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Abstract

A major distinction between video and image understanding is that the former
requires reasoning over time. Existing Video Large Language Models (VLLMs)
demonstrate promising performance in general video understanding, such as brief
captioning or object recognition within individual frames. However, they often
struggle with temporal reasoning such as understanding continuous actions or track-
ing object transformations over time—which typically demands the integration
of multiple frames in a temporally coherent manner. We first explore and explain
such failures in Video LLMs from the perspective of language and “image” priors.
While existing research has attempted to enhance the temporal understanding of
VLLMs through various training strategies, the demand for expensive computa-
tional resources and training data often presents significant barriers. To this end,
we further propose a simple yet novel idea for improving temporal reasoning in
videos at no additional training cost. Specifically, to better capture the temporal
structure across multiple frames—the key to effective temporal reasoning—we
distort the temporal consistency in key frames during the decoding phase. Such
corruption induces time-insensitive wrong responses from the model, which are
then contrastively avoided when generating the final correct output. In this way, the
model is encouraged to perform more temporally coherent reasoning. Our method
yields consistent improvements across both temporal-specific and general video
understanding benchmarks, demonstrating its effectiveness and generalizability.

1 Introduction

Benefiting from the significant advancements in Large Language Models in recent years, Video
LLMs [14, 34, 35, 16, 30] have also experienced rapid development, exhibiting strong capabilities in
general video understanding. A key distinction between video understanding and image understanding
is that the former requires models to comprehend not only individual input frames but also the
temporal relationships among them. Consequently, temporal perception is crucial for Video LLMs.
However, recent studies [11, 21] have shown that even for simple and straightforward temporal
reasoning questions that humans can easily answer, Video LLMs, such as LLaVA-Video [35], Video-
LLaVA [14] and VILA [16, 22], often make mistakes that are clearly inconsistent with the ground
truth. Recent studies [28, 8, 29, 11] have investigated the limitations of temporal reasoning in Video
LLMs from a model-centric perspective. Given that a typical Video-LLM is composed of a vision
encoder and an LLM backbone, a common analytical approach is to disentangle and examine the
contributions of each component to temporal reasoning. While some works [28, 8, 29] attribute the
temporal reasoning deficiencies of Video LLMs to ineffective video embeddings and accordingly
focus on improving temporal information aggregation, others [11] leave aside the vision modules and
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Input: What direction is the sun moving in?
A. Falling
B. Rising
C. Staying in one place

Qwen2-VL-7B: A. To determine... , since the 
sun is near the horizon and appears to be 
descending, it is more likely to be setting 
rather than rising.

Input: What is the shape of the watermelon 
in the image?

A. Polyhedron
B. Cube
C. Ellipsoid
D. Sphere

LLaVA-1.5-13B: C (Wrong)
Vicuna-13B-v1.5: C

Input: What is happening to the toast 
with cream cheese?

A. Gradually reappearing piece by piece
B. Staying the same size
C. Gradually being eaten out and 
disappearing

LLaVA-Video-7B-Qwen2: C (Wrong)
Qwen2-7B-Instruct: C

LLaVA-Video-7B-Qwen2 + Ours : A

Input: What direction is the sun moving 
in?
A. Falling
B. Rising
C. Staying in one place

LLaVA-Video-7B-Qwen2: A (Wrong)
Qwen2-7B-Instruct: B

LLaVA-Video-7B-Qwen2 + Ours: B
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Figure 1: Example of how language and “image” priors affect Multimodal Large Language Models or
Video Large Language Models in image or video understanding. (1), (3) show the negative effect of
language priors and (2) reveals the how “image” priors from static visual content mislead the Video
LLM’s understanding of the video in (4).

embeddings, highlighting that the LLM itself exhibits weak sensitivity to the order of long textual
sequences, as well as long video embeddings.

Existing works primarily focus on explaining the limitations of temporal perception from the perspec-
tive of the model itself. Consequently, the improvements derived from such analyses often require
modifications to the model, such as refining video encoding [28, 8, 29] or improving the language
counterpart [11]. However, these strategies typically involve modeling training (e.g., instruction
tuning), which is computational- and data-intensive. Moreover, due to the increasing diversity of
video LLM architectures nowadays, observations or findings from one certain architecture may not
always generalize to others.

Towards this end, instead of digging into model architecture, we analyze model behavior through its
responses to investigate under what circumstances video LLMs are more prone to making mistakes.
We find that when video LLMs fail to understand temporal information in videos, they exhibit a
behavior similar to what multimodal LLMs exhibit when hallucinate—namely, being influenced
by language priors. More interestingly, due to the temporal dimension inherent in video inputs
(compared to static image inputs), we observe that video LLMs also suffer from a negative influence
of an “image” prior. For instance, the static visual features in individual frames—which do not
carry temporal information, however, can mislead the LLM’s perception of temporal dynamics. To
avoid model-dependent modifications, we do not directly mitigating the negative effects at the model
level. Instead, we take the opposite approach: we amplify these influencing factors to intentionally
induce erroneous responses, and then use them as contrasting objectives in Contrastive Decoding [12].
This allows us to explicitly steer the decoding process away from such failure modes and toward
generating the correct answers.

2 Uncovering Language and “Image” Prior in Temporal Reasoning

What Undermines Temporal Perception in Video LLMs? In contrast to existing works, we study
the problem of limited temporal reasoning in Video-LLMs from a different perspective: instead of
focusing on the model itself, we explore the conditions under which Video LLMs are more likely
to struggle with temporal understanding. Although different models exhibit varying results on the
same benchmark, it is observed that they tend to make mistakes more frequently on a specific subset
of questions than on others. By analyzing the characteristics of these failure cases, key factors that
undermine temporal reasoning can be uncovered.

Language prior typically refers to the prior knowledge in LLMs during (textual) pre-training or
instruction-tuning, such as commonsense knowledge and reasoning in the context of multimodal
understanding [17, 4]. However, it can sometimes hinder the model from grounding its answers in
visual content, over-relying on the prior knowledge.

Fig. 1 (1) (top left) presents a typical example in image understanding with MLLMs. When asked
about the shape of the watermelon in the image, LLaVA [19] chooses the incorrect option ‘C’, which
aligns with the common sense that a watermelon is ellipsoidal. This strong language prior biases the
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model toward selecting "C" instead of grounding to the visual input. When posing the same question
without the image to its LLM backbone, Vicuna-13B-v1.5, the LLM responses with the same answer,
revealing the influence of the LLM language prior on the MLLM’s behavior. Similar observations
are also mentioned in recent works [4] on MLLM hallucinations in image understanding. We are
naturally curious whether the language prior has a similar influence on Video LLMs? If so, given
the uniqueness of video inputs—such as temporally ordered multi-frame sequences—are there any
distinct behaviors that Video LLMs may exhibit compared to MLLM with image inputs?

Language Prior in Video LLMs. We conducted an experiment to investigate whether language
priors affect the temporal reasoning in Video LLMs. For this study, we selected two representative
open-source Video LLMs—LLaVA-Video-7B-Qwen2 [35] and Video-LLaVA [13]—as test models,
and used TempCompass [21] as the benchmark, which includes a variety of tasks closely related to
temporal understanding, such as event ordering and attribute change. First, we performed standard
inference with each Video LLM on TempCompass with both the video and textual input are provided.
Then, we randomly sampled 200 questions where Video LLMs made mistakes, and conducted a blind
evaluation on them, where the video input was removed and only the textual prompt was given to the
LLM. The results from this blind evaluation can roughly reflect the influence of the language prior on
inducing mistakes in Video LLMs.

Results show that, among the incorrect predictions made by LLaVA-Video-7B-Qwen2 and Video-
LLaVA, 46.7% and 38.9% respectively matched the answers produced by blind LLM, significantly
higher than random chance. In these cases, the Video LLMs failed to ground their responses in videos
and instead relied on language priors, leading to incorrect answers.

Fig. 1 (3) provides an illustrative example. When the video is not provided, the blind LLM (Qwen2-
7B-Instruct) selects option C, which corresponds to the answer with a higher prior probability that
aligns with commonsense expectations. When both the video and the question are provided to the
Video LLM, the model still chooses option C. This indicates that, despite access to visual input, the
model remains influenced by the language prior and overlooks the temporal information present in
the video. However, we observed in the experiments that in a number cases, even when the blind
LLM predicted the correct answer, the Video LLM surprisingly made an entirely different and
incorrect choice contradicting both the language prior and the information presented in the video.

Image Prior in Video LLMs. Fig. 1 (4) illustrates an interesting case. When the image is not
provided, the blind LLM makes the right choice, which can be viewed as a positive influence of the
language prior. However, the Video LLM still chooses the incorrect answer, “falling”, a bias in this
case introduced by the visual content of the video itself. As shown in Fig. 1 (2), when we extract a
single frame from the middle of the video and input it into an MLLM (Qwen2-VL-7B) along with
the question, the model perceives the scene as sunset and chooses "falling" accordingly. This visual
bias ultimately leads the Video LLM to overlook the temporal progression of the sun rising and to
make the wrong prediction.

Briefly, for image understanding, the input consists of both textual and visual information, and
language priors can influence how MLLMs interpret visual content. In video understanding, the
model must understand textual, visual, and temporal information simultaneously. In this setting,
beyond language priors, visual bias—specifically, biases introduced by static frames, which we term
as “image” priors, can also negatively impact temporal perception. As demonstrated in Fig. 1 (2),
certain frames (e.g., one that resembles a sunset) may dilute the model’s ability to accurately perceive
temporal dynamics.

3 Video Temporal Distortion

Our analysis demonstrates that language and “image” priors can impair the temporal perception
of Video LLMs. However, the underlying mechanisms can be more complex than they appear,
potentially influenced by factors from pre-training, instruction tuning strategies, to model architecture.
Instead of intervening in model design, such as the architecture or training strategies, which is often
compute- and data-intensive, we seek a post-hoc correction approach. Given that priors can impair
the temporal reasoning of Video LLMs, is it possible to develop a model-agnostic, plug-in method
that uses the model’s own temporally insensitive errors as contrastive signals, explicitly guiding
the model away from such biases and increasing the probability of generating correct predictions?
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Contrastive Decoding (CD) [12] offers a promising solution. CD is a decoding approach that aims to
find text which maximizes the gap between the log-probabilities of a good and a bad LLM response.
It helps us better avoid selecting tokens with high probability in the bad response, since a higher
probability in the bad response means a smaller gap with its corresponding probability in the good
response. Intuitively, if we can induce temporally insensitive responses from Video LLMs, they can
be explicitly avoided by contrastive decoding. Therefore, the key challenge that follows is to guide
Video LLMs to consistently generate such bad responses, so that they can be used as contrasting
objectives during the final decoding phase.

3.1 Contrastive Decoding in Video Large Language Models

Decoding in LLMs. Considering a Video LLM parametrized by θ. It takes as input a text query
x and a video context V, and generate a relevant response y to the text query. The response y is
sampled auto-regressively from the probability distribution conditioned on the query x and the video
context V, formulated as:

yt ∼ pθ(yt | V,x,y<t) ∝ exp logitθ(yt | V,x,y<t), (1)

where yt denotes the token at time step t, and y<t represents generated tokens up to (t− 1).

Contrastive Decoding in Video LLMs. Specifically, given a text query x and a video input V, the
model generates two output distributions: one conditioned on the original V and the other on the
distorted video input V′, which is derived by applying pre-defined distortion (e.g., adding noise
to visual features as the simplest case) to V. Then, a new contrastive probability distribution is
computed by leveraging the differences between two original distributions. The new contrastive
distribution pvtd is formulated as:

pvtd(y | V,V′,x) = softmax [(1 + α)logitθ(y | V,x)− αlogitθ(y | V′,x)] , (2)

where larger α indicate a stronger amplification of the differences (α = 0 reduces to regular decoding).
The process is shown in Fig. 3. Wrong option “B” is assigned possibilities in the original normal
distribution logitθ(y | V,x) due to language or image priors. However, as temporal information is
removed in the distorted video input, which further amplifies the bias, option “B” receives significantly
higher scores in logitθ(y | V′,x). Finally, the score of “B” is notably reduced in pvtd after Eq. 3 is
applied, leading to correct answer “A”. Following Li et al. [12], we also apply an adaptive plausibility
constraint on pvtd, where CD is applied only to high-probability tokens whose probabilities exceed a
fraction β ∈ [0, 1] of the maximum token probability. Details are discussed in Appendix A.

3.2 Video Temporal Distortion

What Makes an Effective Temporal Distortion. Distortion strategies play a key role in elevating
the probabilities of bad responses in logitθ(y | V′,x) while diminishing those of good responses. To
consistently generate bad responses as contrasting objectives, we need remove temporal clues in the
video input while maintaining confounding priors that induces incorrect answers neglecting temporal
information. Such balance is critical. For example, in the case shown in Fig 1(4), masking the entire
video unexpectedly leads to the correct answer. This is undesirable, because if the correct answer is
used as a contrasting objective, its possibility is reduced with Eq. 3. What we need is an carefully
distorted input, like in Fig 1(2), which lacks temporal clues and misleads the model.

Figure 2: Distortion results.

Intuitive solutions include: 1 adding noise to visual fea-
tures 2 randomly shuffling frame sequences 3 randomly
dropping frames. Fig. 2 shows results of LLaVA-Video-
7B [35] on EventHallusion [32], where the videos depict
continuous actions that require strong temporal percep-
tion. We adopt three different strategies when applying
the distortions for contrastive decoding: randomly apply
distortion on 1. all frames, 2. first half frames and 3. last half frames. While the overall results
improve, they are notably sensitive to different sampling preferences toward the beginning or the
end of the video. It implies that designing adaptive distortion strategies with greater stability and
adaptability is crucial. Towards this end, we propose a Video Temporal Distortion strategy that
adaptively distorts frames.
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Large
Language

M
odel

Q:In what direction is the little lion going?
A. Falling down (GroundTruth)
B. Climbing up
C. Walking forward
D. Walking backward

Vision
Encoder

Temporal
Distortion
Unit

A
B
C
D

A
B
C
D

A
B

C
D
(1 + 𝛼)𝑙𝑜𝑔𝑖𝑡(𝑦 | 𝑉, 𝑥)-𝑙𝑜𝑔𝑖𝑡(𝑦 | 𝑉 !, 𝑥)

𝑙𝑜𝑔𝑖𝑡(𝑦 | 𝑉, 𝑥)

Final Response

Temporal DistortionUnit

Distort Key Tokens in
Remaining Frames

Fuse
Key Frames

DisruptMoving
Content in Remaining

Frames

Edited
Frames

𝑙𝑜𝑔𝑖𝑡(𝑦 | 𝑉0, 𝑥)

Figure 3: Overview. The original video embeddings V are first forwarded to the LLM with text query
x to obtain logitθ(y | V,x), where intermediate attention maps in LLM layers are retrieved and fed
to Temporal Distortion Unit to guide the distortion of original video embeddings. Then distorted
video V′ is input to LLM to obtain logitθ(y | V′,x). Final token is generated from pvtd in Eq. 3.

Temporal Distortion Criteria. We argue that, an ideal distortion should satisfy the following criteria:
(1) it removes temporal information. (2) it includes priors that are likely to mislead the model, such
as salient static visual features. (3) The distortion applied to the video should be adaptive towards
different video inputs than random to ensure stability. Our solution is illustrated in Fig. 3. Given
original video embeddings V, and text query x, we obtain distorted video embeddings V′ with our
Temporal Distortion Unit guided by attention maps from intermediate LLM layers to adaptively
distort important frames with rich temporal information, while keeping less relevant frames that can
potentially provide misleading context information or priors.

Framework. Fig. 3 (Right) shows the distortion pipeline. Given a set of K original video frame
embeddings {vi}Ki=1, and corresponding attention maps {Ai}Li=1 from L intermediate LLM layers,
We first compute the importance of each image token. To mitigate the bias of relying solely on the
attention maps from the final layer, we compute token importance at each layer and aggregate it with
momentum. Specifically, given attention map Al at layer l, token importance matrix is computed as:

Sl =
1

h

h∑
i=1

A
(i,:,:)
l [−1],A ∈ R(h,n,n)

where h, n denote the value of attention heads and unmasked input tokens so far, respectively.
Consequently, the importance of an image token vj indexed at j is Sl[j] from layer l. To obtain the
final token importance score, we apply momentum-based accumulation over all layers. Specifically,
we iteratively update the aggregated importance map S̃l as follows:

S̃l = wm · S̃l−1 + (1− wm) · Sl,

where wm ∈ [0, 1) is the momentum coefficient that controls the contribution of previous layers. This
update emphasizes recent layer information while retaining long-range contributions from earlier
layers. Then, the frame importance is computed as the sum of the importance scores of all image
tokens within the frame.

Key Frame Fusion. First, we select the top-wfdr (Frame Distortion Ratio) most important frames
and remove the their temporal information by substituting each of them with the results of mean
pooling over the selected set. In this way, temporal clues are removed while coarse-grained image
context is retained, which can induce biased temporal insensitive inaccurate response. We further
add a small amount of Gaussian noise with weight wfpr (Frame Perturbation Ratio) to the pooled
embeddings. Compared to directly dropping selected frames, mean pooling retains more confounding
visual context, and is more robust than shuffling, yielding better results in practice consistently.
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Figure 4: Disrupt moving content in remaining frames within a sliding window. Left: Marked
dynamic blocks. Right: Fusion results of marked dynamics.

Distorting Key Tokens in Remaining Frames. Although the remaining frames are less important
compared to the top-wfdr most important ones, their large quantity still preserves a certain degree of
temporal information. If frame-level fusion is applied to these frames in the same manner as it is to
key frames, it can lead to excessive information loss across the video and damage the misleading
image priors, making the model unable to consistently produce the most probable mistakes. As a
result, the contrasting objective becomes overly random and loses its guiding effect in contrastive
decoding. Therefore, we design a more fine-grained distortion strategy specifically for this subset
of frames. First, for each remaining frame, we mask the top-wtdr (Token Distortion Ratio) most
important image tokens, thereby masking regions that potentially contain temporal cues.

Disrupting Moving Content in Remaining Frames. In the previous step, we performed fine-grained
token-level masking on each of the remaining frames based on token importance. However, since
attention maps sometimes do not accurately reflect the actual importance of each token, we instead
leverage visual similarity between frames in this step to "blur" the moving content within the frames
(if any), thereby removing potential temporal changes while preserving the overall image context.

Fig 4 visualizes this step. A sliding window (non-overlapping) of size wws is adopted to process
the entire video sequence, where we independently process the frames within a window each time.
A token is considered dynamic if its corresponding visual content changes significantly across
the window. However, due to the high spatial resolution and token granularity of popular vision
encoders like CLIP [27], direct per-token comparisons are neither robust nor efficient. To address
it, we first downsample each frame from size (H,W ) to ( H

wbs
, W
wbs

) by applying mean pooling over
non-overlapping patches, as illustrated in Fig. 4. Each resulting region is termed as Block.

Downsampling. Note that in the downsampling stage, i.e., when we downsample each frame from
size (H,W ) to ( H

wbs
, W
wbs

), we do not really reduce token numbers. As illustrated in Fig. 4 (left), we
actually replace all image tokens within one “downsampled” region with the mean of the tokens
included. For example, the value of each of the four token within B0

(0,0) is the mean of the four
tokens.

For a given frame t and block at position (i, j), we denote it as Bt
(i,j). We define its similarity score

as the average cosine similarity with all blocks at the same position in the other frames within the
window:

sim(Bt
(i,j)) =

1
wws−1

∑wws

t′=1
t′ ̸=t

cos
(
Bt

(i,j),B
t′

(i,j)

)
.

Blocks with lower similarity scores are considered more dynamic, as they indicate greater temporal
change across frames. With similarity scores for all blocks, we select the top-wcfr (Content Fusion
Ratio) blocks with the lowest similarity scores across the entire window and label them as Dynamic
Blocks. For each block Bt

(i,j), if it is not dynamic, we retain its original (pre-downsampled) token
values. If it is dynamic and the same position across other frames in the window also contains
dynamic blocks, we apply mean pooling across those positions to overwrite Bt

(i,j) as follows.

B̂t
(i,j) =

1
|D(i,j)|

∑
t′∈D(i,j)

Bt′

(i,j),

where D(i,j) is the set of frames within the window where block (i, j) is marked as dynamic.
Otherwise it remains unchanged. This process disrupts temporal cues by smoothing moving content
while preserving static visual context details. Finally, the concatenation of the distorted key frames and
the remaining frames constitutes the temporally distorted video representation V′, which participates
in contrastive decoding as defined in Eq. 3. Technical details are available in Appendix B.
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Metrics VILA PLLaVA
Video- Video- LLaMA- ShareGPT4- LLaVA-

+VCD +SID +TCD +Ours
ChatGPT Chat2 VID Video Video

Match Rate 100.0 100.0 100.0 83.13 100.0 89.4 100.0 100.0 100.0 100.0 100.0

Entire 53.5 45.6 14.9 16.7 30.7 11.4 52.1 53.4 53.3 53.6 55.3
Interleave 62.2 68.9 79.8 58.6 98.9 93.7 60.3 65.7 65.4 66.8 75.6
Misleading 83.3 81.4 21.6 22.6 43.1 6.8 82.5 82.8 82.9 83.3 84.2

Overall 65.0 65.5 47.2 37.9 66.0 49.1 63.5 66.5 66.4 67.2 72.1

Table 1: EventHallusion evaluation results. Our method notably outperforms baselines on all tasks.
Best results are shown in bold.

4 Experiments

Benchmarks. We first evaluate models on temporally-oriented benchmarks, including TempCom-
pass [21] and EventHallusion [32]. The former targets temporal reasoning, while the latter assesses
understanding of continuous actions. We then perform a comprehensive evaluation on general video
understanding benchmarks, including VideoMME [5] and MLVU [36].

Models. We choose representative and widely-used video LLMs, Video-LLaVA [15] and LLaVA-
Video-7B-Qwen2 [35], as backbone. Based on them, we apply our temporal distortion mechanism
with contrastive decoding. In our experiments, we compare our method with popular Video LLMs as
well as alternative contrastive decoding strategies, including VCD [9], SID [7] and TCD [32].

Configuration. By default, we adopt 8 frm for Video-LLaVA [15] and 32 frm for LLaVA-Video-7B-
Qwen2 [35]. We run all inferences on NVIDIA A6000 GPUs and A100 GPUs. Detailed experiment
configuration and hyperparameter settings are available in Appendix C.

4.1 Results

Through the experiments, we fist aim to explore the following questions: (1) Can our video temporal
distortion effectively induce poor responses, thereby serving as a contrasting signal to improve
temporal reasoning via contrastive decoding? (2) If so, can enhanced temporal perception also benefit
general video understanding tasks? (3) Does strengthening temporal perception introduce a potential
conflict with spatial understanding capabilities?

Temporal Reasoning. Tab. 2 shows results on TempCompass [21]. Across all four tasks and five
temporally-oriented categories, our method consistently improves model performance when applied
to Video-LLaVA and LLaVA-Video-7B-Qwen2. Compared to existing contrastive decoding methods
such as VCD, our approach also demonstrate clear advantages. Similarly, on Tab. 1, our method
yields notably better results on all tasks over baselines.

Holistic Video Understanding. Our method shows clear advantages on temporally-oriented bench-
marks, which primarily feature videos depicting short-term, continuous changes of an event or object.
In contrast, comprehensive video understanding benchmarks involve much longer videos and broader
reasoning tasks across multiple aspects of video content. We evaluate LLaVA-Video-7B-Qwen2,
the more powerful Video LMM, on Video-MME [5] and MLVU [36] for holistic video understand-
ing. Results are shown on Tab. 3 and Tab. 4. Our method also demonstrates clear advantages over
baselines, especially on temporally-oriented tasks, such as Temporal Perception and Reasoning in
Video-MME [5] and Action Count (AC) and Action Order (AO) in MLVU [36].

4.2 Analysis

Ablations. We also explore the contribution of each component in our method, as well as how
hyperparameters affect model performance. Tab. 5 demonstrates the effectiveness of each module in
Temporal Distortion Unit, and the importance of sampling key frames with attention guidance. In
Fig. 5, we show how each hyperparameter in Contrastive Decoding (CD) and Temporal Distortion
Unit (TDU) influences model performance on TempCompass with LLaVA-Video-7B-Qwen2 [35].

From Fig. 5, we observe that a moderate level of distortion is crucial for effective contrastive
decoding. In the ablation study of parameters most closely related to the degree of distortion—such
as Frame Distortion Ratio, Token Distortion Ratio, Content Fusion Ratio, and again Frame Distortion
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Model Intern- LLaVA [10] Long
VILA [16]

VID-
+VCD +SID +TCD +Ours LLaVA-

+VCD +SID +TCD +Ours
VL2 [2] OneVision VA [33] LLaVA Video

M
ul

ti-
C

ho
ic

e
Q

A Action 93.8 96.5 92.3 92.9 76.0 76.9 77.0 77.2 78.4 +2.4 95.6 96.4 96.4 96.3 96.7 +1.1

Direction 43.9 40.6 36.7 33.7 35.2 35.8 35.8 35.9 36.7 +1.5 40.3 41.3 41.6 41.6 43.6 +3.3

Speed 51.1 45.4 43.2 44.1 35.6 37.0 37.1 37.4 38.6 +3.0 50.5 49.2 49.6 49.9 51.7 +1.2

Event Order 67.2 69.5 54.3 50.0 37.7 39.0 39.1 39.4 40.4 +2.7 71.2 71.8 71.2 69.9 72.5 +1.3

Attr. Change 59.9 56.9 52.4 60.0 40.9 42.0 42.2 42.1 43.8 +2.9 71.5 72.5 72.7 72.8 75.3 +3.8

Average 65.5 64.8 56.1 56.4 45.5 46.5 46.6 46.8 48.1 +2.6 65.8 66.1 66.2 66.1 68.0 +2.2

Ye
s/

N
o

Q
A

Action 84.8 86.0 86.2 84.8 74.3 75.2 75.4 75.4 76.1 +1.8 87.7 88.4 88.7 88.9 90.4 +2.7

Direction 53.2 55.3 50.4 52.2 51.8 52.5 52.4 52.7 53.8 +2.0 54.3 54.9 54.6 55.1 56.7 +2.4

Speed 61.3 57.4 53.1 54.3 50.2 51.2 51.2 51.4 53.3 +3.1 58.1 58.9 59.8 59.4 62.1 +4.0

Event Order 70.7 76.2 61.8 61.2 49.2 49.2 49.3 49.2 49.7 +0.5 67.2 66.4 66.5 66.5 67.4 +0.2

Attr. Change 63.0 59.1 54.5 61.3 51.1 52.0 51.9 52.1 53.2 +2.1 63.6 63.7 63.8 63.7 65.8 +2.2

Average 68.2 69.7 62.1 63.6 56.3 57.1 57.1 57.2 58.3 +2.0 66.8 67.4 67.5 67.4 69.4 +2.6

M
at

ch
in

g

Action 96.6 96.0 94.6 95.0 87.9 88.0 88.0 88.2 89.1 +1.2 96.0 96.2 96.4 96.0 96.6 +0.6

Direction 59.9 56.9 54.4 58.7 53.8 53.8 53.9 54.1 55.2 +1.4 59.3 59.6 59.7 59.9 60.9 +1.6

Speed 67.0 61.9 53.3 60.5 58.4 58.6 58.9 58.8 59.9 +1.5 61.6 61.8 61.9 61.9 62.3 +0.7

Event Order 84.0 81.3 64.3 66.0 59.0 61.3 61.9 62.2 65.0 +6.0 71.7 75.4 75.8 76.0 80.7 +9.0

Attr. Change 77.1 73.8 62.5 65.3 58.3 59.8 59.7 59.4 63.5 +5.2 71.5 73.9 74.0 74.2 77.1 +5.6

Average 77.1 73.8 65.7 68.9 63.3 64.1 64.3 64.3 66.4 +3.1 71.8 73.1 73.2 73.2 75.2 +3.4

G
en

er
at

io
n

Action 84.6 79.3 75.8 74.7 50.8 51.4 51.5 51.7 53.3 +2.5 85.5 86.1 85.9 85.7 87.9 +2.4

Direction 38.8 30.7 35.3 36.2 28.7 29.2 29.0 29.3 30.3 +1.6 39.8 40.4 40.6 40.7 41.6 +1.8

Speed 31.2 25.3 32.2 31.7 23.2 24.0 24.3 24.1 25.5 +2.3 32.0 33.1 32.7 33.0 34.1 +2.1

Event Order 60.8 56.8 35.3 46.7 38.2 38.3 38.5 38.6 39.9 +1.7 61.7 62.1 61.9 62.2 63.1 +1.4

Attr. Change 60.2 57.4 45.8 47.1 33.6 33.9 34.1 33.9 35.6 +2.0 61.3 62.2 62.3 61.9 63.5 +2.2

Average 52.1 47.6 44.7 47.1 34.8 35.3 35.4 35.4 36.9 +2.1 55.8 56.5 56.4 56.5 57.8 +2.0

Av
g.

C
at

eg
or

y Action 84.8 86.0 86.4 85.9 71.4 72.8 72.9 73.1 74.2 +2.8 91.2 91.7 91.8 91.7 93.0 +1.8

Direction 53.2 55.3 44.2 45.3 42.4 42.8 42.7 43.0 44.0 +1.6 48.4 49.1 49.1 49.2 50.7 +2.3

Speed 61.3 57.4 45.8 47.7 41.9 42.7 42.8 42.9 44.3 +2.4 50.5 50.7 50.9 50.9 52.6 +2.1

Event Order 70.7 76.2 53.0 55.6 45.7 46.9 47.2 47.3 48.8 +3.1 68.0 68.9 68.8 68.7 70.9 +2.9

Attr. Change 63.0 59.1 53.3 58.0 45.7 46.9 46.9 46.8 49.0 +3.3 67.0 68.1 68.2 68.1 70.4 +3.4

Overall 66.0 64.2 56.9 58.8 49.8 50.4 50.5 50.6 52.1 +2.3 65.0 65.7 65.8 65.7 67.5 +2.5

Table 2: Video temporal understanding evaluation on TempCompass. Best results are shown in bold.

Method Temporal Perception Temporal Reasoning Short Medium Long Overall

Video-LLaVA-7B [15] - - 45.3 38.0 36.2 39.9
LLaVA-NeXT-Video-7B-DPO [18] 40.0 29.4 48.9 42.0 35.6 42.1
Llama-3-VILA1.5-8B [16] 50.9 41.2 56.1 42.1 39.6 45.9
VILA1.5-40B [16] 60.0 40.7 72.0 61.2 53.8 62.3
InternVL-Chat-V1.5-20B [3] 45.5 33.3 60.2 46.4 45.6 50.7
LongVA-7B [33] 58.2 37.3 61.1 50.4 46.2 52.6

LLaVA-Video-7B-Qwen2 [35] 61.1 54.3 73.5 54.8 51.1 59.8
+ VCD [9] 75.4 55.3 73.9 55.2 50.8 60.0
+ SID [7] 75.3 55.4 74.0 55.1 50.6 59.9
+ TCD [32] 75.9 55.8 73.6 55.1 50.9 59.8
+ Ours 84.1 57.8 75.3 57.2 52.2 61.6

Table 3: Video-MME evaluation results. Our method enhances LLaVA-Video accuracy across various
video durations, even outperforming VILA1.5-40B in temporal reasoning. Best results are shown in
bold.

Ratio—we find that setting the values too low results in limited improvements, while excessively high
values, i.e., severe distortion, lead to a relative decline in performance. This aligns with our earlier
analysis: overly severe distortion tends to randomize the model’s responses, thereby undermining
its role as a negative response to guide the generation in contrastive decoding. Only appropriately
calibrated distortion can effectively induce negative responses, thereby enhancing performance via
contrastive decoding.

Is There a Trade-off Between Temporal and Spatial Understanding? Intuitively, when humans
watch a video and focus on temporal changes in the scene, their attention to static details tends to
decline. Interestingly, we observe a similar phenomenon in Video LLMs. On the MLVU benchmark,
while our performance improves notably on temporally related tasks such as AC and AO, it drops on
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Model AC* ER Needle QA AO* Plot QA AR TR Overall

Video-ChatGPT-7B [23] 31.1 42.0 40.3 25.1 29.9 24.0 26.9 31.3
Video-LLaVA-7B [31] 35.9 45.2 53.2 20.1 48.4 57.0 71.6 47.3
MA-LMM-7B [6] 24.3 38.9 43.1 25.1 35.8 35.5 51.9 36.4
Llama-3-VILA1.5-8B [16] 0.0 24.7 32.4 6.6 20.0 27.0 46.2 22.4
VILA1.5-40B [16] 11.7 35.8 38.3 34.3 62.0 56.4 84.7 46.2
InternVL-Chat-V1.5-20B [3] 13.3 24.5 40.0 14.3 42.0 51.3 80.2 37.9
LongVA-7B [33] 25.2 48.6 70.4 41.7 68.1 58.5 82.2 56.4

LLaVA-Video-7B-Qwen2 [35] 41.8 68.5 76.3 57.9 75.1 67.8 84.5 67.4
+ VCD [9] 42.8 68.5 77.0 60.1 75.1 65.1 82.8 67.3
+ SID [7] 42.9 68.5 77.2 60.1 75.1 65.2 82.7 67.4
+ TCD [32] 42.3 68.6 76.7 60.2 75.2 65.0 83.0 67.3
+ Ours 44.1 68.8 78.5 62.6 75.8 65.7 83.8 68.5

Table 4: MLVU evaluation results. Our method achieves the best overall performance, with notable
gains in temporal-related aspects. TR: Topic Reasoning, AR: Anomaly Recognition, ER: Ego
Reasoning, AO: Action Order, AC: Action Count. * denotes temporal-related dimensions. Best
results are in bold.

Figure 5: Sensitivity to Hyperparameter Settings on TempCompass.

AR and TR. We further conduct an experiment on TempCompass, where we progressively increase
the Token Distortion Ratio and the Frame Distortion Ratio, respectively. As shown in the line plot, the
accuracy of the sub-task “Attribute Change” keeps increasing, indicating an improvement in temporal
perception. However, the overall accuracy (represented by the bar chart) begins to decline when the
distortion ratio is approximately 0.6, suggesting that other sub-tasks are negatively affected.

Method TempCompass EventHallusion
Vanilla 67.5 72.1

- Attention Guidance 65.7 67.1
- Key Frame Fusion 66.1 66.3
- Key Token Distortion 66.5 68.3
- Moving Content Disruption 66.9 69.7

Table 5: Ablation Study Results on Temporal
Benchmarks: TempCompass and EventHallusion.

Figure 6: Influence of Distortion

5 Related Work

Video Large Language Models. Multimodal Large Language Models (MLLM) [20, 25, 26] are
evolving rapidly, advancing image-text dialogue through fine-tuning pre-trained Large Language
Models (LLM) with image features from additional visual encoders. Video LLMs extend MLLMs
from image to video understanding by involving encoded video frames during training, such as Video-
LLaVA [14], VILA-series [22, 1, 16] and LLaVA-NeXT-video [34]. To include stronger temporal
information in video representations, recent works [31, 24] design additional temporal-aware encoders
or customize their own training data with time-stamp annotations. Similarly, Li et al. [11] also improve
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temporal reasoning with additional data but sourced from text. In contrast to existing works, our
method enhances temporal reasoning in videos by incorporating a new temporal-aware decoding
strategy to avoid time-insensitive responses at no additional training cost.

Temporal Understanding in Video LLMs. Temporal understanding is fundamental in Video
LLMs. While existing popular benchmarks such as Video-MME [5] and MLVU [36] focus on the
general evaluation of Video LLMs across diverse video categories and durations, TempCompass [21]
specifically focuses on the temporal reasoning ability of Video LLMs with a variety of temporally
focused tasks. EventHallusion [32] investigates Video LLMs’ capability to understand continuous
events. Our method not only achieves notable improvements on temporal understanding tasks, but
also demonstrates promising results on general video benchmarks.

Contrastive Decoding. Contrastive Decoding (CD) [12] is a search-based LLM decoding approach
that improves text generation by explicitly avoiding poor responses during decoding. Recent works [9,
7] explore its application in reducing hallucination in MLLMs by deliberately introducing distorted
image inputs to elicit poor responses, which are then used to guide the model away from such errors.
TCD [32] inherits similar idea to avoid video event hallucination by randomly dropping frames.
Different from existing works, our work particularly focuses on improving temporal reasoning in
Video LLMs. Extended discussions are available in Appendix E.

6 Limitations

When performing video distortion, our Temporal Distortion Unit relies solely on signals from the
model itself—specifically, the attention maps extracted from the intermediate LLM layers—as
guidance to estimate the importance of each visual token and each video frame. Compared to treating
all frames equally and applying uniform random sampling, our approach represents a significant
improvement. However, it is still not perfect. Attention maps do not always accurately reflect the
true importance of each visual token, and relying on them often yields only coarse-grained results.
To more precisely assess the importance of visual representations, future work may explore more
accurate and robust methods beyond attention-based guidance.

Moreover, our current study is limited to Video LLMs, with distortion applied only to the visual
representations. In practice, many videos come with accompanying subtitles, and models often
take both video and subtitle inputs. An interesting future direction would be to distort both modali-
ties—applying not only visual distortion but also video-aware distortion to subtitles. This would be
challenging and different from the purely text-based distortion strategies employed in existing works
on contrastive decoding for LLMs.

7 Conclusion

In this work, we investigated the challenges of temporal reasoning in Video Large Language Models
(Video LLMs) and identified two key factors contributing to their failures—language prior and image
prior. Building on these insights, we proposed video contrastive decoding with temporal distortion, a
simple yet effective method that enhances temporal coherence without requiring additional training
or computational overhead. By intentionally introducing temporal distortions in key frames and
contrastively optimizing against such failures, our method encourages models to maintain temporal
consistency and avoid time-insensitive predictions. Extensive experiments demonstrate that our
approach significantly improves both temporal-specific and general video understanding benchmarks,
showing strong effectiveness, generalizability, and scalability for improving temporal reasoning in
multimodal large language models.
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A Adaptive Plausibility Constraint

Contrastive Decoding in Video Large Language Models. Given a text query x and a video input
V, the model generates two output distributions: one conditioned on the original V and the other
on the distorted video input V′, which is derived by applying pre-defined distortion (e.g., adding
noise to visual features as the simplest case) to V. Then, a new contrastive probability distribution
is computed by leveraging the differences between two original distributions. The new contrastive
distribution pvtd is formulated as:

pvtd(y | V,V′,x) = softmax [(1 + α)logitθ(y | V,x)− αlogitθ(y | V′,x)] , (3)

where larger α indicate a stronger amplification of the differences (α = 0 reduces to regular decoding).

Adaptive Plausibility Constraint. Eq. 3 rewards texts favored by the response with original video
inputs and penalizes texts favored by the response with distorted video inputs. However, the response
with distorted video inputs is not always mistaken. Although video inputs are distorted, they may
still preserve useful information, which can lead to correct answers. Therefore, penalizing all texts
from response with distorted video inputs indiscriminately would penalize these correct answers, and
conversely reward implausible answers. To tackle this issue, we follow Li et al. [12] to introduce the
plausibility constraint.

Adaptive plausibility constraint is contingent upon the confidence level associated with the output
distribution with original video inputs:

Vhead(y<t) =
{
yt ∈ V : pθ(yt | V,x,y<t) ≥ βmax

w
pθ(w | V,x,y<t)

}
(4)

pvtd(yt | V,V′,x) = 0, if yt /∈ Vhead(y<t) (5)

where V is the output vocabulary of LVLMs and β is a hyperparameter in [0, 1] for controlling the
truncation of the next token distribution. Larger β indicates more aggressive truncation, keeping only
high-probability tokens.

Combining the video contrastive decoding and the adaptive plausibility constraint, we obtain the full
formulation:

yt ∼ softmax [(1 + α) logitθ(yt | V,x,y<t)− α logitθ(yt | V′,x,y<t)] (6)

subject to yt ∈ Vhead(y<t)

B Technical Details of Video Temporal Distortion

B.1 Disrupting Moving Content in Remaining Frames
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Figure 7: Disrupt moving content in remaining frames within a sliding window. Left: Marked
dynamic blocks. Right: Fusion results of marked dynamics.

Downsampling. Note that in the downsampling stage, i.e., when we downsample each frame from
size (H,W ) to ( H

wbs
, W
wbs

), we do not really reduce token numbers. As illustrated in Fig. 7 (left), we
actually replace all image tokens within one “downsampled” region with the mean of the tokens
included. For example, the value of each of the four token within B0

(0,0) is the mean of the four
tokens.

14



C Experiments

C.1 Experimental Configuration

In TempCompass [21], we use the following hyperparameters: α = 1, β = 0.2, wfdr = 0.2,
wtdr = 0.4, wws = 8, wcfr = 0.3, wbs = 3, wfpr = 0.5, wmomentum = 0.8. In EventHallusion [32],
we use the following hyperparameters: α = 1, β = 0.2, wfdr = 0.5, wtdr = 0.5, wws = 8,
wcfr = 0.3, wbs = 3, wfpr = 0.8, wmomentum = 0.8. In Video-MME [5] and MLVU [36], we use
the following hyperparameters: α = 1, β = 0.2, wfdr = 0.6, wtdr = 0.8, wws = 8, wcfr = 0.3,
wbs = 3, wfpr = 0.8, wmomentum = 0.5.

Figure 8: Sensitivity to Hyperparameter Settings on TempCompass [21].

C.2 Analysis

From Fig. 8, we observe that a moderate level of distortion is crucial for effective contrastive
decoding. In the ablation study of parameters most closely related to the degree of distortion—such
as Frame Distortion Ratio, Token Distortion Ratio, Content Fusion Ratio, and again Frame Distortion
Ratio—we find that setting the values too low results in limited improvements, while excessively high
values, i.e., severe distortion, lead to a relative decline in performance. This aligns with our earlier
analysis: overly severe distortion tends to randomize the model’s responses, thereby undermining
its role as a negative response to guide the generation in contrastive decoding. Only appropriately
calibrated distortion can effectively induce negative responses, thereby enhancing performance via
contrastive decoding.

D Extended Discussion

We are among the first to explore video temporal understanding from the perspective of language and
image priors, and to enhance it using contrastive decoding with video temporal distortion.

We are among the first to explore video temporal understanding from the perspective of language and
image priors, and to enhance it using contrastive decoding with video temporal distortion.

Recent works [9, 7] have applied contrastive decoding to mitigate hallucinations in image understand-
ing with MLLMs. For example, VCD [9] introduces random noise to distort the original image, while
SID [7] prunes important tokens based on attention guidance. TCD [32] alleviates event hallucination
in videos by randomly dropping frames.

SID [7] adopts a similar strategy to estimate token importance and removes the most important
tokens—this is conceptually similar to the second step of our video temporal distortion. However,
there are notable differences in how attention maps are utilized and how the pruning is applied.
Specifically, SID uses attention maps from the k-th layer to assess token importance and then prunes
the most important tokens starting from the (k + 1)-th layer.

In contrast, our approach aggregates attention maps from all layers, from shallow to deep, to compute
a more accurate importance score. Furthermore, while SID performs pruning from intermediate
layers, we input the distorted video representations directly at the first layer, ensuring that the dropped
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information is effectively masked from the very beginning. This design allows our method to better
mask information that should be dropped.

E Efficiency

Due to the nature of Contrastive Decoding (which requires two forward passes), CD-based methods
(e.g., VCD and ours) are inevitably slower than the vanilla model in generation speed.

In practical scenarios, it’s difficult to optimize performance, time efficiency, and memory efficiency all
at once. Different applications prioritize different aspects. CD-based methods are less time-efficient,
but they offer better performance without a significant increase in memory usage. This makes them
well-suited for applications where content quality is critical, such as education and medical assistance,
where accuracy really matters and errors come at a high cost.

Time-Efficient Implementation. In practice, we can optimize the code to reduce the time by nearly
half with no impact on the results, making it as efficient as the vanilla Video LLM.

The implementation is simple: we parallelize the two forward passes during next-token generation.
Previously, it is implemented in the def sample() function as follows:

outputs = self.forward(...) # inference with raw video
outputs_cd = self.forward(...) # inference with distorted video

# calculate final logits with outputs and outputs_cd:
...

Now, with just a few extra lines, we use torch.cuda.Stream() to run both forward passes in
parallel:

stream_main = torch.cuda.Stream()
stream_cd = torch.cuda.Stream()
outputs_holder = {}
outputs_cd_holder = {}

# submit main inference
with torch.cuda.stream(stream_main):

outputs_holder[’main’] = self.forward(...)

# submit contrastive inference
with torch.cuda.stream(stream_cd):

outputs_cd_holder[’cd’] = self.forward(...)

torch.cuda.synchronize()

outputs = outputs_holder[’main’]
outputs_cd = outputs_cd_holder[’cd’]

# calculate final logits with outputs and outputs_cd:
...

With this implementation, our method can be as fast as the vanilla Video LLM with the same average
GPU memory usage. Note that the peak GPU memory usage will be larger.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: they are in the abstract and introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: no theoretical result

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: included in appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .

Justification: publish when accepted

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: in paper and appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: doesnt apply

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: in paper and appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we followed it
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.

21

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: yes

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: no new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not705 involve LLMs as
any important, original, or non-standard components.706
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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