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ABSTRACT

Cryptic crossword clues are challenging linguistic reasoning puzzles, with fresh,
real-world test cases published daily in major newspapers globally. Unlike stan-
dard crosswords, cryptic clues uniquely combine a ‘definition’ with intricate
‘wordplay’ – a logical puzzle embedded in language – designed to prove each
answer’s correctness through reasoning alone, independent of grid context. This
work describes an open-licensed, LLM-driven system for automated cryptic cross-
word solving which generates: (i) answer hypotheses and wordplay explanations;
and (ii) code-based verification of the proposed reasoning, ensuring solution valid-
ity. Critically, our system achieves state-of-the-art performance on the challenging
Cryptonite dataset, comprising cryptic clues from prestigious UK newspapers like
The Times and The Telegraph. Furthermore, by expressing each verified solu-
tion and its reasoning in executable Python code, our system offers unprecedented
interpretability, allowing for detailed inspection and analysis of the automated
cryptic crossword solving process.

1 INTRODUCTION

Robust verification is increasingly recognized as essential for reliable reasoning in the fields of math-
ematics (Jiang et al., 2023; Yang et al., 2023; Trinh et al., 2024) and code generation (Ni et al., 2023;
Ridnik et al., 2024). Applying formal verification to linguistic reasoning, however, remains less
explored. This work addresses the compelling reasoning challenge of Cryptic Crossword solving,
which provides a valuable test-bed for advancing reasoning capabilities, and has these key attributes:
• Cryptic crosswords are a globally popular intellectual challenge. Solving them requires sophisti-

cated NLU, logical inference, and contextual nuance – core human reasoning skills. This makes
them a rigorous, human-relevant benchmark for LLM reasoning evaluation.

• Decades of puzzles from major newspapers offer a vast and growing resource for training and
testing (contrasting with IMO/AIME problems, which have a much lower number of novel prob-
lems).

• By construction, Cryptic clues have one ‘true’ reasoning path, with the wordplay acting as a self-
contained proof, ensuring each solution’s validity independent of external context. This wordplay,
however, is not merely an explanation but a linguistic puzzle in its own right, demanding ingenuity
to see how its seemingly disparate pieces interlock.

In this work, taking the cue from the effectiveness of provers coupled with verifiers for mathematical
reasoning tasks (Jiang et al., 2023), we tackle cryptic crosswords with an LLM-driven system that:
(i) generates answer candidates; (ii) creates informal proofs (i.e. coming up with wordplay);
and (iii) performs formalisation (which rewrites the wordplay logic in Python). This code-based
verification offers a novel approach to evaluating LLM reasoning in complex linguistic tasks.

1.1 AN EXAMPLE CRYPTIC CLUE

As a concrete example, and to clarify the terminology used, consider the following moderately
complex cryptic clue1 : “Cut up over politician on the French case (7)”. Solvers must parse the clue

∗Corresponding Author.
1The Times UK (6-March-2024), Cryptic #28857 clue 4D
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20 candidates:

answer: SNIPPED
answer: EXAMPLE
answer: LUGGAGE
...

10 suggestions (1 shown here):

definition: Cut up over politician on the French {case}
wordplay:   (AXE)< (cut, <up), MP, LE (the, in French)

assert is_synonym("cut", "AXE")
assert is_action("INITIAL", "up")
assert "AXE"[::-1] == "EXA"
assert is_abbreviation("politician", "MP")
assert is_synonym("the, in French", "LE")
assert "EXA"+"MP"+"LE"
assert is_synonym("case", "EXAMPLE", pattern='7')

SUCCESS

answer candidate

generator

(Gemma2-9B FT)

definition and wordplay suggestions (Gemma2-9B FT)

formalisation to Python (Gemini-1.5-Flash or Gemma2-9B-it)

Python verification (uses AST and simulates functions)

Error output (with hinting):
* assertion failure : "up" does not suggest
    "INITIAL", could be: "REVERSE"

answer: EXAMPLE

'Proved' answer
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Figure 1: Proving process: answer candidate → wordplay→ LLM formalisation

carefully to separate the definition (which acts as a regular crossword clue) and the supporting
wordplay that can be used to arrive at the same answer from two directions. Arriving at the
same answer by two paths constitutes the necessary proof that the correct answer has been found.
See Figure 2a for a visual depiction of the reasoning involved.

1.2 CONTRIBUTIONS

The following are the main contributions of this work:
• An open-license system for reasoning over Cryptic clues - our pipeline (illustrated in Figure 1)

enables 9B-scale local models to achieve state-of-the-art results on the Cryptonite dataset.
• Local models for cryptic clue tasks - We show how local LLMs can be fine-tuned to produce
answer candidates, and wordplay suggestions, and then prompted to perform Wordplay for-
malisation. Following an approach akin to mathematical statement formalisation, but where there
are less than 10 examples of ‘good proofs’ available, our novel pipeline was specifically engi-
neered to avoid ‘reasoning steps’ becoming stuck in dead ends.

• Python domain-specific verifier - Using the output of the formaliser, the verifier presented here
deconstructs the Python AST, so that it can evaluate each assert statement on a line-by-line
basis. We believe that this is somewhat novel, since it enables the verifier to not only indicate
whether the proof is valid overall, but also point to specific failures (used to regenerate failed
formalisations) on all proof lines simultaneously.

To promote further study in this area, all code for the system is made publicly available at anon.

2 RELATED WORK

2.1 REGULAR CROSSWORDS

Non-cryptic (“regular”) crosswords are known throughout the world, and are the predominant type
found in newspapers in the U.S.A. One key difference from cryptic crosswords is that individual
regular crossword clues are generally not ‘standalone’ - there may be a number of different answers
that fit the given clue. The key to solving regular crosswords is thus the interaction between answers
(i.e. the crossing-words), which allows for planning/backtracking to enable solving rates in the high
90% range (Wallace et al., 2022).
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Cut up over politician on the French case (7)

EXAMPLE
axe

EXAsynonym

MP
LE

synonym synonym
reverse

position position
synonym

Offer of support also broadcast (8)

PROPOSAL

synonym

= PROP + OSAL

anagramsynonym

Wader woman has on (5)

HERON

synonym

= HER + ON

literalsynonym

Research done, primarily on most of magical beings (5)

DELVE
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letter synonymtake first 
letter

take first 
letter

take most
letters of

elves

synonym

= D + ELVE

take first 
letter synonymtake first 
letter

take first 
letter

take most
letters of
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EXAsynonym

MP
LE

synonym synonym
reverse

position position
synonym
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Figure 2: Clue solving illustrations. Answers are in green, definitions in blue (dashed frame), word-
plays in orange, and indicators in purple. Further textual examples can be found in Appendix A.1

This work, in contrast, focuses on the solving of clues on a standalone basis, which requires elements
of reasoning through the wordplay present in cryptic clues.

2.2 CRYPTIC CROSSWORDS

In an 800 participant research study into the backgrounds of cryptic crossword solvers (Friedlander
& Fine, 2016), the following observation was made about the skills required to solve these linguis-
tic/reasoning puzzles:

“... cryptic crossword skill therefore appears to be bound up with code-cracking
and problem-solving skills of a quasi-algebraic nature. Conversely, lexical ability,
although no doubt valuable, does not appear to be a critical discriminator of high
expertise among elite solvers.”

Cryptic crosswords have received surprisingly little attention from the machine learning community,
despite being a notable language-oriented reasoning puzzle with global appeal. One possible reason
is that cryptic crosswords are much less common in the United States than ‘regular crosswords’. See
Webb (2024) for an inspiring demonstration of expert solving a cryptic crossword in real-time.

The benchmark dataset used by this work is Cryptonite (Efrat et al., 2021) - a large-scale dataset of
Cryptic Crossword clues from The Times and The Telegraph (major UK newspapers). The dataset
contains 523,000 naturally sourced clues (published between 2001 and 2020), with the train, valida-
tion and testing splits being chosen so that a given answer can only appear in one of the splits.

2.2.1 RULE-BASED SOLVERS

Williams & Woodhead (1979) is an early example of attempting to devise a formal language for
describing cryptic clues. However, the linguistic elements of the clues tend to thwart a strictly
formal approach.

A more flexible rule-based solver with a manually-crafted probabilistic grammar was introduced in
Deits (2015; 2022). Building on the assumption that a clue can usually be split into wordplay
and definition, the solver tries to find the most probable parse such that the wordplay yields
a semantically-similar result to the definition. The logical form of this DSL approach is very
appealing. However, it appears limited to solving clues where the wordplay is somewhat simple
(due to the combinatorial explosion of possibilities created by longer/more complex clues).

The goal of this work is to use the flexibility of LLMs to enable a far wider range of clues to be
attempted, with the aid of a formaliser/verifier to check the solutions.

3



Published as a workshop paper at the DL4Code Workshop at ICLR 2025

2.2.2 LLM-BASED SOLVERS

Cryptonite is a challenging task for LLMs : Efrat et al. (2021) reported that fine-tuning T5-Large
(a 770M encoder-decoder model) on Cryptonite’s 470k cryptic clue training set achieved only 7.6%
test set accuracy, slightly below the 8.6% accuracy of the rule-based clue solver of Deits (2022).
Interestingly, prior to 2024, even large-scale Language Models scored very poorly on cryptic clues,
likely due to (i) the misleading surface reading of the clues; (ii) the obliqueness of the definitions;
and (iii) the reasoning steps required to prove the answer correct based on the wordplay.

Recent works, such as Sadallah et al. (2024) and Saha et al. (2024), tackle cryptic crosswords with
more up-to-date local models, and commercial LLMs. Saha et al. (2024) reports results with 5-
and 10-Shot prompting (without fine-tuning models), but also includes a wide-ranging study of the
capabilities of models for crosswords in general.

In this work, we use a pipeline of 9B-scale LMs to produce answer candidates and wordplay
suggestions, followed by a third LM to formalise each proposed solution using Python code and
then rewrite/update the solutions based on feedback from a purpose-built verifier.

2.3 CODE & REASONING

To compensate for LLM approximate generation of logical reasoning, techniques like PAL (Gao
et al., 2023) exploit LLMs’ facility for writing code to create verifiable reasoning chains. An im-
portant influence on this work was also the Draft, Sketch, and Prove framework (Jiang et al., 2023)
which uses an LLM to draft and create proofs that are then verified formally.

Informed by the evolution from AlphaCode (Li et al., 2022), in which huge numbers of programs
were generated and filtered in order to generate valid solutions, to AlphaCodium (Ridnik et al.,
2024), in which solutions were iterated upon and required much less computation, this work uses a
verifier that can feed back ‘hints’ to the formalising LLM, so that the task of re-writing nearly-valid
proofs is made easier.

2.4 WORDPLAY DATASET

The Wordplay dataset (Andrews, 2024) - an example from which is given Appendix A.4.2 - consists
of data gathered from websites where cryptic crossword enthusiasts post solutions on a daily basis
for each of the major publications. Each completed puzzle is annotated by an individualsolver
that lists the approximately 20 clues with their definition, wordplay and answer fields.
Note that each solver can chose their own ‘standard’ for writing out the wordplay, leading to a
significant variation in wordplay annotation styles (even across time for an individual solver).

The Wordplay dataset deliberately follows the train, validation, and test splits defined by Cryptonite.

3 METHODS

The overall system described in the work is illustrated in Figure 1. The order of operations for the
pipeline was chosen based on watching human solvers - who report going through the following
steps: (a) attempting to parse the clue in a number of ways, trying to isolate the definition from the
wordplay; (b) seeing which parts of the wordplay they are most confident about; (c) ‘having a hunch’
about the final answer; and (d) gaining a full understanding of how a clue’s wordplay works (such
that the function of every element can be explained) as proof of the overall process.

Observations of the behaviour of GPT-4 using Chain-of-Thought prompts Wei et al. (2023) (or more
recently ‘o1’), suggest that even very capable models tend to fixate early on during the reasoning
process, and are only rarely able of completely re-hypothesising.

3.1 CANDIDATE answer GENERATION

Our first step to solving a given cryptic clue is to generate multiple answer candidates from the
original clue, pattern and ad (across/down) fields. For this task, we fine-tuned a Gemma2 9B
base model (Gemma Team & Google DeepMind, 2024) using the LoRA (Hu et al., 2021) implemen-
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def proof(answer="DELVE",

         clue="research done, primarily on most of magical beings",

         pattern='5'):

 """

 definition: research done, primarily, on most of magical beings

 wordplay: D[one] (primarily) ELVE[s] (magical beings, most of)

 """

 assert action_type("primarily", Action.INITIALS)

 assert "DONE"[:1] == "D"

 assert is_synonym("magical beings", "ELVES")

 assert action_type("most of", Action.REMOVE_LAST)

 assert "ELVES"[:-1] == "ELVE"

 assert "D"+"ELVE" == "DELVE"

 assert is_synonym("research", "DELVE", pattern='5')

proof()

LLM formalisation

Gemma2 wordplay 

Gemma2 answer candidate

Figure 3: Python proving: answer candidate → wordplay→ LLM formalisation

tation provided by the unsloth package (unsloth.ai, 2024). The model was trained for 1 epoch on
the Cryptonite training set of approximately 470,000 examples.

For each clue being evaluated, we generate 20 valid answer candidates, where candidates that
did not match the pattern were immediately rejected and regenerated, and those not contained in
the crossword words list (Beresford, 2000) were filtered out2. The number of candidates was chosen
to balance generation cost with likelihood of the correct answer appearing in the candidate list.

3.2 GENERATION OF definition AND wordplay SUGGESTIONS

To train the wordplay suggestion model, which translates each answer candidate into multiple
definition and wordplay suggestions, we make use of the Wordplay dataset of Andrews
(2024). For this task, we fine-tuned another Gemma2 9B base model using LoRA. The model was
trained on 4 epochs on a set of approximately 16,800 examples (consisting of solution explanations
of puzzles from The Times and The Financial Times from selected authors in the Wordplay dataset).

3.3 PYTHON FORMALISATION

Rather than create a dataset with many examples of formalisation, here we use in-context prompting
with less than 10 examples of the formalisation style required. In preliminary work, we concluded
that the available Gemini-Flash LLM was not capable of using a (novel) cryptic crossword domain
specific language (“DSL”) through in-context learning with so few examples. In contrast, we found
that the LLM could be prompted to produce Python code with relative ease, so the approach taken
was to frame a declarative-style-DSL as Python function calls within assert statements. The LLM
was found to be able to reliably produce syntactically correct Python, and use the ‘external functions’
that had been described (as illustrated in Figure 4) to form logical sequences of declarations, which
could then be parsed line-by-line by manipulating the Python abstract syntax tree (“AST”). An
example of the Python DSL being generated by the formalisation LLM is given in Figure 3, with the
workings of the clue solution being illustrated in Figure 2c.

To formalise wordplay into Python ‘proofs’ of the correctness of solutions, we used Google’s
Gemini-Flash-1.5-001 LLM (a pinned model version) during development. This model was
initially chosen instead of a frontier-tier model since the formalisation task should not require much
inventiveness/reasoning: the actual required steps are already present in the wordplay, the task is
merely to translate to Python. To determine whether the choice of Gemini-Flash was a limiting
factor, we subsequently tested an unmodified Gemma2-9B-it model on the same task.

2This rejection of invalid words here is not ‘cheating’ since we do not use the dictionary to suggest words,
rather it is only used to weed out actively proposed non-words from a short-list.
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Action=Enum('Action',
'ANAGRAM,REMOVE_FIRST,INITIALS,REMOVE_LAST,'+
'GOES_INSIDE,GOES_OUTSIDE,REVERSE,SUBSTRING,HOMOPHONE')

# External definitions
def is_synonym(phrase:str, test_synonym:str, pattern:str='') -> bool:

# True if 'test_synonym' is a reasonable synonym for 'phrase',
# with letters optionally matching 'pattern'

def is_abbreviation(phrase:str, test_abbreviation:str) -> bool:
# Determines whether 'test_abbreviation' is
# a valid abbreviation or short form for 'phrase'

def action_type(phrase:str, action:Action) -> bool:
# Determines whether 'phrase' might signify the given 'action'

def is_anagram(letters:str, word:str) -> bool:
# True if 'word' can be formed from 'letters' (i.e. an anagram)

def is_homophone(phrase:str, test_homophone:str) -> bool:
# Determines whether 'test_homophone' sounds like 'phrase'

Figure 4: External functions available via In-Context Learning

In terms of the DSL itself, the back-end to the is synonym and is homophone functions con-
sists of calls to simple language models. The action type function performs a nearest-neighbour
match against list of indicator words, and the is abbreviation function performs a look-up
against a list of abbreviations - both sourced from Deits (2022). For string manipulation actions
(such as ‘REVERSE’), the LLM formaliser itself was capable of producing correct string manipu-
lation expressions unaided.

3.4 IN-CONTEXT LEARNING

To produce Python code that could be sent to the prover, the LLM was prompted in an In-Context
Learning (“ICL”) manner. This consisted of the following parts:

1. Cryptic crossword rubric to explain to the LLM what the principles were behind the fields
such as clue, definition, wordplay, etc.

2. Many-shot clue → wordplay examples (20 given)

3. The ‘external functions’ rubric shown in Figure 4

4. Few-shot wordplay → Python formalisations (6 examples given)

5. The actual clue, answer, definition and wordplay being formalised
Gemini-Flash did not appear to be particularly sensitive to the prompting style used, except in
the ‘handover step’ (between problem description and model generation) where several trials were
needed to obtain the final function definition in the required format consistently. Further details of
all the ICL prompts are given in Appendix A.4. For the Gemma2-9B-it formalisation runs, the same
prompts were used unchanged (with no other tuning/training). In additional, a further Gemma2-9B
model was trained on 448 valid Gemini-created proofs of ground-truth Wordplay examples.

3.5 PROOF VERIFICATION WITH HINTING

The verifier implemented here must decide whether a given formalisation is valid, and report any
errors found to iteratively improve the Python code as feedback to the LLM formaliser in a cycle,
as seen in Self-Debug (Chen et al., 2023), and AlphaCodium (Ridnik et al., 2024). Examples of
assertion failures, with constructive hinting, are shown in Figure 5.

This cycle is repeated until a formalisation is validated (zero assertion failures, considered a ‘SUC-
CESS’ with the answer having been proved), or max rewrites=2 is reached. If no Python
formalisation can be validated, then the fallback answer is used (defined as being the most fre-
quent answer amongst the original candidates produced in the first stage of solving the clue).
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AssertionError: assert: is_abbreviation('an Artist', 'RA') : \
'an Artist' does not have a valid abbreviation; \
'RA' is an abbreviation for : \

artist, artillery, Royal Artillery, gunners, painter
AssertionError: assert action_type('goes crazy', Action.ANAGRAM) : \

'goes crazy' does not suggest Action.ANAGRAM, but 'crazy' does
AssertionError: assert action_type('worked', Action.HOMOPHONE) : \

'worked' does not suggest Action.HOMOPHONE, but may be Action.ANAGRAM

Figure 5: Illustrative AssertionError responses (with hinting) from the verifier

4 EXPERIMENTS

4.1 GEMMA2 9B answer CANDIDATE GENERATION

During the initial experimental phases of fine-tuning local models for the answer generation task it
was discovered that -base models scored more highly than -it models. This might be explained
by observing that instruction fine-tuning may (to some extent) penalise off-the-wall answers, which
may be essential for our task. In addition, we also observed that while the Top-1 candidate from a
model generating with a temperature t = 0.5 had high accuracy, it was beneficial to run candidate
generation with t = 1.0 (even though the Top-1 accuracy was lower in this case) - since having a
wider spread of answer candidates was useful for our pipeline overall.

4.2 GEMMA2 9B wordplay CANDIDATE GENERATION

Since wordplay is so flexible, it is difficult to evaluate it for accuracy against other examples
(without, say, a large LLM to evaluate the differences). However, good wordplay should result in
good formalisations, so evaluation is available on an end-to-end basis.

One key assumption in the system proposed here is that a correct answer should lead to in-
terpretable wordplay, whereas an incorrect answer candidate should give rise to unformalis-
able/unverifiable wordplay. The following typical example illustrates how the correct answer
leads readily to correct wordplay (the workings of this clue are illustrated in Figure 2d), whereas
trials with an incorrect answer candidate (which was, in fact, the most frequent candidate for this
clue) give clearly unverifiable wordplay:

clue: "wader woman has on (5)"
definition: "{wader} woman has on" # Same for all

answer: "HERON" # correct answer
wordplay: "woman (HER) has on (ON)"

answer: EGRET # incorrect answer - 3 trials shown
wordplay: "woman (HER) on top of (REG - another word for on, \

as in 'do you have the heating on?')"
wordplay: "EG (woman has) + RET (on)"
wordplay: "woman (HER) has on/around (EG) - a wader bird"

4.3 CRYPTONITE RESULTS (TOP-1 EXACT MATCH)

In this work, we focus our testing on using the Cryptonite dataset of Efrat et al. (2021) as a bench-
mark, with the Top-1 exact-match results shown in Table 1. As in Saha et al. (2024), due to com-
putational constraints, we performed sampling of the validation and test sets, using fewer than the
full 26k examples available. The standard deviation of these figures is ≈ ±1.5% at 1000 samples,
and ≈ ±3.3% at 200. To determine whether the systems presented here ‘beat’ GPT-4o, we per-
formed a Bayesian Item Response Theory test (Fox, 2010) to determine the probability that our
results outperformed the GPT-4o (over the same samples).
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Table 1: Cryptonite results : Standard splits, Top-1 answer accuracy rate
Validation Test

Model samples Overall Quick Hard Overall Quick Hard

Rule-based (*) 26k 8.3% 8.6% 13.5% 5.8%
T5-large (770M) FT (*) 26k 7.4% 7.6% 12.8% 3.4%

Gemma2-9B-it 5-shot 1000 5.7% 11.5% 5.2% 4.5% 10.5% 4.0%
Gemini-Flash 5-shot 1000 6.6% 12.5% 6.1% 6.5% 11.8% 6.1%
GPT-4o 5-shot 1000 29.8% 45.0% 28.5% 27.6% 47.4% 26.0%

Gemma2-9B FT 1000 21.7% 28.8% 21.1% 15.9% 38.2% 14.1%
Gemma2-9B freq (#=20) 1000 26.6% 31.3% 26.2% 25.5% 55.3% 23.1%

(AB) logprob answer 500 23.9% 35.9% 22.9% 22.7% 55.3% 20.1%
(AB) logprob wordplay 200 21.0% 15.4% 21.4% 20.5% 46.7% 18.4%

Gemini-Flash Formaliser 200 28.0% 23.1% 28.3% 32.5% 46.7% 31.4%
Gemma2 9B-it Formaliser 200 26.0% 23.1% 26.2% 29.0% 46.7% 27.6%
Gemma2 9B-FT Formaliser 200 27.0% 23.1% 27.3% 29.5% 53.3% 27.6%

Rows (*) are as reported in Efrat et al. (2021); The Hard columns are for the non-Quick clues

The 5-Shot results in Table 1 show that:

• GPT-4o (2024-11-25) gives stronger results than those of GPT-4-Turbo (2024-04-09) given in
Saha et al. (2024) - so this is an updated baseline;

• The updated GPT-4o results show surprisingly strong performance on the validation split (unfor-
tunately, the composition of this commercial model’s training data is unknown);

• Gemini-1.5-Flash-001 (which was used in development of the formaliser) is not particularly good
at solving cryptic clues in itself;

• The Gemma2-9B model gets a large uplift from fine-tuning on the Cryptonite training set (com-
pare the 5-Shot figures to the later Gemma2-9B FT ones).

The Gemma2-9B FT accuracy figures are for the first result returned by the fine-tuned Gemma2
model. In contrast, the Gemma2-9B freq accuracy figures are for the most common (i.e. highest
frequency) result among the Gemma2 answer candidates (for which 20 samples were generated
for each clue). These voting-based results would have exceeded prior state-of-the-art results for
open-licensed models on their own.

Going beyond single models, the Gemini-Flash Formaliser demonstrates Top-1 exact-
match performance of 32.5% for the Cryptonite Test set, establishing a new state-of-the art result
against the updated baselines (the Bayesian IRT results are that Gemini-Flash has a probability of
92% of being actually better than GPT-4o).

Moreover, the results of the non-fine-tuned Gemma2-9B-it Formaliser also (marginally) beat
the previous state-of-the-art results - which is perhaps an even stronger statement about the capabil-
ities the system described here, since in this case Gemma2-9B models have been used throughout
the solving process, showing that it is be possible to achieve very competitive cryptic crossword
solving results through reasoning with open-licensed models. The Bayesian IRT results are that the
Gemma-9B FT model has a probability of 81% of being actually better than GPT-4o on Hard clues,
57% overall.

The formaliser results are (surprisingly) relatively worse for Quick clues. This seems to be related
to the fact that the agreement/frequency-based Gemma2 freq model is very strong on these clues,
and any ‘contribution’ from the formalising/verification procedure is likely to overrule a good base-
line result, due to erroneous verification of ‘proofs’ that are not valid.

8



Published as a workshop paper at the DL4Code Workshop at ICLR 2025

4.4 ABLATIONS

The lines in Table 1 marked ‘(AB)’ are ablations. Both utilise the measurement of average logprob
of the output tokens given by the relevant model.

The first (‘logprob answer’) shows the results of using the candidate answer generation Gemma2-
9B FT model from above, with the candidate answer being chosen from the list of 20 possibilities
according to highest logprob. Since answers are typically very short, this method is similar to the
frequency-based selection model.

The second (‘logprob wordplay’) shows the results of evaluating the Gemma2-9B FT model that
generates wordplay hypotheses, and choosing an answer based on the highest logprob according
that generating model. Somewhat unexpectedly, this was not as effective as might be assumed from
the generated wordplay seen in Section 4.2 - where the wordplay for wrong answers looks
absurd. Examining samples of the wordplay most favoured by pure logprob order, it seems that
the generating LLM finds simply-worded but completely fictitious wordplay quite likely.

Both of these ablations demonstrate that the formalisation and verification steps are essential com-
ponents in our system - they cannot be shortcut by a ‘dumb ranker’ in the pipeline.

4.5 KNOWN LIMITATIONS OF THE SYSTEM

While the verifier implemented for this work is effective, it does not completely cover the following
possible potential ‘shortcuts’ in the Python functions it analyses:

• The entire Python function might consist of comments : Nothing triggers assert - this has been
partly countered by requiring the python code to include at least 2 assert statements

• The Python function contains conditional execution, routing around assert statements
• Occasionally, the hint assert XYZ failed results in the re-write : assert XYZ==False

• The proof may be logically disconnected, with left-hand-side terms not being supported / justified
by right-hand-side terms in other lines of the code

These issues do not appear insurmountable, given time and effort. It should be noted that since the
formalising LLM is only being used In-Context there is little chance that the above issues are being
systematically abused (which would almost certainly happen if there was learning-in-the-loop in a
Reinforcement Learning setting).

5 CONCLUSIONS

Clearly, the choice of cryptic crossword clue solving as the platform for reasoning experiments
is unconventional. However, we have demonstrated clear success with a system that include both
LLMs, verifiers and coding aids.

We believe that our results validate our overall approach to codification of the cryptic crossword
problem domain : Generating answer candidates and wordplay suggestions followed by pro-
duction of code via an LLM-based formalisation process; verification using Python code analysis
tools; and iterative prompting of the LLM formaliser proved quite effective.

We were happy to discover that our development work using the Gemini-Flash LLM as a formaliser
was directly transferable to a the open-licensed Gemma2-itmodel for the same role, with little loss
of performance, enabling the whole pipeline to be run locally. The weakest link in the chain was,
predictably, getting the ‘Aha’ of wordplay creation to work - humans can still generate wordplay
that is beyond the capabilities of current models.

The authors sincerely hope that this work sparks interest in the cryptic crossword domain, which
presents an array of interesting and challenging reasoning problems on which fruitful research can
take place, even for those with limited computation budgets.
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6 ETHICS STATEMENT

6.1 SOCIETAL IMPACT

There are many current cryptic crossword enthusiasts that would potentially not welcome AI-
enabled solvers to ‘take over’ their favourite pastime. In particular, when taken further, this line
of work would potentially disruptive to public leaderboards that rank people according to the time
taken to solve puzzles 100% correctly. However, there is currently little risk of LLM cryptic solvers
as being anything more than comic relief for current experts.

6.2 POTENTIAL BIAS IN FAVOUR OF NATIVE ENGLISH SPEAKERS

While the English language has a high capacity for ambiguity and wordplay overall, making this
type of crossword possible, cryptic crosswords also exist in other languages (Wikipedia contributors,
2024). In addition, although solving cryptic crossword answers may be very difficult (even for native
English speakers), understanding the answer from given wordplay is much simpler.

7 REPRODUCIBILITY

7.1 DATASETS AND CODE

The following outline the efforts that have been made to ensure reproducibility:
• Datasets - Resources such as dictionaries used, and the Cryptonite and Wordplay datasets are

available online, via the sources referenced in the main text.
• System Code & LLM Prompts - Python code for the complete end-to-end system will be made

available on publication. The prompting required for the LLM formalisation (arguably a form of
programming) are included in the Appendix.

• Models used / training - The models referenced in this work are available with open weights
(the Gemma2 models), or via API (the Gemini-Flash model, with a pinned version number). The
training procedures are outlined in the text, and therefore have some degree of reproducibility.
The fine-tuned Gemma2 models will be made available in any case, on publication.

7.2 COMPUTATIONAL REQUIREMENTS

The Gemini LLM was accessed by API, and the total spend to create the results in this paper was
less than $100 USD, with each prompt round-trip taking around 5 seconds. The Fine-Tuning of
the Gemma2 9B model took around 24 hours for a full Cryptonite training run, and 8 hours for the
Wordplay dataset runs. Thus, the single-GPU model runs totalled less than $50 USD.
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A APPENDIX

A.1 CRYPTIC CROSSWORD BACKGROUND

The following borrows extensively from the description on Wikipedia (2024) (kudos to the
authors there), to which we have added wordplay annotations in a notation typical of the
FifteenSquare.com website (and in the Wordplay dataset use in this work).

A.1.1 BASICS

A cryptic clue leads to its answer only if it is read in the right way. What the clue appears to say when
read normally (the surface reading) is usually a distraction with nothing to do with the solution. The
challenge is to find the way of reading the clue that leads to the solution.

A typical clue consists of two parts:

• The straight or definition. This is in essence the same as any non-cryptic crossword clue: a
synonym for the answer. It usually exactly matches the part of speech, tense, and number of
the answer, and usually appears at the start or end of a clue. For our annotations, the span that
encompasses the definition is highlighted using curly braces.

• The cryptic, subsidiary indication or wordplay. This gives the solver some instructions on how
to get to the answer in another (less literal) way. The wordplay parts of clues can be obscure,
especially to a newcomer, but they tend to utilise standard rules and conventions which become
more familiar with practice.

Sometimes the two parts of the clue are joined with a link word or phrase such as ‘from’, ‘gives’
or ‘could be’. One of the tasks of the solver is to find the boundary between the definition and the
wordplay, and insert a mental pause there when reading the clue cryptically.

We list below several of the important styles of wordplay that are commonly used, each with
an annotated example. For a more comprehensive list, along with an outline of the ‘Ximenean
principles’, please see Wikipedia (2024).

A.1.2 ANAGRAMS

An anagram is a rearrangement of a certain section of the clue to form the answer. This is usually in-
dicated by a codeword which indicates change, movement, breakage or something otherwise amiss.
For example:

clue: Chaperone shredded corset (6)
definition: {Chaperone} shredded corset
answer: ESCORT
wordplay: (corset)* (*shredded)

A.1.3 CHARADE

In a charade, the answer is formed by joining individually clued words to make a larger word
(namely, the answer). For example:

clue: Outlaw leader managing money (7)
definition: Outlaw leader {managing money}
answer: BANKING
wordplay: BAN (outlaw) + KING (leader)

A.1.4 CONTAINERS

A container or insertion clue puts one set of letters inside another. For example (also starting to add
a little more indirection):

clue: Utter nothing when there's wickedness about (5)
definition: {utter} nothing when there's wickedness about

13
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answer: VOICE
wordplay: O (nothing) with VICE (wickedness) around it (about)

A.1.5 DELETIONS

Deletion is a wordplay mechanism which removes some letters of a word to create a shorter word.
For example:

clue: Bird is cowardly, about to fly away (5)
definition: {Bird} is cowardly, about to fly away
answer: RAVEN
wordplay: [c]RAVEN (cowardly) - 'C' (i.e. circa, about) (-fly away)

A.1.6 DOUBLE DEFINITION

A clue may, rather than having a definition part and a wordplay part, have two definition parts. For
example:

clue: Not seeing window covering (5)
definition: {Not seeing} {window covering}
answer: BLIND
wordplay: Double Definition (DD)

A.1.7 HIDDEN WORDS

With hidden word clues, the solution itself is written within the clue – either as part of a longer word
or across more than one word. For example:

clue: Found ermine, deer hides damaged (10)
definition: Found ermine, deer hides {damaged}
answer: UNDERMINED
wordplay: [fo]UND ERMINE D[eer] (hides)

A.1.8 HOMOPHONES

Homophones are words that sound the same but have different meanings, such as ‘night’ and
‘knight’. Homophone clues always have an indicator word or phrase that has to do with being
spoken or heard. For example:

clue: We hear twins shave (4)
definition: We hear twins {shave}
answer: PARE
wordplay: "pair" (twins, "we hear")

A.1.9 REVERSALS

A word that gets turned around to make another is a reversal. For example:

clue: Returned beer fit for a king (5)
definition: Returned beer {fit for a king}
answer: REGAL
wordplay: (LAGER)< (beer, <returned)
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A.2 WORDPLAY DATASET

The Wordplay Dataset used in this work is extracted from websites where cryptic crossword en-
thusiasts post solutions to the puzzles published in major publications. Each completed puzzle is
annotated by an solver who provides the community with definition, wordplay and answer
fields for each of the approximately 30 clues in that day’s grid.

For UK papers, these enthusiast websites include:

• timesforthetimes.co.uk - Times, Times Quick
• www.fifteensquared.net - Independent, Guardian, Financial Times
• bigdave44.com - Telegraph, Sunday Telegraph

The following is an example from the Wordplay dataset, formatted in YAML (the workings of this
clue are illustrated in Figure 2c):

title: Financial Times 16,479 by FALCON
url: https://www.fifteensquared.net/2020/05/18/ \

financial-times-16479-by-falcon/
author: teacow
clues:
- clue: '{Offer} of support also broadcast'

pattern: '8'
ad: D
answer: PROPOSAL
wordplay: PROP (support) + (ALSO)* (*broadcast)

- ...

In the above:

• clue is the original clue, as given to solvers, but with the ‘regular crossword’ definition
portion highlighted with curly braces;

• pattern is the number of characters in the answer;
• ad (across/down) is potentially significant, because some clues include directional hints such as

‘before’ or ‘upwards’ which are only meaningful if the orientation of the answer within the grid
is known;

• answer is the clue’s final answer (not known to the solvers before solving); and
• wordplay is an informally annotated explanation of how the clue words act together to logically

build the letters in the answer (the resulting grid letters typically being in upper case) - here the *
symbol signifies that ALSO is to be anagrammed due to the anagram indicator (broadcast) in
the clue.

The Wordplay dataset is publicly available as Andrews (2024). Note that care was taken to ensure
that the training/validation/test splits follow those of the Cryptonite dataset (and the test set answers
are deliberately scrubbed from the retrieved data by the provided scripts, to reduce the chance that
they become training data for an over-eager crawling system).
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A.3 FINE-TUNING PROMPT

The following is a verbatim training example used for the fine-tuning of the Gemma2-9B-base
model:

### Instruction:
Cryptic clue wordplay generation : Given the clue and the answer, \
return expert definition and wordplay annotations

### Input:
clue: "musical and ballet, oddly, that can be avoided"
answer: EVITABLE ˜ evitable

### Response:
definition: musical and ballet, oddly, {that can be avoided}
wordplay: EVITA (musical) + B[a]L[l]E[t] (ballet, odd letters)

A.4 IN-CONTEXT LEARNING PROMPTS FOR THE GEMINI LLM

The Gemini LLM is prompted in-context with the concatenation of the following sections:

• Cryptic Crossword overview
• Many-shot wordplay examples
• Declaration of ‘external’ Python functions
• 6-shot formalisation demonstration
• Actual problem statement (for continuation as a Python proof)
• After a verification failure: Error messages for the generated proof, with hints if available, and

request to improve iteratively

The sections of the prompt are described more fully below, note that care was taken to ensure that
the chosen terminology was use consistently throughout.

A.4.1 CRYPTIC CROSSWORD PREAMBLE

The following is the rubric and wordplay preamble given to the Gemini LLM:

A Cryptic crossword question involves using the words in \
the given clue to yield an answer that matches the letter pattern.
The clue will provide a definition of the answer, as well \
as some 'wordplay' that can also be used to confirm the answer.
Expert question solvers write informal 'proofs' using a \
particular format.

For the definition, the original clue is annotated with \
'{}' to denote where the definition is to be found.
For the wordplay, the following conventions are loosely used:
* The answer is assembled from the letters in CAPS
* Words in brackets show the origins of letters in CAPS, \
often being synonyms, or short forms
* Action words are annotated as illustrated:

+ (ETO N)* (*mad = anagram-signifier) = TONE
+ (FO OR)< (<back = reversal-signifier) = ROOF
+ [re]USE (missing = removal-signifier) = USE

* DD is a shorthand for 'Double Definition'
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A.4.2 MANY-SHOT WORDPLAY EXAMPLES

Around 20 examples from the Wordplay dataset are included in the in-context prompt:

For example:
---
clue: "arrived with an artist, to get optical device (6)"
definition: arrived with an artist, to get {optical device}
answer: CAMERA
wordplay: CAME (arrived) + RA (artist, short form)
---
clue: ...

A.4.3 EXTERNAL PYTHON DSL FUNCTIONS

Domain Specific Python functions are described in-context to the LLM, which appears able to use
them without seeing their internal functionality. In fact, the actual implementation of the functions
is more extensive than described, since calls to these functions also track ‘near misses’ which can
be fed back as hints during the re-write process.

The task is to produce a formal proof using python code, \
where the docstring will also include an informal proof as an aid.
The following are functions that can be used in your output code:

Action=Enum('Action', 'ANAGRAM,REMOVE_FIRST,INITIALS,REMOVE_LAST,'+
'GOES_INSIDE,GOES_OUTSIDE,REVERSE,SUBSTRING,HOMOPHONE')

# External definitions
def is_synonym(phrase:str, test_synonym:str, pattern:str='') -> bool:

# Determines whether 'test_synonym' is a reasonable synonym for 'phrase',
# with letters optionally matching 'pattern'

def is_abbreviation(phrase:str, test_abbreviation:str) -> bool:
# Determines whether 'test_abbreviation' is
# a valid abbreviation or short form for 'phrase'

def action_type(phrase:str, action:Action) -> bool:
# Determines whether 'phrase' might signify the given 'action'

def is_anagram(letters:str, word:str) -> bool:
# Determines whether 'word' can be formed from 'letters' (i.e. an anagram)

def is_homophone(phrase:str, test_homophone:str) -> bool:
# Determines whether 'test_homophone' sounds like 'phrase'

A.4.4 FEW-SHOT FORMALISATION EXAMPLES

The following are 3 (out of 6) of the few-shot formalisation examples given before the final test-case
prompt:

The following are examples of simple functions that prove that \
each puzzle solution is correct:

```python
def proof(answer="ONCE",

clue="head decapitated long ago", pattern='4'):
"""
definition: head decapitated {long ago}
wordplay: [b]ONCE (head decapitated = remove first letter of BONCE)
"""
assert is_synonym("head", "BONCE")
assert action_type("decapitated", Action.REMOVE_FIRST) \

and "BONCE"[1:]=="ONCE"
assert is_synonym("long ago", "ONCE", pattern='4')

proof()
```

```python
def proof(answer="DECIMAL",
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clue="the point of medical treatment", pattern='7'):
"""
definition: {the point} of medical treatment
wordplay: (MEDICAL)* (*treatment = anagram)
"""
assert is_synonym("the point", "DECIMAL", pattern='7')
assert action_type("treatment", Action.ANAGRAM)
assert is_anagram("MEDICAL", "DECIMAL")

proof()
```

```python
def proof(answer="SUPERMARKET",

clue="fat bags for every brand that’s a big seller",
pattern='11'):

"""
definition: fat bags for every brand that’s {a big seller}
wordplay: SUET (fat) (bags = goes outside) of \

(PER (for every) + MARK (brand))
"""
assert is_synomym("fat", "SUET")
assert action_type("bags", Action.IS_OUTSIDE)
assert "SUET" == "SU" + "ET"
assert is_abbreviation("for every", "PER")
assert is_synomym("brand", "MARK")
assert "SU"+"PER"+"MARK"+"ET" == "SUPERMARKET"
assert is_synonym("a big seller", "SUPERMARKET", pattern='11')

proof()
```

A.4.5 FORMALISATION INSTRUCTION

The following instruction is given before the final ‘test-case’ prompt illustrated in Figure 3:

# Please complete the following in a similar manner, and return the whole function:

```python
def proof(answer= ...

A.4.6 PROOF VERIFICATION WITH HINTING

Examples of assertion failures, with constructive hinting, are shown:

AssertionError: assert: is_abbreviation('an Artist', 'RA') :
'an Artist' does not have a valid abbreviation;
'RA' is an abbreviation for : artist, artillery, Royal Artillery,
gunners, painter

AssertionError: assert action_type('goes crazy', Action.ANAGRAM) :
'goes crazy' itself does not suggest Action.ANAGRAM, but 'crazy' does

AssertionError: assert action_type('worked', Action.HOMOPHONE) :
'worked' does not suggest Action.HOMOPHONE, but maybe Action.ANAGRAM

# Please re-implement the SOLUTION above \
(altering both the docstring and the python code as required), \
taking care to fix each of the problems identified, \
and return the whole function:

```python
def proof(answer= ...

Once the prover has fully parsed a given output with zero assertion failures, the proof is considered
a success (up to 2 re-write iterations are allowed, more that that is considered an overall failure to
prove the answer).
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