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Figure 1: Generated video counterfactual results: Our CSVC framework leverages LLMs to
transform factual parent prompts into counterfactual ones, while LDM-based editing systems model
the mapping from a factual video to its counterfactual version given the transformed parents. We
illustrate interventions on age (e.g., making a woman appear young) and gender (e.g., transforming
a woman into a man with a beard). Within CSVC, the VLM-based textual loss improves counter-
factual effectiveness (third row) by steering the generation process through causal refinement of the
counterfactual parent prompt.

ABSTRACT

Adapting text-to-image (T2I) latent diffusion models (LDMs) to video editing has
shown strong visual fidelity and controllability, but challenges remain in maintain-
ing causal relationships inherent to the video data generating process. In this work,
we propose CSVC, a framework for counterfactual video generation grounded in
structural causal models (SCMs) and formulated as an out-of-distribution (OOD)
prediction task. CSVC builds on black-box counterfactual functions, which ap-
proximate SCM mechanisms without explicit structural equations. In our frame-
work, large language models (LLMs) generate counterfactual prompts that are
consistent with a predefined causal graph, while LDM-based video editors pro-
duce the corresponding video counterfactuals. To ensure faithful interventions, we
introduce a vision–language model (VLM)-based textual loss that refines prompts
to enforce counterfactual conditioning, steering the LDM latent space toward
causally meaningful OOD variations without internal model access or fine-tuning.
Experiments on real-world facial videos show that CSVC achieves state-of-the-
art causal effectiveness while preserving temporal consistency and visual quality.
By combining SCM reasoning with black-box generative models, CSVC enables
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realistic “what if” hypothetical video scenarios with applications in digital media
and healthcare.

1 INTRODUCTION

Text-to-image (T2I) latent diffusion models (LDMs) have significantly advanced the field of image
generation Podell et al. (2024); Rombach et al. (2022), showcasing remarkable fidelity and en-
hanced creative control in image editing Cong et al. (2024); Feng et al. (2024); Geyer et al. (2024);
Jeong & Ye (2024); Kara et al. (2024). However, the efficacy of image editing is not consistent,
as modifications affecting attributes with causal dependencies often generate unrealistic and poten-
tially misleading results if these relationships are disregarded. This issue is particularly critical in
data where causal interplays determine the imaging content Melistas et al. (2024); Pawlowski et al.
(2020); Papanastasiou et al. (2024).

Recent efforts in video editing adapt T2I models to address the challenge of maintaining spatiotem-
poral consistency Gu et al. (2024); Liu et al. (2024a); Shin et al. (2024); Zhang et al. (2023); Zhao
et al. (2024); Cong et al. (2024); Geyer et al. (2024); Wu et al. (2023b). Some approaches achieve
text-guided editing by fine-tuning pre-trained models Gu et al. (2024); Shin et al. (2024); Zhang
et al. (2023); Zhao et al. (2024), whereas others enable zero-shot Cong et al. (2024); Geyer et al.
(2024) or one-shot Wu et al. (2023b); Liu et al. (2024a) editing with minimal training overhead.

Yet, in contrast to these developments, existing video-editing methods overlook predefined causal
graphs and Pearl-style counterfactual reasoning Pearl (2009). SCMs encode causal relations as
directed acyclic graphs (DAGs) with mechanisms relating variables to their direct causes (termed
parents) and unobserved exogenous factors. In high-dimensional domains, deep generative models
can approximate these mechanisms, but their lack of identifiability Locatello et al. (2020); Khe-
makhem et al. (2020) often entangles causal effects Pawlowski (2022), hindering recovery of the
true causal structure. Monteiro et al. (2023) conceptualize SCM mechanisms as black-box coun-
terfactual functions, formulating them as functional assignments that map factual observations and
intervened parent variables to counterfactual outcomes.

We propose to operationalize SCM counterfactuals for high-dimensional video variables by imple-
menting counterfactual functions Monteiro et al. (2023) as black-box generative AI models, where
counterfactual conditioning (intervened parents) is expressed through natural-language prompts.
Large language models (LLMs) are employed to model parent variables, translating factual prompts
into counterfactual descriptions aligned with a causal DAG. In parallel, text-guided LDM-based
video editing systems implement the black-box counterfactual function of the video variable.

Moreover, previous work Ribeiro et al. (2023); Chen et al. (2016) shows that generative models
often disregard counterfactual conditioning, so outputs may fail to reflect the intended interven-
tions. Inspired by these findings, we build on the hypothesis that pre-trained LDMs already encode
plausible causal counterfactuals within their learned distribution. To realize them, we introduce a
vision–language model (VLM) textual loss that enforces target counterfactual parents (prompts) and
steers the latent space of the LDM toward generating out-of-distribution (OOD) samples consistent
with these interventions. We argue that refining parent textual prompts via the proposed textual loss
provides an implicit yet powerful mechanism for steering generation toward effective and realistic
counterfactual estimations, while operating entirely in a black-box setting. This stands in contrast to
approaches based on attention engineering Geyer et al. (2024); Qi et al. (2023); Cong et al. (2024);
Wang et al. (2025), which offer suboptimal solutions and require access to model internals.

This paper proposes ”Causal Steering for Video Counterfactuals” (CSVC), a framework for counter-
factual video generation conceptualized as structured OOD generation. CSVC encodes predefined
causal relationships into text prompts representing parent variables and leverages black-box gener-
ative AI models to implement counterfactual mappings for both prompts and videos. To enforce
causal consistency, it incorporates a VLM-based textual loss that refines parent prompts via textual
differentiation, guiding LDM-based editors toward causally faithful edits without weight updates or
feature engineering. Our objective is to modify attributes of a factual video while ensuring seman-
tic coherence and causal alignment. To this end, LLMs generate causally consistent counterfactual
prompts, LDMs produce the corresponding video edits, and the VLM loss steers the diffusion latent
space toward interventions consistent with the causal graph. As shown in Figure 1, refining par-
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ent prompts to enforce causal constraints (interventions) improves counterfactual fidelity, enabling
diverse and realistic OOD counterfactuals aligned with the intended interventions.

In summary, our contributions are:

• We propose the first framework (CSVC) for implementing SCM-style video counterfac-
tuals by leveraging generative AI models as black-box counterfactual functions. CSVC
operates entirely in a black-box setting, requiring no access to the internal parameters of
the generative AI models used for the counterfactual mappings.

• CSVC introduces a VLM-based textual loss that enforces counterfactual conditioning by
refining parent prompts through propagated textual gradients, thereby steering the latent
space of LDMs toward semantically meaningful and causally consistent counterfactuals.

• Our approach achieves state-of-the-art causal effectiveness on diverse real-world facial
videos across multiple interventions (e.g., age, gender, beard, baldness) while preserving
video quality, minimality, and temporal coherence.

• We design novel VLM-based metrics to assess causal effectiveness and minimality, offering
interpretable and scalable evaluation tools for counterfactual video generation.

2 RELATED WORK

Latent Diffusion-based Video Editing. LDMs Podell et al. (2024); Rombach et al. (2022) have
driven major progress in video generation and editing Croitoru et al. (2023); Sun et al. (2024).
Existing approaches include tuning-based methods that adapt text-to-image or text-to-video models
via cross-frame attention or few-shot fine-tuning Podell et al. (2023); Zhang et al. (2023); Wu et al.
(2023b); Liu et al. (2024a); Shin et al. (2024); Gu et al. (2024); Wang et al. (2025); Zhao et al.
(2024); controlled editing methods such as ControlNet Chen et al. (2023), which leverage priors
like optical flow, depth, or pose Yang et al. (2023); Hu & Xu (2023); Feng et al. (2024); Ma et al.
(2024); Yang et al. (2025); and training-free methods that exploit diffusion features, latent fusion,
noise shuffling, or optical-flow guidance Tang et al. (2023); Qi et al. (2023); Khandelwal (2023);
Kara et al. (2024); Chu et al. (2024); Cong et al. (2024); Yang et al. (2024); Jeong & Ye (2024). In
our framework, we adopt lightweight one-shot and zero-shot T2I LDM-based video editing methods
to model the counterfactual mapping from a source video to an edited one, conditioned on a parent
text prompt describing the interventions.

Counterfactual Image and Video Generation. Visual counterfactual generation explore hypo-
thetical “what-if” scenarios through targeted and semantically meaningful modifications to the in-
put Wachter et al. (2017); Schölkopf et al. (2021). It is applied in counterfactual explainability
Verma et al. (2024); Augustin et al. (2022); Jeanneret et al. (2022; 2023); Weng et al. (2024); Pegios
et al. (2024b;a); Sobieski et al. (2025), robustness testing Dash et al. (2022); Prabhu et al. (2023); Le
et al. (2023); Lai et al. (2024); Yu & Li (2024); Zhang et al. (2024); Weng et al. (2024), and causal
inference Pearl (2009); Vlontzos et al. (2022; 2023; 2025); Pawlowski et al. (2020); Kocaoglu et al.
(2018); Xia et al. (2021); Abdulaal et al. (2022); Sanchez & Tsaftaris (2022); Ribeiro et al. (2023);
Sanchez et al. (2022); Fontanella et al. (2024); Song et al. (2024). While much work focuses on
static images Monteiro et al. (2023); Ribeiro et al. (2023); Melistas et al. (2024), the temporal co-
herence of causal counterfactual video generation remains underexplored Reynaud et al. (2022).
In contrast to prior work, we introduce an SCM-faithful framework for video counterfactuals by
approximating causal mechanisms with generative AI models under the black-box counterfactual
functions approach.

Evaluation of Visual Editing and Counterfactuals. Evaluating counterfactuals is inherently chal-
lenging Schölkopf et al. (2021); Melistas et al. (2024). Standard metrics assess image quality Ko-
rhonen & You (2012); Zhang et al. (2018a); Wang et al. (2004); Heusel et al. (2017) and semantic
alignment Radford et al. (2021a), but causal counterfactuals Melistas et al. (2024); Galles & Pearl
(1998); Halpern (2000) require stricter criteria, such as causal effectiveness Monteiro et al. (2023)
and minimality Sanchez & Tsaftaris (2022). In video, evaluation is further complicated by the need
for temporal consistency, while existing benchmarks Liu et al. (2023); Yuan et al. (2024); Liu et al.
(2024b); Huang et al. (2024); Ji et al. (2024); Sun et al. (2024) largely overlook counterfactual rea-
soning. Additionally, widely used video metrics such as DOVER Wu et al. (2023a), CLIP Score
Radford et al. (2021a), and flow warping error Lai et al. (2018) fail to capture causal relationships.
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To address this, we evaluate generated counterfactual videos using both causal adherence–via coun-
terfactual effectiveness and minimality Monteiro et al. (2023); Ribeiro et al. (2023); Melistas et al.
(2024)–and overall video quality and temporal consistency. For minimality, we introduce a novel
VLM-based metric, enabling comprehensive assessment of causal fidelity in text-guided video coun-
terfactual generation.

3 BACKGROUND

T2I LDMs for Video Editing. Recent text-guided video editing methods Wu et al. (2023b); Cong
et al. (2024); Geyer et al. (2024) employ pre-trained T2I LDMs, typically Stable Diffusion Rombach
et al. (2022), that operate on a latent image space. A pre-trained autoencoder (E ,D) Kingma et al.
(2013); Van Den Oord et al. (2017) maps an image frame x to a latent code z = E(x), with D(z) ≈
x. A conditional U-Net Ronneberger et al. (2015) denoiser ϵθ is trained to predict noise in the latent
zt at diffusion timestep t, minimizing:

Ez,ϵ∼N (0,1), t, c

[
∥ϵ− ϵθ(zt, t, c)∥22

]
,

where c is the embedding of text prompt P . The U-Net ϵθ can be either inflated into a 3D spatio-
temporal network for one-shot video fine-tuning Wu et al. (2023b) and zero-shot optical-flow guid-
ance Cong et al. (2024), or directly used for frame editing, with temporal consistency imposed via
feature propagation Geyer et al. (2024). These methods leverage deterministic DDIM Song et al.
(2021) sampling and inversion which allows to reconstruct or edit the original video frames. Al-
though each method has its own temporal regularization strategies and heuristics, given an input
video V and an editing prompt P , the core video editing process can be expressed as:

V ′ = D(DDIM -sampling(DDIM -inversion(E(V)),P)) (1)

Causal Framework for Video Counterfactuals. A Structural Causal Model (SCM) Pearl (2009)
represents a system as a set of functional assignments, where each variable is determined by its
direct causes (termed parents) and an exogenous noise term. Within this framework, counterfactual
inference follows the abduction-action-prediction paradigm. Mapping this to diffusion-based video
editing, DDIM inversion corresponds to abduction (inferring the exogenous noise ϵ), the action step
is the prompt-based intervention using the editing prompt P , and DDIM sampling performs the
prediction, producing the counterfactual video V ′.

Counterfactual Functions as Black-Box Mechanisms. While Pearl’s SCM-based formulation pro-
vides a principled view of counterfactuals, applying structural equations or inferring the exogenous
noise ϵ in high-dimensional domains such as video is often intractable Locatello et al. (2020); Khe-
makhem et al. (2020). Following Monteiro et al. (2023), we instead adopt black-box counterfactual
functions, where a counterfactual outcome x′ is obtained as: x′ = f(x, pa, pa′), with x the factual
observation, pa its factual parents (direct causes), and pa′ the intervened parents. Here, f is treated
as an opaque mechanism that subsumes abduction, action, and prediction.

4 METHODOLOGY

We build our framework on black-box counterfactual functions, which model counterfactual out-
comes as mappings from factual inputs and counterfactual parents (interventions) without requiring
explicit structural equations or abduction of the exogenous noise ϵ.

4.1 CAUSAL STEERING FOR VIDEO COUNTERFACTUALS (CSVC)

LLMs as Black-Box Counterfactual Functions for Parent Variables. Causal knowledge can be
injected into video editing systems through target prompts that encode the relationships of a DAG
G. We assume a target prompt P represents the counterfactual parents pa′ of the video variable V
(Figure 2). Following the black-box counterfactual framework of Monteiro et al. (2023), we use
LLMs to generate counterfactual prompts. As shown in Figure 2, the LLM receives the factual
prompt Pfactual, the causal graph G, and an in-context learning (ICL) prompt PICL (Appendix
A.4.1) with factual–counterfactual examples. The graph specifies which relations to preserve, while
the ICL prompt guides the mapping to valid counterfactual prompts P (parents). Formally,

P = gLLM(Pfactual,G, PICL) (2)
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Figure 2: CSVC at a glance: The initial counterfactual prompts (e.g., She is young) are generated
using an LLM black-box counterfactual function gLLM by providing the causal graph and the factual
prompts (e.g., She is old) and leveraging in-context learning Dong et al. (2022). The video editing
system operates as a black-box fLDM (frozen) counterfactual generator and the (black-box) VLM
as an evaluator of the generated counterfactuals which implements our proposed textual loss. The
VLM takes as input a generated counterfactual frame, the evaluation instruction, and the target
counterfactual prompt P , and outputs textual feedback used to compute a ”textual” gradient ∂L

∂P ,
thereby optimizing the textual loss by refining P and focusing on unsuccessful parent interventions.

Video Editing Systems as Black-Box Counterfactual Functions for Video Variable. To model
the mechanism that maps factual video observations V to counterfactual outcomes V ′ given a coun-
terfactual prompt P (parents), we employ LDM-based video editing systems. We treat the editing
method as an opaque black-box function for counterfactual generation (Figure 2), assuming no ac-
cess to the ϵθ LDM parameters (i.e., no updates or backpropagation) and no control over internal
processes such as DDIM sampling or inversion. For any prompt-based video editing system fLDM ,
with input video V and counterfactual parent prompt P , Equation 1 becomes:

V ′ = fLDM (V,P). (3)

Our CSVC framework is compatible with any black-box, text-guided diffusion video editing system
and is evaluated with three such methods.

VLM-based textual loss for steering counterfactual video generation. We observe that the LDM
backbones often ignore counterfactual conditioning P , failing to incorporate target interventions.
To address this, we build on the hypothesis that causally faithful counterfactuals reside within the
learned space of LDMs and introduce a VLM-based textual loss designed to enforce the counter-
factual parents. The proposed loss steers generation toward effective OOD video counterfactuals by
refining only the target parent prompts, without requiring access to the internal parameters of fLDM .

To optimize the proposed loss, we employ TextGrad Yuksekgonul et al. (2025), which naturally
enables optimization of textual losses. In particular, we perform prompt-level causal steering by
refining counterfactual prompts based on the underlying causal relationships and target interven-
tions. TextGrad leverages LLMs to generate natural-language “textual gradients,” which are used
for iterative refinement of complex systems through textual feedback. Building on this, we design
a counterfactual “multimodal loss” with a VLM to guide video generation towards the target inter-
ventions. Given a generated counterfactual video frame, the counterfactual parent prompt, and an
evaluation instruction containing the target interventions, we implement our proposed “multimodal
loss” using a VLM:

L = VLM(V ′
frame , evaluation instruction,P), (4)

where the evaluation instruction (Appendix A.4.2) is a well-defined textual input to the VLM to
suggest improvements on P based on how well the generated visual input V ′

frame (extracted from
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V ′) aligns with the target counterfactual parents. We further augment the evaluation instruction
with a causal decoupling (Appendix A.4.3) text input that instructs the VLM to ignore upstream
variables when intervening on downstream ones. This yields optimized prompts that omit explicit
upstream references (e.g., neutralizing gender), enabling the LDM backbone to generate samples
that intentionally violate the causal graph, such as rendering a woman with a beard (Figure 3). We
employ Textual Gradient Descent (TGD) Yuksekgonul et al. (2025) to optimize the proposed loss
by directly updating the counterfactual parent prompt P:

P ′ = TGD.step
(
P, ∂L

∂P

)
= LLM

(
Criticisms on {P} :

{
∂L
∂P

}
, Incorporate the criticisms and produce a new prompt.

)
(5)

where ∂L
∂P

1 denotes the “textual gradients”, passed through an LLM 2 at each TGD update to gener-
ate a new counterfactual parent prompt incorporating the VLM criticisms. Optimization halts when
the target interventions are met or the maximum number of iterations is reached. The proposed
CSVC framework is summarized in Figure 2 and Algorithm 1.

Algorithm 1 Causal Steering for Video Counterfactuals (CSVC)

Require: Factual prompt Pfactual, DAG G, ICL prompt PICL, LLM gLLM , factual video V , Dif-
fusionVideoEditor fLDM , VLM

Ensure: Counterfactual video V ′

1: P ← gLLM (Pfactual,G, PICL) ▷ Counterfactual function for prompt variable (Eq. 2)
2: prompt← P ▷ Initialize counterfactual parent prompt
3: optimizer ← TGD(parameters = [prompt]) ▷ Set up textual optimizer
4: for iter = 1 to maxIters do
5: V ′ ← fLDM (V, prompt) ▷ Counterfactual function of video variable(Eq.3)
6: loss← VLM(V ′

frame , evaluation instruction, prompt) ▷ Counterfactual textual loss (Eq. 4
7: if “no optimization” ∈ loss.value then
8: break
9: end if

10: loss.backward() ▷ Computation of ∂L
∂P

11: optimizer.step() ▷ Update prompt via TGD Eq. (5)
12: end for
13: return Final counterfactual video V ′

4.2 VLMS FOR ASSESSING CAUSAL EFFECTIVENESS

Effectiveness is key in counterfactual generation, indicating if the target intervention suc-
ceeded Galles & Pearl (1998); Monteiro et al. (2023); Melistas et al. (2024). CLIP-based metrics
Radford et al. (2021b) lack interpretability and are inefficient for capturing causal alignment be-
tween text and image. Following (Hu et al., 2023), we use a VLM to assess effectiveness across
a set of generated counterfactual videos with a visual question answering (VQA) approach. Given
triplets {Qα

i , Ci, V
′
framei

}Ni=1, where Qα
i is a multiple-choice question about the intervened attribute

α, Ci is the correct answer extracted from the target counterfactual prompt, and V ′
framei

is a gener-
ated counterfactual video frame, we measure effectiveness by the accuracy of the VLM’s answer:

Effectiveness(α) =
1

N

N∑
i=1

1
[
VLM(V ′

framei , Q
α
i ) = Ci

]
. (6)

4.3 VLMS FOR ASSESSING MINIMALITY

Minimal interventions Schölkopf et al. (2021); Sanchez & Tsaftaris (2022); Melistas et al. (2024)
are considered a principal property for visual counterfactuals. In counterfactual generation a sub-

1Due to space constraints, we encourage the interested reader to refer to the Appendix A.5 for an explanation
of the textual gradients computation.

2For simplicity and robustness, we employ the same LLM/VLM model (GPT-4) for all operations.
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stantial challenge lies in incorporating the desired interventions (edits), while preserving unmodified
other visual factors of variation which are not related to the assumed causal graph Monteiro et al.
(2023) – a challenge closely tied to identity preservation of the observation (factual) Ribeiro et al.
(2023). We evaluate counterfactual minimality in the text domain, offering a more interpretable
alternative to conventional image-space metrics Zhang et al. (2018b). Specifically, we prompt a
VLM to describe in detail both factual and counterfactual frames, excluding attributes associated
with the assumed causal graph. We then embed the resulting descriptions using a BERT-based sen-
tence transformer Wang et al. (2020) and compute their cosine similarity in the semantic space. The
overall minimality metric can be expressed as follows:

Pmin = ”Describe this frame in detail, exclude DAG variables”

Minimality(Vframe ,V ′
frame) = cos

(
τϕ(VLM(Vframe ,Pmin)), τϕ(VLM(V ′

frame ,Pmin))
)

(7)

where τϕ(.) denotes the semantic text encoder and Vframe, V
′
frame the factual and counterfactual

frames.

5 EXPERIMENTS AND RESULTS

5.1 EVALUATION DATASET AND IMPLEMENTATION DETAILS

Following standard video editing evaluation protocols Wu et al. (2023b); Geyer et al. (2024); Cong
et al. (2024); Liu et al. (2024a); Qi et al. (2023); Ku et al. (2024); Wang et al. (2025), we curated
67 text–video pairs from CelebV-Text Yu et al. (2023), an in-the-wild facial video dataset. For each
video, we used the first 24 frames resized to 512×512 and assumed the data-generating process
follows the causal graph in Figure 2 Yang et al. (2020); Melistas et al. (2024); Kladny et al. (2023).

We implement the parent prompt counterfactual function gLLM (Equation 2) with GPT-4, generating
four counterfactual prompts per factual prompt by intervening on ‘age,’ ‘gender,’ ‘beard,’ and ‘bald-
ness’ (Figure 2). For each prompt, we construct four multiple-choice questions targeting variables
in the causal graph to assess causal effectiveness with the VLM (Equation 6).

The video counterfactual function fLDM (Equation 3) is implemented with three efficient T2I LDM-
based video editing methods: FLATTEN (zero-shot, optical flow–guided attention for temporal co-
herence) Cong et al. (2024), Tune-A-Video (one-shot, fine-tuned spatio-temporal attention) Wu et al.
(2023b), and TokenFlow (zero-shot, keyframe-based image editing with propagation) Geyer et al.
(2024). We select these methods for their efficiency, while excluding cross-attention approaches
such as Video-P2P Liu et al. (2024a) and FateZero Qi et al. (2023), which require identical source
and edited prompt structures. All methods use Stable Diffusion v2.1 with DDIM sampling (50 steps)
and classifier-free guidance (scale 4.5 for Tune-A-Video/TokenFlow, 7.5 for FLATTEN). The VLM
counterfactual textual loss (Equation 4) is optimized with GPT-4 via TextGrad Yuksekgonul et al.
(2025) (2 iterations). For evaluation, we use LLaVA-NeXT Li et al. (2024) for causal effectiveness
(Equation 6) and GPT-4 Achiam et al. (2023) for minimality (Equation 7). All experiments are run
on a single A100 GPU.

5.2 QUANTITATIVE EVALUATION.

We evaluate the generated counterfactual videos using metrics that capture key axiomatic properties
of counterfactuals Galles & Pearl (1998); Halpern (2000), focusing on effectiveness Monteiro et al.
(2023); Melistas et al. (2024) and minimality Melistas et al. (2024); Sanchez & Tsaftaris (2022).
To assess visual fidelity and temporal coherence, we employ DOVER Wu et al. (2023a); Liu et al.
(2024b), FVD Unterthiner et al. (2018), and CLIP Radford et al. (2021b) score between adjacent
frames. We compare CSVC against vanilla video editing baselines using the initial counterfactual
prompts, an LLM-based paraphrasing baseline where an LLM rephrases the target counterfactual
prompt, and report results with and without the causal decoupling prompt.

From Table 1, observing the initial prompt rows, TokenFlow achieves the best trade-off between
causal effectiveness and minimality among the baselines. Tune-A-Video generates effective coun-
terfactuals but performs worst in terms of minimality across both LPIPS and the VLM-based metric.
In terms of overall video quality and temporal consistency, TokenFlow and FLATTEN outperform
Tune-A-Video, maintaining stronger visual coherence.
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Effectiveness. To measure counterfactual effectiveness, we use VLMs prompted with multiple-
choice questions on the intervened variables (age, gender, beard, bald). Table 1 reports VLM ac-
curacy for each variable under these interventions. CSVC improves causal effectiveness across
all baseline methods, with the highest scores achieved when incorporating the causal decoupling
prompt (CSVC loss w/ causal decoupling), indicating better steering toward counterfactuals that
break strong causal relations (e.g., adding a beard to a female). While naive LLM paraphrasing
occasionally boosts gender interventions for FLATTEN and TokenFlow, it generally fails due to
hallucinations or irrelevant content that the diffusion model cannot handle.

Minimality. To evaluate minimality, we use LPIPS Zhang et al. (2018b) and our proposed VLM-
based metric (Equation 7). Our results reveal the trade-off between preserving proximity to the
factual video and adhering to the counterfactual text conditioning. As shown in Table 1, LPIPS
increases as counterfactual edits become more effective, with the VLM-based metric showing a
similar trend through slight decreases in embedding cosine similarity. However, deviations from
baseline methods remain marginal, indicating that CSVC achieves minimality scores comparable to
vanilla frameworks while maintaining a balance with causal effectiveness.

Video Quality and Temporal Consistency. Table 1 reports quantitative results for video quality
(DOVER, FVD) and temporal consistency (CLIP Radford et al. (2021b)). DOVER Wu et al. (2023a)
shows only minor differences between baselines and our CSVC framework. FVD Unterthiner et al.
(2018) increases slightly, reflecting greater deviation from the observational distribution as coun-
terfactuals become more effective. CLIP-based temporal consistency remains close to the vanilla
methods. Overall, our CSVC approach improves counterfactual effectiveness without compromis-
ing video realism or temporal coherence.

Table 1: Counterfactual Evaluation: Effectiveness, Minimality, Video Quality & Temporal Consis-
tency.

Method Effectiveness (VLM Accuracy) Minimality Video Quality & Temp. Consistency
age ↑ gender ↑ beard ↑ bald ↑ LPIPS ↓ VLM-Min ↑ DOVER ↑ FVD (×10−2) ↓ CLIP-Temp ↑

FLATTEN
Initial Prompt 0.597 0.746 0.313 0.418 0.161 0.791 0.841 3.472 0.982
LLM Paraphrasing 0.582 0.791 0.299 0.179 0.178 0.786 0.841 3.662 0.982
CSVC w/o causal decoupling 0.701 0.791 0.343 0.403 0.179 0.789 0.828 4.162 0.981
CSVC w/ causal decoupling 0.731 0.806 0.582 0.433 0.179 0.781 0.834 4.188 0.982

Tune-A-Video
Initial Prompt 0.529 0.985 0.412 0.824 0.320 0.742 0.557 9.814 0.956
LLM Paraphrasing 0.507 0.970 0.433 0.358 0.396 0.695 0.596 13.581 0.939
CSVC w/o causal decoupling 0.779 0.985 0.426 0.868 0.362 0.722 0.552 11.600 0.955
CSVC w/ causal decoupling 0.824 0.985 0.676 0.912 0.370 0.717 0.558 11.840 0.955

TokenFlow
Initial Prompt 0.672 0.836 0.388 0.522 0.227 0.776 0.787 7.712 0.984
LLM Paraphrasing 0.627 0.910 0.328 0.194 0.244 0.766 0.797 7.353 0.983
CSVC w/o causal decoupling 0.909 0.925 0.426 0.552 0.241 0.773 0.784 8.060 0.984
CSVC w/ causal decoupling 0.940 0.910 0.761 0.701 0.253 0.768 0.786 8.660 0.986

5.3 QUALITATIVE EVALUATION

Figure 3 shows qualitative results3 across FLATTEN Cong et al. (2024), Tune-A-Video Wu et al.
(2023b), and TokenFlow Geyer et al. (2024). The top row displays the factual video and prompt,
while subsequent rows show counterfactuals generated with the initial counterfactual prompt, an
LLM-paraphrased prompt, and our causally optimized prompt with CSVC. Our framework pro-
duces counterfactuals that accurately reflect the desired interventions, including breaking strong
causal relationships (e.g., adding a beard to a woman), as well as causally faithful age and gen-
der transformations. The results also showcase the effectiveness of CSVC over naive LLM prompt
paraphrasing. Figure 4 illustrates CSVC with the FLATTEN method, where iterative gradient steps
(2nd row) guide generation toward the intended intervention (youthful appearance), demonstrating
controllable causal steering.

3Due to space constraints, additional qualitative results are provided in the Appendix A.8 and supplementary
materials.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Qualitative results: First panel: intervention on beard (adding a beard to a woman:
breaking strong causal dependencies). Second panel: intervention on age (making an old man with
a beard appear young with no beard). Third panel: intervention on gender (transforming a man with
a beard into a woman). The accuracy of the edits in the bottom row demonstrates the effectiveness
of our CSVC framework in incorporating the assumed causal relationships.

Figure 4: Counterfactual transformation of an elderly woman into a young woman (top row) TGD
steps in the bottom row produced by our proposed CSVC with the FLATTEN Cong et al. (2024)
editing method, which implements the counterfactual function fLDM .

6 DISCUSSION AND LIMITATIONS

In this paper, we propose a causal framework, namely CSVC, for counterfactual video generation
by implementing black-box counterfactual functions with generative AI models, where causal priors
are encoded via target prompts that reflect relationships defined by a causal graph. CSVC enforces
counterfactual conditioning by leveraging a VLM-based textual loss to iteratively refine the target
counterfactual prompt, guiding the LDM toward generating novel OOD counterfactuals. This op-
timization strategy provides a principled approach to counterfactual generation, enhancing causal
alignment while preserving visual realism, minimality, and temporal coherence. Experimental re-
sults highlight the effectiveness and controllability of CSVC, underscoring its potential to advance
causal reasoning in large generative vision models. Importantly, our findings demonstrate that dif-
fusion models can be effectively steered to generate OOD counterfactuals.

Limitations. We do not particularly add any loss to enforce temporal consistency beyond what
each LDM baseline method does. It is quite possible that static interventions on the attributes could
alter temporal consistency but we haven’t observed it in our case. In video editing, the ability to
manipulate temporal attributes such as actions or dynamic scenes is crucial. Constructing such
graphs and datasets are necessary to develop and test such methods and are left for future work.
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A APPENDIX

A.1 BLACK-BOX COUNTERFACTUAL FUNCTIONS

Counterfactual reasoning in structural causal models (SCMs) follows the abduction–action–
prediction framework Pearl (2009). Given a factual variable x = g(ϵ, pa) with parents pa and
exogenous noise ϵ, a counterfactual x∗ under intervened parents pa∗ is defined as x∗ = g(ϵ, pa∗).
This involves: (i) abduction, inferring ϵ from the factual observation; (ii) action, replacing pa with
pa∗; and (iii) prediction, propagating the effect to obtain x∗. Since abduction is often non-invertible,
the induced distribution over ϵ leads to multiple possible counterfactuals. To bypass explicit mod-
eling of ϵ, Monteiro et al. Monteiro et al. (2023) conceptualize SCM mechanisms as black-box
counterfactual functions f(x, pa, pa∗) 7→ x∗, which directly approximate counterfactual mappings.

A.2 EVALUATION DATASET

We curated an evaluation dataset consisting of 67 text-video pairs sourced from the large-scale fa-
cial text–video dataset CelebV-Text Yu et al. (2023). We extracted the first 24 frames from each
video and resized them to a resolution of 512×512. Each video in CelebV-Text is associated with
a text prompt describing static appearance attributes. We model the data-generating process using
the causal graph shown in Figure 5. Given the factual (original) text prompt for each video, sourced
from CelebV-Text Yu et al. (2023), we derive four counterfactual (target) prompts that are as similar
as possible to the factual prompt, differing only in the specified interventions. To produce the coun-
terfactual prompts and incorporate the interventions, we follow the assumed causal relationships
depicted in the causal graph (Figure 5)–for example, older men are more likely to have a beard or
be bald than younger men, while women typically do not exhibit facial hair or baldness.

Figure 5: Evaluation dataset structure: Each factual prompt, sourced from CelebV-Text, is associated
with four counterfactual prompts. Each counterfactual (target) represents an intervention on one of
the following variables–age, gender, beard, or baldness. Interventions on upstream causal variables
(e.g., age or gender) may lead to changes in downstream variables (e.g., beard or baldness), which
are automatically incorporated into the counterfactual prompt.

A.3 ADDITIONAL IMPLEMENTATION DETAILS

For each baseline video editing method (FLATTEN Cong et al. (2024), Tune-A-Video Wu et al.
(2023b), and TokenFlow Geyer et al. (2024)), we adopt the default experimental hyperparameters
provided in the original works. In our experiments, we implement the VLM-based textual loss
in our CSVC framework using the GPT-4o model via the OpenAI API. However, our approach is
also compatible with local VLMs currently supported by the TextGrad package Yuksekgonul et al.
(2025). The LLM used to perform the TextGrad update (Equation 5) is GPT-4o–the same model used
for the VLM loss. We also use the GPT-4o API to compute the VLM minimality metric, as it offers
improved filtering of the causal graph variables in the generated text descriptions. In addition, for
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the BERT-based semantic text encoder τϕ used in Equation 7 to generate semantic text embeddings,
we leverage the all-MiniLM-L6-v2 model Wang et al. (2020), which maps the text descriptions into
a 384-dimensional vector space. Lastly, to evaluate effectiveness as expressed in Equation 6, we
utilize the llava-hf/llava-v1.6-mistral-7b-hf

A.4 PROMPTS

A.4.1 LLM MECHANISM: IN-CONTEXT LEARNING PROMPT

In Listing 1, we provide a part of the GPT-4 in-context learning prompt used to derive the initial
counterfactual parent prompts from the factual prompts for each video by incorporating the causal
graph (Figure 2). To generate the 4 counterfactual prompts per video, we additionally supply GPT-4
with all 67 factual descriptions of the original videos. In total, we produce 268 (67×4) counterfactual
prompts (four per video). The full prompt is included in our code.

Listing 1: LLM in-context learning prompt PICL

You are given a causal DAG with 4 variables: age, gender, beard, and baldness.

Causal relationships:
- age -> beard
- age -> bald
- gender -> beard
- gender -> bald

Domain knowledge:
1. Older men are more likely to have a beard and be bald compared to younger men.
2. Men are more likely to have a beard and be bald compared to women.

Task:
Given a factual prompt that describes a person (e.g., He is young, he has a beard),
generate 4 counterfactual prompts by intervening on each variable (age, gender, beard, bald) while respecting the causal relationships.
Examples:
---
Factual:
He is young
Counterfactuals:
age: He is old, he has a beard, he is bald
gender: She is young
beard: He is young, he has a beard
bald: He is young, he is bald
---
Factual:
He is young, he has a beard
Counterfactuals:
age: He is old, he has a beard, he is bald
gender: She is young
beard: He is young
bald: He is young, he has a beard, he is bald
---
Factual:
He is old, he is bald
Counterfactuals:
age: He is young
gender: She is old
beard: He is old, he has a beard, he is bald
bald: He is old
---
Factual:
She is old
Counterfactuals:
age: She is young
gender: He is old, he has a beard, he is bald
beard: She is old, she has a beard
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bald: She is old, she is bald

A.4.2 EVALUATION INSTRUCTION

We outline the methodology used to construct the evaluation instruction prompt for the VLM-based
textual loss of the CSVC framework, as described in Section 4.1. First, given the factual (source)
prompt of the original video and the initial counterfactual (target) prompt–we programmatically
extract the target interventions by comparing the two. In Listing 2, we provide representative exam-
ples.

Listing 2: Target Interventions Extraction
Factual prompt: This woman is young.
Initial Counterfactual prompt: This woman is old.
Target interventions: old (age)

Factual prompt: He is young, he has a beard.
Initial Counterfactual prompt: She is young.
Target interventions: woman, no-beard (gender)

Factual prompt: This woman is young.
Initial Counterfactual prompt: This woman is young, she has a beard.
Target interventions: beard (beard)

Factual prompt: A man is young.
Initial Counterfactual prompt: A man is young, he is bald.
Target interventions: bald (bald)

Given the initial counterfactual prompt and the target interventions, we provide the VLM with the
following evaluation instruction:

Listing 3: VLM Evaluation Instruction
You are given an image of a person’s face.

- A counterfactual target prompt is provided: {counterfactual_prompt}

- Corresponding interventions are specified: {target_interventions}

- Evaluate how well the given image aligns with the specified
counterfactual attributes in the target prompt.

- Calculate an accuracy score based only on the attributes that were
explicitly modified (i.e., the interventions).

- Do not describe or alter any other visual elements such as expression,
hairstyle, background, clothing, or lighting.

- Identify and list any attributes from the interventions that are
missing or incorrectly rendered.

- Criticize.

- Suggest improvements to the counterfactual prompt to better express
the intended interventions.

- The optimized prompt should maintain a similar structure to the
original prompt.

- If the alignment is sufficient, return: "No optimization is needed".
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A.4.3 CAUSAL DECOUPLING PROMPT

We further augment the evaluation instruction prompt with a causal decoupling prompt (Listing 4),
in cases where interventions involve downstream variables (e.g., beard, bald) in the causal graph.
This results in optimized prompts that exclude references to upstream variables (e.g., age, gender),
effectively breaking the assumed causal relationships and simulating graph mutilation Pearl (2009).
By using such prompts, the LDM backbone of the video editing method can generate OOD videos
that violate the assumptions of the causal graph–for example, by adding a beard to a woman.

Listing 4: Causal Decoupling Prompt
If either beard or bald appears in target_interventions, do not include

references to age or gender.

A.5 EVALUATIVE TEXTUAL FEEDBACK FROM VLM-BASED LOSS AND TEXTUAL
GRADIENT COMPUTATION

For demonstration purposes, we provide the textual feedback from the VLM-based loss in our CSVC
framework during counterfactual parent prompt refinement for the first video in Figure 1 (trans-
forming an old woman into a young one) with the TokenFlow Geyer et al. (2024) editing method.
In addition, we present the corresponding textual gradient ∂L

∂P , which is used to update the initial
prompt via the TextGrad Yuksekgonul et al. (2025). First, we generate the counterfactual video us-
ing the initial counterfactual prompt (A woman is young), which represents an intervention on the
age variable. Then, we provide a generated counterfactual frame to the VLM for evaluation.

Figure 6: Counterfactual video generated using the initial counterfactual parent prompt, which failed
to incorporate the target intervention (young).

In Listing 5, we present the textual feedback produced by the VLM given a frame from the ineffec-
tive generated counterfactual video of Figure 6.

Listing 5: VLM textual feedback from the first prompt refinement iteration
The image does not align well with the specified counterfactual

attributes from the target prompt. The intervention specified was
"young," but the person depicted in the image appears to be an
older adult, likely in her 60s or 70s, based on visible signs of
aging such as wrinkles and grey hair.

**Accuracy Score:** 0/1 (The attribute "young" was not correctly
rendered)

**Failed Attributes:**
- Youthfulness: The individual in the image does not appear young.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

**Suggested Improvement to the Counterfactual Prompt:**
"A woman in her early twenties"

This optimized prompt more specifically targets the desired age range,
enhancing the likelihood that the generated image will meet the
counterfactual criteria.

In addition, in Listing 7, we display the textual gradients ∂L
∂P , which contain detailed criticisms and

suggestions for improving the initial counterfactual parent prompt based on the VLM’s textual feed-
back. To compute the textual gradient ∂L

∂P , TextGrad leverages a backward engine (LLM/VLM) that
is prompted with an augmented prompt derived by combining internal TextGrad system prompts,
the evaluation instruction (Listing 3), the generated counterfactual frame, the refined counterfactual
prompt P , and the evaluative textual feedback (Listing 5). In Listing 6 we present part of the internal
prompt that TextGraD employs to produce textual gradients.

Listing 6: TextGrad Internal Prompt for Computing ∂L
∂P

You will give feedback to a variable with the following role: <ROLE>
prompt to optimize </ROLE>.

Here is an evaluation of the variable using a language model:

Above messages are the <LM_INPUT>

<LM_SYSTEM_PROMPT>
You are an evaluation system that evaluates image-related questions.
</LM_SYSTEM_PROMPT>

<LM_OUTPUT>
The image does not align well with the specified counterfactual

attributes from the target prompt. The intervention specified was
"young," but the person depicted in the image appears to be an older
adult, likely in her 60s or 70s, based on visible signs of aging
such as wrinkles and grey hair.

**Accuracy Score:** 0/1 (The attribute "young" was not correctly
rendered)

**Failed Attributes:**
- Youthfulness: The individual in the image does not appear young.

**Suggested Improvement to the Counterfactual Prompt:**
"A woman in her early twenties"

This optimized prompt more specifically targets the desired age range,
enhancing the likelihood that the generated image will meet the
counterfactual criteria.

</LM_OUTPUT>

<OBJECTIVE_FUNCTION>
Your goal is to give feedback and criticism to the variable given the

above evaluation output.
Our only goal is to improve the above metric, and nothing else.
</OBJECTIVE_FUNCTION>

We are interested in giving feedback to the prompt to optimize for this
conversation.

Specifically, give feedback to the following span of text:

<VARIABLE> A woman is young </VARIABLE>

Given the above history, describe how the prompt to optimize could be
improved to

improve the <OBJECTIVE_FUNCTION>. Be very creative, critical, and
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Listing 7: Textual gradient ∂L
∂P

The variable "A woman is young" lacks specificity and clarity, which
likely contributed to the misalignment between the generated image
and the intended attribute of youthfulness. The term "young" is
highly subjective and can be interpreted variably depending on
cultural, personal, and contextual factors. This ambiguity in the
prompt may have led the Text-to-Image model to generate an image
that does not meet the counterfactual criteria specified.

**Feedback and Criticism:**

1. **Specificity in Age Description**: The term "young" should be
replaced with a more precise age or age range to guide the model
more effectively. For instance, specifying "a woman in her early
twenties" or "a woman aged 20-25 years" would provide a clearer
target for the model, reducing ambiguity and increasing the
likelihood of generating an image that aligns with the youthful
attribute desired.

2. **Inclusion of Contextual Details**: While the prompt should remain
focused on the age attribute, adding minimal contextual details
that align with youthful appearances could enhance the
effectiveness of the prompt. For example, mentioning "a youthful
demeanor" or "fresh-faced" could cue the model to focus on features
typically associated with younger individuals.

3. **Avoiding Overly Broad Descriptors**: The use of broad descriptors
like "young" without additional qualifiers can lead to a wide range
of interpretations. It’s beneficial to avoid these where precision
is required for generating specific outcomes.

4. **Testing and Iteration**: After adjusting the prompt, it would be
advisable to test the new prompt with the model to see if the
changes yield a more accurate representation. This iterative
approach can help fine-tune the prompt based on actual outcomes.

By addressing these points, the prompt "A woman is young" can be
optimized to more effectively communicate the desired attribute of
youthfulness to the Text-to-Image model, thereby improving the
alignment of the generated image with the counterfactual target.

The textual gradients ∂L
∂P (Listing 7) are provided as input to Textual Gradient Descent Yuksekgonul

et al. (2025), which leverages an LLM to update the optimized variable (prompt), as described in
Equation 5. For simplicity and robustness in our experiments, we use the same LLM/VLM (GPT-4)
for all operations: producing textual evaluative feedback, computing textual gradients, and updat-
ing the prompt with Textual Gradient Descent. After the TGD update the counterfactual prompt
becomes: A woman in her early 20s with vibrant expression.

Figure 7: Counterfactual video generated using the refined counterfactual parent prompt, which
successfully incorporates the target intervention (young).

In Listing 8, we display the textual feedback from the VLM after providing it with a frame from the
effective counterfactual video generated using the optimized prompt (Figure 7). With this prompt,
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the age intervention (young) is successfully incorporated. Consequently, the VLM returns a ”no
optimization” response, and the prompt optimization process terminates.

Listing 8: VLM feedback from the second counterfactual prompt refinement iteration

The input frame aligns well with the specified counterfactual attribute
of appearing "young." The individual in the image presents as a
young adult, which matches the intervention target of portraying
youth. Therefore, the accuracy score based on the attribute of
appearing young is high.

No attributes from the interventions failed to appear or were
incorrectly rendered in this context.

Since the image successfully aligns with the desired attribute of youth,
there is no need for optimization of the prompt. The response is
"no_optimization".

A.6 VLM-BASED METRICS FOR ASSESSING EFFECTIVENESS AND MINIMALITY

A.6.1 EFFECTIVENESS

We present the VLM pipeline for evaluating causal effectiveness. As shown in Figure 10, the VLM
receives as input the generated counterfactual frame and a multiple-choice question–extracted from
the counterfactual prompt that corresponds to the intervened attribute. Since we edit static attributes,
a single frame is sufficient to assess the effectiveness of the interventions. An accuracy score is cal-
culated across all generated counterfactual frames for each intervened variable (age, gender, beard,
baldness) (Equation 6).

Figure 8: VLM causal effectiveness pipeline: example of a beard intervention.

A.6.2 MINIMALITY

In Figure 9, we showcase the VLM pipeline for evaluating minimality (Equation 7). The VLM takes
as input frames extracted from the factual and counterfactual videos and produces text descriptions
that exclude attributes from the causal graph. These text descriptions are then passed through a
BERT-based semantic encoder Wang et al. (2020) to generate semantic embeddings. The final min-
imality score is computed as the cosine similarity between these embeddings. The exact prompt
used to instruct the VLM to filter the text descriptions from the causal graph variables is provided in
Listing 9.

Listing 9: VLM Minimality Prompt
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Remove any references to age, gender (man, woman, he, she), beard, hair
(including hairstyle, color, style, and facial hair), and baldness
from the description.

Return only the filtered version of the text, without commentary or
formatting.

Figure 9: VLM minimality pipeline: example of a gender intervention.

In Figure 10, we display the filtered text descriptions produced by the VLM. This specific factual
and counterfactual pair achieves a VLM minimality score of 0.882. We observe that by measuring
the semantic similarity of the VLM-generated text descriptions, we can isolate factors of variation
not captured by the causal graph and effectively measure their changes under interventions on the
causal graph variables.

Figure 10: Filtered text descriptions derived from the VLM
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A.7 BROADER IMPACT

Our framework (CSVC) for generating causally faithful video counterfactuals enhances video syn-
thesis, interpretable AI, and content manipulation by providing better controllable edits. This could
improve automated content generation in fields like healthcare (e.g., simulating treatment outcomes
or disease progression under varied causal conditions), education (e.g., allowing students to observe
video counterfactuals of complex processes, such as surgical procedures or engineering designs),
and digital media (e.g., enabling creative content manipulation). Furthermore, it can potentially ad-
dress ethical concerns, regarding thoroughly evaluating the misuse of deepfake technologies, high-
lighting the need for responsible guidelines and safeguards.

A.8 MORE QUALITATIVE RESULTS

In Figures 11, 12, 13, 14, and 15, we present additional qualitative results generated with our pro-
posed framework, Causal Steering for Video Counterfactuals (CSVC), using different LDM-based
video editing systems to implement the black-box video counterfactual function.

Figure 11: Qualitative results: Generated counterfactual videos illustrate the positive effect of our
proposed CSVC framework (bottom row) when applied to recent video editing systems (FLAT-
TEN Cong et al. (2024), Tune-A-Video Wu et al. (2023b), and TokenFlow Geyer et al. (2024)).
First panel: intervention on beard (adding a beard to a woman). Second panel: intervention on
beard (removing a beard from a man). Third panel: intervention on age (aging a woman).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 12: First panel: intervention on beard. Second panel: intervention on age.

Figure 13: First panel: intervention on age. Second panel: intervention on gender.
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Figure 14: Interventions on age.

Figure 15: First panel: Interventions on age. Second panel: Interventions on baldness

26


	Introduction
	Related Work
	Background
	Methodology
	Causal Steering for Video Counterfactuals (CSVC)
	VLMs for assessing causal effectiveness
	VLMs for assessing minimality

	Experiments and Results
	Evaluation Dataset and Implementation Details
	Quantitative Evaluation.
	Qualitative Evaluation

	Discussion and Limitations
	Appendix
	Black-Box Counterfactual Functions
	Evaluation Dataset
	Additional implementation details
	Prompts
	LLM Mechanism: In-Context Learning Prompt
	Evaluation Instruction
	Causal decoupling prompt

	Evaluative Textual Feedback from VLM-Based Loss and Textual Gradient Computation
	VLM-based metrics for Assessing Effectiveness and Minimality
	Effectiveness
	Minimality

	Broader Impact
	More qualitative results


