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Abstract—The time-varying formation control problem for
quadrotor unmanned aerial vehicles with finite-time prescribed
performance subject to nonlinear disturbances is investigated
in this paper. To address the unknown nonlinear disturbances,
neural networks are introduced. In addition, a novel performance
function is formulated specifically for finite-time control. A time-
varying formation control strategy for quadrotor unmanned
aerial vehicles, which aims to confine the sliding mode error
within a prescribed region during a finite time interval, is
proposed in this study. This method guarantees both finite-
time stability in the closed-loop system and error convergence
towards the desired boundary. Subsequently, simulations are
performed to confirm the effectiveness and feasibility of the
proposed algorithm.

Index Terms—quadcopter unmanned aerial vehicles, pre-
scribed performance control, neural networks, finite-time control

I. INTRODUCTION

Due to the use in high-rise building fire rescue, map gen-
eration, wildlife monitoring [1], aerial photography [2], plant
protection [3], quadcopter unmanned aerial vehicles (QUAVs)
have attracted a lot of attention recently. Researchers have
used neural networks (NNs) for the control of QUAVs and
have shown significant results in related studies. For example,
[4] proposed an innovative fault-tolerant control scheme by
integrating virtual estimating algorithms with NNs. [5] pre-
sented an learning control scheme for QUAVs with unknown
moment of inertia. Meanwhile, researchers have suggested a
number of control mechanisms for QUAVs, including adaptive
robust control ( [6]) and backstepping control ( [7]). Among
these techniques, sliding mode control has been extensively
researched and proven to be successful.

Dianbiao Dong is corresponding author.

In control systems, it is common to encounter unexpected
nonlinear disturbance terms due to external disturbances and
modeling errors. These disturbances can deteriorate the control
performance of QUAVs, leading to unstable closed-loop sys-
tems or fluctuations in errors. To address this issue, researchers
have focused on prescribed performance control (PPC), which
aims to confine errors within prescribed regions. By confining
the errors, PPC can improve stability and reduce fluctuations
in the control system, ultimately enhancing the overall per-
formance of QUAVs. Prescribed performance functions for
controlling QUAV have been developed through extensive
research, as evidenced by notable studies [8]–[12]. These
advancements have resulted in significant improvements in
QUAV performance.

However, the studies mentioned above have not yet solved
the finite-time controllability problem of QUAVs. Moreover, in
real-world scenarios, the convergence speed is a vital indicator
of how well a control system is functioning. To assess the per-
formance of QUAVs, several researchers have proposed new
error definitions and new observers, such as those presented
in [13] and [14]. Further information can be found in studies
like [15]–[20], which have presented a range of finite-time
stabilization methods including adaptive sliding mode control,
Lyapunov stability theory, and finite-time stability theorems.
For instance, [15] presented a design method for adaptive
sliding mode control (SMC) to stabilize QUAV systems in
finite time under parametric uncertainty. [16] proposed a
backstepping strategy for finite-time convergence of switching
surfaces. In [17], the finite-time stability theorem is used as
part of the design of the control such that each QUAV has
sufficient tracking performance in a finite amount of time.

In addition, the field of QUAVs has seen significant ad-
vancements with the incorporation of finite-time prescribed



performance concepts, see [21]–[26]. For instance, in [21], a
fixed-time control scheme was proposed by combining PPC,
backstepping design methods, and command filtering. On
the other hand, a finite-time command filter is applied in
[22] to approximate the derivative of the virtual control law.
Moreover, [23] investigated a new finite-time control in the
case of executor faults.

Based on the above research, current finite-time prescribed
performance research on QUAV focuses on single QUAV
control rather than swarm control. Therefore, this research
aims to propose a QUAVs time-varying formation control
strategy with unkown nonlinear disturbances by utilizing a
novel finite-time performance function (FTPF). This research
makes the following main contributions:

1) For the time-varying formation control of QUAVs with
nonlinear disturbances, this paper proposes a finite-time
prescribed performance control strategy by limiting the
error of QUAVs within a prescribed region and introduc-
ing a neural network to solve the nonlinear disturbance.

2) This paper designs a new finite-time prescribed per-
formance function. Compared with other finite-time
prescribed performance functions or prescribed perfor-
mance functions [26], [27], it has the advantages of small
error and settable convergence time.

II. BACKGROUND

A. Graph Theorem

G = {V,E} is a graph, where V = {1, · · · , N} specifies
the vertex set. The number of intelligent agents is N , and
the edge set is E = {(i, j)}. Using this architecture, we can
express the relationship between the intelligent agents using
a matrix. The adjacency matrix is defined as A = [aij ] ∈
RN×N , where aij ̸= 0 if (i, j) ∈ E, and aij = 0 when (i, j) /∈
E. If aij > 0, then j is designated as a neighbor of i, meaning
that the two intelligent agents will be able to communicate.

D = (di) represents the degree matrix and di =
N∑
j=1

aij . Ā =

[āij ] ∈ RN×N represents the normalization adjacency matrix,
and Ā is defined as follows:

āij =

{
aij/di, di ̸= 0
aij , di = 0.

(1)

For the diagonal matrix D̄ = diag(d̄i), it is defined as below:

d̄i =

{
1, di ̸= 0
0, di = 0.

(2)

The Laplacian matrix L is is obtained by subtracting D̄ form
Ā.

Each of 1, · · · , N stands for a different class of intelligent
agent. The global leader when di = 0 is i, which denotes that
it doesn’t receive information from other intelligent agents.

And we set B = diag(bi) as follows:

bi =

{
0, di ̸= 0
1, di = 0,

(3)

therefore, we can then figure out that D̄ +B = IN .

Remark 1: From the above definition we can see that when
i isn’t the global leader, d̄i ̸= 0 and bi = 0. If i is then d̄i = 0
and bi ̸= 0.

B. Finite-Time Stability Theorem

Definition 1 [28]: Contemplate the creation of a system:

ẋ = f(x, t), f(0, t) = 0, (4)

there is always a settling time T for any initial condition x0 at
any initial time t0, and the system is stable when t is greater
than T , ∥x(t)∥ is less than a very tiny value χ.

Lemma 1 [29]: A positive definite function V (x) which is
smooth and some positive factor ϑ > 0, 0 < ϵ < 1 and s > 0,
such that V̇ (x) ≤ −ϑV ϵ(x) + s, t ≥ 0 is established, thus
the system described above is stable.

Lemma 2 [30]: The following inequality is valid:

ȷıℓϱν ≤ σȷı+ϱ +
ϱ

ı+ ϱ

[
ı

σ(ı+ ϱ)

] ı
ϱ

ℓı+ϱν
ı+ϱ
λ , (5)

where ȷ ≥ 0, ı ≥ 0, ℓ ≥ 0, ϱ ≥ 0, ν ≥ 0, σ > 0.

C. Finite-Time Prescribed Performance Function

Definition 2: v(t) represents the finite-time performance
function (FTPF) satisfying the conditions: (1) Regardless of
the any time t, v(t) > 0 (2) Regardless of the any time t,
v̇(t) ≤ 0 (3) When t = Tf , the function is continuous and
the value of the function is vTf

, where vTf
represents a tiny

positive constant and Tf expresses the prescribed time.
On the basis of this definition, a new FTPF is designed:

v(t) =

{
v0 ·

[
1− tanh

(
tn

Tf−t

)]
+ vTf

, 0 ≤ t < Tf

vTf
, t ≥ Tf ,

(6)

where Tf > 0, v0 > 0, vTf
> 0, 0 < n ≤ 1.

The following is the continuity proof of the proposed FTPF:
For t < Tf , we set f(t) = tanh(t), g(t) = tn

Tf−t , so we
yields v(t) = v0 · [1− f (g(t))] + vTf

and g(t) > 0, 0 <
f (g(t)) < 1.

We can therefore deduce that v(t) > 0.
Derivation of (6) gives:

v̇(t) = −v0f ′(g(t))g′(t), (7)

where g′(t) = ntn−1(Tf−t)+tn

(Tf−t)2 > 0, f ′(t) = 1− tanh2(t) >
0.

For t < Tf , it is simple to observe that v(t) > 0, ˙v(t) < 0.
For t ≥ Tf , v(t) > 0, ˙v(t) = 0.

So v(t) satisfies the conditions (1), (2) mentioned in Defi-
nition 2.

(7) can have the form:

v̇(t) = −v0
4ntn−1(Tf−t)+4tn

(t−Tf )
2

e
2t

Tf−t + e
−2t

Tf−t + 2
, (8)

in this limit, for t→ Tf , 4tn

(t−Tf )
2 is a higher order infinity of

4ntn−1(Tf−t)

(t−Tf )
2 .

According to L’Hopital’s rule, we can get:



v̇(t) = lim
t→T−

f

−v0

4Tn
f

(t−Tf )
2

e
2t

Tf−t + e
−2t

Tf−t + 2

= lim
t→T−

f

4v0T
n−1
f

(t−Tf )

e
2t

Tf−t − e
−2t

Tf−t

= lim
t→T−

f

−2v0T
n−2
f

e
2t

Tf−t + e
−2t

Tf−t

=0.

(9)

Therefore, when t approaches Tf from the left

d

dt
v(t) = 0. (10)

Accordingly, d
dtv(t) is continuous.

For derivatives with order greater than 1, and for t→ T−
f ,

e
−bt

Tf−t → 0, e
bt

Tf−t → +∞, where b > 0 is a constant.
For t→ Tf , the rth order derivative of g(t) is:

g(r)(t) =
Υ

(Tf − t)
r+1 , (11)

where Υ ∈ R is an unknown coefficient.
The rth order derivative of f(t) can be written as:

f (r)(t) =
a(et + e−t)c + f(et − e−t)c

(et + e−t)c+2
, (12)

where a, c, f are unknown coefficients.
Finally, we can get the desired result from Bruno’s formula

[31]:

dr

dtr
f(g(t)) =

r∑
i=1

f (i)(g(t))Br,i
(
f (1)(t), f (2)(t), . . . , f (r)(t)

)
. (13)

Combine the (11) and (12), formula (13) can be rewritten
as:

lim
t→T−

f

dr

dtr
f(g(t)) =

lim
t→T−

f

r∑
i=1

Υ
(Tf−t)i+1

e
2t

Tf−t

Br,i

(
f (1)(t), f (2)(t), . . . , f (r)(t)

)
,

(14)

where Br,i

(
f (1)(t), f (2)(t), . . . , f (r)(t)

)
is bounded.

Using L’Hopital’s rule, we can obtain that for t → T−
f ,

dr

dtr f(g(t)) = 0.
Therefore, limt→T+

f

[
drv(t)
dtr

]
= 0.

And limt→T−
f

[
drv(t)
dtr

]
= 0.

So v(t) is a function that complies with Definition 2.

D. Neural Networks

NNs can approximate unknown nonlinear functions. In this
paper, we will employ them to approximate ξ:

ξ =W ∗T Γ(Z) + Φ(Z) (|Φ(Z)| ≤ δ), (15)

where ξ denotes the disturbance, W = [W1, · · · ,Wp]
T is the

weight vector of NN and p represents the number of neurons.

Γ(Z) = [Γ1(Z), · · · ,Γp(Z)]
T is the vector of Gaussian

basis function as well as Φ(Z) represents the error from
approximation, δ stands for an accuracy level. The following
is the definition of Γi(Z):

Γi(Z) = exp

[
− (Z − Ci)

T
(Z − Ci)

2b2i

]
, (16)

where Ci = [Ci,1, Ci,2, Ci,3, . . . ]
T is the center of the

function and the length of Ci is determined in practice. bi
stands for the function width.

The ideal vector of weight is defined below:

W ∗ = arg min
W∈Rp

{
f(Z)−WTΓ(Z)

}
. (17)

Furthermore, the input vector Z ∈ Ωz to be determined in
practice.

III. QUADROTOR UNMANNED AERIAL VEHICLE MODEL

To facilitate the determination of various parameters of
QUAV, the position and speed of QUAV are expressed in the
earth coordinate system. However, sensor measurements are
encoded in the body coordinate system, so a transformation
matrix is required to convert these vectors to the earth coor-
dinate system.

Lemma 3 [32]: The transformation matrix that converts
vectors from the body coordinate system to the earth coordi-
nate system is mathematically defined as follows:

R =

 CθCψ −CϕSψ + SϕSθCψ SϕSψ + CϕSθCψ
CθSψ CϕCψ + SϕSθSψ −SϕCψ + CϕSθSψ
−Sθ SϕCθ CϕCθ

 , (18)

where S(x) = sin(x), C(x) = cos(x).
To increase the utility of the designed control rate, it is

necessary to consider external disturbances. This allows us
to obtain the equation for the combined external force and
velocity in the QUAV dynamic model, which constitutes the
position dynamic model:

a = (F/m) ·R · e− g · e3 + (KF /m) · (v − vair ) , (19)

where F = cT ·
(
ω2
1 + ω2

2 + ω2
3 + ω2

4

)
is the total lift of the

QUAV, KF = diag (KFx,KFy,KFz) is a coefficient matrix
,e3 = [0, 0, 1]T, a = [ax, ay, az]

T is the acceleration vector
group of QUAV on X-axis, Y-axis and Z-axis. And cT is the
propeller tension coefficient.

The gyroscopic torque, Ga, is defined as follows:

Ga =

 Jt · q · (−ω1 + ω2 − ω3 + ω4)
Jt · p · (ω1 − ω2 + ω3 − ω4)

0

 , (20)

where Jt stands for the combined moment of inertia of the
entire rotor and propeller assembly about the body-frame’s
rotational axis. Meanwhile, p and q denote the angular veloci-
ties corresponding to the roll and pitch angles in the coordinate
system of the earth, respectively.



ϖ is the moment generated by the propeller on the QUAV.
It can be expressed as follows:

ϖ =

 d · cT ·
(
−ω2

2 + ω2
4

)
d · cT ·

(
−ω2

1 + ω2
3

)
cM ·

(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
 , (21)

where cM is the propeller torque coefficient, d represents the
length from the QUAV center to driver.

Combining (20) and (21), the attitude equation of the QUAV
can be obtained from Euler’s equation:

J · ω̇ = Ga +ϖ − ω × J · ω +KT · (ω − ωair ) , (22)

where J = diag (Ixx, Iyy, Izz) is inertia matrix, ω indicates
the angular velocity in the body coordinate system, KT =
diag (KT1,KT2,KT3) is coefficient matrix.
ϕ indicate the roll, θ represent the pitch and ψ denote

the yaw. r represents yaw angle’s angular speed in the earth
coordinate system. The conversion of [ϕ, θ, ψ]T to [p, q, r]T

is:  p
q
r

 =

 1 0 −Sθ

0 Cϕ SϕCθ

0 −Sϕ CϕCθ

 ϕ̇

θ̇

ψ̇

 . (23)

And we define:

W =

 1 0 −Sθ

0 Cϕ SϕCθ

0 −Sϕ CϕCθ

 . (24)

Combining (19)-(23), and set de1 = −KF

m · vair, de2 = −W ·
J−1 · KT · ωair to be the external disturbance. The kinetic
equation of QUAV can be expressed as:{

ẍe = ue1 +
KF

m · ẋe + de1
ω̈e = ue2 − ζ · ω̇e + de2,

(25)

where ue1 =
(
F
m

)
·R·e3−g·e3, ue2 =W ·J−1 ·ϖ+W ·J−1 ·Ga,

ζ = Ẇ−1 ·W +W ·J−1 ·M ·J ·W−1−W ·J−1 ·KT ·W−1,
xe and ωe represent the position state and attitude state of the
QUAV in the earth coordinate system, respectively.

M is a skew-symmetric matrix:

M =

 0 −r q
r 0 −p
−q p 0

 . (26)

Therefore, the equation of state of the QUAV can be
deduced as:[

ẍe

ω̈e

]
=

[
ue1
ue2

]
+

[
KF

m 0
0 −ζ

] [
ẋe

ω̇e

]
+

[
de1
de2

]
. (27)

So, the ith QUAV’s state characteristic of the system is as
follows: {

ẋi,0 = xi,1

ẋi,1 = ui + si + ξi,
(28)

where ẋi,0, ẋi,1, ui and si are the vector of position, vector
of velocity, vector of input and matrix describing the model
of the ith QUAV, respectively.

IV. CONTROL LAW OF QUADROTOR UNMANNED AERIAL
VEHICLE SWARMS

Setting the global reference signal:{
ẋ0,0 = x0,1
ẋ0,1 = x0,2,

(29)

where x0,0, x0,1 and x0,2 are global position reference sig-
nal, global velocity reference signal and global acceleration
reference signal, respectively.

Since the QUAV is considered as an underdriven system,
the ϕ and θ need to be determined based on the desired
position tracking. The required attitude signals are generated
using a filtered inversion technique. The derivative signals of
the attitude command are obtained using a linear differential
tracker.

QUAV formation’s error is defined below:{
ei,0(t) = xi,0 − x0,0 − hi,0

ei,1(t) = xi,1 − x0,1 − hi,1,
(30)

where hi,j(j = 1, 2) are the formation functions.
Thus we can get the τ th order error of the ith QUAV as:

Ei,τ =

N∑
j=1

āij (xi,τ − hi,τ − xj,τ + hj,τ )

+ bi (xi,τ − x0,τ − hi,τ )

=

N∑
j=1

āij (xi,τ − xj,τ ) + bi (xi,τ − x0,τ ) + fi,τ ,

(31)

where fi,τ =
∑N

j=1 āij (−hi,τ + hj,τ ) + bi (−hi,τ ).
The error is as follows:

Eτ = H ⊗ IN · (xτ − 1N ⊗ x0,τ ) + fτ , (32)

where H = L+B.

A. Error Transfer

The error transfer function T (ε) is used to convert the error
for each QUAV:

T (ε) =
eε − e−ε

eε + e−ε
. (33)

Therefore, the transfer error εi,k,0 for the kth degree of
freedom of the ith QUAV could be derived from the equation
below:

Ei,k,0(t) = v(t) · T (εi,k,0). (34)

Combine (33) and (34), we can obtain the transfer error
εi,k,0 expression:

εi,k,0 =
1

2
ln

(
v(t) + Ei,k,0(t)

v(t)− Ei,k,0(t)

)
. (35)

The derivative of the transfer error εi,k,1 can be obtained
by simultaneously deriving both sides of (34):

ε̇i,k,0 = εi,k,1 =− v̇(t) · T (εi,k,0)

v(t) · ∂T (εi,k,0)
∂εi,k,0

+
Ei,k,1(t)

v(t) · ∂T (εi,k,0)
∂εi,k,0

=γik + Fik · Ei,k,1(t),

(36)



where γik = − v̇(t)·T (εi,k,0)

v(t)·
∂T(εi,k,0)

∂εi,k,0

, Fik = 1

v(t)·
∂T(εi,k,0)

∂εi,k,0

.

Remark 2: v(t) > 0, ∂T (ε0)
∂ε0

= 4
(eε+e−ε)2

> 0. Therefore
F > 0.

Therefore, form (36), the first order derivative of formation
transfer error with finite-time prescribed performance can be
characterized as:

ε1 = γ + F [H ⊗ IN · (x1 − 1N ⊗ x0,1) + f1] , (37)

where 
γi = [γi1, γi2, γi3, γi4, γi5, γi6]

γ = [γ1, γ2, · · · γN ]
T

Fi = diag ([Fi1, Fi2, Fi3, Fi4, Fi5, Fi6])
F = diag ([F1, F2, F3, · · · , FN ]) .

(38)

B. Design of Control Law

We set the sliding error S as:

S = βε0 + ε1, (39)

where 
β = diag ([β1, β2, · · · , βN ])
βi = diag ([βi1, βi2, · · · , βi6])
S =

[
ST
1 , S

T
2 , · · · , ST

N

]T
Si = [Si1, Si2, · · · , Si6]

T
.

(40)

The chosen Lyapunov function Veq is as follows:

Veq =
1

2
STS. (41)

Setting ueq to represent the equivalent input, and us is
designed as the switch input, and the control law is:

u = ueq + us. (42)

Derivation of equation (41) yields:

V̇eq =ST {βε1 + γ̇ + ḞE1

+ F [H ⊗ IN · (u+ s+ ξ − 1N ⊗ x0,2) + f2]} .
(43)

Then the control law ueq is:

ueq =1N ⊗ x0,2 − s−H−1 ⊗ IN · f2
− F−1 ·H−1 ⊗ IN ·

(
βε1 + γ̇ + ḞE1

)
.

(44)

Then, (43) can be rewritten as follows:

V̇eq = STF ·H ⊗ IN · (us + ξ) . (45)

(45) can be written as:

V̇eq =

N∑
i=1

ST
i Fi

usi + ξi −
N∑
j=1

āij
(
usj + ξj

) . (46)

For formation control, it is essential for the followers to
track the leader. Therefore, the control law for the leader needs
to be solved first.

According to (46), we can rewrite the leader’s Lyapunov
function as follows:

V̇le = ST
leFle (u

s
le + ξle) . (47)

Since NNs are used to approximate the nonlinear external
disturbance:

ξle,i =W ∗
le,i

TΓle,i (Zle,i) + Φ (Zle,i)). (48)

where |Φ (Zle,i)| ≤ δle,i and ξle is defined as: ξle =

[ξle,1, ξle,2, ξle,3, ξle,4, ξle,5, ξle,6]
T .

With added NNs, the Lyapunov function is updated as:

V̇le = ST
leFle [u

s
le + ξle] +

6∑
k=1

(
−η̃le,k ˙̂ηle,k

)
. (49)

where η̂le,i =
∥∥∥ŴT

le,i

∥∥∥2, η̃le,i = ηle,i − η̂le,i.

V̇le =

6∑
k=1

Sle,kFle,k[u
s
le,k +W ∗

le,k
TΓle,k (Zle,k)

+ Φ (Zle,k)] +

6∑
k=1

(
−η̃le,k ˙̂ηle,k

)
.

(50)

V̇le =

6∑
k=1

{Sle,kFle,k[u
s
le,k +W ∗

le,k
TΓle,k (Zle,k)

+ Φ (Zle,k)]− η̃le,k ˙̂ηle,k}.

(51)

From Lemma 2, we can deduce that:

Sle,kFle,kW
∗ T
le,k Γle,k (Zle,k)

≤
[
S2
le,kF

2
le,k∥W ∗

le,k

∥∥2
ΓT
le,k (Zle,k) Γle,k (Zle,k)]/4ς1 + ς1

≤[S2
le,kF

2
le,kηle,i

ΓT
le,k(Zle,k)Γle,k (Zle,k)]/4ς1 + ς1.

(52)

Sle,kFle,kΦ (Zle,k) ≤
S3
le,k

3
+
F 3
le,k

3
+
δ3le,i
3
. (53)

Substituting (53), (52) into (51), we get:

V̇le ≤
6∑

k=1

{Sle,kFle,ku
s
le,k

+
[
S2
le,kF

2
le,kηle,iΓ

T
le,k (Zle,k) Γle,k (Zle,k)

]
/4ς1

+ ς1 +
S3
le,k

3
+
F 3
le,k

3
+
δ3le,i
3

− η̃le,k ˙̂ηle,k}.

(54)

Thus the control rate usle,k can be given as:

usle,k =− [S2
le,kF

2
le,kηle,i

ΓT
le,k (Zle,k) Γle,k (Zle,k)]/4ς1

−
S2
le,k

3Fle,k
− µle,kSle,k,

(55)

where Zle,k = [x0,0,k, x0,1,k, x0,2,k, xle,0,k, xle,1,k, Sle,k]
T ,

µle,k > 0.
The corresponding parameter update rate of the NNs can

be:
˙̂ηle,k =

[
S2
le,kF

2
le,kΓ

T
le,k (Zle,k) Γle,k (Zle,k)

]
/4ς1

− ωle,kη̂le,k.
(56)



where ωle,k > 0.
Let the leader’s us be:

usle =
[
usle,1, u

s
le,2, u

s
le,3, u

s
le,4, u

s
le,5, u

s
le,6

]T
. (57)

Substituting (55), (56) into (54) yields:

V̇le ≤
6∑

k=1

(
−µle,kFle,kS

2
le,k

)
+

6∑
k=1

(
−ωle,kη̃

2
le,k

)
+

6∑
k=1

∆le,k,

(58)

where ∆le,k = ς1 +
F 3

le,k

3 +
δ3le,i
3 + ωle,kη̃le,kηle,k.

The follower’s Lyapunov function can be rewritten as:

V̇f =

N−1∑
i=1

ST
f,iFf,i

usf,i + ξf,i −
N∑
j=1

āij
(
usj + ξj

)
+

6∑
k=1

(
−η̃f,i,k ˙̂ηf,i,k

)
.

(59)

Noting the complexity of the form, the control rates were
designed as follows:

usf,i = usf,i,1 + usf,i,2, (60)

where

usf,i,1 =

N∑
j=1

āiju
s
j . (61)

usf,i,1 is related to the control rate of the leader and other
followers, so the control rate of different intelligences should
be designed according to the graph theory successively in
actual control.

Substituting (60), (61) into (59) gives:

V̇f =

N−1∑
i=1

[ST
f,iFf,i(u

s
f,i,2 + ξf,i −

N∑
j=1

āijξj)

+

6∑
k=1

(−η̃f,i,k ˙̂ηf,i,k)].

(62)

Let Qf,i = −
∑N

j=1 āijξj , Q ∈ R6×1. We can deduce that
|Qf,i,k| ≤ −

∑N
j=1 āij ∥ξj∥ ≤ qf,i,k.

ξf,i,k is the external disturbance of the ith follower, again
using a NN to approximate its value.

ξf,i,k =W ∗
f,i,k

TΓf,i,k (Zf,i,k) + Φ (Zf,i,k) , (63)

where |Φ (Zf,i,k)| ≤ δf,i,k, Zf,i,k = [x0,0,k + hi,0,k, x0,1,k +
hi,1,k, x0,2,k + hi,2,k, xf,i,1,k, xf,i,1,k, Sf,i,k]

T.
Substitute (63) into (62):

V̇f =

N−1∑
i=1

6∑
k=1

{Sf,i,kFf,i,k[u
s
f,i,2,k

+W ∗
f,i,k

TΓf,i,k(Zf,i,k) +Φ (Zf,i,k) +Qf,i,k]

− η̃f,i,k ˙̂ηf,i,k}.
(64)

Based on Lemma 2, we can deduce that:

Sf,i,kFf,i,kW
∗ T
f,i,kΓf,i,k (Zf,i,k)

≤[S2
f,i,kF

2
f,i,kηf,i,k

ΓT
f,i,k(Zf,i,k)Γf,i,k (Zf,i,k)]/4ς2 + ς2.

(65)

Sf,i,kFf,i,kQf,i,k ≤
S3
f,i,k

3
+
F 3
f,i,k

3
+
q3f,i,k
3

. (66)

Sf,i,kFf,i,kΦ (Zf,i,k) ≤
Sf,i,k

3

3
+
Ff,i,k

3

3
+
δ3f,i,k
3

. (67)

Substituting (65), (66), and (67) into (64) yields:

V̇f ≤
N−1∑
i=1

6∑
k=1

{Sf,i,kFf,i,ku
s
f,i,2,k +

2S3
f,i,k

3

+
2F 3

f,i,k

3
+
δ3f,i,k
3

+
q3f,i,k
3

− η̃f,i,k ˙̂ηf,i,k

+ [S2
f,i,kF

2
f,i,kηf,i,k

ΓT
f,i,k (Zf,i,k) Γf,i,k(Zf,i,k)]/4ς2 + ς2}.

(68)

Thus, the control rate of the ith follower is:

usf,i,2,k =− [Sf,i,kFf,i,kηf,i,k

ΓT
f,i,k (Zf,i,k) Γf,i,k(Zf,i,k)]/4ς2

−
2S2

f,i,k

3Ff,i,k
− µf,i,kSf,i,k.

(69)

The relative NNs parameter update rates are:

˙̂ηf,i,k =[S2
f,i,kF

2
f,i,k

ΓT
f,i,k (Zf,i,k) Γf,i,k (Zf,i,k)]/4ς2

− ωf,i,kη̂f,i,k,

(70)

where µf,i,k > 0, ωf,i,k > 0.
Substituting (69), (70) into (68) yields:

V̇f ≤
N−1∑
i=1

6∑
k=1

(
−µf,i,kFf,i,kS

2
f,i,k

)
+

N−1∑
i=1

6∑
k=1

(
−ωf,i,kη̃

2
f,i,k

)
+

N−1∑
i=1

6∑
k=1

(∆f,i,k) ,

(71)

where ∆f,i,k = ς2+
2F 3

f,i,k

3 +
δ3f,i,k

3 +
q3f,i,k

3 +ωf,i,kη̃f,i,kηf,i,k.
The ith follower’s usf,i can be expressed as follows:

usf,i = usf,i,1 + usf,i,2, (72)

where usf,i,k =
[
usf,i,k,1, u

s
f,i,k,2, . . . , u

s
f,i,k,6

]T
.

After obtaining the control law usle for the leader, the overall
control input us for all QUAVs can be obtained by combining
the input of leader and the followers’ control inputs, denoted
as usf,i in a specific order according to graph theory.

Therefore, we can get all the overall control rates based on
(42).



The seleted Lyapunov function is

V =
1

2
STS +

1

2

6N∑
i=1

η̃2i . (73)

Based on (58) and (71), we obtain:

V̇ ≤
6∑

k=1

(
−µle,kFle,kS

2
le,k

)
+

6∑
k=1

(
−ωle,kη̃

2
le,k

)
+

N−1∑
i=1

6∑
k=1

(
−µf,i,kFf,i,kS

2
f,i,k

)
+

N−1∑
i=1

6∑
k=1

(
−ωf,i,kη̃

2
f,i,k

)
+

6∑
k=1

∆le,k

+

N−1∑
i=1

6∑
k=1

∆f,i,k.

(74)

So, we can deduce that:

V̇ ≤− µF

6N∑
k=1

S2
k − ω

6N∑
k=1

η̃2k +

6∑
k=1

∆le,k

+

N−1∑
i=1

6∑
k=1

(∆f,i,k) ,

(75)

where µ = min (µle,1, µle,2, · · · , µle,6, µf,1,1, µf,1,2, · · · )
F = min (Fle,1, Fle,2, · · · , Fle,6, Ff,1,1, Ff,1,2, · · · )
ω = min (ωle,1, ωle,2, · · · , ωle,6, ωf,1,1, ωf,1,2, · · · ) .

(76)

V̇ ≤ −µFSTS − ω

6N∑
k=1

η̃2k

+

6∑
k=1

∆le,k +

N−1∑
i=1

6∑
k=1

(∆f,i,k)

≤ −λV +∆,

(77)

where λ = min(2µF, 2ω) > 0, ∆ =
∑6

k=1 ∆le,k +∑N−1
i=1

∑6
k=1 ∆f,i,k.

Remark 3: The advantages of the Lyapunov function used
in this paper over existing finite-time control results (see
Lemma 1) are reflected in the fact that it is more direct, less
restricted, and avoids ambiguity issues.

Utilizing the above theory, the errors S and η̃i are guaran-
teed to converge in finite time.

V. EXAMPLE OF SIMULATION

This section validates the feasibility of the designed control
strategy through simulation. The QUAVs system realizes the
desired effect according to the formation function during the
tracking process.

Considering the system has six QUAVs, the initial position
of the six QUAVs are as follows:

x1,0 = [0.97, 1.78, 0.46, 0.57, 0.65, 0.58]T ;
x2,0 = [0.15, 0.92, 1.59, 0.55, 0.35, 0.49]T ;
x3,0 = [0.34, 1.78, 0, 0.43, 0.92, 0.55]T ;
x4,0 = [1.71, 0.06, 0, 0.77, 0.46,−0.67]T ;
x5,0 = [1.23, 1.95, 0.17, 0.50, 0.34, 0.38]T ;
x6,0 = [1.81, 1.65, 1.95, 0.86, 0.89, 0.46]T ;

(78)

The initial velocity of the six QUAVs would be 0.
x0,0 = [cos(0.1πt), sin(0.1πt), sin(0.1πt)]T is the global

position reference signal of the QUAV. ψ = 0.2cos(0.1πt) is
the global yaw reference signal. As for the required values for
roll and pitch, we will get them using the methods mentioned
above.

To enable formation control of QUAVs time-vary forma-
tion function, we design the time-vary formation function as
follows:

h1,0 =[cos(0.3t)− 1, 2sin(0.4t)− 1, cos(0.2t)− 2,

0, 0, 0]T,

h2,0 =[−cos(0.3t) + 1,−2sin(0.2t) + 1,−cos(0.2t) + 2,

0, 0, 0]T,

h3,0 =[sin(0.4t)− 1, cos(0.3t) + 1,−cos(0.2t),

0, 0, 0]T,

h4,0 =[sin(0.3t)− 4, 2cos(0.4t) + 2, sin(0.2t) + 1,

0, 0, 0]T,

h5,0 =[−sin(0.3t) + 4,−2cos(0.4t)− 2,−sin(0.2t)− 1,

0, 0, 0]T,

h6,0 =[0, 0, 0, 0, 0, 0]T.
(79)

Let Ci = [−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2] and bi = 1,
where i = 1, 2, · · · , 6. Let updating factor µle,k = µf,i,k = 25,
ωle,k = ωf,i,k = 0.25. Let ς1 = ς2 = 0.025.

For QUAVs’ modeling, m = 2, g = 9.8, Jt = 1, d =
0.2, cT = 2, cM = 1.5 KF = diag([0.02, 0.02, 0.02]), KT =
diag([0.015, 0.015, 0.015]), J = diag([1.5, 1.5, 2.2]).

For the parameters in the v(t), it is designed as n = 0.75,
v0 = 10, vTf = 0.2, and Tf will be prescribed later.

In order for the system to reach convergence in a prescribed
time, we design the coefficients of the SMC errors as βi =
[ 2
Tf

; 2
Tf

; 2
Tf

; 2
Tf

; 2
Tf

; 2
Tf

]T .
With using the 6th QUAV as a leader, the communication

matrix is:

A =


0 0 0 0 0 1
0 0 0 0 0.5 0.5
0 0 0 0.5 0 0.5
0.5 0 0 0 0 0.5
0.5 0 0 0 0 0.5
0 0 0 0 0 0

 (80)

The primary findings are depicted in Fig.1-Fig.11. In Fig.1,
QUAVs’ position states along the X-axis during formation
control with nonlinear disturbances are illustrated. Fig.2 por-
trays the position errors along the X-axis, demonstrating that



the QUAVs consistently maintain their position within the
specified range. Fig.3 and Fig.4 present the position states
and errors of QUAVs along the Y-axis, respectively, with
Fig.4 indicating the QUAV’s errors to converge within the
prescribed region. Fig.5 and Fig.6 showcase the position states
and errors along the Z-axis, respectively, highlighting the sys-
tem’s convergence within the specified region. Fig.7 and Fig.8
exhibit the yaw angle status and yaw angle errors of QUAVs,
with Fig.8 indicating the QUAVs’ adherence to the prescribed
trajectory under the suggested control strategy. Finally, Fig.9
displays the control inputs in the X-axis direction, revealing
that the system maintains acceptable input performance even
when subjected to unknown nonlinear function disturbances.
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Fig. 1. The position states of the QUAVs along the X-axis. xi represents the
positional state of the ith QUAV.
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Fig. 2. The position errors of the QUAVs along the X-axis. exi represents
the positional error of the ith QUAV.

The simulation result is presented in Fig.10, it reveals the
4th QUAV’s position tracking error on the Y-axis in the case
of Tf = 2, Tf = 3, Tf = 5, and Tf = 8, illustrating that the
convergence speed of the QUAV varies with the designated
time, further emphasizing that the FTPF proposed is capable
of effectively controlling convergence speed.
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Fig. 3. The position states of the QUAVs along the Y-axis. yi represents the
positional state of the ith QUAV.
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Fig. 4. The position errors of the QUAVs along the Y-axis. eyi represents
the positional error of the ith QUAV.
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Fig. 5. The positional state of each QUAV along the Z-axis. zi represents
the positional state of the ith QUAV.
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Fig. 6. The position errors of the QUAVs along the Z-axis. ezi represents
the positional error of the ith QUAV.
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Fig. 7. The attitude states of QUAVs along the yaw angle. ψi represents the
angular state of the ith QUAV.
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Fig. 8. The attitude errors of the QUAVs along the yaw angle. eψi
represents

the angular error of the ith QUAV.
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Fig. 9. The control input information of the QUAVs along the X-axis.ux1
represents the input of the ith QUAV.
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Fig. 10. The position tracking error of the 4th QUAV along the Y-axis using
proposed FTPF with Tf = 2, Tf = 3, Tf = 5,and Tf = 8, respectively.

Fig. 11. The position tracking errors of the 4th QUAV along the X-axis with
the proposed FTPF, the other FTPF in [?] and the prescribed performance
function in [?].



Fig.11 presents the simulation results of the position track-
ing error along the X-axis for the 4th agent using the FTPF
designed in this paper, the other FTPF in [26], and the
prescribed performance function in [27] when Tf = 2. From
the figures, it can be found that the performance of QUAVs is
acceptable after the proposed control law is employed, despite
the presence of uncertain nonlinear disturbances. Analysis of
Fig.11 reveals that the FTPF proposed in this study offers
superior stability in comparison to other finite-time prescribed
performance functions. Unlike the slight fluctuations observed
in the error of the other FTPF, the FTPF maintains a more
consistent trajectory. Additionally, in contrast to the PPF,
the FTPF achieves quicker convergence with reduced error.
Thus, the FTPF introduced in this work effectively manages
convergence rate of the system and maintains error within a
narrow region.

VI. CONCLUSION

This paper focuses on the time-varying control of QUAVs
system with FTPF. NNs are used to approximate the distur-
bances to improve the control accuracy and eliminate chatter-
ing problem. Combining the proposed new FTPF and sliding
mode control method, a finite-time prescribed performance
time-varying formation strategy is proposed. The convergence
of the controller is proved by a strict theoretical derivation
on the basis of the Lyapunov stability criterion. Finally,
simulations are conducted to validate the practicality of the
designed control scheme in achieving prescribed performance
within a specified time range while maintaining acceptable
input performance, even with unknown nonlinear disturbances.
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