LOBERT: Generative AI Foundation Model for Limit
Order Book Messages

Eljas Linna Kestutis Baltakys
Data Science Research Centre Data Science Research Centre
Tampere University Tampere University
eljas.linna@tuni.fi kestutis.baltakys@tuni.fi
Alexandros losifidis Juho Kanniainen
Data Science Research Centre Data Science Research Centre
Tampere University Tampere University
alexandros.iosifidis@tuni.fi juho.kanniainen@tuni.fi
Abstract

Modeling the dynamics of financial Limit Order Books (LOB) at the message level
is challenging due to irregular event timing, rapid regime shifts, and the reactions
of high-frequency traders to visible order flow. Previous LOB models require
cumbersome data representations and lack adaptability outside their original tasks,
leading us to introduce LOBERT, a general-purpose encoder-only foundation
model for LOB data suitable for downstream fine-tuning. LOBERT adapts the
original BERT architecture for LOB data by using a novel tokenization scheme that
treats complete multi-dimensional messages as single tokens while retaining con-
tinuous representations of price, volume, and time. With these methods, LOBERT
achieves leading performance in tasks such as predicting mid-price movements and
next messages, while reducing the required context length compared to previous
methods.

1 Introduction

The Limit Order Book (LOB) stands as the cornerstone of modern digital markets, serving as the
primary mechanism for price discovery and a critical indicator of market liquidity and risk. The
ability to accurately model and predict the LOB message flow is crucial as its features underpin
market making, optimal execution, and other high-frequency trading activities. Moreover, other
quantities describing security price dynamics can be derived from it. However, modeling the LOB
at the message level brings a unique and difficult set of challenges: Extreme irregularity in time
intervals varying by a factor of millions, rapid regime shifts with cascading effects caused by a single
message, and amplification of these dynamics through the interaction of agents with the visible LOB
message flow where trading algorithms react to the actions of each other.

While we believe using Generative Al with LOB messages has promise by capturing the most atomic
data of LOB markets, previous generative approaches suffer from slow inference, narrow scope of
application, and the need to split each message into components that must be predicted sequentially
(see Appendix[A)). To address the shortcomings, we introduce LOBERT, a general-purpose encoder-
only foundation model which adapts the highly successful BERT model from [4] for message-level
LOB modeling. Its novelty is fourfold. First, we propose a one-token-per-message tokenizer that
consolidates side, type, and coarse price/volume cues (with a roundness flag), while preserving
continuous price, volume, and time through a Piecewise Linear—Geometric scaling, avoiding the
token explosion of prior generators that split each message into 22—-24 sub-tokens. Second, we

NeurIPS Conference

adapt BERT to irregular event streams via continuous-time rotary attention and a Masked Message
Modeling objective that jointly masks messages and their surrounding snapshots to prevent label
leakage. Third, we introduce a hybrid discrete—continuous decoding head and a Combined inference
scheme that uses token bins to bound the regressors, yielding higher marginal fidelity than token-only
or regressor-only variants. Fourth, we demonstrate practical efficiency and transfer: by predicting a
single token per message, LOBERT reduces effective context length by roughly an order of magnitude
on our data (i.e., =20 x fewer tokens per sequence) while fine-tuning cleanly to diverse downstreams
(e.g., next-message and mid-price direction) with small task-specific heads. To our knowledge, this
specific combination of tokenization, time-aware encoder pretraining, and hybrid decoding has not
been explored for LOB messages.

2 Methodology

2.1 Message preprocessing

The main principle behind LOBERT’s preprocessing is to produce discrete tokens that represent the
most common messages and an approximation of the less common messages, e€.g. "new sell order
far above the best price with medium volume". This is combined with continuous representation of
the information, allowing precisely pinpointing rare values without having to excessively bloat the
vocabulary of discrete values.

First, the price level of each message is transformed to stationary price difference measured in ticks
from the best opposing price, i.e. the best bid for sell orders and the best ask for buy orders. The price
difference is quantized to levels (0, 1, 2, 3, 5, 10) while a duplicate of the price difference is scaled
through Piecewise Linear-Geometric Scaling (PLGS, see Appendix [B)) with parameters 7y, = 10
ticks, Tmax = 20, and 7, = 1000 ticks. This means the scaling function produces linear output
growth up to 10 ticks (50% of the maximum scaled value), after which growth slows geometrically
toward the asymptotic limit. The quantization levels are chosen to distribute the values as evenly as
possible across the most common price movements observed in the training data.

Second, the volume is processed with the same method of quantizing to levels (0, 50, 100, 200)
and duplicating into a continuous scaled value through PLGS with Ty = 200 units, max = 400,
and 7, = 1500 units. The quantization levels are chosen by analyzing the distribution of volumes
and observing that volumes are heavily concentrated at round values such as 50, 100, and 200 (over
60% of all volume values are exactly 100 units in the dataset). We also include an additional binary
indicator to denote whether the volume is exactly on the quantized level or between levels ("Y" or
"N"), which proves essential for reconstructing the original volume values during inference.

Third, the arrival time of each message is converted to time difference measured from the previous
message. Since we did not identify clear repeating patterns in time difference distribution beyond
its heavy-tailed nature, we represent it solely with a continuous value scaled through PLGS with
parameters Ty = 1ms, Tmax = 50, and 75, = 250ms. The final normalized values sit in a range of
[0, 1].

Finally, the side (buy or sell) and message type (new order, edit, delete, execution, hidden order)
are combined with the quantized price difference and volume values, along with the volume round
indicator, into discrete tokens using a colon delimiter. Together with special tokens for padding,
masking, and unknown messages, this process generates 293 distinct message tokens from the training
data. A special stringification rule is applied to execution messages (type 4) by converting their price
level to O since they always occur at the best available price. We now have a vocabulary representing
the most important messages, and continuous values supporting them.

2.2 Order Book snapshot preprocessing

Along with the messages, LOBERT processes a snapshot of the Order Book immediately after the
message, i.e., the immediate effect of each message is included in its corresponding snapshot. A
single snapshot is an array of 40 values corresponding to the 10 best bid prices and their volumes,
and 10 best ask prices and their volumes. Volumes are scaled using an exponential transformation:

Uscaled = 1 — eivm/k €))

where vy, is the raw volume at a given price level and k£ = 2000 is a scaling parameter that controls
the transformation rate. This maps unbounded volume values to [0, 1) with diminishing sensitivity
to extremely large volumes. Prices are normalized as tick distances from the opposing best quote,
clipped at a maximum distance of Dy, = 20 ticks and normalized to [0, 1] through division by the
maximum distance. This representation captures the relative depth and spread structure of the order
book in a compact, normalized form. See Appendix [2.2]for further details.

2.3 Model architecture, inputs and outputs

LOBERT’s architecture (see Figure [T) builds upon the principles of the original BERT model,
implemented using PyTorch. A key innovation is its multi-modal embedding layer, which handles
the hybrid discrete—continuous nature of LOB data by merging representations from four sources:
(1) discrete message tokens, (2) continuous price differences, (3) continuous volume values, and
(4) optionally, LOB snapshot representations integrated through a learned gating mechanism. These
embeddings are combined additively to produce a unified representation for each position. In addition
to learned positional embeddings, we incorporate continuous Rotary Position Embedding (ROPE)
within the self-attention mechanism that operates on cumulative time differences between consecutive
messages. This hybrid approach enables the model to capture both sequential ordering and the actual
temporal distances between events, addressing the non-uniform nature of market dynamics.

The transformer encoder consists of stacked layers, each containing multi-head self-attention fol-
lowed by a position-wise feed-forward network with GELU activation and intermediate dimension
expansion. Layer normalization and residual connections are applied after each sub-layer, with
dropout (p = 0.1) for regularization. The model outputs pass through multiple specialized heads:
a linear classification head for discrete token prediction (cross-entropy loss), and three regression
heads for continuous values (weighted MSE losses). Uniquely, these regression heads employ a
dual-input design, concatenating both token prediction logits and final hidden states, enabling them
to leverage discrete predictions when generating continuous outputs. This architecture facilitates
hybrid inference strategies that combine token-based categorical information with refined continuous
regression.

Figure 1: Simplified architecture diagram highlighting the unique properties of LOBERT

r "

Token Token
Raw data Embedding Encoder Token Head
Type: 3
" Price diff Price Unified .
Side: -1 . —> Self- Price
Price: 195 0.8343 Embedding Embedding Attentian Cngm-g_,gus Head
. I i 0

\Voluma: 100 Tokedmzanon Volume Volume
Time: 3310.335 [* @NAPrE- =7k g 55, Embedding ! Volume
Ask Price 1: 194 Pl Head
Ask Volume 1: Snapshot Snapshot Time
Bid Price 1- 188 [0.2,0.1..] Embedding e
Bid Volume 1: 11 N L J

Time diff

0.9432

2.4 Training and fine-tuning

The model’s output structure is also multi-faceted. A standard token prediction head is responsible for
predicting the next discrete message token, optimized using a cross-entropy loss function. In parallel,
three regression heads are appended after the main transformer layers to predict the continuous values
for the given message’s price, volume, and time difference. These heads are trained using a Mean
Squared Error (MSE) loss, allowing the LOBERT to simultaneously learn the "language" of the most
common LOB messages while retaining full granularity.

Our training methodology employs a two-phase strategy designed to first build a robust understanding
of the "language" of the LOB message stream and then to refine this understanding for predictive
tasks. The initial phase consists of Masked Message Modeling (MMM), analogous to BERT’s
Masked Language Modeling. In this stage, we train a bidirectional version of LOBERT to reconstruct
randomly masked messages within a sequence. To ensure a balanced learning process, the regression
losses for price, volume, and time are weighted to be approximately equal after the first epoch of
training, while the token prediction loss is given a higher weight to emphasize the importance of
identifying the main characteristics of messages. To avoid leaking the masked messages to the

model via LOB snapshots around the masked position, the snapshots are also masked for 90% of
positions randomly. Following the MMM phase, we transition to a fine-tuning phase for tasks such as
next-message prediction and mid-price prediction. In these phases, all snapshots are visible to the
model.

3 Experiments and results

In order to demonstrate LOBERT’s adaptability, we have conducted fine-tuning experiments for
next-message prediction and direct mid-price prediction. Note that due to issues in data access at the
time of writing, we could only utilize millisecond-level time differences rather than nanoseconds and
thus the time aspect is only partially covered in the experiments. We use 80 trading days of Nasdaq
ITCH feed data on AAPL, INTC, MSFT and FB stocks between 2015.05.11 and 2015.09.01 for
training, and 10 days between 2015.09.02 and 2015.09.16 for validation. The final 10 days of data
from 2015.09.17 to 2015.09.30 are reserved for testing and producing the results discussed here. In
total, the dataset has 470M messages divided into 919k non-overlapping sequences of 512 messages
each.

For training LOBERT, we use an AdamW optimizer configured with a learning rate of 5 x 1075 and
weight decay of 0.01. Weight decay is disabled for bias terms and layer normalization parameters
following standard practice. The learning rate schedule employs Cosine Annealing with Warm
Restarts, where the initial restart period T} is set to 40,000 steps with a multiplicative factor Ty = 2
for subsequent cycles, and a minimum learning rate of 5 x 10~5. Training is conducted for 10 epochs
with a batch size of 32, and model evaluation is performed every 15,000 training steps on a held-out
validation set. For next-message and mid-price prediction, the model weights are initialized from
the pre-trained MMM checkpoint, and the best-performing model is selected based on the lowest
validation loss.

3.1 Next-message prediction experiment

The pre-trained MMM model is adopted for causal modeling by using a triangular mask which allows
the model to see only past messages, and the label is set to the first message in the hidden section for
each sequence. To compare LOBERT with a previous leading model in next-message prediction, we
have reconstructed the S5 model as per [7] with 1.2M parameters and without Book Module which
processes the LOB snapshots, and trained LOBERT with 1.1M parameters, both with and without
Book Module. The models were trained on the same data with roughly an equal amount of training
time, and their outputs were transformed with the same processing steps discussed in section[2.1] The
results for individual predicted messages are compared between the two models by measuring the
accuracy of their components (see Table[I). The accuracy of LOBERT is considerably higher for
each separated component and the full message when considered as a whole.

Table 1: Accuracy comparison of predicting the tokenized components of individual messages.

Message Side or Price Volume Full
Model type direction quantized quantized message
S5 50.8% 52.2% 18.6% 32.1% 6.1%
LOBERT 60.6 % 65.1% 51.8% 72.1% 26.4%
LOBERT with Book Module | 61.9% 65.4% 53.8% 72.2% 27.8%

To ensure that LOBERT does not overfit to small niches, we inspect the overall distribution of
predicted values against the real distribution in the same test dataset (see Figure [2). LOBERT
predictions matche the distribution with Pearson correlations of 0.55 for price, 0.37 for volume and
0.52 for time. One notable deviation stands out at price level 10, which we hypothesize to be caused
by conflicts between the token head and price regression head, and we will investigate it further.

Figure 2: Value distributions of price, volume, time difference, type and side for LOBERT model
with Book Module enabled.

Message type distribution Message side distribution
0.4 0.4
Predicted
0.2 0.2 Actual
0.0 0.0
~ Vv) ™) N ~
Type Side
Price distribution 0.04 Volume distribution Time diff distribution
0.2
0.2
011 0.02 o1
0.0 0.00 " :)
-20 =10 O 10 20 0 200 400 0 00 20 40
Ticks Units Milliseconds

3.2 Message processing comparison

We compare three message-processing modes that differ in how the discrete token head and the
continuous regression heads are utilized at inference time: (i) Combined, which uses the predicted
token’s quantization range as lower and upper bounds for the regressor; (ii) Token only, which maps
the predicted token to its quantized price (bin-start) and volume (bin-centre) while discarding the
regressors; and (iii) Regressor only, which ignores the token prediction and uses the three regression
outputs directly. Note that even though Time Difference is only predicted with regressor, we include
it in the table for reference on performance. To quantify distributional fidelity, we evaluate marginal
discrepancies between predictions and ground truth on the test split using the Wasserstein-1 distance
(W1), Jensen—Shannon divergence (JSD), and Total Variation distance (TVD) for Price, Volume, and
Time Difference. Lower is better for all metrics.

Across all three variables and all three metrics, the Combined mode consistently achieves the smallest
discrepancy relative to both ablations (see Table[2)). This pattern indicates a complementary effect:
the token head captures high-probability structural motifs (e.g., side/type and coarse price—volume
quantiles), while the regressors refine continuous residuals and rare values, reducing discretization
artefacts present in the token-only pathway and stabilizing the regressor-only pathway. These gains
substantiate the design choice of retaining both channels in LOBERT’s output layer.

Table 2: Distributional discrepancy (lower is better) between predicted and true marginals for Price,
Volume, and Time Difference. Reported metrics are Wasserstein-1 (W1), Jensen—Shannon divergence
(JSD), and Total Variation distance (TVD). Time difference is only predicted with regressors but we
include the results here for reference on performance.

Price

Volume Time Difference

W1 JSD TVD ‘ W1 JSD TVD

Method W1 JSD TVD

Combined 10.04 0.2111 0.1839 | 76.86 0.1696 0.1200 | N/A N/A N/A
Token only 1544 0.5566 0.6134 | 85.36 0.2446 0.1585 | N/A N/A N/A
Regressor only | 10.85 0.3959 0.4767 | 86.09 0.6623 0.8395 | 10.658 0.2681 0.3270

3.3 Mid-price prediction experiment

We adapt LOBERT for mid-price direction by adding a classification head on top of the MMM-
pretrained encoder. The task predicts the direction of the average tick-normalized mid-price movement
over a message-based horizon. Let m(t) be the mid-price at message t, and define the horizon set
H = {10, 50,100} messages (message-based rather than time-based). We use the average future

tick-normalized mid-price my, () = + 2?21 m(t + ¢) and assign a ternary label

+1, mp(t) — m(t) > 7(h),

Eh(t) =4 L mh(t) - m(t) < _T(h)?

0, otherwise,
where 7(h) is a horizon-dependent threshold (in the same units as m). We choose a logarithmically
increasing threshold to reflect the sublinear growth of typical price moves with horizon length:

1
h =
= To00

The averaging in my, (t) reduces microstructure noise relative to end-of-horizon labeling.

round (100 log, %) .

We train a 3-way cross-entropy head where the inputs include snapshots and messages up to time ¢, and
the target is ¢;,(t). We report macro-F1 and coverage under selective prediction: a prediction is emit-
ted only if the maximum softmax probability exceeds a confidence threshold 7. € {0.3,0.4,...,0.9}.
Results are averaged over four securities (AAPL, INTC, MSFT, FB). As a baseline, we re-train
DEEPLOB [16] under the same data and horizons.

Table [3] shows that LOBERT consistently outperforms or matches DeepLOB across horizons and
confidence thresholds. We also observe that LOBERT is more responsive to confidence filtering:
as 7. increases from 0.3 to 0.9, macro-F1 improves markedly (e.g., H = 100: 0.55 — 0.88) while
coverage decreases (1.00 — 0.10), indicating effective ranking of easy vs. hard cases. See Appendix
[F for asset-specific curves.

Table 3: Mid-price prediction F1 metrics (selective F1 at a confidence threshold) and coverage for
prediction horizons of 10, 50, and 100. The F1 and coverage values are averaged over four securities:
FB, INTC, MSFT, and AAPL. Detailed results are provided in the Appendix. Note that selective F1
should be read as the model’s F1 score only on the cases where it was confident enough to make a
prediction.

H =10 H =50 H =100

Confidence LOBERT DeepLOB LOBERT DeepLOB LOBERT DeepLOB
threshold F1 Cover. F1 Cover. | F1 Cover. F1 Cover. | F1 Cover. Fl1 Cover.

0.3 0.53

0.4 0.53

0.5 0.54

0.6 0.52

0.7 0.53

0.8 0.56

0.9 0.60

LOBERT’s inference is currently slower than DeepLOB’s by 53%. However, Transformer-based
architectures such as LOBERT have a large arsenal of potential mechanisms to increase throughput
by several multiples, which we plan to implement in future versions. See Appendix [D|for details on
inference speed.

4 Discussion and conclusion

Our work on LOBERT demonstrates the significant potential of adapting methodologies from the
world of natural language processing to model the dynamics of the LOB. By treating the stream of
LOB events as a unique language, we leverage the well-established pattern-recognition capabilities
of the BERT architecture. The initial results from our next-message and mid-price prediction
experiments are promising, suggesting that a model can indeed learn the intricate "grammar" of
market data. Thus, LOBERT foundation model can be adapted to countless use cases with a small
amount of fine-tuning, opening the door for a completely new way of creating models in LOB domain,
similar to how the original BERT model changed language modeling.

Despite the advancements, we acknowledge the limitations in our current work. Namely, our
experiments so far do not guarantee the model’s ability to produce realistic long-term sequences. Our
future work will validate this capability through extensive sequence-level analysis. Furthermore, we
have not yet completed the study on the breadth of task types which LOBERT can be adapted to.

LLMs are also known to struggle with tracking the state of entities through changes, and LOBERT
may face a similar challenge in tracking the size and location of orders on the book when the price
levels move. Our current implementation simplifies this by not modeling individual order IDs.
Additionally, the computational cost and inference time of the transformer architecture are non-trivial.

In conclusion, LOBERT represents a promising new direction for modeling LOB dynamics. By
adapting the BERT framework, we have developed a model capable of understanding the fundamental
language of market messages, unifying discrete and continuous event data into a single, cohesive
framework. We will now focus on addressing the current limitations and expanding the model’s
capabilities. Before the conference, our roadmap includes conducting comprehensive sequence
prediction experiments to validate the model’s generative quality and expanding the fine-tuning
coverage study. The performance of the model will be improved with more efficient attention
mechanisms and enhanced training techniques introduced in later adaptations of BERT. To further
enrich the model’s understanding, we will incorporate crucial market state information, such as the
time of day, the current bid-ask spread, and full LOB snapshots.

References

[1] Leonardo Berti and Gjergji Kasneci. Tlob: A novel transformer model with dual attention for
price trend prediction with limit order book data. arXiv preprint arXiv:2502.15757, 2025.

[2] Leonardo Berti, Bardh Prenkaj, and Paola Velardi. Trades: Generating realistic market simula-
tions with diffusion models. arXiv preprint arXiv:2502.07071, 2025.

[3] Rama Cont, Mihai Cucuringu, Jonathan Kochems, and Felix Prenzel. Limit order book
simulation with generative adversarial networks. Available at SSRN 4512356, 2023.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

[5] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert:
Integer-only bert quantization. In International conference on machine learning, pages 5506—
5518. PMLR, 2021.

[6] Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, and Jiang Bian. Mars:
a financial market simulation engine powered by generative foundation model. In The Thirteenth
International Conference on Learning Representations, 2025.

[7] Peer Nagy, Sascha Frey, Silvia Sapora, Kang Li, Anisoara Calinescu, Stefan Zohren, and Jakob
Foerster. Generative ai for end-to-end limit order book modelling: A token-level autoregressive
generative model of message flow using a deep state space network. In Proceedings of the
Fourth ACM International Conference on Al in Finance, pages 91-99, 2023.

[8] Justin Sirignano and Rama Cont. Universal features of price formation in financial markets:
perspectives from deep learning. In Machine learning and Al in finance, pages 5-15. Routledge,
2021.

[9] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers
for sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

[10] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[11] Dat Thanh Tran, Alexandros losifidis, Juho Kanniainen, and Moncef Gabbouj. Temporal
attention-augmented bilinear network for financial time-series data analysis. /EEE transactions
on neural networks and learning systems, 30(5):1407-1418, 2018.

[12] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj,
and Alexandros losifidis. Forecasting stock prices from the limit order book using convolutional
neural networks. In 2017 IEEE 19th conference on business informatics (CBI), volume 1, pages
7-12. IEEE, 2017.

[13] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020.

[14] Aaron Wheeler and Jeffrey D Varner. Marketgpt: Developing a pre-trained transformer (gpt)
for modeling financial time series. arXiv preprint arXiv:2411.16585, 2024.

[15] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and
accurate models, 2022.

[16] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deeplob: Deep convolutional neural
networks for limit order books. IEEE Transactions on Signal Processing, 67(11):3001-3012,
2019.

[17] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses
patience: fast and robust inference with early exit. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS *20. Curran Associates Inc., 2020.

A Related work

Previous attempts to model the LOB have spanned a range of machine learning techniques. Early
efforts focused on supervised learning, framing the problem as a classification task to predict mid-
price movements [8}11}112,16]. More recently, GANs have been applied for LOB snapshot prediction
[3]], and generative models such as [7] based on sequence modeling as with [9] by splitting each
message into 22 tokens and predicting them one by one. [14] presents a generative pre-trained
transformer for financial data simulation but it is also slowed down by splitting messages into 24
tokens. [2] introduces a transformer-based diffusion engine for LOB simulations, offering flexible
generation but with the cost of heavy computational requirement by sampling requires hundreds
of iterative steps. [1] proposes a dual-attention transformer for price trend prediction, improving
accuracy, yet focusing narrowly on trend forecasting rather than full LOB message generation. In
a concurrent line of work, [6] introduces MarS, a financial market simulation engine powered by a
generative foundation model (LMM) that also operates at the order level to create interactive and
controllable market simulations.

B Piecewise Linear-Geometric Scaling

To handle the wide dynamic range of LOB features while preserving both precision at small values
and representation of extreme values, we employ Piecewise Linear-Geometric Scaling. For a raw
input value x (measured in original units: ticks for price, units for volume, or milliseconds for time),
with parameters 7, (transition point in input units), 7ex (maximum scaled output value), and 7jip
(input clipping threshold), the transformation proceeds in two stages.

First, we compute an intermediate scaled value s(z):

T if ¢ < Tytart
_ L‘T*Tsmnj k f < . 2
S(LL‘) = < Tstart + Zk:() 19 I Tgtart < T < Telip)
Telip—Tsta ..
Tstart + Z;E:lg) Mk ifx > Tclip

where the geometric decay factor 1 is determined by requiring that the infinite series converges to

Tmax -

1
p—1o— 1 3)

Tmax — Tstart

1

This ensures that lim,_, o $(z) = Tytarr + j—

= Tmax-
Second, we normalize the intermediate scaled value to the range [0, 1]:
s()

Tscaled = — (4)
Tmax

This two-stage process provides several advantages: (i) linear growth for x < 7,y preserves
sensitivity to small, frequent values; (ii) geometric decay for x > T cOmpresses extreme outliers;
(iii) the ratio Tyar/Tmax directly controls the proportion of the output range [0,1] dedicated to linear
scaling; and (iv) asymptotic convergence prevents unbounded values from dominating the learned
representations. For continuous input values between discrete steps, linear interpolation is applied
within each unit interval.

C Snapshot scaling

The volume at each price level is transformed using an exponential scaling function to normalize the
distribution:

Uscaled = 1 — 3*U1~aw/k s

where v,y is the raw volume at a given price level and k is a scaling parameter that controls the
transformation rate. This transformation maps unbounded volume values to the range [0, 1), with the
exponential function providing diminishing sensitivity to extremely large volumes.

Prices are normalized by representing price levels as distances from the best opposite quote. The
distance from each price level to the best opposite quote is normalized to capture relative position in

the order book. For bid prices:
W _ (@
min ({p“kAPP"“ -‘ -1, Dmax>
(6)

Dmax

dyia,; =

where pgslﬁ is the best ask price, pl(ﬁ is the ¢-th bid price level, Ap is the minimum tick size, and Dyyax

is the maximum distance threshold (clip_dist). The term |-] denotes rounding to the nearest integer.

min (\‘PSQA;’&Z)-‘ _ 17 Dmax)
@)

Dmax

Similarly, for ask prices:

dask,i =

where pl()ild) is the best bid price and pgzl)(is the ¢-th ask price level. Both distance metrics are clipped

to [0, 1] through the minimum operation and subsequent normalization by Dyax.

D Inference speed

The present implementation of LOBERT prioritizes predictive quality over latency. On a single
NVIDIA V100 GPU, the model attains a throughput of 281.87 predictions per second, corresponding
to 47% of DEEPLOB’s throughput under the same evaluation conditions with batch size of 1.
While these figures reflect a quality-focused design choice, the Transformer backbone offers several
well-understood avenues for accelerating inference without altering task formulation.

Quantization. Reducing arithmetic precision from FP32 to lower-bit formats (e.g., INT8) can
substantially increase throughput by improving compute and memory efficiency. In prior work on
Transformer encoders, quantization has yielded up to 4x speed-ups with minimal accuracy impact
on supported hardware [5]. Applying post-training or quantization-aware variants to LOBERT is
therefore a promising first lever for latency reduction.

Structured pruning. Structured removal of computation—such as pruning full layers, attention
heads, or blocks within the feed-forward sublayers—reduces end-to-end FLOPs and wall-clock time
while preserving dense tensor layouts that deploy efficiently. Reported gains reach up to 2x at modest
accuracy cost when pruning is paired with brief recovery fine-tuning [15]. Given LOBERT’s compact
depth, conservative layer- or width-pruning regimes are natural candidates.

Early-exit strategies. Adaptive inference equips intermediate layers with auxiliary classifiers and
halts computation once confidence is sufficient. On average, such mechanisms have achieved
~ 1.57x speed-ups, with the actual gain governed by the distribution of “easy” inputs and the exit
threshold [[17]. Integrating early exits into LOBERT preserves the model’s capacity for difficult cases
while trimming work on routine ones.

Efficient attention. For longer input windows, the quadratic cost of standard self-attention becomes a
bottleneck. Efficient attention formulations that reduce the effective complexity can deliver up to 1.5x
speed-ups at moderate sequence lengths while maintaining predictive quality [13]]. These methods
are especially relevant if future deployments require extending the historical context processed per
inference step.

E Continuous Rotary Position Embedding

We extend the standard Rotary Position Embedding (RoPE) mechanism introduced in [10] to handle
continuous time by replacing discrete position indices with cumulative time differences. For each
attention head with dimension dj,, we define frequency components ; = 100002/ for ; €
{0,1,...,dn/2 — 1}. Given cumulative time ¢ € R™ at each sequence position, we compute
rotation angles ¢;(t) = t - §;. The continuous RoPE transformation is then applied to query and key
vectors q, k € R by rotating consecutive dimension pairs: for each pair (g2;, g2;41), We compute
(@545 G5;11) = (g2i €08 ¢i(t) — qait15in @i (1), g2i sin @i (t) + gaiy1 cos ¢i(t)), and analogously for
k. This formulation preserves the relative position encoding property of RoPE while naturally
accommodating irregular time intervals between events in the Limit Order Book message stream.

F Asset specific F1 and coverage scores with confidence thresholding

Figures [3] and [describe how the F1 score of predictions increases as we increase the minimum
threshold required for action. LOBERT reacts more aggressively to confidence thresholds, as seen in
the steep upwards curvature, while DeepLOB’s confidence is more uniform. At the same time, the
coverage of LOBERT decreases.

MSFT (top) - AAPL (bottom) — LOBERT & DeeplLOB

MSFT — H 20 MSFT — H 50 MSFT — H 100

LOBERT

LOBERT

LOBERT

LOBERT

Figure 3: Comparison of LOBERT and DeepL.OB for mid-price prediction plotted by confidence
threshold, F1 macro score and coverage for MSFT and AAPL assets.

10

FB (top) - INTC (bottom) — LOBERT & DeeplLOB

FB —H 10 FB—H20 FB —HS50 FBE — H 100
LOBERT
LOBERT

LOBERT

Figure 4: Comparison of LOBERT and DeeplLOB for mid-price prediction plotted by confidence
threshold, F1 macro score and coverage for FB and INTC assets.

11

	Introduction
	Methodology
	Message preprocessing
	Order Book snapshot preprocessing
	Model architecture, inputs and outputs
	Training and fine-tuning

	Experiments and results
	Next-message prediction experiment
	Message processing comparison
	Mid-price prediction experiment

	Discussion and conclusion
	Related work
	Piecewise Linear-Geometric Scaling
	Snapshot scaling
	Inference speed
	Continuous Rotary Position Embedding
	Asset specific F1 and coverage scores with confidence thresholding

