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Abstract

Parameter-efficient fine-tuning (PEFT) methods
have shown promise in adapting large language
models, yet existing approaches exhibit counter-
intuitive phenomena: integrating router into
prompt tuning (PT) increases training efficiency
yet does not improve performance universally;
parameter reduction through matrix decomposi-
tion can improve performance in specific domains.
Motivated by these observations and the modular
nature of PT, we propose PT-MoE, a novel frame-
work that integrates matrix decomposition with
mixture-of-experts (MoE) routing for efficient
PT. Results across 17 datasets demonstrate that
PT-MoE achieves state-of-the-art performance in
both question answering (QA) and mathematical
problem solving tasks, improving F1 score by
1.49 points over PT and 2.13 points over LoRA
in QA tasks, while enhancing mathematical ac-
curacy by 10.75 points over PT and 0.44 points
over LoRA, all while using 25% fewer parameters
than LoRA. Our analysis reveals that while PT
methods generally excel in QA tasks and LoRA-
based methods in math datasets, the integration
of matrix decomposition and MoE in PT-MoE
yields complementary benefits: decomposition
enables efficient parameter sharing across experts
while MoE provides dynamic adaptation, collec-
tively enabling PT-MoE to demonstrate cross-task
consistency and generalization abilities. These
findings, along with ablation studies on routing
mechanisms and architectural components, pro-
vide insights for future PEFT methods. 1
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1. Introduction
Large language models (LLMs) have shown remarkable ca-
pabilities but require improvements in efficiency across data
(Li & Cole, 2025), training, and inference (Li et al., 2024;
2025a;b). PEFT methods address training efficiency chal-
lenge by updating only a small subset of parameters (Han
et al., 2024). Prompt tuning (PT) stands out among PEFT
approaches with its unique advantages: minimizing train-
able parameters through soft prompt optimization, enabling
modular utilization through task-specific prompts without
model modifications, and supporting flexible knowledge
composition (Lester et al., 2021). These properties make it
effective for low-resource and multi-task applications where
efficient adaptation is essential.

Despite these advantages, we observe two counter-intuitive
phenomena in prompt tuning. First, integrating router
into prompt tuning does not decrease training efficiency
yet improves performance in specific domains rather than
universally (SMoP vs PT in Table 2), suggesting domain-
dependent optimization dynamics. Second, decomposing
soft prompts into low-rank matrices, while reducing pa-
rameters, can surprisingly improve model performance in
specific areas (DPT vs PT in Table 4). These phenomena
indicate that the relationship between parameter efficiency
and model effectiveness in prompt tuning is more nuanced
than previously understood, motivating the need for a more
sophisticated approach to prompt optimization.

Based on these observations, we propose a novel framework,
Prompt Tuning with Efficient Mixture-of-Experts (PT-
MoE), that combines matrix decomposition with MoE rout-
ing. As shown in Figure 1, our approach not only achieves
state-of-the-art performance, but also uses minimal trainable
parameters and moderate training steps.

Our work makes three key contributions:

• Novel finetuning framework: We propose PT-MoE, in-
tegrating matrix decomposition with MoE for prompt tun-
ing. Our framework achieves state-of-the-art performance
with fewer parameters while outperforming either method
alone, demonstrating their complementary benefits.

• Design dynamics: We thoroughly analyze key variables
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Figure 1: Performance and parameter efficiency com-
parison of PEFT methods on QA and mathematical tasks.
The upper subgraph shows average F1 scores on 12 MRQA
benchmark datasets, while the lower subgraph shows aver-
age accuracy on 5 mathematical datasets. The x-axis is the
number of trainable parameters, with corresponding param-
eter ratio shown at the top. ↑ indicates higher is better; ↓ in-
dicates lower is better. Red arrows indicate method transfor-
mations: +MD (matrix decomposition), +MoE (mixture-of-
experts), or their combination. PT excels in QA tasks while
LoRA demonstrates advantages in mathematical tasks. PT-
MoE achieves the best performance on both task types while
using fewer parameters than alternative methods, demon-
strating that combining matrix decomposition and MoE
yields complementary benefits despite each component in-
dividually decreasing performance when applied to PT.

influencing the performance of PT-MoE, including prompt
length, expert count, trainable parameters, routing mecha-
nisms, and model size. Findings provide design guidelines
for future parameter-efficient tuning approaches.

• Key insights: Our comprehensive analysis across diverse
tasks reveals several important findings: First, prompt
tuning methods excel in QA tasks while LoRA-based
methods demonstrate advantages in mathematical reason-

ing; Second, matrix decomposition reduces parameters
while potentially improving domain-specific performance,
whereas MoE integration increases parameter count with-
out compromising training efficiency; and Third, combin-
ing matrix decomposition and MoE enables PT-MoE to
achieve superior performance across all tasks while main-
taining minimal parameter count and moderate training
costs, whereas applying either of them individually can
decrease average performance.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in prompt tuning, covering both
direct tuning approaches and transfer learning methods. Sec-
tion 3 presents our PT-MoE framework, detailing the matrix
decomposition strategy, dynamic router design, and training
methodology. Section 4 describes our experimental design
across QA and mathematical problem-solving tasks. Sec-
tion 5 presents comprehensive results, including detailed
ablation studies analyzing the influence of prompt length,
parameter count, expert number, routing mechanisms, and
model size, followed by efficiency analysis. Section 6 con-
cludes with key findings and future directions.

2. Related Work
To contextualize our approach, we review existing prompt
tuning methods, which fall into two categories: direct
prompt tuning approaches focusing on architectural inno-
vations, and transfer learning methods enabling cross-task
knowledge sharing.

Direct prompt tuning methods have developed into four
main branches: (1) General approaches that directly op-
timize prompt parameters, including Prompt Tuning that
prepends trainable vectors to input while freezing the lan-
guage model (Lester et al., 2021), XPrompt that employs
hierarchical structured pruning to identify and retain im-
portant prompt tokens (Ma et al., 2022), and P-Tuning v2
that introduces deep prompts across all transformer layers
(Liu et al., 2022); (2) Encoder-based methods that leverage
additional modules, such as P-Tuning that incorporates an
encoder to learn dependencies between continuous embed-
dings (Liu et al., 2023), Residual Prompt Tuning (RPT) that
employs a residual part with down/up-projection layers for
stable optimization (Razdaibiedina et al., 2023), and Prefix
Tuning that prepends trainable key-value pairs at each layer
through a reparameterization section (Li & Liang, 2021);
(3) Decomposition methods that decompose prompt embed-
dings, including Decomposed Prompt Tuning (DPT) that
applies low-rank matrix decomposition to reduce parameter
count (Xiao et al., 2023), and DePT that combines shorter
soft prompts with low-rank updates to word embeddings
(Shi & Lipani, 2024); and (4) MoE approaches such as
Sparse Mixture-of-Prompts (SMoP) that employs multiple
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shorter prompts with a dynamic router to route inputs to the
most suitable soft prompt (Choi et al., 2023).

Transfer learning approaches in prompt tuning have de-
veloped into three categories: (1) General approaches that
directly transfer prompt knowledge, including SPoT that
introduces both generic transfer through multi-task pre-
training and targeted transfer via task similarity matching
(Vu et al., 2022), and ATTEMPT that dynamically com-
bines multiple source prompts through an attention-based
mixing mechanism with instance-level adaptation (Asai
et al., 2022); (2) Encoder-based methods that facilitate
knowledge transfer through additional modules, such as
TransPrompt that employs parallel task-specific and univer-
sal encoders with balancing mechanisms for obtaining both
task-dependent and task-agnostic knowledge (Wang et al.,
2021), and Cross-Task Prompt Tuning (CTPT) that lever-
ages multi-head attention for cross-task knowledge transfer
with dimension reduction and derivative-free optimization
(Xu et al., 2023); and (3) Decomposition methods exempli-
fied by Multitask Prompt Tuning (MPT) that decomposes
prompts into shared and task-specific components through
knowledge distillation, enabling efficient transfer while pre-
serving task-specific adaptability through a rank-one decom-
position strategy (Wang et al., 2023).

3. Methods
Building upon the insights from prior work, we propose a
new parameter-efficient prompt tuning framework, PT-MoE,
shown in Figure 2 and Algorithm 1.

Framework Overview. PT-MoE integrates matrix decom-
position and dynamic routing. Given an input sequence x,
our framework first generates routing weights w through a
router R: w = R(x). These weights determine the selec-
tion among N decomposed prompts, where each prompt
Pi is decomposed as Pi = AiB, with Ai being prompt-
specific and B being shared across all prompts. The final
soft prompt P is computed as P =

∑N
i=1 wiAiB, which is

then prepended to the input sequence for the frozen language
model.

Matrix Decomposition. To achieve parameter efficiency,
we decompose each prompt matrix Pi ∈ RT×H into a
prompt-specific matrix Ai ∈ RT×R and a shared matrix
B ∈ RR×H , where T , H , and R denote the prompt length,
hidden dimension, and low-rank dimension respectively.
This reduces parameters from O(NTH) to O(NTR+RH)
for N prompts. The low-rank dimension R is either man-
ually determined or computed to maintain parameter effi-
ciency. For initialization, we first transform task-relevant
text into word embeddings E ∈ RT×H , then perform SVD:
E = UΣV⊤. Each Ai is initialized as U: RΣR1/2 and
the shared B as ΣR1/2V⊤

R:, where subscript R indicates

Figure 2: Framework of PT-MoE. Each soft prompt is
decomposed into an input-specific matrix Ai and a shared
matrix B, with a router adaptively selecting and combin-
ing prompt components based on input. The resulting soft
prompt is prepended to the input for the frozen LLM.

Algorithm 1 Pseudo code of PT-MoE
Require: Base model M; input batch X = x1, ..., xb; parame-

ters θ
Notation: b - batch size; s - sequence length; n - number of

prompts; k - tokens per prompt; d - low-rank dimension; h -
hidden dimension

1: for batch x ∈ X do
2: Get input embeddings E = Membed(x)

where E ∈ Rb×s×h

3: Calculate mean embeddings
µ = mean(E, dim = 1) where µ ∈ Rb×h

4: Compute router logits l = Wµ+ b
where W ∈ Rn×h, b ∈ Rn, l ∈ Rb×n

5: Get router weights
w = softmax(l) where w ∈ Rb×n

6: for each sample j in batch do
7: Find indices of top-k weights:

itopk = argsort(wj)[−k :]
8: Zero all weights except top-k:

wj [i] = 0 for all i /∈ itopk
9: end for

10: Initialize prompt embeddings
P = 0, P ∈ Rb×k×d

11: for each weight wi in w do
12: Compute weighted prompts

P = P + wiAi where Ai ∈ Rk×d

13: end for
14: Project to model dimension

P = P ×B where B ∈ Rd×h

15: Combine with input: C = concat(P,E)

where C ∈ Rb×(k+s)×h

16: Generate through base model: y = M(C)
17: end for
Ensure: Model predictions y

truncation to the first R components. This approach ensures
the initial prompts have task-relevant information while
maintaining the parameter efficiency of decomposition.
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MRQA (Extractive QA)
In-domain SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA

(Yang et al., 2018), NaturalQuestions (Kwiatkowski et al., 2019)
Out-of-
domain

BioASQ (Partalas et al., 2013), DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017),
RelationExtraction (Levy et al., 2017), TextbookQA (Kembhavi et al., 2017)

Mathematics (Problem Solving)
In-domain GSM8K (Cobbe et al., 2021)
Out-of-
domain

SVAMP: Subtraction, Addition, Common-Division, Multiplication (Patel et al., 2021); ASDIV (Miao et al.,
2020); MAWPS (Koncel-Kedziorski et al., 2016); MATH PROBLEMS (Nebrelbug, 2024)

Table 1: Overview of training and evaluation datasets that span two task categories: extractive QA (MRQA benchmark
with 12 QA datasets) and mathematical problem solving (GSM8K and specific mathematical datasets). For each category,
datasets are divided into in-domain sets used for training, validation, and evaluation, and out-of-domain sets used exclusively
for testing generalization ability.

Dynamic Router. The router adaptively selects prompts
based on input context. Given an input sequence embed-
ding x ∈ RH (obtained by averaging token embeddings),
the router computes logits through a linear projection: l =
Wx + b, where W ∈ RN×H and b ∈ RN . During train-
ing, we apply multiplicative Gaussian noise to encourage
exploration: l′ = l⊙(1+ϵ), where ϵ ∼ N (0, σ2). The rout-
ing weights are computed as w = softmax(l′) ⊙ 1argmax,
where 1argmax is a one-hot vector with 1 at the position of
the maximum value. This hard selection strategy reduces
overlap between prompts while maintaining end-to-end dif-
ferentiability through straight-through estimation.

Training and Prediction. During training, we optimize
both the router parameters and decomposed prompt ma-
trices while keeping the base model frozen. For lan-
guage model training, we use negative log-likelihood loss
computed only on non-prompt positions using a binary
mask: L = −

∑
t∈M log p(yt|x<t), where M denotes

non-prompt positions. We employ AdamW optimizer with
warmup followed by a constant learning rate schedule, and
gradient accumulation for stable optimization. At infer-
ence, noise is not added in the router, ensuring deterministic
prompt selection.

4. Experimental Design
4.1. Datasets

We complete evaluations across 17 diverse datasets, as
shown in Table 1, where in-domain datasets are split into
training, validation, and test sets, while out-of-domain
datasets are used exclusively for testing. For QA, we utilize
12 MRQA datasets (Fisch et al., 2019), with in-domain sets
like SQuAD (Rajpurkar et al., 2016) testing information
extraction abilities and out-of-domain sets like DROP (Dua
et al., 2019) evaluating domain adaptation. For mathemati-
cal problem solving, we use GSM8K (Cobbe et al., 2021)
from MetaMath (Yu et al., 2024) as our in-domain dataset,
complemented by specific out-of-domain datasets including

all the subsets of SVAMP (Patel et al., 2021), ASDIV (Miao
et al., 2020), MAWPS (Koncel-Kedziorski et al., 2016), and
MATHPROBLEMS (Nebrelbug, 2024).

4.2. Gold Standard and Baselines

We employ full model fine-tuning as our gold standard,
which updates all parameters but requires substantial compu-
tational resources. Our baselines2 include typical methods
from prompt tuning categories: For direct prompt tuning,
we select (1) PT from general approaches, (2) DPT from de-
composition methods, and (3) SMoP from MoE approaches.
While transfer learning methods like (4) ATTEMPT typ-
ically involve multi-turn training, we also evaluate its ar-
chitecture under similar training for comprehensive com-
parison. We additionally compare other PEFT methods
including (5) LoRA and (6) HydraLoRA, with HydraLoRA
adopting a MoE-like architecture that uses a shared down-
projection matrix and multiple routed up-projection ma-
trices. These two LoRA-based methods require model
architecture modifications unlike the modular nature of
prompt tuning methods.

4.3. Evaluation Metrices

We employ task-specific evaluation metrics. For extractive
QA tasks from MRQA, we adopt two metrics: F1 score,
which evaluates the token-level overlap between predicted
and ground truth answer spans, balancing precision and
recall; and Exact Match (EM), which measures the per-
centage of predictions that exactly match the ground truth.
For mathematical problem solving tasks, we use accuracy,
defined as the percentage of correctly solved problems with
exact answer matches.

2All methods are controlled to have similar parameter budgets,
with detailed configurations shown in Table 9 of the Appendix.
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Method # In-domain Out-of-domain Avg.para. SQ News Tri Srch HP NQ BSQ DP DRC RC RE TB
FT 1.2B 78.76 48.69 71.04 71.35 72.96 67.56 70.19 43.87 48.11 43.44 81.60 52.71 62.52

LoRA 106k 69.82 39.91 70.61 55.56 63.29 65.92 65.38 35.25 43.69 38.04 74.09 52.00 56.13
HydraLoRA 278k 74.24 44.05 71.38 60.13 64.02 66.31 68.76 34.38 44.36 40.00 77.97 52.44 58.17

PT 81k 72.31 48.18 65.93 49.74 58.69 62.18 68.59 40.39 43.30 42.10 82.43 47.34 56.77
DPT 81k 70.99 48.42 65.41 46.94 58.49 61.65 65.56 38.80 43.64 41.89 80.85 46.62 55.77

SMoP 86k 74.15 48.96 66.13 41.08 58.96 61.17 68.59 39.92 42.07 42.34 83.73 47.85 56.25
ATTEMPT 90k 74.22 48.18 65.31 37.64 60.18 59.59 66.69 45.32 42.86 43.01 84.11 46.91 56.17
PT-MoE 80k 73.85 48.24 67.34 51.33 62.16 62.95 69.33 48.02 43.96 42.51 83.70 45.71 58.26

Table 2: Evaluation results (F1 scores) for various PEFT methods on QA datasets. SQ: SQuAD; News: NewsQA; Tri:
TriviaQA; Srch: SearchQA; HP: HotpotQA; NQ: NaturalQuestions; BSQ: BioASQ; DP: DROP; DRC: DuoRC; RC: RACE;
RE: RelationExtraction; TB: TextbookQA. The bold values indicate the best performance among prompt tuning-based
methods.

Method # In-domain Out-of-domain Avg.para. SQ News Tri Srch HP NQ BSQ DP DRC RC RE TB
FT 1.2B 65.28 32.76 62.29 61.50 56.19 50.45 49.06 32.26 38.84 29.52 66.99 43.71 49.07

LoRA 106k 56.26 25.26 64.11 46.10 47.48 49.54 42.02 25.48 33.24 24.92 58.58 44.17 43.09
HydraLoRA 278k 61.63 27.80 64.32 50.06 47.73 49.59 44.01 24.75 33.57 26.11 62.68 43.97 44.69

PT 81k 61.25 32.62 59.49 42.40 44.45 47.28 51.79 30.60 34.64 29.82 72.45 39.52 45.52
DPT 81k 58.49 32.88 58.56 39.65 44.33 46.54 49.46 28.74 35.64 30.26 70.48 38.72 44.48

SMoP 86k 63.15 32.81 59.48 34.51 43.80 46.39 50.06 29.94 34.11 30.56 74.59 40.25 44.97
ATTEMPT 90k 63.71 32.50 58.71 31.24 45.77 45.66 49.26 36.06 34.84 30.41 75.13 39.52 45.23
PT-MoE 80k 63.34 32.85 60.87 43.98 47.29 48.18 52.06 37.12 35.64 31.75 74.18 38.25 47.13

Table 3: Evaluation results (Exact Match) for QA datasets.

4.4. Models

We get our main results using LLaMA-3.2-1B-Instruct as
the base model for fine-tuning methods (Grattafiori et al.,
2024). For ablation studies on model size, we additionally
employ LLaMA-3.2-3B-Instruct.

5. Results
5.1. Question Answering

The results on MRQA datasets shown in Table 2 and 3
demonstrate the effectiveness of PT-MoE across various
QA tasks. We highlight seven key findings: (1) PT-MoE
achieves superior overall performance with an average F1
score of 58.26%, outperforming SMoP (56.25%) by 2.01
points and the standard PT (56.77%) by 1.49 points, estab-
lishing a new state-of-the-art on the MRQA benchmark. (2)
This improvement is further validated by Exact Match met-
rics, where PT-MoE demonstrates even more gains (47.13%
for average, outperforming SMoP and PT by 2.16 and 1.61
points respectively). (3) PT-MoE exhibits strong general-
ization abilities across both in-domain and out-of-domain
scenarios. It achieves the highest performance on four out
of six in-domain datasets and three out of six out-of-domain
datasets. (4) The stability of PT-MoE is evidenced by con-
sistent improvements over PT across 11 out of 12 datasets,
with only marginal decreases in the RACE dataset. In con-
trast, SMoP shows performance decrease on 5 datasets com-
pared to PT. (5) Individual architectural components show
limited gains: both matrix decomposition (DPT, 55.77%
F1) and MoE (SMoP, 56.25% F1) underperform standard

prompt tuning (PT, 56.77% F1). (6) PT-MoE’s integration
of matrix decomposition and MoE yields complementary
benefits, outperforming both DPT and SMoP by 2.49 and
2.01 points for F1 respectively. This improvement over indi-
vidual approaches proves the mutually beneficial nature of
these methods. (7) Notably, while PT-MoE achieves lower
overall performance than FT, it reaches comparable or even
higher scores than FT on specific datasets such as DROP
(48.02% vs 43.87% F1) while using only 80K parameters
compared to FT’s 1.2B. These results collectively validate
the effectiveness of the architectural design of PT-MoE and
demonstrate its superior performance in accuracy and gen-
eralization across diverse QA scenarios.

5.2. Mathematical Problem Solving

The results on mathematical tasks reveal several characteris-
tics compared to QA tasks. We highlight six key findings:
(1) PT-MoE achieves state-of-the-art performance with an
average accuracy of 56.91%, improving upon PT (46.16%)
by 10.75 points, demonstrating its effectiveness in math-
ematical reasoning. (2) The benefits of MoE integration
shows method-dependent characteristics: in prompt tuning
approaches, PT-MoE and SMoP show different changes
over PT (by +10.75 and -5.11 points respectively); when
applied to LoRA methods, HydraLoRA shows slightly per-
formance decrease compared to LoRA. (3) LoRA-based
methods demonstrate advantages in mathematical tasks com-
pared to their performance in QA. While LoRA underper-
formed PT by 5.36 points in MRQA, it outperforms PT by
10.31 points in mathematical tasks, indicating task-specific

5



PT-MoE: An Efficient Finetuning Framework for Integrating Mixture-of-Experts into Prompt Tuning

Method # In-domain Out-of-domain Averagepara. GSM8K Subtraction Addition Division Multiplication SVAMP ASDIV MAWPS MP500
FT 1.2B 58.15 68.75 64.40 62.50 48.48 61.03 86.04 82.53 30.60 63.67

LoRA 106k 41.77 67.50 61.01 52.08 33.33 53.48 73.42 70.70 43.00 56.47
HydraLoRA 278k 41.31 57.50 62.71 52.08 39.39 52.92 74.08 76.05 33.40 55.55

PT 81k 34.11 41.87 50.84 66.66 33.33 48.18 60.13 57.18 31.20 46.16
Decomp. PT 81k 26.08 43.12 35.59 64.58 27.27 42.64 56.14 43.09 18.20 37.23

SMoP 86k 27.97 38.12 35.59 33.33 33.33 35.09 49.50 65.91 26.80 41.05
ATTEMPT 90k 27.36 40.00 35.59 37.50 27.27 35.09 24.91 49.01 14.60 30.19
PT-MoE 80k 35.63 55.62 55.93 79.16 36.36 56.77 77.74 71.83 42.60 56.91

Table 4: Accuracy (%) on mathematical problem-solving tasks with the number of trainable parameters shown in the
second column. The first four out-of-domain datasets are from the SVAMP dataset. MP500 denotes the first 500 questions
from MATH PROBLEMS.

strengths of different PEFT approaches. (4) PT-MoE demon-
strates unique cross-task consistency: while prompt tuning
methods excel in QA tasks and LoRA-based methods in
mathematical tasks, PT-MoE achieves the highest average
performance in both domains, indicating robust adaptabil-
ity across different problem types. (5) While PEFT meth-
ods consistently underperform full fine-tuning, the perfor-
mance gap is larger in mathematical tasks compared to
QA tasks, with a wider performance range among differ-
ent methods. Notably, PT-MoE achieves comparable or
higher performance to full fine-tuning on specific datasets
such as Division and MP500. (6) PT-MoE demonstrates
superior parameter efficiency, achieving higher performance
than LoRA while using only 75% of its parameters (80k vs
106k), and outperforming HydraLoRA which uses 3.5 times
more parameters. These findings highlight both the unique
challenges of mathematical tasks and the robust adaptability
of PT-MoE across different problem domains.

5.3. Case Study

To better understand the performance characteristics of PT-
MoE, we present a detailed case study of polynomial addi-
tion in Table 5. In this example, the response of the base
model exhibits information loss, specifically omitting the
linear term during simplification steps, leading to an incor-
rect final result. The conventional prompt tuning approach
exhibits hallucinations and conceptual errors, particularly
in degree identification and term combination, resulting in
wrong terms like 2y4 and −6y3. PT-MoE maintains infor-
mation completeness throughout the solution process and
avoids hallucinations, ultimately producing the correct poly-
nomial expression. Notably, PT-MoE achieves this with
a more concise solution process, demonstrating efficient
problem-solving steps while maintaining accuracy.

5.4. Ablation Studies

To comprehensively evaluate the design choices in PT-MoE,
we conduct ablation studies on five influencing variables:
soft prompt length, trainable parameters, number of experts,
routing mechanisms, and model size. For each variable,

we keep other variables fixed at their default values (soft
prompt length=40, trainable parameters≈80K, number of
experts=2, probationary-selective routing, 1B base model)
while varying the target component to identify its influence
on model performance.

Soft prompt length. We evaluate prompt lengths ranging
from 20 to 80 tokens (Figure 3 Left). Three consistent
observations appear: (1) In-domain performance exceeds
out-of-domain across all lengths, maintaining a 5-6% F1
score margin; (2) Both domains achieve optimal perfor-
mance at 40 tokens, with peak F1 scores of 60.66% and
55.28% respectively; and (3) Performance in both domains
follows a similar trend, improving up to 40 tokens then de-
creasing. These findings indicate that the optimal prompt
length is domain-agnostic, though the absolute performance
levels remain domain-dependent.

Number of experts. We investigate the influence of expert
count by varying it from 1 to 8 (Figure 3 Center left). There
are three key points: (1) Single-expert configuration yields
the poorest performance (58.90% and 52.64% F1 for in-
domain and out-of-domain), demonstrating the necessity of
MoE; (2) Performance exhibits an initial increase followed
by decrease, with in-domain peaking at N=2 (60.66% F1)
and out-of-domain at N=4 (55.84% F1), suggesting differ-
ent optimal routing abilities for each domain; (3) In-domain
tasks consistently outperform out-of-domain scenarios by
a 4-6% F1 margin across all expert counts. These observa-
tions demonstrate that the optimal number of experts varies
by domain type and highlight the importance of balancing
expert focus with routing difficulty.

Trainable parameters. We vary the parameter count from
18K to 163K to analyze its influence on model performance
(Figure 3 Center Right). Three key observations appear: (1)
Performance consistently improves with increasing parame-
ters, from 57.51% to 61.04% F1 for in-domain and 53.96%
to 55.38% F1 for out-of-domain tasks, and notably main-
tains stability without decrease even at higher parameter
counts, differing from conventional prompt tuning meth-
ods; (2) While both in-domain and out-of-domain tasks
show increasing trend, they exhibit different parameter de-
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Question: Let f(y) = y4 − 3y3 + y− 3 and g(y) = y3 +7y2 − 2. Find f(y) + g(y). Write your answer as a polynomial
with terms of decreasing degree. Standard Answer: y4 − 2y3 + 7y2 + y − 5
Original:
## Step 1: Identify the polynomials f(y)
and g(y)
The polynomial f(y) is given as f(y) =
y4−3y3+y−3 and the polynomial g(y)
is given as g(y) = y3 + 7y2 − 2.
## Step 2: Add the polynomials f(y) and
g(y)
To find the sum of f(y) and g(y), we need
to add the corresponding terms of each
polynomial.
## Step 3: Perform the addition
f(y) + g(y) = (y4 − 3y3 + y − 3) +
(y3 + 7y2 − 2)
## Step 4: Combine like terms
Combine the terms with the same degree
to simplify the expression.
## Step 5: Simplify the expression
f(y)+g(y) = y4−3y3+y3+7y2−2−3
## Step 6: Combine like terms
Combine the terms with the same degree.
## Step 7: Simplify the expression
f(y) + g(y) = y4 − 2y3 + 7y2−2
## Step 8: Write the final answer
The final answer is: y4 − 2y3 + 7y2−2

Prompt Tuning:
## Step 1: To find the sum of the two
polynomials f(y) and g(y), we need to
add their corresponding terms.
## Step 2: The polynomial f(y) = y4 −
3y3 + y − 3 has terms of degree 4, 3,
2, and 1, while the polynomial g(y) =
y3 + 7y2 − 2 has terms of degree 3, 2,
and 1.
## Step 3: When we add these two poly-
nomials, we need to combine like terms,
which means adding the coefficients of
terms with the same degree.
## Step 4: The terms with degree 4 are
y4 and y4, so their sum is 2y4.
## Step 5: The terms with degree 3 are
−3y3 and −3y3, so their sum is −6y3.
## Step 6: The terms with degree 2 are y
and 7y2, so their sum is 7y2.
## Step 7: The terms with degree 1 are 1
and −2, so their sum is −1.
## Step 8: Therefore, the sum of
the two polynomials f(y) and g(y) is
2y4 − 6y3 + 7y2−1.
## Step 9: The answer is 2y4 − 6y3 +
7y2−1.

PT-MoE:
## Step 1: Identify the polynomials f(y)
and g(y)
The given polynomials are f(y) = y4 −
3y3 + y − 3 and g(y) = y3 + 7y2 − 2.
## Step 2: Add the polynomials f(y) and
g(y)
To find f(y) + g(y), we need to add the
corresponding terms of the two polyno-
mials.
## Step 3: Perform the addition
f(y) + g(y) = (y4 − 3y3 + y − 3) +
(y3 + 7y2 − 2)
## Step 4: Combine like terms
Combine the terms with the same degree
of y: y4 + (y3 − 3y3) + (y3 + 7y2) +
(y − 3)− 2
## Step 5: Simplify the expression
Simplify the expression by combining the
coefficients of like terms: y4 − 2y3 +
7y2 + y − 5
## Step 6: Write the final expression
The expression f(y)+g(y) is y4−2y3+
7y2 + y − 5.
## Note: y is the variable, and the answer
is y4 − 2y3 + 7y2 + y − 5.

Table 5: A case study comparing three solution approaches (Original, Prompt Tuning, and PT-MoE) for a polynomial
addition problem. Errors in the outputs are highlighted in red (incorrect terms), orange (missing terms), and blue (hallucinated
terms).

Figure 3: Ablation studies on key components of PT-MoE, showing the influence of (Left) prompt length, (Center left)
number of experts, (Center right) trainable parameters, and (Right) routing mechanisms ((N)S: (Non-)Selective, (N)P:
(Non-)Probationary) on in-domain (ID) and out-of-domain (OOD) performance.

pendence behaviours, in-domain tasks demonstrate rapid
improvement before 80K parameters, while out-of-domain
tasks show accelerated growth in the 40K-80K range; (3)
In-domain performance maintains a consistent advantage
over out-of-domain tasks across all parameter ranges, with
F1 scores differing by approximately 4-6%. These findings
show that PT-MoE effectively leverages additional parame-

ters to achieve continuous performance gains.

Routing mechanisms. We examine two key routing design
choices (Figure 3 Right): selective routing, which uses only
the highest-weighted expert versus non-selective routing
that utilizes all experts with their respective weights, and
probationary routing, which multiplies the output by the
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PT SMoP PT-MoE
GSM8K 56.70 61.78 59.74
SVAMP 69.36 74.69 72.81
ASDIV 76.41 80.06 81.39

MAWPS 70.70 70.70 78.02
MP500 59.00 60.80 63.60
Average 66.43 69.61 71.11

Table 6: Performance comparison (accuracy %) of standard
and MoE-based prompt tuning methods on mathematical
problem solving tasks using a 3B base model.

router’s selection probability versus non-probationary rout-
ing that uses original outputs. Our results show four key
findings: (1) The combination of selective and probation-
ary routing (S, P) consistently outperforms other configura-
tions (NS, P and S, NP) across both in-domain (60.66% vs
59.24% and 58.78% F1) and out-of-domain tasks (55.28%
vs 53.41% and 52.64% F1), suggesting the complementary
benefits of focused expert utilization and confidence-based
output; (2) Probationary routing demonstrates superior per-
formance over its non-probationary counterpart, indicating
the value of incorporating router confidence in the final out-
put; (3) Under probationary conditions, selective routing
achieves 1.42% higher F1 score while reducing utilized pa-
rameters compared to non-selective routing, highlighting the
effectiveness and efficiency of domain-specific knowledge;
(4) All routing configurations maintain higher performance
on in-domain tasks compared to out-of-domain scenarios,
though the relative performance rankings remain consistent
across domains. These findings collectively demonstrate
that the selective probationary routing mechanism achieves
an optimal balance between model performance and com-
putational efficiency.

Model size. We conduct additional studies using a 3B
version of the base model, comparing PT-MoE with PT and
the MoE-integrated method, SMoP (Table 6). Three key
findings are found: (1) PT-MoE maintains its advantage
at larger sizes, achieving the highest average accuracy of
71.11%, outperforming standard PT (66.43%) and SMoP
(69.61%). (2) SMoP shows size-dependent behaviour: while
underperforming PT on the 1B model (56.77% vs 56.25%),
it outperforms PT on the 3B model (69.61% vs 66.43%). (3)
PT-MoE demonstrates robust performance by outperforming
the baselines on three out of five mathematical datasets.
These findings collectively validate the size-independence
and stability of PT-MoE across different model sizes.

5.5. Efficiency Analysis

Results in Figure 4 demonstrate PT-MoE’s efficiency across
both computational and parametric aspects. PT-MoE
achieves the highest performance with only moderate train-
ing steps and minimal parameters (80k). In contrast, LoRA

Figure 4: Parameter and training efficiency comparison
across different methods. The x-axis shows training steps
for the highest performance after training parameter search,
while the y-axis shows the average accuracy on math
datasets. Circle sizes indicate the number of trainable pa-
rameters, with larger circles indicating more parameters.

and HydraLoRA require more parameters and training steps
to achieve comparable performance. Other prompt tuning
methods such as PT, SMoP, and DPT converge fast but
achieve lower performance, suggesting a potential trade-off
between training efficiency and model effectiveness. These
results validate that PT-MoE balances the computational
cost, parameter efficiency, and model performance.

6. Conclusions
This work introduces PT-MoE, a novel parameter-efficient
framework that integrates matrix decomposition with MoE
routing for prompt tuning. Our results across 17 datasets
demonstrate that PT-MoE achieves state-of-the-art perfor-
mance while maintaining parameter efficiency, outperform-
ing existing methods in both QA and mathematical tasks.
Through ablation studies, we identify optimal configurations
for prompt length, expert count, and routing mechanisms,
providing insights for future parameter-efficient tuning ap-
proaches.

Future directions include exploring hierarchical routing
mechanisms to better deal with diverse task distributions,
and extending PT-MoE to continual learning scenarios for
efficient adaptation and knowledge transfer across tasks.
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