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① Short Caption: A view of a city street with a bridge in the background.
② Dense Caption: The video presents a panoramic journey through a city street …(77 words)… movement from a 
commercial zone towards a waterfront area, with the bridge becoming increasingly prominent in the view.
③ Main Object Caption: There are no main subjects such as people or animals …(60 words)… bridge as a focal point.
④ Background Caption: Cityscape that includes a mix of architectural styles, from red-brick …(49 words)…. sunlight.
⑤ Camera Caption: Smooth and appears to be tracking shot moving …(56 words)…. central element in later frames.
⑥ Style Caption: Realistic with clear, bright, and high-contrast depiction of an urban environment during a sunny day.

1
Figure 1: Video collection and annotation pipeline. An example shown at bottom.

Abstract
Sora’s high-motion intensity and long consistent videos have significantly impacted2

the field of video generation, attracting unprecedented attention. However, existing3

publicly available datasets are inadequate for generating Sora-like videos, as they4

mainly contain short videos with low motion intensity and brief captions. To ad-5

dress these issues, we propose MiraData, a high-quality video dataset that surpasses6

previous ones in video duration, caption detail, motion strength, and visual quality.7

We curate MiraData from diverse, manually selected sources and meticulously8

process the data to obtain semantically consistent clips. GPT-4V is employed to9

annotate structured captions, providing detailed descriptions from four different10

perspectives along with a summarized dense caption. To better assess temporal11

consistency and motion intensity in video generation, we introduce MiraBench,12

which enhances existing benchmarks by adding 3D consistency and tracking-based13

motion strength metrics. MiraBench includes 150 evaluation prompts and 17 met-14

rics covering temporal consistency, motion strength, 3D consistency, visual quality,15

text-video alignment, and distribution similarity. To demonstrate the utility and16

effectiveness of MiraData, we conduct experiments using our DiT-based video17

generation model, MiraDiT. The experimental results on MiraBench demonstrate18

the superiority of MiraData, especially in motion strength.19
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1 Introduction20

Recent advances in the Artificial Intelligence and Generative Content (AIGC) field, such as video21

generation [1, 2, 3], image generation [4, 5, 6, 7], and natural language processing [8, 9], have been22

rapidly progressing, thanks to the improvements in data scale and computational power. Previous23

studies [4, 9, 2, 7] have emphasized that data plays a pivotal role in determining the upper-bound24

performance of a task. A notable recent development is the introduction of Sora [1], a text-to-video25

generation model, shows stunning video generation capabilities far surpassing existing state-of-the-art26

methods. Sora not only excels in generating high-quality long videos (10-60 seconds) but also stands27

out in terms of motion strength, 3D consistency, adherence to real-world physics rules, and accurate28

interpretation of prompts, paving the way for even more sophisticated generative models in the future.29

The first step in constructing Sora-like video generation models is the construction of a well-curated,30

high-quality dataset, as data forms the very foundation of model performance and capability. How-31

ever, existing publicly video datasets, such as WebVid-10M [10], Panda-70M [11], and HD-VILA-32

100M [12], fall short of these requirements. These datasets primarily consist of short video clips33

(5-18 seconds) sourced from unfiltered videos from the internet, which leads to a large proportion of34

low-quality or low-motion clips and are inadequate for training generating Sora-like models. More-35

over, the captions in existing datasets are often short (12-30 words) and lack the necessary details to36

describe the entire videos. These limitations hinder the use of existing datasets for generating long37

videos with accurate interpretation of prompts. Therefore, there is an urgent need for a comprehensive,38

high-quality video dataset with long video durations, strong motion strength, and detailed captions.39

To tackle these issues, we present MiraData, a large-scale, high-quality video dataset specifically40

designed to meet the demands of long-duration high-quality video generation, featuring long videos41

(average of 72.1 seconds) with high motion intensity and detailed structured captions (average of42

318 words). The data curation pipeline is illustrated in Fig. 1, where we have built an end-to-end43

pipeline for data downloading, segmentation, filtering, and annotation. I. Downloading. To obtain44

diverse videos, we collect source videos from manually selected channels of various platforms. II &45

III. Segmentation. We employ multiple models to compare semantic and visual feature information,46

segmenting videos into long clips with strong semantic consistency by using a mixture of models to47

detect clips within a video and cut long videos into smaller segments. IV. Filtering. To accommodate48

high-quality clips, we filter the dataset into five subsets based on aesthetics, motion intensity, and49

color to select clips with high visual quality and strong motion intensity. V. Annotation. To obtain50

detailed and accurate descriptions, we first use the state-of-the-art captioner [11] to generate a short51

caption and then employ GPT-4V to enrich it, resulting in the dense caption. To provide fine-grained52

video descriptions across multiple perspectives, we further design structured captions, which include53

descriptions of the video’s main subject, background, camera motion, and style. To this end, statistical54

results encompassing video duration, caption length and elaboration, motion strength, and video55

quality demonstrate MiraData’s superiority over previous datasets.56

To further analyze the performance gap between generated videos and high-quality real-world videos,57

we identify a crucial limitation in existing benchmarks: the lack of a comprehensive evaluation58

of 3D consistency and motion intensity in generated videos. To address this issue, we propose59

MiraBench, an enhanced benchmark that builds upon existing benchmarks by adding 3D consistency60

and tracking-based motion strength metrics. Specifically, MiraBench includes 17 metrics that61

comprehensively cover various aspects of video generation, such as temporal consistency, motion62

strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To evaluate63

the effectiveness of captions, we introduce 150 evaluation prompts in MiraBench, consisting of short64

captions, dense captions, and structured captions. These prompts provide a diverse set of challenges65

for assessing the performance of text-to-video generation models. To validate the effectiveness of66

our MiraData , we conduct experiments using our DiT-based video generation model, MiraDiT.67

Experimental results show the superiority of our model trained on MiraData, when compared to the68

same model trained on WebVid-10M and other state-of-art open-source methods on motion strength,69

3D consistency and other metrics in MiraBench.70
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2 Related Work71

2.1 Video-Text Datasets72

Large-scale training on image-text pairs [13, 14, 15, 16, 17] has been proven effective in text-to-image73

generation [18, 19, 20] and vision-language representation learning [21, 22], showing emergent ability74

with model and data scaling-up. Recent achievements such as Sora [1] suggest that similar capabilities75

can be observed in the realm of videos, where data availability and computational resources emerge76

as crucial factors. However, previous text-video datasets, as shown in Tab. 1, are constrained by short77

durations, limited caption lengths, and poor visual quality.78

Considering the domain of general video generation, a significant portion of open-source text-video79

datasets is unsuitable due to issues such as noisy text labels, low resolution, and limited domain80

coverage. Thus the majority of video generation models with impressive performance [23, 3, 24, 25,81

26, 27, 28] rely heavily on internal datasets for training, which restricts transparency and usability.82

The commonly used open-source text-video dataset for video generation [29, 30, 31, 32, 33, 34,83

35, 36, 37, 38, 39] is WebVid-10M [10]. However, it contains a prominent watermark on videos,84

requiring additional fine-tuning on image datasets (e.g., Laion [40]) or internal high-quality video85

datasets to remove the watermark. Recently, Panda-70M [11], InternVid [41], and HD-VG-130M [42]86

have been proposed and targeted for video generation. Panda-70M and InternVid aim to extract87

precise textual annotations using multiple caption models, while HD-VG-130M emphasizes the88

selection of high-quality videos. But none of them systematically considers correct video splitting,89

visual quality filtering, and accurate textual annotation at all three levels during the data collection90

process. More importantly, all previous datasets consist of videos with short durations and limited text91

lengths, which restricts their suitability for long video generation with fine-grained textual control.92

Table 1: Comparison of MiraData and pervious large-scale video-text datasets. Datasets are
sorted based on average text length. Datasets with gray background are used in a text-to-video
generation. MiraData significantly surpasses previous datasets in average text and video length.

Dataset Avg text len Avg / Total video len Year Text Domain Resolution

HowTo100M [43] 4.0 words 3.6s 135Khr 2019 ASR Open 240p
LSMDC [44] 7.0 words 4.8s 158h 2015 Manual Movie 1080p
DiDeMo [45] 8.0 words 6.9s 87h 2017 Manual Flickr -
YouCook2 [46] 8.8 words 19.6s 176h 2018 Manual Cooking -
MSR-VTT [47] 9.3 words 15.0s 40h 2016 Manual Open 240p
HD-VG-130M [42] ∼9.6 words ∼5.1s ∼184Khr 2024 Generated Open 720p
WebVid-10M [10] 12.0 words 18.0s 52Kh 2021 Alt-Text Open 360p
Panda-70M [11] 13.2 words 8.5s 167Khr 2024 Generated Open 720p
ActivityNet [48] 13.5 words 36.0s 849h 2017 Manual Action -
VATEX [49] 15.2 words ∼10s ∼115h 2019 Manual Open -
HD-VILA-100M [12] 17.6 words 11.7s 760.3Khr 2022 ASR Open 720p
How2 [50] 20.0 words 5.8s 308h 2018 Manual Instruct -
InternVid [41] 32.5 words 13.4s 371.5Khr 2023 Generated Open 720p

MiraData (Ours) 318.0 words 72.1s 16Khr 2024 Generated Open 720p

2.2 Video Generation93

Video generation is a challenging task that have advanced from early GAN-based models [51, 52] to94

more recent diffusion. Diffusion-based methods have made significant progress in terms of visual95

quality and diversity in generated videos while entailing a substantial computational cost [24, 3].96

Consequently, researchers often face a trade-off between the quality of the generated videos and the97

duration of the videos that can be produced within practical computational constraints.98

To ensure visual quality under computational resource constraints, previous diffusion-based video99

generation methods primarily focus on open-domain text-to-video generation with a short duration.100

Video Diffusion Models [25] is the first to employ the diffusion model for video generation. To101
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generate long videos in the absence of corresponding dataset, Make-A-Video [29] and NUWA-102

XL [53] explore coarse-to-fine video generation but suffer from maintaining temporal continuity103

and producing strong motion magnitude. Apart from these explorations of convolution-based ar-104

chitecture [29, 30, 31, 25, 23, 27, 24, 32, 42, 37, 34, 35, 33, 38, 39], transformer-based methods105

(e.g., WALT [26], Latte [54], and Snap Video [3]) become more prevalent recently, offering a better106

trade-off between computational complexity and performance, as well as improved scalability.107

All previous methods can only generate short video clips (e.g., 2 seconds, 16 frames) with weak108

motion strength. However, the recent success of Sora [1] demonstrates the potential of long video109

generation with enhanced motion strength and strong 3D consistency. With the belief that data is the110

key to machine learning, we find that existing datasets’ (1) short duration, (2) weak motion strength,111

and (3) short and inaccurate captions are insufficient for Sora-like video generation model training112

(as shown in Tab. 1). To address these limitations and facilitate the development of advanced video113

generation models, we introduce MiraData, the first large-scale video dataset specifically designed114

for long video generation. MiraData features videos with longer durations and structured captions,115

providing a rich and diverse resource for training models capable of generating extended video116

sequences with enhanced motion and coherence.117

3 MiraData Dataset118

MiraData is a large-scale text-video dataset with long duration and structured detailed captions.119

We show the overview of the collection and annotation pipeline of MiraData in Fig. 1. The final120

dataset was obtained through a five-step process, which involved collection (in Sec. 3.1), splitting121

and stitching (in Sec. 3.2), selection (in Sec. 3.3), and captioning (in Sec. 3.4).122

3.1 Data Collection123

The source of videos is crucial in determining the dataset’s data distribution. In video generation tasks,124

there are typically four key expectations: (1) diverse content, (2) high visual quality, (3) long duration,125

and (4) large motion strength. Existing text-to-video datasets [11, 12, 42] mainly consist of videos126

from YouTube. Although YouTube offers a vast collection of diverse videos, a large proportion of the127

videos lack the necessary aesthetic quality for video generation needs. To address all four aspects128

simultaneously, we select source videos from YouTube, Videvo, Pixabay, and Pexels 2, ensuring a129

more comprehensive and suitable data source for video generation tasks.130

YouTube Videos. Following previous works [12, 11, 42], we include YouTube as one of the video131

sources. However, prior research mainly focuses on collecting diverse videos that are suitable for132

understanding tasks while giving limited consideration to the need for generation tasks (e.g., duration,133

motion strength, and visual quality), which are crucial for learning physical laws and 3D consistency.134
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Figure 2: The video and video clip dis-
tribution of different video categories.
(1) to (7) is explained in Sec. 3.1.

To address these limitations, we manually select 156135

high-quality YouTube channels that are suitable for gen-136

eration tasks. These channels encompass various cate-137

gories with rich motion and long video clips, including138

(1) 3D engine-rendered scenes, (2) city/scenic tours, (3)139

movies, (4) first-person perspective camera videos, (5) ob-140

ject creation/physical law demonstrations, (6) timelapse141

videos, and (7) videos showcasing human motion. We col-142

lect around 68K videos with 720p resolution from these143

YouTube channels (K denotes thousand). After the video144

splitting and stitching operation described in Sec. 3.2, we obtain around 34K videos with 173K145

video clips. The number of videos and clips for each category are shown in Fig. 2. We collect more146

videos from 3D engine-rendered scenes and movies because they exhibit greater diversity and better147

2YouTube: https://www.youtube.com/, Videvo: https://pixabay.com/, Pixabay: https://www.
videvo.net/, Pexels: https://www.pexels.com/
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visual quality. Moreover, the simplicity and consistency of the physical laws in 3D engine-rendered148

videos are crucial for enabling video generation models to learn and understand physical laws.149

Additionally, to ensure data diversity and amount, we also include videos from HD-VILA-100M [12].150

Although this dataset contains around 100 million video clips, after the splitting and stitching151

operation in Sec. 3.2, only 195K clips remain. This further demonstrates the quality of our selected152

video sources, as evidenced by a higher retention rate considering video duration and continuity.153

Videvo, Pixabay, and Pexels Videos. These three websites offer stock videos and motion graphics154

free from copyright issues, which are usually exceptionally high-quality videos uploaded by skilled155

photographers. Although the videos are usually shorter in duration compared to YouTube, they can156

compensate for the deficiencies in the visual quality of YouTube videos. Therefore, we collect and157

annotate videos from these websites, which can enhance the generated videos’ aesthetics. We finally158

obtain around 63K videos from Videvo, 43K videos from Pixabay, and 318K videos from Pexels.159

3.2 Video Splitting and Stitching160

An ideal video clip for video generation should have semantically coherent content, either without161

shot transitions or with strong continuity between transitions. To achieve this, we conduct a two-stage162

splitting and stitching process on YouTube videos. In the splitting stage, we use shot change detection163

with a low threshold to divide the video into segments3 , ensuring that all distinct clips are extracted.164

We then stitch short clips together to avoid incorrect separation, considering content-coherent video165

transitions and accuracy. We employ Qwen-VL-Chat[55], LLaVA[56, 57], ImageBind[58], and166

DINOv2[59] to assess whether adjacent short clips should be connected. Vision language models167

excel in detecting content-coherent transitions, while image feature cosine similarity is more effective168

in connecting incorrect separations. A connection is made only if both vision language models or169

both image feature extraction models agree. We retain clips longer than 40 seconds for MiraData.170

Since Videvo, Pixabay, and Pexels videos are naturally in clip form, we select clips longer than 10171

seconds to filter for longer videos with greater motion strength. Fig. 3 presents the distribution of172

video clip duration from YouTube and other sources.173
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Figure 3: Distribution of video clip duration from YouTube and other sources.

3.3 Video Selection174

MiraData provides 5 data versions with different quality levels for video generation training, filtered175

using four criteria: (1) Video Color, (2) Aesthetic Quality, (3) Motion Strength, and (4) Presence176

of NSFW Content. For Video Color, we filter videos shot in overly bright or dark environments by177

calculating average color and the color of the brightest and darkest 80% of frames. Aesthetic Quality178

is assessed using the Laion-Aesthetic[40] Aesthetic Score Predictor. Motion Strength is measured179

using the RAFT[60] algorithm to calculate optical flow between frames. NSFW content is detected180

using the Stable Diffusion Safety Checker [18] on 8 evenly selected frames per video. For criteria181

(1)-(3), we standardize the frame rate to 2 fps and filter videos into four lists based on increasing182

threshold values. NSFW videos are filtered out from all datasets. The 5 filtered versions contain183

788K, 330K, 93K, 42K, and 9K video clips. Details about the filtering process and thresholds are in184

the supplementary files.185

3We use PySceneDetect content-aware detection with a threshold of 26
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3.4 Video Captioning186

As emphasized by PixArt[4] and DALL-E 3[20], the quality and granularity of captions are crucial187

for text-to-image generation. Given the similarities between image and video generation, detailed and188

accurate textual descriptions should also play a vital role in the latter. However, previous video-text189

datasets with meta-information annotations (e.g., WebVid-10M[10], HD-VILA-100M[12]) often have190

incorrect temporal alignment or inaccurate descriptions. Current state-of-the-art video captioning191

methods generate either simple (e.g., Panda-70M[11]) or inaccurate (e.g., Video-LLaVA[61]) captions.192

To obtain detailed and accurate captions, we use the more powerful GPT-4V [62], which outperforms193

existing open-source methods.194

To enable GPT-4V, a vision language model with image input only, to understand videos, we extract195

8 uniformly sampled frames from each video and arrange them in a 2× 4 grid within a single image.196

This approach reduces computational cost and facilitates accurate caption generation. Following197

DALL-E 3[20], we bias GPT-4V to produce video descriptions useful for learning a text-to-video198

generation model. We first use Panda-70M[11] to generate a "short caption" describing the main199

subject and actions, which serves as an additional hint for GPT-4V. The GPT-4V-generated "dense200

caption" covers the main subject, movements, style, backgrounds, and cameras.201

To obtain more detailed, fine-grained, and accurate captions, we propose the use of structured202

captions. In addition to the short and dense captions, structured captions provide further descriptions203

of crucial elements in the video, including: (1) Main Object: describes the primary object or subject204

in the video, capturing their attributes, actions, positions, and movements, (2) Background: provides205

context about the environment or setting, including objects, location, weather, and time, (3) Camera206

Movements: details any camera pans, zooms, or other movements, and (4) Video Style: covers the207

artistic style, as well as the visual and photographic features of the video (e.g., realistic, cyberpunk,208

and cinematic). Thus, each video in MiraData is accompanied by six types of captions: short caption,209

dense caption, main object caption, background caption, camera caption, and style caption. This210

creates a hierarchical structure, progressing from a general overview to a more detailed description.211
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Figure 4: Distribution of caption length.

These structured captions provide extra detailed212

descriptions from various perspectives, enhanc-213

ing the richness of the captions. With our care-214

fully designed prompt, we can efficiently obtain215

the video’s structured caption from GPT-4V in216

just one conversation round. As demonstrated217

in Tab. 1 and Fig. 4, the average caption length218

of dense descriptions and structured captions219

has significantly increased to 90 and 214 words220

respectively, greatly enhancing the descriptive221

capacity of the captions.222

3.5 Comparison on Numerical Statistics223

We calculate the average frame optical flow strength and aesthetic score on MiraData’s unfiltered224

version (788K video clips) and filtered version (330K video clips) with previous video generation225

datasets (Panda-70M [11], HD-VILA-100M [12], InternVid [41], and WebVid-10M [10]). For226

MiraData, we calculated the metrics on the full dataset. For other datasets, we randomly select 10K227

video clips to save computation costs. The frame rate is standardized to 2 for both metrics. The results228

in Tab. 2 show the superiority of MiraData, considering both visual quality and motion strength.229

Table 2: Numerical statics comparison of previous datasets and MiraData.
Metrics Panda-70M HD-VILA-100M InternVid WebVid-10M MiraDataunfilter MiraDatafilter

Optical Flow ↑ 4.37 4.45 3.92 1.08 5.22 6.93
Aesthetic Score ↑ 4.67 4.61 4.50 4.41 5.01 5.02
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4 MiraBench230

4.1 Prompt Selection231

Following EvalCrafter [63], we propose four categories: human, animal, object, and landscape.232

We randomly select 400 video captions, manually curate them for balanced representation across233

meta-classes, and prioritize captions closely matching the original videos. We select 50 precise234

video-text pairs, using short, dense, and structured captions as prompts, forming a set of 150 prompts.235

4.2 Metrics Design236

We design 17 evaluation metrics in MiraBench from 6 perspectives, including temporal consistency,237

temporal motion strength, 3D consistency, visual quality, text-video alignment, and distribution238

consistency. These metrics encompass most of the common evaluation standards used in previous239

video generation models and text-to-video benchmarks. Compared to previous benchmarks like240

VBench [64], our metrics place more emphasis on the model’s performance with general prompts241

instead of manually designed prompts and emphasize 3D consistency and motion strength.242

Temporal Motion Strength. (1) Dynamic Degree. Following previous works [64, 41], we use243

the average distance of optical flow estimated by RAFT [60] to estimate the dynamics degree. (2)244

Tracking Strength. In optical flow, the objective is to estimate the velocity of all points within a245

video frame. This estimation is performed jointly for all points, but the motion is predicted only at246

an infinitesimal distance. In tracking, the goal is to estimate the motion of points over an extended247

period. Therefore, the distance of tracking points can better distinguish whether the video involves248

long-range or minor movements (e.g., camera shake or local movements that move back and forth).249

As shown in Fig. 5 (a), the left figure exhibits a smaller motion distance than the right. However, in250

Fig. 5 (b), the dynamic degree is incorrectly 1.2 for the left and 0.7 for the right, suggesting that the251

left motion is larger. Tracking strength in Fig. 5 (c) accurately reflects the moving distance, with 4.1252

for the left and 11.8 for the right. We use CoTracker [65] to calculate the tracking path and average253

the tracking points’ distance from the initial frame as the tracking strength metric.254

Figure 5: Illustration of the difference between tracking strength and optical flow dynamic
degree. Best viewed with Acrobat Reader. Click the images to play the animation clips.

Temporal Consistency. (3) DINO (Structural) Temporal Consistency. DINO [59] focuses on255

structural information. We calculate the cosine similarity of adjacent frames’ DINO features to assess256

structural temporal consistency. (4) CLIP (Semantic) Temporal Consistency. We calculate the cosine257

similarity of adjacent frames’ CLIP [13] features to assess structural temporal consistency since CLIP258

focuses on semantic information. (5) Temporal Motion Smoothness. Following VBench [64], we259

use the motion priors in the video interpolation model AMT [66] to calculate the motion smoothness.260

Since larger motion is expected to contain smaller consistency and vice versa, we multiply Tracking261

Strength by these feature similarities to obtain more reasonable temporal consistency metrics.262

3D Consistency. Following GVGC [67], we calculate (6) Mean Absolute Error, and (7) Root Mean263

Square Error to evaluate video 3D consistency from the perspective of 3D reconstruction.264

Visual Quality. (8) Aesthetic Quality. We evaluate the aesthetic score of generated video frames265

using the LAION aesthetic predictor [18]. (9) Imaging Quality. Following VBench [64], we evaluate266

video distortion (e.g., over-exposure, noise, and blur) using the MUSIQ [68] quality predictor.267
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Text-Video Alignment. We use ViCLIP [41] to evaluate the consistency between video and text. We268

calculate from 5 aspects following MiraBench prompt structure: (10) Camera Alignment. (11) Main269

Object Alignment. (12) Background Alignment. (13) Style Alignment. (14) Overall Alignment.270

Distribution Similarity. Following previous works [3, 23, 54], we use (15) FVD [69], (16) FID [70],271

(17) KID [71] to evaluate the distribution similarity of generated and training data.272

5 Experiments273

5.1 Model Design of MiraDiT274

To validate the effectiveness of MiraData for consistent long-video generation, we design an efficient275

pipeline based on Diffusion Transformer [72], as illustrated in Fig.6. Following SVD [2], we use a276

hybrid Variational Autoencoder with a 2D convolutional encoder and a 3D convolutional decoder to277

reduce flickering in generated videos. Unlike previous methods[2, 34, 33] that rely on short captions278

and typically use a CLIP text encoder with 77 output tokens, we employ a larger Flan-T5-XXL [73]279

for textual encoding, supporting up to 512 tokens for dense and structured caption understanding.280
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Figure 6: MiraDiT pipeline for long video generation.

Text-spatial cross-attention. For latent denoising, we build a spatial-temporal transformer as the281

trainable generation backbone. As shown in Fig.6, we adopt spatial and temporal self-attention282

separately rather than full attention on all video pixels to reduce the heavy computational load of283

long-video generation. Similar to W.A.L.T [26], we apply extra conditioning on spatial queries during284

cross-attention to stabilize training and improve generation performance. For faster convergence, we285

partially initialize spatial attention layers from weights of text-to-image model Pixart-alpha [4], while286

keeping other layers trained from scratch.287

FPS-conditioned modulation. Following DiT and Stable Diffusion 3 [6], we use a modulation288

mechanism for the current timestep condition. Additionally, we embed an extra current FPS condition289

in the AdaLN layer to enable motion strength control during inference in the generated videos.290

Dynamic frame length and resolution. We train MiraDiT in a way that supports generating videos291

with different resolutions and lengths to evaluate the model performance on motion strength and292

3D consistency in different scenarios. Inspired by NaViT [74], which uses Patch n’ Pack to achieve293

dynamic resolution training, we apply a Frame n’ Pack strategy to train videos with various temporal294

lengths. Specifically, we randomly drop frames with zero padding using a temporal mask, then apply295

masked self-attention and positional embeddings according to the temporal masks. The gradients of296

masked frames are stopped as well. However, for varying resolution training, we didn’t adopt Patch297
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n’ Pack since it made the model harder to train during our early experiments. Instead, we follow298

Pixart [4] and use a bucket strategy where the models are trained on different resolution videos where299

each training batch only contains videos of the same resolution.300

Inference details. During inference, we use the DDIM [75] sampler with 25 steps and classifier-301

free guidance of scale 12. The fps condition can be set between 5 and 30, allowing for flexibility in302

the generated video’s frame rate. For evaluation purposes, we test all our models at 6 fps to ensure a303

consistent comparison across different settings. To further enhance the visual quality of the generated304

videos, we provide an optional post-processing step using the RIFE [76] model. By applying 4×305

frame interpolation, we can increase the frame rate of the generated video to 24 fps, resulting in306

smoother motion and improved overall appearance.307

5.2 Comparison with Previous Video Generation Datasets308

Our experiments aim to validate the effectiveness of MiraData in long video generation by assessing309

(1) temporal motion strength and consistency, and (2) visual quality and text alignment. We train310

MiraDiT models on WebVid-10M and MiraData separately, evaluating them on MiraBench at311

384× 240 resolution with 5s length using 14 metrics covering motion strength, consistency, visual312

quality, and text-video alignments.313

Tab. 2 shows that the model trained on MiraData demonstrates significant improvements in motion314

strength while maintaining temporal and 3D consistency compared to the WebVid-10M model.315

Moreover, MiraData’s higher-quality videos and dense, accurate prompts lead to better visual quality316

and text-video alignments in the trained model. We compare our MiraDiT model trained on MiraData317

to state-of-the-art open-source methods, OpenSora [77] (DiT-based) and VideoCrafter2 [35] (U-Net-318

based). Our model significantly outperforms previous methods in terms of motion strength and 3D319

consistency while achieving competitive results in visual quality and text-video alignment. This320

demonstrates MiraData’s effectiveness in enhancing long video generation. Note that distribution-321

based metrics like FVD are not reported due to the difference in training datasets. More visual and322

metric comparisons are in the Appendix.323

Table 3: Comparison of MiraDiT trained on MiraData and WebVid-10M [10]. ↑ and ↓ means
higher/lower is better. 1) - 14) indicates indices of metrics in MiraBench (Sec. 4), where DD for
Dynamic Degree, TS for Tracking Strength, DTC for DINO Temporal Consistency, CTC for CLIP
Temporal Consistency, TMS for Temporal Motion Smoothness, MAE for Mean Absolute Error,
RMSE for Root Mean Square Error, AQ for Aesthetic Quality, IQ for Imaging Quality, CA for
Camera Alignment, MOA for Main Object Alignment, BA for Background Alignment, SA for Style
Alignmnet, and OA for Overall Alignment. Best shown in blod, and second best shown in underlined.

Metrics Temporal Motion Strength Temporal Consistency 3D Consistency
1) DD↑ 2) TS↑ 3) DTC↑ 4) CTC↑ 5) TMS↑ 6) MAE↓×10−2 7) RMSE↓×10−1

OpenSora [77] 7.65 16.07 12.34 13.20 13.70 75.45 10.39
VideoCrafter2 [35] 1.71 6.72 6.41 6.36 6.60 101.55 13.05

MiraDiT (WebVid-10M [10]) 7.12 22.36 20.24 20.97 21.86 91.48 12.11
MiraDiT (MiraData) 15.46 49.47 43.78 45.95 47.24 85.27 11.74

Metrics Visual Quality Text-Video Alignmnet
8) AQ↑×10− 9) IQ↑ 10) CA↑ 11) MOA↑ 12) BA↑ 13) SA↑ 14) OA↑

OpenSora [77] 47.10 59.54 12.40 18.12 13.20 13.35 16.12
VideoCrafter2 [35] 58.69 64.96 12.00 17.90 11.25 12.15 16.90

MiraDiT (WebVid-10M [10]) 43.11 58.58 12.35 14.32 11.90 12.32 15.31
MiraDiT (MiraData) 49.90 63.71 12.66 14.67 12.18 12.59 16.66

To provide a more comprehensive assessment, we present the human evaluation results in Tab. 4.324

We enlisted 6 volunteers to evaluate the entire validation set of MiraBench. Each volunteer was325

provided with a set of 4 videos generated using OpenSora [77], VideoCrafter2 [35], MiraDiT trained326

on WebVid-10M [10], and MiraDiT trained on MiraData. The evaluators were asked to rank the four327

videos from best to worst (1-4) based on five criteria: (1) motion strength, (2) temporal consistency,328

(3) 3D consistency, (4) visual quality, and (5) text-video alignment. We observe that there are some329
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alignments and discrepancies between human evaluation (Tab. 4) results and automatic evaluation330

results (Tab. 3), and explain for the discrepancies here: (1) For the Temporal Consistency metric in331

the automatic evaluation, we multiply Tracking Strength by the feature similarities among adjacent332

video frames. This approach ensures that the metric does not unfairly favor static videos, which333

would naturally achieve the highest temporal consistency due to their lack of motion. However,334

in human evaluations, it is challenging to have annotators consider both metrics simultaneously.335

Therefore, we simply ask the question "Is this video temporally consistent?". This make methods336

like VideoCrafter receiving high human evaluation scores, as the videos generated by VideoCrafter337

exhibit very low motion strength. (2) For 3D consistency metric, we find it hard for human beings338

to accurately judge whether a video’s scene is 3D consistency (e.g., alignment with 3D modeling339

standards and physical optics projection). However, automatic metrics also face difficulties due to340

unignorable calculation errors in 3D modeling methods. Therefore, we believe that the most effective341

approach is to incorporate both automated and human indicators in the evaluation process.342

Table 4: Human evaluation results of MiraDiT trained on MiraData and WebVid-10M [10], as well
as open-source methods, OpenSora (DiT-based) [77] and VideoCrafter2 (U-Net-based) [35].

Metrics Motion Strength ↓ Temporal Consistency ↓ 3D Consistency ↓ Quality ↓ Text Alignment ↓
OpenSora [77] 2.6 2.5 2.6 2.8 2.9

VideoCrafter2 [35] 2.9 1.8 2.3 1.4 2.3
MiraDiT (WebVid-10M [10]) 3.2 3.8 3.0 3.5 2.7

MiraDiT (MiraData) 1.3 1.9 2.1 2.3 2.1

5.3 Role of Caption Length and Granularity343

We investigate the impact of caption length and granularity on MiraDiT’s performance by evaluating344

the model using short, dense, and structural captions separately. The results in Tab. 5 demonstrate345

that longer and more detailed captions do not necessarily improve the visual quality of the generated346

videos. However, they offer significant benefits in terms of increased dynamics, enhanced temporal347

consistency, more accurate generation control, and better alignment between the text and the generated348

video content. These findings highlight the importance of caption granularity in guiding the model to349

produce videos that more closely match the desired descriptions while maintaining coherence and350

realism. Please see appendix for more qualitative results and detailed ablation studies.351

Table 5: Comparison of MiraDiT model with different caption length and granularity. 1) - 14)
indicates indices of metrics in MiraBench (Sec. 4). See Tab. 3 for the meaning of metrics annotation.

Metrics 1) DD↑ 2) TS↑ 3) DTC↑ 4) CTC↑ 5) TMS↑ 8) AQ↑ 9) IQ↑ 14) OA↑

Short Caption 9.45 27.03 24.39 25.20 26.05 4.84 63.64 7.73
Dense Caption 17.39 52.53 46.13 48.35 50.12 5.14 63.43 14.88

Structural Caption 19.53 68.85 60.83 64.31 65.56 4.99 64.07 15.36

6 Conclusion and Discussion352

Conclusion. In conclusion, MiraData complements existing video datasets with high-quality, long-353

duration videos featuring detailed captions and strong motion intensity. Curated from diverse video354

sources and annotated with multiple high-performance models, MiraData shows advantages in355

comprehensive evaluation framework MiraBench with the designed MiraDiT model, highlighting its356

potential to push the boundaries of high-motion, temporally consistent long video generation.357

Limitation. Despite MiraData’s advantages over previous datasets, it still has limitations, such358

as inherent biases, potential annotation errors, and insufficient coverage. The evaluation metrics359

in MiraBench may also yield inaccurate results in uncommon video scenarios, such as jitter or360

overexposure. Due to the page limit, the appendix will provide a detailed discussion.361

Potential Negative Societal Impacts. The enhanced video generation capabilities promoted by362

MiraData could lead to negative societal impacts and ethical issues, including the creation of363

deepfakes and misinformation, privacy breaches, and harmful content generation. We would engage364

in implementing stringent ethical guidelines, ensuring robust privacy protections, and promoting365

unbiased dataset curation to prevent these issues. The appendix provides a detailed discussion.366
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