vocabulary capabilities of spatial understanding and localization.
When evaluated on conventional referring and grounding tasks, it achieves superior performance.
More than that, we believe refer-and-ground capabilities should be integrated into daily conversa-
tions of humans, e.g., people refer to something they don’t know and ask what it is used for (like
Figure 1). To evaluate this new capability, we introduce Ferret-Bench, covering three new types of
tasks: Referring Description, Referring Reasoning, and Grounding in Conversation. We benchmark
existing MLLMs and observe that Ferret can outperform the best of them by 20.4% on average.
Moreover, Ferret demonstrates an intriguing property of alleviating object hallucinations.

In summary, our contributions are threefold. (i) We propose Ferret, that uses a hybrid region rep-
resentation equipped with a novel spatial-aware visual sampler, to enable fine-grained and open-

1Note that there is no additional vocabulary or position encoders introduced in Ferret model.
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vocabulary referring and grounding in MLLM. (ii) We construct GRIT, a large-scale ground-and-
refer instruction tuning dataset, for model training. It also contains additional spatial negative sam-
ples to enhance model robustness. (iii) We introduce Ferret-Bench, to evaluate tasks jointly re-
quiring referring/grounding, semantics, knowledge, and reasoning. Our model exhibits superior
performance in a wide range of tasks and reduces object hallucination.

2 METHOD

We start with detailing the proposed hybrid region representation to depict regions of various shapes
and formats. Then, we present the model architecture of Ferret.

2.1 HYBRID REGION REPRESENTATION

The object [obj0] is a pistol, and 
the object [obj1] is a knife

What is the object [region0] 
and object [region1]? 

region0
region1

Figure 2: Bounding box
v.s. Free-from Shape.
These two objects have
almost the same bound-
ing box, causing ambigu-
ity when relying on the
box to refer to. Equipped
with hybrid region repre-
sentation, Ferret can sep-
arate them.

When referring to specific regions, three primary formats are generally
used: point, box, and free-form shapes. While the point and box for-
mats can be succinctly represented by coordinates (e.g., [x, y] for a point,
and [xmin, ymin, xmax, ymax] for a box) as in Peng et al. (2023); Chen et al.
(2023b), the free-form shape is more versatile, encompassing a variety
of region types such as scribbles, polygons, and masks. The advantage
of free-form shape is straightforwardly illustrated in Figure 2. Depict-
ing free-form shapes through coordinates is computationally expensive and
obscure, and its complexity hinders the model learning to establish a clear
correlation between the provided coordinates and the corresponding re-
gions.

To generalize across all three distinct formats, we propose a hybrid region
representation that synergizes discrete coordinates with continuous visual
features to refer to a particular region, which is shown in the top-left of Fig-
ure 3. For coordinates, following Chen et al. (2021); Yang et al. (2022),
we quantize each coordinate into one of the nbins discrete bins.2 Regarding
continuous visual features, for a given region R, we first construct a 2D
binary mask M of the same size as the image, marking a value of 1 in-
side the targeted region and 0 outside of the region. Then, the binary mask
M, jointly with the extracted image feature map Z, is sent into our pro-
posed spatial-aware visual sampler s(·), which will be detailed in Section 2.2, to extract the visual
continuous feature f = s(M,Z).

Finally, we represent a point with {x, y, fRp}, where the region Rp is a circle centered in {x, y} with
a fixed radius.3 A box or a free-form shape can both be represented by {xmin, ymin, xmax, ymax, fRbox

},
where xmin/xmax denotes the minimum/maximum x-axis coordinate of the region, and so forth for
y-axis. Rbox denotes the input region.

2.2 MODEL ARCHITECTURE

As illustrated in Figure 3, Ferret is mainly composed of (i) an image encoder to extract image
embeddings, (ii) the proposed spatial-aware visual sampler to extract regional continuous features,
and (iii) an LLM to jointly model image, text, and region features.

Input. We feed the image into a pre-trained visual encoder, CLIP-ViT-L/14 (Radford et al., 2021),
to extract the image embeddings Z ∈ RH×W×C . For text, we tokenize the text sequence using the
pre-trained LLM’s tokenizer and project them into text embeddings T ∈ RL×D. As for referred
regions, we append the coordinates and a special token as a placeholder for continuous features after
the name of the region: “⟨region name⟩ ⟨coordinates⟩ ⟨SPE⟩”. For example, “a cat [100, 50, 200,
300] ⟨SPE⟩”. If the name is unknown or hard to describe because multiple objects are included, we
just use “region” or “area” as the “⟨region name⟩”. In this way, referred regions can be well mixed
with ordinary texts to form complete sentences.

2nbins = 1000 by default. The value is input invariant, which means for any input image size, the original
coordinate will be mapped to the new coordinates. This makes the model robust to different input resolutions.

3Radius is set to 5 by default.
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Large Language Model 

Image Encoder

Embedding

Image Input Text w/ references
What’s in region [100, 600, 500, 900] <SPE> ?

Spatial-Aware
Visual Sampler

It’s a cat tail [80, 590, 450, 920]
Ferret Model

Point Box Free-form Shape
(Sketch, Scribble, polygons)

Region Name + [Coordinates] + <feature>
Hybrid Region Representation

Flatten &
Projection

Sampling KNN Fusionw/ Neighbor
Pooling

Sampled Points
w/ neighbors

Input Points Sampled Points
as output

Spatial-Aware Visual SamplerFeature Map & Mask
Region Features

Block 1 Block 2

Figure 3: Overview of the proposed Ferret model architecture. (Left) The proposed hybrid region
representation and spatial-aware visual sampler. (Right) Overall model architecture. All parameters
besides the image encoder are trainable.
Spatial-aware Visual Sampler. The shape of the referred regions can be quite varied, not limited
to just points or rectangle boxes. Grid-based processing like convolution or patch attention cannot
handle irregular shapes. Similar to our cases, 3D point clouds are also in irregular shape and show
varied sparsity in the 3D space. Inspired by existing works in 3D point cloud learning (Qi et al.,
2017a; Ma et al., 2022; Wang et al., 2019), we propose a spatial-aware visual sampler.

Given extracted image feature map Z ∈ RH×W×C and the binary region mask M, we first randomly
sample N positive points inside M. For each point, its feature is obtained by bilinear interpolation.
The N points are fed into a cascade of blocks, where each of them includes three steps: sampling,
gathering, pooling. (1) Sampling: N

r points are sampled from N points via farthest point sampling
(FPS) algorithm (Qi et al., 2017b),4 which can guarantee sufficient coverage. (2) Gathering: For
each of the sampled points xi, we search its k nearest neighbors from the pool of previous N points,
and obtain a group of points {xi1, xi2, ..., xik}. Then, inspired by PointMLP (Ma et al., 2022), for
each group, we fuse the features of sampled point xi and it neighbor points by:

hik = σ([θ([Z(xik)− Z(xi);C(xik)− C(xi)]);Z(xi);C(xi)]) , (1)

where xik is one of the neighbors of xi, Z(x) denotes the point x’s feature (in the first block,
it is interpolated from feature map Z; in the succeeding blocks, it is the output feature from the
previous block), C(x) denotes the 2D coordinates of point x, [; ] means channel-wise concatenation
of multiple vectors, θ is implemented by a linear layer to adapt the relative local features, and σ is
also a linear layer to fuse each local feature from neighbors with sampled point feature. (3) Pooling:
A max pooling is conducted to fuse k neighbor features into one feature as the representation of the
sampled point:

hi = max
k:(xik)∈KNNs of xi

hik . (2)

After the three steps, we obtain fewer points but a more dense feature space since it incorporates the
local neighbor features as well as their relative positions. In experiments, we set N=512, r=4 and
k=24, and cascade two such blocks, which in the end outputs 32 points with their features. Similar
to ROIAlign (He et al., 2017), we flatten the point features into a single vector and project it to the
dimension of LLM embeddings. The final feature is used to replace the ⟨SPE⟩ token in the input.

Output. The above region denotations are used in Ferret input to refer to specific regions. In
Ferret output, to achieve grounding, we generate the box coordinates right after the corresponding
regions/nouns in the text response. For instance, “There is a dog [100, 150, 300, 200] in the figure.”
With this data format, our model is expected to implicitly learn what is groundable in the current
image and what their locations are.

LLM. We consider Vicuna (Chiang et al., 2023) as our language model, a decoder-only
LLM (Brown et al., 2020) that is instruction-tuned on top of LLaMA (Touvron et al., 2023a). Prior
to being fed into the LLM, the image embeddings undergo transformation via an additional linear
layer to match the embedding dimension of the text tokens.

4FPS starts from a random single point sampled from N points. In each iteration, it samples one point from
the rest points such that it is the farthest from the set of already sampled points. See detail in Qi et al. (2017b).
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Detail +Reasoning:
GPT Generated data

Region:
Visual Genome

Where is the corgi! corgi [box0].

What is the class of object 
[region0]! It’s a corgi.

Can you figure out 
the geometric relation of 

object [region1] and
object [region2]!

Box on the floor.

Describe the area [region3] in 
short phrase. In short, a dog sit near a sofa.

Do you know when the object
[region4] was invented!

The invention of TV [box1] is 
credit to John Logie Baird. He 
invented in the early 1920s.

Object:
Visual Genome
RefCOCOs
Flickr30k

Relationship:
Visual Genome

Robustness:
Spatial Negative Mining Is there a cat in the image! No, but there is a dog [box0] in 

the image.

Input Output

Output

Input

Input

Output

Output

Input Output

Input Output region0

box0

region1

region2
region3

region4

box1

Input

Figure 4: Overview of the GRIT dataset for Ferret model training. It contains three types of data: (i) public
datasets that are converted into an instruction-following format (the top-3 rows); (ii) data generated via prompt-
ing ChatGPT and GPT-4 (the 4th row); and (iii) negative data to enhance model robustness (the last row).

3 GRIT: GROUND-AND-REFER INSTRUCTION-TUNING DATASET

In this section, we present GRIT, a Ground-and-Refer Instruction-Tuning dataset containing around
1.1M multimodal dialogues for model training. GRIT consists of three types of data: (i) public
datasets that are converted into an instruction-following format (Section 3.1); (ii) instruction-tuning
data generated via ChatGPT and GPT-4 (Section 3.2); and (iii) additional data from spatial negative
mining for enhancing model robustness (Section 3.3).

3.1 HIERARCHY

Spatial understanding can be characterized by varying levels of granularity and task formats. During
our dataset creation, we look into the following categories based on two dimensions:

• In terms of granularity, we identify four main categories: (i) individual objects, (ii) relationships
among objects, (iii) descriptions of specific regions, and (iv) region-based complex reasoning.

• In terms of task format, we further divide the data into three distinct types: (i) Region-in Text-out
data, (ii) Text-in Region-out data, and (iii) Text-Region combined data.5

We compiled an extensive set of public data focusing on the aforementioned dimensions and con-
verted them into an instruction-following format using carefully designed templates. A more in-
depth view of these templates is available in Appendix C.1.

Individual objects. To achieve visual understanding at the object level, we select object detection
datasets such as Visual Genome (Krishna et al., 2017), Object365 (Shao et al., 2019), and visual
grounding datasets including RefCOCOs (Yu et al., 2016; Lin et al., 2014; Nagaraja et al., 2016)
and Flickr30k-Entities (Plummer et al., 2015). The converted Visual Genome object data follow a
Region-in Text-out format. Additionally, to enable Ferret to understand free-form shapes, we apply
SAM (Kirillov et al., 2023) to Visual Genome object data to obtain a segmentation mask for each
object, which is fed into the spatial-aware visual sampler to extract continuous region feature during
training. The visual grounding datasets and Object365 data adhere to a Text-in Region-out format.
This section has in total 678k data.

Relationships among objects & descriptions of regions. We selected data pertaining to object
relationships and region captions from Visual Genome (Krishna et al., 2017) to address these two
facets, respectively. Both datasets employ a Region-in Text-out format and 177k data are obtained.
Similar to Visual Genome object data, we also extract segmentation masks of objects in Visual
Genome relationship data via SAM.

5For Region-in Text-out data, the input highlights a specific region, prompting queries about it. For Text-in
Region-out data, the input comprises textual descriptions, and the task is to pinpoint or ground the relevant
region in its response. The combined Text-Region data integrates both text and region within a single sequence,
which can be present in the input, output, or both.
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Region-based complex reasoning. Regarding complex reasoning centered on specific regions, we
constructed a novel dataset with the help of ChatGPT/GPT-4. It adopts a combined Text-Region
format, and is detailed in the subsequent section.

3.2 GPT-ASSISTED VISUAL INSTRUCTION DATA GENERATION

Besides converting existing datasets by templates, dialogue instruction tuning data is proved to be
critical for MLLM to understand human intention and generate fluent, natural, and long-form re-
sponses (Liu et al., 2023b; Zhu et al., 2023a; Li et al., 2023d). Few-shot prompting is widely used
to obtain visual instruction tuning data, where textual scene descriptions of images and human-
annotated dialogues are provided as few-shot demonstrations, and ChatGPT/GPT4 are prompted to
generate new dialogue based on the new image’s textual scene descriptions.

However, previous instruction tuning data mainly focus on describing the entire image without ex-
plicitly specifying spatial-related information. To collect refer-and-ground instruction tuning data,
we emphasize region-based spatial knowledge in the following three steps. (i) Besides objects and
global captions usually used as before, our symbolic scene description additionally includes physical
relationships between objects and region captions along with coordinates of them. (ii) In human-
annotated dialogues, we add coordinates after the groundable regions or objects either in input or
output or both, and the dialogues are typically focused on specific regions. It helps to implicitly
prompt ChatGPT/GPT4 to follow similar patterns when generating new dialogues. (iii) The gen-
erated dialogues sometimes cannot follow the rules and patterns we wrote in system prompts and
few-shot examples, which might be due to that the context of LLM input is too long to handle all
the details. To alleviate it, we propose to use ChatGPT/GPT-4 again to refine the initially generated
dialogues, whose context length is only 10% of the data generated from the first round on average.
To save cost, we use ChatGPT in the first round of generation and GPT-4 for refining. 34k dialogues
in total are collected.

Additionally, to exploit existing instruction-tuning data such as those in LLaVA (Liu et al., 2023b),
we apply an open-vocabulary object detector, GLIPv2 (Zhang et al., 2022), on LLaVA-158k data to
localize groundable nouns in the text. Then, we append the bounding boxes after the corresponding
nouns, forming a pseudo-grounded LLaVA instruction data that are also used for training Ferret.

3.3 SPATIAL NEGATIVE MINING

As highlighted in prior studies (Li et al., 2023e; Liu et al., 2023a), MLLM exhibits a propensity to
hallucinate in response to yes/no questions. We observed a similar occurrence when inquiring about
detailed regions. To address this, we also conduct negative sample mining by following two ways: (i)
Image-conditioned Category Localization, and (ii) Semantics-conditioned Category Localization.
They both ask the model to localize specific object categories, thereby enabling the model’s ability
to discern and potentially recognize the absence of certain objects. They differ in how to select the
negative category. For (i), Object365 data are employed and we randomly select the object class
from the vocabulary that is not shown in the given image. For (ii), Flickr30k data are used and
negative categories are sourced by utilizing ChatGPT/GPT4 to find entities that are most analogous
to the original class, attribute, or quantity, e.g., ‘man’ vs. ‘woman’, ‘blue’ vs. ‘yellow’, ‘two’ vs.
‘three’.

We curate the data to maintain an equilibrium between positive and negative samples for each of the
two types.6 95k data are collected. A more comprehensive elaboration is provided in Appendix C.2.

4 EXPERIMENTS

First of all, we illustrate the training details of Ferret. Then in evaluation, we start with evaluating
Ferret on conventional referring and grounding benchmarks (Sec. 4.1 and 4.2). Then, we demon-
strate the power of Ferret in more complex multimodal chatting with refer-and-ground capability
in Sec. 4.3. For a detailed visualization of each, kindly check Appendix E. We further ablate key
components in Ferret (Sec. 4.4), analyze the object hallucination of Ferret (Sec. 4.5) and discuss
Ferret v.s. GPT-4V (Sec. ??).

6We observed that even though we don’t collect other data specifically for training, Ferret demonstrates the
capability to generalize robustness across diverse categories like relationships, events, etc. We attribute this
versatility to the potent compositional capabilities inherent to LLM.
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Table 1: Results of referring object classi-
fication on three different referring types, in-
cluding point, box, and free-form shape. ‘✕’
means no such capability.

Models LVIS (Acc %)

Point Box Free-form

Random Guess 50 50 50
LLaVA 50.1 50.3 ✕

Kosmos-2 (Peng et al., 2023) ✕ 60.25 ✕

Shikra-7B (Chen et al., 2023b) 57.82 67.71 ✕

GPT4-ROI (Zhang et al., 2023) ✕ 61.76 ✕

Ferret-7B 67.94 79.42 69.77
Ferret-13B 68.35 80.46 70.98

Table 2: Results of grounded image captioning on the test
set of Flickr30k Entities. BLEU@4, METEOR, CIDEr, and
SPICE are used for the caption evaluation. F1all and F1loc
are used for grounding evaluation. ‘–’ means not reported.

Models Caption Eval. Grounding Eval.
B@4 M C S F1all F1loc

GVD (Zhou et al., 2019) 27.3 22.5 62.3 16.5 7.55 22.2
Cyclical (Ma et al., 2020) 26.8 22.4 61.1 16.8 8.44 22.78
POS-SCAN (Zhou et al., 2020) 30.1 22.6 69.3 16.8 7.17 17.49
UniTAB (Yang et al., 2022) 30.1 23.7 69.7 17.4 12.95 34.79
Shikra-13B (Chen et al., 2023b) – – 73.9 – – –

Ferret-7B 35.1 24.6 74.8 18.0 15.02 37.62
Ferret-13B 37.0 25.5 76.1 18.3 15.12 38.03

Training Details. We initialize the image encoder with CLIP-ViT-L/14@336p, the LLM with Vi-
cuna, and the projection layer with LLaVA’s first-stage weights, leaving the visual sampler ran-
domly initialized. After the initialization, Ferret is trained on the aforementioned GRIT data for
three epochs, optimized by Loshchilov & Hutter (2017) with a learning rate of 2e − 5 and a batch
size of 128. The training takes ∼5/2.5 days on 8 A100 GPU for a Ferret-13B/7B. During training,
when input refers to regions, we randomly choose either the center points or the bounding boxes
(or segmentation masks if available) to represent the regions. We perform de-duplication in training
data to remove the samples that are in downstream evaluations.

4.1 INPUT REFERRING

The model’s capability of understanding referring is reflected in that, given a referred region in the
question, how accurately the model can understand the semantics of the referred region. To measure
it, we start with the most basic semantics, object, as it is fundamental and clear to define. To be more
specific, the task we evaluate on is Referring Object Classification: the question refers to a specific
region in the image, and the model needs to classify the object in the region. Since Ferret and
MLLMs usually generate free-form text responses, it is inaccurate to match the predicted class with
the ground-truth class if directly asking the model to classify without constraints. Alternatively,
we make it a binary-choice question in the format of “Is the object ⟨location⟩ a ⟨class A⟩ or a
⟨class B⟩?”. We feed the binary-choice question and image into the MLLMs to obtain the response,
and then detect if the response matches the ground-truth (GT) class by some rule.7

To prepare the data, we used the validation split of LVIS dataset (Gupta et al., 2019) covering
over 1000 object categories, and sampled 2667 objects as the GT objects. Then, we randomly
choose a different object category in the same image whose central point is close to the GT object
as the negative object, and replace ⟨class A⟩ and ⟨class B⟩ with those two randomly to form 2667
questions. Additionally, to mimic the versatility of referring in human life, we replace the ⟨location⟩
with three different types: point, box, and free-form shape. For point, we randomly sample a point
inside the GT object that is also near the GT object’s boundary. For box, we use the GT bounding
box provided by LVIS. For the free-form shape, we randomly generate some strokes inside the GT
object to simulate that. Results on all three types of referring are summarized in Table 1. Ferret can
significantly outperform previous models (Peng et al., 2023; Chen et al., 2023b) and handle all types
of referring, a capability notably absent in previous works.

4.2 OUTPUT GROUNDING

Ferret performs well in referential dialogue, allowing for its integration into various VL tasks, no-
tably those with grounding outputs. To rigorously assess the grounding capability, we first subject
Ferret to benchmark visual grounding tasks in a generative paradigm. Then, to measure the align-
ments between words and regions, we further evaluate Ferret on grounded captioning task.

Visual grounding. Visual grounding aims to ground language queries into aligned image regions.
We experiment on the sub-tasks of referring expression comprehension (REC) with three renowned
benchmarks: RefCOCO (Lin et al., 2014), RefCOCO+ (Yu et al., 2016), and RefCOCOg (Mao
et al., 2016), and phrase grounding with Flickr30k Entities dataset (Plummer et al., 2015). REC
task involves a question or description about a specific area in an image, with the model expected
to predict just one bounding box. Phrase grounding, conversely, seeks to associate all the noun

7Sometimes both GT class and negative class appear in the answer, e.g., “The object is ⟨class GT⟩, not
⟨class Neg⟩”. Our rule removes the substring in-between “not” and comma/period, and then detects GT class.
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Table 3: Performance comparison (Acc@0.5) on the referring expression comprehension (RefCOCO, Ref-
COCO+, RefCOCOg) and phrase grounding (Flickr30k Entities) tasks. ∗ indicates that the method is specifi-
cally fine-tuned in the second stage.

Models RefCOCO RefCOCO+ RefCOCOg Flickr30k Entities
val testA testB val testA testB val test val test

MAttNet (Yu et al., 2018) 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01 – –
OFA-L (Wang et al., 2022b) 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 – –
TransVG (Deng et al., 2021) 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73 – 79.10
UNITER (Chen et al., 2020) 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67 – –
VILLA (Gan et al., 2020) 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71 – –
UniTAB (Yang et al., 2022) 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97 78.76 79.58
MDETR (Kamath et al., 2021) 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 82.3* 83.8*

Shikra-7B (Chen et al., 2023b) 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 75.84 76.54
Ferret-7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76 80.39 82.21
Shikra-13B (Chen et al., 2023b) 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 77.41 78.44
Ferret-13B 89.48 92.41 84.36 82.81 88.14 75.17 85.83 86.34 81.13 84.76

phrases in the input sentence with corresponding boxes, requiring the model to predict these boxes
and the word-box connections. For both tasks, we utilize uniform prompts, represented as “What are
the locations of <query>/<phrases>?”, where <query> denotes the textual referring expression,
while <phrases> stands for a “comma-delimited” aggregation of the given phrases. The model is
trained to output in “<query> [box].” format. The generated bounding box is considered correct if
its intersection over union (IoU) with the GT box is greater than 0.5. As shown in Table 3, Ferret
achieves an outstanding performance on all metrics, and is comparable to specialized fine-tuning
approaches (Kamath et al., 2021).

Grounded captioning. The grounded captioning task requires the model to generate a caption and
ground all generated noun phrases to image regions. The final predictions generally consist of three
parts, i.e., the text caption, visual regions as boxes, and the grounding alignments between words
and boxes. Following the established benchmarks on the Flickr30k Entities dataset, we evaluate
captioning and grounding separately with the captioning metrics and grounding F1 scores, respec-
tively. F1all evaluates grounding as a multi-label classification problem. We also report F1loc that
only computes the grounding score on correctly predicted object words. Results are summarized in
Table 2, and Ferret achieves state-of-the-art.
4.3 FERRET-BENCH: MULTIMODAL CHATTING WITH REFERRING AND GROUNDING

Multimodal chatting has been an emergent ability of MLLMs. Previous benchmarks (Liu et al.,
2023b) mainly evaluate conversation, detailed description, and complex reasoning via GPT-4 as
a judge. Yet, a gap exists as no dataset currently evaluates multimodal chatting that necessitates
referring or grounding actions, e.g., instances where individuals reference an unfamiliar object and
inquire about its purpose. To benchmark this intriguing and practical capability, we introduce Ferret-
Bench that covers three kinds of region-based questions evaluating referring and grounding capa-
bility: (i) Referring Description: models are asked to describe a referred region based on its in-
teraction with surrounding objects. (ii) Referring Reasoning: models need to reason on top of
one or more referred regions correctly. (iii) Grounding in Conversation: models are required to
reason correctly and accurately ground/localize the objects/regions necessary for the reasoning. For
the ease of benchmarking other methods, we represent the regions with boxes instead of points or
free-form shapes.

Specifically, we randomly sample 40 images from the COCO validation set for each type of question,
and generate the questions and GPT-4’s answers following the instruction generation pipeline in
Sec. 3.2. Following Liu et al. (2023b), we feed the question and image into MLLMs to obtain
the predicted answer, and then prompt GPT-4 to rate the predicted answer and pseudo answer from
GPT-4 based on the ground-truth textual scene description (object, relationship, region caption,
global caption). GPT-4 evaluates both the precision of referring understanding, object grounding,
and correctness of semantics. The rating score ranges from 1 to 10, in which higher means better.
We calculate the ratio of the predicted answer’s score and the GPT-4 answer’s score, which is then
presented as a percentage to measure the performance of MLLMs. We also asked GPT-4 to give a
comprehensive review for the rating and found that GPT-4 is good at measuring the degree of spatial
precision, such as how much the predicted bounding box diverges from the GT box coordinate. We
refer the readers to Appendix D for further elaboration.
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Table 4: Results on LLaVA-Bench and the proposed Ferret-Bench via GPT4-as-a-Judge evaluation.

LLaVA-Bench Ferret-Bench

Conversation Detail Complex Avg. Referring Referring Grounding in Avg.Description Reasoning Description Reasoning Conversation

LLaVA8 85.4 68.3 92.1 81.9 41.4 31.7 28.8 34.0
Kosmos-2 71.7 63.4 74.9 70.0 51.8 33.7 48.4 44.6
Shikra-7B 80.6 70.7 88.1 79.9 46.0 41.6 50.1 45.9
Ferret-7B 84.4 79.4 96.3 86.7 68.7 67.3 57.5 64.5
Ferret-13B 85.2 80.9 96.4 87.5 70.6 68.7 59.7 66.3

Table 5: Ablation study on the mutual benefit of
grounding data and referring data. We evaluate Ac-
curacy for LVIS referring and R@1 for grounding.

Model Referring (LVIS) Grounding

Point Box Flickr30k

Ferret 67.9 79.4 80.4
w/o Grounding data 65.4 75.6 ✕

w/o Referring data ✕ ✕ 79.8

Table 6: Ablation study on the effectiveness of the pro-
posed spatial-aware visual sampler. Accuracy is used to
evaluate LVIS referring.

Module Referring (LVIS)

Point Box Free-form

Spatial-aware Visual Sampler 67.9 79.4 69.8
Visual Sampler in SEEM 67.1 77.2 68.9

We use LLaVA-Bench (Liu et al., 2023b) and the proposed Ferret-Bench to compare Ferret with
previous models, including LLaVA (Liu et al., 2023b), Shikra (Chen et al., 2023b), and Kosmos-
2 (Peng et al., 2023). Results are summarized in Table 4. Ferret achieves superior performance in
all types of tasks, boosting the score for the detailed description category from 68.3 to 80.9, and
especially excels at the three new tasks demanding referring and grounding abilities.

4.4 ABLATION

In the ablation studies below, in default, we ablate Ferret-7B and mainly evaluate in referring object
classification and grounding tasks on Flickr30k Entities validation set.

Mutual benefits of grounding and referring. As shown in Table 5, grounding and referring, as
two main capabilities emphasized in this paper, can actually benefit each other. Particularly, when
adding grounding data into training, the referring performance gets improved, and vice versa.

Spatial-aware Visual Sampler. We ablate the effectiveness of the spatial-aware visual sampler
by replacing it with the visual sampler in SEEM (Zou et al., 2023), where they average the features
of all the sampled points as the region feature. As we can see in Table 6, ours can outperform the
previous visual sampler in all three referring tasks.

LLM model size. We study how much LLM model size influences the performance of referring
and grounding. As seen in Table 1-4, having a larger LM backbone can generally help.

4.5 OBJECT HALLUCINATION

Attribute to the incorporation of fine-grained spatial knowledge and negative mining, Ferret also
exhibits strong power against the hallucination problem. We evaluate object hallucinations on the
POPE benchmark (Li et al., 2023e). Results are summarized in Table 7. Ferret has exhibited perfor-
mance comparable to Shikra (Chen et al., 2023b), and far surpasses recent popular MLLMs.9

5 CONCLUSION

We present Ferret, a new multimodal large language model adept at referring and grounding. Fer-
ret can refer image regions in any free-form shape, and automatically establish grounding for text
deemed groundable by the model. We have curated the GRIT dataset for model training, and the
Ferret-Bench dataset for evaluation. Ferret, like most MLLMs, may produce harmful and counter-
factual responses. For future work, inspired by LISA (Lai et al., 2023), we plan to enhance Ferret to
be able to output segmentation masks in addition to bounding boxes.

8The result on LLaVA-Bench is obtained by evaluating LLaVA released checkpoint. The slight discrepancy
might be due to evolving GPT4 APIs. For Ferret-Bench, we employ the same conversation template as Ferret,
providing LLaVA with a predefined input size, resizing all coordinates accordingly, and generating a response.

9Unlike other methods, Ferret refrains from relying on VQA. This decision stems from our observation that
VQA answers tend to be concise, and this brevity can restrict the conversational capabilities of LLMs.
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Table 7: Results on the object hallucination benchmark using the POPE evaluation pipeline (Li et al.,
2023e).

Datasets Metrics Ferret Shikra InstructBLIP MiniGPT4 LLaVA MM-GPT mPLUG-Owl

Random

Accuracy (↑) 90.24 86.90 88.57 79.67 50.37 50.10 53.97
Precision (↑) 97.72 94.40 84.09 78.24 50.19 50.05 52.07
Recall (↑) 83.00 79.26 95.13 82.20 99.13 100.00 99.60
F1 Score (↑) 89.76 86.19 89.27 80.17 66.64 66.71 68.39
Yes 43.78 43.26 56.57 52.53 98.77 99.90 95.63

Popular

Accuracy (↑) 84.90 83.97 82.77 69.73 49.87 50.00 50.90
Precision (↑) 88.24 87.55 76.27 65.86 49.93 50.00 50.46
Recall (↑) 80.53 79.20 95.13 81.93 99.27 100.00 99.40
F1 Score (↑) 84.21 83.16 84.66 73.02 66.44 66.67 66.94
Yes 45.63 45.23 62.37 62.20 99.40 100.00 98.57

Adversarial

Accuracy (↑) 82.36 83.10 72.10 65.17 49.70 50.00 50.67
Precision (↑) 83.60 85.60 65.13 61.19 49.85 50.00 50.34
Recall (↑) 80.53 79.60 95.13 82.93 99.07 100.00 99.33
F1 Score (↑) 82.00 82.49 77.32 70.42 66.32 66.67 66.82
Yes 48.18 46.50 73.03 67.77 99.37 100.00 98.67

Table 8: Comparison of Ferret v.s. recent MLLMs integrating spatial awareness. ‘Convention’ refers
to a comprehensive collection of publicly available data that has been transformed using templates,
‘GPT-Generate’ signifies the generated refer/ground datasets employing GPT, and ‘Robustness’ de-
notes datasets aimed at mitigating hallucination and improving robustness. Section 3 explains more
details about each.

Model Input Types Output
Grounding

Data Construction Quantatitive Eval.
of Refer/Ground

w. ChatPoint Box Free-form Convention GPT-Generate Robustness

BuboGPT ✗ ✗ ✗ ✔ ✔ ✗ ✗ ✗
Vision-LLM ✗ ✗ ✗ ✔ ✔ ✗ ✗ ✗
Kosmos-2 ✗ ✔ ✗ ✔ ✔ ✗ ✗ ✗
Shikra ✔ ✔ ✗ ✔ ✔ ✔ ✗ ✗
GPT4-ROI ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✗
PVIT ✗ ✔ ✗ ✗ ✔ ✔ ✗ ✔
Ferret ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

A RELATED WORK

Multimodal large language models (MLLMs). Large Language Models (LLMs), including
GPTs (Brown et al., 2020; OpenAI, 2023a), PaLM (Chowdhery et al., 2022), BLOOM (Scao et al.,
2022), and LLaMA (Touvron et al., 2023a;b), have revolutionized research in NLP, spurring sig-
nificant advances in multimodal language models as well. Early models primarily focused on
large-scale image-text pre-training. Notable examples include SimVLM (Wang et al., 2022c),
GIT (Wang et al., 2022a), PaLI (Chen et al., 2022b), PaLI-X (Chen et al., 2023c), BLIP-2 (Li
et al., 2023c), Flamingo (Alayrac et al., 2022), PaLM-E (Driess et al., 2023), CM3 (Aghajanyan
et al., 2022), and CM3Leon (Yu et al., 2023). Flamingo, in particular, pioneered the integration
of a pre-trained CLIP image encoder with LLMs through gated cross-attention blocks, showcasing
emergent multimodal in-context few-shot learning capabilities. Its open-sourced variants, such as
OpenFlamingo (Awadalla et al., 2023) and IDEFICS (Laurençon et al., 2023), have garnered sig-
nificant attention. Typically, these models undergo pre-training using millions or even billions of
image-text pairs and interleaved image-text datasets (Zhu et al., 2023b).

On the other hand, recent research has increasingly focused on using pre-trained LLMs for visual
instruction tuning. Prominent examples include LLaVA (Liu et al., 2023b), MiniGPT-4 (Zhu et al.,
2023a), mPLUG-Owl (Ye et al., 2023), Otter (Li et al., 2023a), InstructBLIP (Dai et al., 2023),
to name a few. In addition to text generation, recent models like FROMAGe (Koh et al., 2023b),
GILL (Koh et al., 2023a), Emu (Sun et al., 2023), have also enabled MLLMs for image retrieval and
image generation. Please refer to Chapter 5 of Li et al. (2023b) for a detailed review.
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MLLMs for referring and grounding. In the realm of existing literature, works such as Kosmos-
2 (Peng et al., 2023) and Shikra (Chen et al., 2023b), closely resemble ours as they also enable
MLLMs for fine-grained image comprehension and open-world referring and grounding. Addi-
tional works in this direction include GPT4ROI (Zhang et al., 2023), PVIT (Chen et al., 2023a),
BuboGPT (Zhao et al., 2023), VisionLLM (Wang et al., 2023), and ContextDET (Zang et al., 2023).
Nevertheless, pivotal distinctions set our model apart. First, prior endeavors supported only bound-
ing boxes (and points in Shikra) as input. Conversely, due to Ferret’s innovative hybrid region repre-
sentation, we accommodate a broader range of free-form shapes for referring, encompassing points,
boxes, sketches, scribbles, polygons, and more. Second, we meticulously curate an extensive refer-
and-ground instruction tuning dataset. Third, we introduce Ferret-Bench to facilitate forthcoming
research and enhance evaluation benchmarks in this direction. Lastly, our model exhibits superior
performance compared to previous works, notably mitigating object hallucination to a significant
extent. A more straightforward side-by-side comparison is shown in Tab. 8.

Unifying grounding and VL understanding. Our work is also related to previous work that aims
to unify text and bounding box output for vision-language (VL) models, such as UniTAB (Yang
et al., 2022), OFA (Wang et al., 2022b), and Unified-IO (Lu et al., 2022), which also represent
bounding boxes using a set of additional discrete tokens as proposed in Pix2Seq (Chen et al., 2021;
2022a). Ferret is unique in that (i) our model is built upon LLMs, marrying the power of LLMs and
grounding, thus unlocking new capabilities such as grounded instruction tuning, and (ii) we handle
bounding box coordinates as regular text tokens, avoiding the need for extra specialized tokens
dedicated to representing boxes.

B DISCUSSION ON LIMITATION AND FAILURE CASES

We acknowledge certain specific failure scenarios and limitations for our models, which are detailed
as follows:
Failure Scenarios: (1). Referring to too many objects (more than 3) in one question might not be
as accurate as referring to each of them in separate conversations. This is likely due to a relative
scarcity of training data that mentions too many objects. (2). The referring and grounding of very
small objects is less accurate than large or medium objects. It’s a common challenge in object
detection. However, we think further improving input image resolution is able to help.
Limitations: (1). Not good at other languages because the training dataset is curated only in English.
Although Ferret shows some emergent referring and grounding capability in other languages, its
performance in other languages is still worse than in English. Future incorporation of multilingual
training data could potentially mitigate this. (2). Similar to many large language models, Ferret has
the potential to generate harmful or factually incorrect responses. (3). Ferret is not designed for
segmentation tasks requiring mask outputs.

C DETAILS OF DATASET

C.1 TASK TEMPLATES FOR PUBLIC DATASETS

In Section 3.1, we mentioned using carefully designed task templates to convert public datasets such
as Visual Genome into instruction-following format. The task templates we used are provided in
Table 9. For simplicity, we only list three examples for each task.

C.2 DETAILS ON SPATIAL NEGATIVE MINING

In Section 3.3, we conducted negative sample mining for two aspects: (i) Image-conditioned Cate-
gory Localization, and (ii) Semantics-conditioned Category Localization. They use the same tem-
plate to convert the original data, which falls into the task of object hallucination in Table 9. Specif-
ically, for the negative categories in (ii), we prompt ChatGPT/GPT-4 to generate entities that are
most analogous to the original class, attribute, or quantity, e.g., ‘man’ vs. ‘woman’, ‘blue’ vs. ‘yel-
low’, ‘two’ vs. ‘three’. The prompt feed into ChatGPT/GPT-4 encompasses all the entities extracted
from 5 captions associated with one single image. We show the exact prompt template in Table 10.

16



Published as a conference paper at ICLR 2024

Table 9: Examples of task templates Ferret used to transfer different public data types into the
instruction-following format.

Task Three randomly chosen examples from many.

Referring-Object
What is the class of the object <location> within the image?
Classify object <location> in the image.
Identify the object <location> in the image.

Referring-Relation
What does <object1> <location1> do to <object2> <location2> of the image?
What is the physical relation between <object1> <location1> and <object2> <location2>?
Can you figure out the geometric relation of the <object1> <location1> and <object2> <location2>?

Referring-Region
Describe the region <location> in a short phrase.
What is in the region <location>? Describe in a phrase.
Capture in a phrase: what’s near region <location> in the picture?

REC.
Where is <object> in the image?
What are the coordinates for the given <object> in the image?
Given the image, could you please tell me where is <object>

Phrase Grounding
What are the locations of <objects>?
Could you provide me with the exact locations of <objects>?
Please indicate the positions of <objects> in the image?

Object Detection (O365)
Detect all objects among <class> in the image.
Perform object detection given the image within <class>.
Given the image and set <class>, identify all the objects that belong to the set.

Grounded Captioning
What is this photo about? Use concise language.
Describe the overall picture in just a few words.
What do you see happening in this image? Provide the answer in short.

Object Hallucination
Is there a <object> in the image?
Are there <object> in the image?
Please tell me whether <object> exists in the image?

Table 10: In this example, we provide the prompt to generate the spatial negative sets.

messages = [ {"role":"system", "content": f”’You are an AI visual assistant that can
analyze a single image. You receive several entities given by a list, each describing the objects in
the image you are observing.

For each entity mentioned, change them with the most misleading entity name (may belong to
the same category but are actually different) (nonexistent objects: man → woman, nonexistent
attributes: brown → yellow, nonexistent quantities: two → three, etc.). The instructions should
contain interrogative and declarative sentences.

The output format needs to be a list only which contains the misleading entity names. Please follow
the instructions carefully.

1. The length of the output list needs to be exactly equal to the input list.

2. Do not explain the reasons.

3. Do not mention the input entities, at least the output name and input name needs to be different.

4. Do not mention something abstract, like älien.̈

5. When dealing with quantities, focus solely on increasing the numbers during revision.

6. When dealing with words like ”a few”, ”a group”, ”several”, ”some”, etc., try changing the
objects (A few men → A few women).

7. Ensure that inclusive words are not substituted with their specific subsets. For example, if the word
is ”people,” avoid replacing it with genders like ”man” or ”woman.” Instead, consider modifying
them to different categories, such as ”people” → ”animals.”.”’}]
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C.3 EXAMPLES FOR GENERATING REFER-AND-GROUND DATASETS

We provide some example prompts to generate refer-and-ground from ChatGPT/GPT-4. Prompt
and the in-context example of multiple-round visual conversation data are shown in Table 11 and
Table 12. Prompt and the in-context example of one-round reasoning data are shown in Table 13
and Table 14.

Table 11: In this example, we provide the prompt used to generate the conversation response for
refer-and-ground instruction tuning, following the practice of LLaVA (Liu et al., 2023b).

messages = [ {"role":"system", "content": f”’You are an AI visual assistant that
can analyze a single image. You receive five global captions, each describing the same image you
are observing. In addition, specific object locations within the image are given, along with detailed
coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2)
with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y,
bottom right x, and bottom right y. Also, the relationships between pairs of objects are provided in
the format of object → relationship → subject, where the object/subject are indexed by object id
from previous object lists as well as the object names. Also, several region descriptions are given,
each describing a box region of the image, with detailed coordinates.

Design a conversation between you and a person asking about this photo. Ask diverse questions and
give corresponding answers. The answers should be in a tone that a visual AI assistant is seeing the
image and answering the question.

Here are some additional requirements about generated questions and answers:

1. Only include questions that have definite answers:
(1) one can see the content in the image that the question asks about and can answer confidently;
(2) one can determine confidently from the image that it is not in the image. Do not ask any
questions that cannot be answered confidently.

2. Also include complex questions that are relevant to the content in the image, for example, asking
about background knowledge of the objects in the image, asking to discuss events happening in the
image, asking about object actions in the context of entire images, etc. Again, do not ask about
uncertain details.

3. Provide detailed answers when answering complex questions. For example, give detailed
examples or reasoning steps to make the content more convincing and well-organized. You can
include multiple paragraphs if necessary.

4. In all samples, either in question or answer, you must mention bounding box coordinates to refer
to the object or regions instead of directly saying the object name or describing the regions in text.
In answer, explain the region in the context of the scene.

5. Do not mention that the information source is provided in the text/caption/region description.
Always answer as if you are directly looking at the image.

6. Make the question as diverse as possible. Include questions asking about the visual content of
the image, including the object types, counting the objects, object actions, object locations, relative
positions between objects, object selection, object functions, etc. Make the question challenging by
less including the visual content details in the question.”’}
]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]}
)

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 12: One example used in in-context learning to construct GPT-Assisted Refer-and-Ground
Instructon-Tuning. We encourage readers to refer to the codebase for the prompts for other types.

Objects
Object 0: chair at [0.596, 0.637, 0.698, 0.997].

...
Relationships
Object 11 : frame → with → Object 9 : photo

...
Region Descriptions
Region Description at [0.560, 0.466, 0.600, 0.529] :

a white picture frame with a black and white photo on it.
...

Global Caption
White chairs sit around a polished wood dining table while

a sectional soft sits in the background.
...

Conversation
Question:
What is the object [0.212, 0.539, 0.718, 0.820] made of?
===
Answer:
The dining table over there is crafted from a tree trunk.
===
Question:
Where would be a good place to have my dinner? Point out the locations in image.
===
Answer:
I suggest having dinner at the table [0.214, 0.541, 0.720, 0.997], possibly sitting on the white chair [0.264, 0.717, 0.524, 0.995].
Also, enjoy the wine [0.242, 0.644, 0.288, 0.682].
===
Question:
In terms of comfort for resting, which object is better - the one [0.830, 0.431, 0.978, 0.596] or the one [0.264, 0.717, 0.524,
0.995]?
===
Answer:
Among the two, the couch [0.830, 0.431, 0.978, 0.596] would be more comfortable for resting. The object [0.264, 0.717, 0.524,
0.995] is a dining chair, which is typically less comfortable for extended relaxation.
===
Question:
Is the item [0.182, 0.238, 0.342, 0.461] real or is it a mirror reflection?
===
Answer:
The television and the fireplace [0.182, 0.238, 0.342, 0.461] are not real but are actually reflections in the mirror.
===
Question:
Can you describe the decorating style of the living room shown in this image?
===
Answer:
The living room is decorated in a modern chic style. The image shows white chairs and lamps, a gray couch, and a wooden table
and floor, all contributing to a modern aesthetic. The large mirror and built-in wine rack are also characteristic of modern design.
Thus, the overall decor creates an atmosphere of elegance and sophistication, indicating a modern chic style.
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Table 13: In this example, we provide the prompt used to generate the reasoning response for refer-
and-ground instruction tuning, following the practice of LLaVA (Liu et al., 2023b).

messages = [ {"role":"system", "content": f”’You are an AI visual assistant that
can analyze a single image. You receive five global captions, each describing the same image you
are observing. In addition, specific object locations within the image are given, along with detailed
coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2)
with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y,
bottom right x, and bottom right y. Also, the relationships between pairs of objects are provided, in
the format of object → relationship → subject, where the object/subject are indexed by object id
from previous object lists as well as the object names. Also, several region descriptions are given,
each describing a box region of the image, with detailed coordinates.

The task is to use the provided image information (objects, attribute, relationship, region description,
captions), create a plausible and challenging question about the image, and provide the answer in
detail.

Create complex questions that mention specific regions of the image, but the question should require
some knowledge-aware or high-level commonsense reasoning beyond describing the scene.

To answer such questions, one should first understand the visual content, then based on the
background knowledge or reasoning, either explain why the things are happening that way or
provide guides and help to the user’s request. Make the question challenging by not including the
visual content details in the question so that the user needs to reason about that first.

Here are some additional requirements about generated questions and answers:

1. In question or answer, you must mention bounding box coordinates to refer to the object or
regions, instead of directly say the object name or describing the regions in text. In answers, explain
the region in the context of scene. Include details like object counts, position of the objects, relative
position between the objects.

2. Don’t ask the question you are not confident to answer. Only include question that have definite
answer.

3. Do not mention that the information source is provided in text/catpion/region description. Always
answer as if you are directly looking at the image.

4. Make the question as diverse as possible and as complex-reasoning required as possible.”’}
]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]}
)

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 14: One example used in in-context learning to construct GPT-Assisted Refer-and-Ground
Instructon-Tuning. We encourage readers to refer to the codebase for the prompts for other types.

Objects
Object 0: badge at [0.802, 0.505, 0.872, 0.581].

...
Relationships
Object 5 : fringe → on → Object 4 : flag

...
Region Descriptions
Region Description at [0.038, 0.029, 0.508, 0.995] :
A Grinning gentlemen about to get his tie out.

...
Global Caption
A female in military uniform cutting a businessman’s neck tie.

...

Conversation
Question:
What is unusual about the region [0.102, 0.230, 0.578, 0.761]?
===
Answer:
In the specified region, there is an intriguing sight: a pair of oversized scissors positioned near a man’s tie, accompanied by
a woman in military attire. The two of them share a hearty laugh, creating an unexpected contrast. The atmosphere appears
celebratory, resembling a ribbon-cutting ceremony with flags in the background. However, rather than cutting a ribbon, the
scissors are directed toward the man’s tie, adding an unexpected twist to the situation.
===

D EXAMPLES AND PROMPTS FOR FERRET-BENCH

We leverage GPT-4 to generate three kinds of region-based questions evaluating referring and
grounding capability: (i) Referring Description, (ii) Referring Reasoning, and (iii) Grounding in
Conversation. Here, we only provide the prompt in Table 15 used to generate the referring descrip-
tion response. One example of GPT-4 answers is shown in Table 16. We recommend readers check
out more examples in Appendix E.
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Table 15: In this example, we provide the prompt used to generate the referring description response.

messages = [ {"role":"system", "content": f”’You are an AI visual assistant that
can analyze a single image. You receive five global captions, each describing the same image you
are observing. In addition, specific object locations within the image are given, along with detailed
coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2)
with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y,
bottom right x, and bottom right y. Also, the relationships between pairs of objects are provided, in
the format of object → relationship → subject, where the object/subject are indexed by object id
from previous object lists as well as the object names. Also, several region description are given,
each describing a box region of image, with detailed coordinates.

The task is to use the provided image information (objects, attribute, relationship, region description,
captions), create a plausible and challenging question about the image, and provide the answer in
detail.

Create questions that refer to coordinates of some objects or regions without describing it, and ask
about its interaction with surrounding/nearby objects.

To answer such questions, one should require first understanding the visual content, then based on
the spatial information provided.

Here are some additional requirements about generated questions and answers:

1. In question, you must mention bounding box coordinates to refer to the object or regions, instead
of directly say the object name or describing the regions in text. In answers, explain the region in
the context of scene. Include details like object counts, position of the objects, relative position
between the objects.

2. Don’t ask the question you are not confident to answer. Only include question that have definite
answer.

3. Do not mention that the information source is provided in text/catpion/region description. Always
answer as if you are directly looking at the image.

4. Don’t mention additional coordinates in the answer.

5. Question should be explicitly ask about context/surrounding/nearby information/interaction.”’}
]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]}
)

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 16: One example of GPT4’s answers about referring description.

Conversation
Question:
Describe the region [0.102, 0.230, 0.578, 0.761] in the context of surrounding objects.
Answer:
It’s a man in the region, who is standing on top of a skateboard, performing a rail grind over a metal hand rail. There is a bench
and a tree near him. Also, he is in front of some buildings.

E MORE VISUALIZATION

We provide more quantitative results of the predictions under various tasks from Ferret to indicate
the model’s strength and capability.

• Please refer to Figure 5 for Referring Object Classification on LVIS with different referring for-
mats (point/box/).

• Please refer to Figure 6 for Visual Grounding on Flickr30k Entities and Referring Expression
Comprehension on RefCOCO/RefCOCO+/RefCOCOg.

• Please refer to Figure 7 for Grounded Captioning on Flickr30k Karpathy split.
• Please refer to Figure 8 for Evaluating Object Hallucination (POPE) on COCO val split.
• Please refer to Table 17 for Referring Description in Ferret-Bench.
• Please refer to Table 18 for Referring Resoning in Ferret-Bench.
• Please refer to Table 19 for Grounding in Conversation in Ferret-Bench.

Is the object [region0] a
refrigerator or a chair!

It is a refrigerator [box0].

Is the object [region0] a headband
or a necklace!

a headband [box0].

Referring Object Classification (LVIS) – point

Is the object [region0] a pipe or a
clock tower!

a clock tower [box0].

Is the object [region0] a lamp or a 
lampshade!

It is a lampshade [box0].

Referring Object Classification (LVIS) – point

Referring Object Classification (LVIS) – box Referring Object Classification (LVIS) – free form shape

Figure 5: Referring Object Classification on LVIS. The task aims to classify specific region(s) in
an image given by point/box/segmentation inputs.
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What are the locations of a man, a 
trail, a young girl, some boards of 

wood!

a man [box0]. a trail [box1]. a
young girl [box2]. some boards of 

wood [box3].

Where are several video cameras,
and a concrete wall!

several video cameras [box0]. a 
concrete wall [box1].

Could you please tell me the
locations of dogs, a canal, his 

reflection, and the water!

dogs [box0]. a canal [box1]. his 
reflection [box2]. the water [box3].

Phrase Grounding (Flickr30k Entities)

What is the location of bowl of 
carrots in the image!

bowl of carrots [box0].

Referring Expression Comprehension (RefCOCO)

Locate the partially visible zebra in 
the image!

partially visible zebra [box0].

Find the top right bowl in the 
image!

top right bowl [box0].

What is the location of donut with 
a hole nearest coffee in the image!

donut with a hole nearest coffee
[box0].

Help me find car with visible 
license plate looks like a BMW!

car with visible license plate looks 
like a BMW [box0].

Tell me the precise location of 
number 56!

number 56 [box0].

What is the location of almost 
hidden bus that is the third one in 

counting from the bottom up in the 
image!

almost hidden bus that is the third 
one in counting from the bottom 

up [box0].

Referring Expression Comprehension (RefCOCOg)

Locate a horse with a white stripe 
on it ' s nose in the image!

a horse with a white stripe on it ‘ s 
nose [box0].

Where is a large teddy bear with a 
smaller one in its lap in the image!

a large teddy bear with a smaller 
one in its lap [box0].

Referring Expression Comprehension (RefCOCO+)

Figure 6: Phrase Grounding on Flickr30k Entities and Referring Expression Comprehension
on RefCOCO/RefCOCO+/RefCOCOg. The tasks aim to localize specific object(s) in an image
described by a referring expression/given entity.

Write a brief description of the 
given image.

A women [box0] wearing a black
and white swimsuit [box1] plays

volleyball [box2].

What is this photo about! Use 
concise language.

A wet German Shepherd dog
[box0] carrying a stick [box1] in its

mouth [box2].

Describe the overall picture in just 
a few words!

A cowboy [box0] in a black shirt
[box1] and white hat [box2] riding
a horse [box3] is about to lasso.

Grounded Captioning (Flickr30k Karpathy split)

Can you briefly describe the main 
features of this image for me!

A young woman [box0] in a
burgundy sweater [box1] is
walking with a guitar [box3].

What do you see happening in this 
image! Provide the answer in 

short.

A football player [box0] in a red
jersey [box1] is tackled by a player

[box2] in a blue jersey [box3].

What are the key elements in this 
picture! Explain briefly.

A child [box0] is standing in a park
[box1] with a red ball [box2] and a

backpack [box3].

Figure 7: Grounded Captioning on Flickr30k. The task aims to generate a caption about the image
and ground all generated noun phrases to image regions.
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Is there a microwave in the image!

Yes, there is amicrowave [box0]
in the image.

Is there a person in the image!

Yes, there is a person [box0] in the
image.

POPE (COCO adversarial)

Is there a tv in the image!

No, there is no tv, but there is a
toaster [box0] in the image.

Is there a chair in the image!

No, there is no chair, but there is a
car [box0] in the image.

POPE (COCO popular)

POPE (COCO random)

Is there a tennis racket in the 
image!

Yes, there is a tennis racket [box0]
in the image.

Is there a baseball glove in the 
image!

No, there is no baseball glove, but
there is a tennis ball [box0] in the

image.

Is there a skis in the image!

Yes, there is a skis [box0] in the
image.

Is there a dining table in the image!

No, there is no dining table , but
there is a skateboard [box0] in

the image.

Is there a broccoli in the image!

Yes, there is a broccoli [box0] in
the image.

Is there a bowl in the image!

No, there is no bowl , but there is a
plate [box0] in the image.

Is there a truck in the image!

Yes, there is a truck [box0] in the
image.

Is there a person in the image!

No, there is no person , but there is
a truck [box0] in the image.

Figure 8: Object Hallucination Evaluation (POPE) on COCO. The task aims to input a query
inquiring about the existence of an object, and the model is expected to generate a response in the
form of either “yes/no”.
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Table 17: Referring Description in Ferret-Bench. Qualitative examples to illustrate the difference
between various models (LLaVA vs. Kosmos-2 vs. Shikra vs. Ferret (Ours)). For clarity, we have
omitted the bounding box outputs in the textual representations.

Question:
What is the interaction between the object [region0]
and its surrounding objects?

Ground Truth:
In the region, there is a metal support column.
This column is providing support for a bridge above it,
which a train is passing over. The column also features
a red line on it. This region is part of a larger scene that
includes a train track on an elevated bridge.

LLaVA:
The object is a bridge which appears to be a part of a train station, as there are traffic lights present in
the scene. The traffic lights are likely used to control the train’s movement and ensure safe passage
over the bridge.
Kosmos-2:
The interaction between the object and its surroundings is that of a train passing over a bridge.
Shikra:
The metal pole is standing tall and straight, supporting the train that is traveling on the elevated
track.
Ferret (Ours):
The object is a metal post that is part of a bridge. This post is essential because it supports the bridge
structure, ensuring its stability for the train to safely traverse the bridge. Other elements such as
the train, and the overhead guard rail, depend on this post for support and stability. Without this
post, the bridge wouldn’t be able to withstand the train’s weight and motion, potentially leading to
a structural collapse. Therefore, this post plays a critical role in maintaining the bridge’s integrity
and stability.

Question:
What is the relationship between the object [region0]
and object [region1] and its surrounding objects?

Ground Truth:
The object is a vase, and the object is a flower.
The flower is in the vase, suggesting it is a
decorative element within the room.

LLaVA:
A wooden table with a green bowl placed on it.
Kosmos-2:
The object is a vase with a green base.
Shikra:
The answer is flowers.
Ferret (Ours):
The object and object are a vase and a flower, respectively. The vase is holding the flower, suggest-
ing it’s displaying or supporting it.

26



Published as a conference paper at ICLR 2024

Table 18: Referring Reasoning in Ferret-Bench. Qualitative examples to illustrate the difference
between various models (LLaVA vs. Kosmos-2 vs. Shikra vs. Ferret (Ours)). For clarity, we have
omitted the bounding box outputs in the textual representations.

Question:
What is the purpose of the object [region0]?

Ground Truth:
The object is a bottle. Bottles are typically used to
hold and store different types of liquids. In this context,
it might be used to store a beverage for the meal.

LLaVA:
A knife and a fork, indicating that it is ready for a meal.
Kosmos-2:
The purpose of the object is to attract the birds to the table.
Shikra:
The answer is keep birds away.
Ferret (Ours):
The object is a bottle, generally used to store and dispense liquids like water, juice, or other bever-
ages.

Question:
What is the purpose of the object [region0] on the bike?

Ground Truth:
The object is a shock absorber on the bike.
Its purpose is to absorb or dampen shock impulses.
It does this by converting the kinetic energy of
the shock into another form of energy which is then
dissipated. In the context of the motorcycle,
it is particularly useful in providing comfort and
stability for the rider, especially when travelling
over uneven or rough terrains.

LLaVA:
A black and silver Kawasaki motorcycle which is likely used for transportation, commuting, leisure
rides, or long-distance travel.
Kosmos-2:
The purpose of the object on the motorcycle is to store and protect the motorcycle’s fuel tank.
Shikra:
The answer is leg.
Ferret (Ours):
The object is a shock absorber. This component is essential for the bike’s stability, providing a
smoother ride by soaking up the impact from bumps and uneven surfaces. It significantly improves
the overall performance and comfort of the bike, enabling the rider to maintain control and stability
even on rough terrains.
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Table 19: Grounding in Conversation in Ferret-Bench. Qualitative examples to illustrate the
difference between various models (Kosmos-2 vs. Shikra vs. Ferret (Ours)). For clarity, we only
display the bounding box outputs in Ferret ’s responses.

Question:
What is happening in the field and
provide the coordinates of mentioned objects?

Ground Truth:
In the image, there is a group of sheep [box0] [box1]
grazing in a field [box2]. The field is filled with
plant life [box3]. There is also a bush [box4] and
some trees [box5] present in the field.

Kosmos-2:
In the field, a herd of sheep [box0] is grazing on the
lush green grass [box1].
Shikra:
A group of sheep [box0] [box1] [box2] [box3] [box4] [box5]
grazing on lush green grass.
Ferret (Ours):
In the field, there are sheep [box0] [box1] [box2] [box3] [box4] [box5] grazing on the grass [box6].

Question:
What is the man doing and what objects are in front of him?
Please provide the coordinates of these objects.

Ground Truth:
The man [box0] is sitting at a table [box1] and looking
at a plate of food [box2] . There is a glass [box3]
and a bottle [box4] on the table in front of him.

Kosmos-2:
The man is sitting at a dining table [box0] smiling and
looking at the plate of food in front him [box1].
Shikra:
The man [box0] is sitting at a table [box1] with a plate
of food [box2] in front of him. He is looking up and
smiling, possibly staring at a person [box0] in the restaurant
Ferret (Ours):
The man [box0] is having a meal at a table [box1]. In front of him, there is a plate [box2] with a
variety of food items such as fruit and eggs. There is also a glass [box3] filled with water and a
bottle [box4].
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