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Abstract

Large Language Models (LLMs) have been in-
creasingly used in real-world settings, yet their
strategic abilities remain largely unexplored.
Game theory provides a good framework for as-
sessing the decision-making abilities of LLMs in
interactions with other agents. Although prior
studies have shown that LLMs can solve these
tasks with carefully curated prompts, they fail
when the problem setting or prompt changes. In
this work we investigate LLMs’ behaviour in
strategic games, Stag Hunt and Prisoner Dilemma,
analyzing performance variations under differ-
ent settings and prompts. We observed that the
LLMs’ performance drops when the game con-
figuration is misaligned with the affecting biases.
Performance is assessed based on selecting the
correct action, which agrees with both players’
prompted preferred behaviours. Alignment refers
to whether the LLM’s bias aligns with the correct
action. We found that GPT-3.5, GPT-4-Turbo,
and Llama-3-8B show an average performance
drop when misaligned of 32%, 25%, and 29%,
respectively in Stag Hunt, and 28%, 16%, and
24% respectively in Prisoners Dilemma. Our re-
sults show that the reason for this is that tested
state-of-the-art LLMs are significantly affected by
at least one of the following systematic biases: (1)
positional bias, (2) payoff bias, or (3) behavioural
bias.

1. Introduction
Large language models (LLMs) have become increasingly
ubiquitous, as indicated by a significant increase in research
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Configuration 1: 
A = Stag, B = Hare

Configuration 2:
A = Hare, B = Stag

Since both players prioritize
their own points, choosing A
could risk gaining 0 points if
the other player chooses B,
aiming for 4 points. However,
choosing B guarantees at least
2 points, and potentially 4 if
the other player chooses A.
Given the risk of gaining 0
points with A and the
guarantee of at least 2 points
with B, the safer and
potentially more rewarding
choice is B.

Since both players prioritize
their own points, choosing B
is the safer and potentially
more rewarding option
because the worst-case
scenario (choosing B while
the opponent chooses A)
results in 0 points, but the
best-case scenario (both
choosing B) results in 5 points
each, which is the maximum
possible gain for both
players simultaneously.

Figure 1. Answers from an LLM prompted to play Stag Hunt (see
details in Appendix A.1), under two different configurations. (Con-
figuration 1): the LLM is prompted to select the best action, where
label A is the Stag action, and action label B is the Hare action.
(Configuration 2): the LLM is prompted to select the best action,
where label A is the Hare action, and label B is the Stag action.
It is clear, to humans, that the task has not changed, and the rea-
soning and final answer should not change. This, however, is not
the case for the tested LLMs (ie, GPT-4-Turbo), where their biases
guide their response, instead of strategic reasoning. See additional
examples of reasoning in Appendix A.4.

works containing keywords relating to LLMs, with close to
a 500% increase since 2018 (Naveed et al., 2023) in people
using them to solve everyday tasks including fields such as
medicine, education, finance, and law (Hadi et al., 2023;
Duan et al., 2024). However, as LLMs are deployed in the
real world where they interact with other humans or artificial
agents, there is an underserved need to understand the capa-
bilities of LLMs to operate in social scenarios. The ability
to reason strategically about interactions with other agents
is a fundamental aspect of human intelligence (Qiao et al.,
2022; Huang & Chang, 2022; Sahoo et al., 2024; Zhang
et al., 2024). In fact, many works have begun asking the
question (Huang et al., 2024; Xu et al., 2023; Duan et al.,
2024): can LLMs assist in everyday tasks which require
the ability to understand the complex environment in which
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they are operating, anticipate potential outcomes, infer the
intentions and beliefs of others (with whom they are collab-
orating or competing), and think critically about all these
factors to come to the best possible decision. To answer this
question, game theory, which is already applied to many
existing real-world tasks (Martin, 2017), is looked to as a
well of wisdom (Huang et al., 2024; Xu et al., 2023; Duan
et al., 2024; Fan et al., 2024; Guo et al., 2024; Zhang et al.,
2024; Lorè & Heydari, 2023; Li et al., 2023a; Brookins &
DeBacker, 2023; Gandhi et al., 2023; Akata et al., 2023;
Phelps & Russell, 2023; Guo, 2023; Gemp et al., 2024).

Game theory is the study of how the choices of interacting
agents, with specific preferences, produce outcomes, inten-
tional and not (Ross, 2024). Game theoretic tasks abstract
complex real-life scenarios as mathematical models that are
designed to be easy to understand but require the above
skills to be mastered. While many different qualifications
exist for these tasks, this work focuses on non-zero-sum
games. non-zero-sum games have both competitive and
cooperative elements, which provide a fair representation of
agent interactions for many important real-world scenarios.
Popular examples of such games are Stag Hunt and Prison-
ers Dilemma, which will be the focus of this research. For
the reader’s interest, see Appendix A.1 for further details on
game theory. Prompt engineering (Sahoo et al., 2024) has
emerged as an effective technique for improving LLM’s per-
formance on complex tasks involving reasoning. However,
most existing works do not test the robustness of their specif-
ically curated prompts and fail drastically when the setting
in which they are operating changes (Guo et al., 2024). This
frailty has been discovered and investigated in many of the
state-of-the-art (SOTA) LLMs (Chen et al., 2024; Papadatos
& Freedman; Zheng et al., 2023; 2024; Wang et al., 2023)
such as LLama2, GPT-3.5, and GPT-4-Turbo, albeit not in
game theoretic tasks.

It is this lack of investigation into the systematic biases
present in LLMs solving game-theoretic tasks which have
inspired this work, such that we may understand the true
capabilities of LLMs in these tasks and what obstacles future
works need to overcome. Specifically, this work aims to: (1)
highlight the different systematic biases present in several
SOTA LLMs and how they differ among the models, (2)
present the statistical significance of the different biases in
each of the tested models, and (3) quantify the effect the
biases have on performance under different settings.

2. Related Work
LLMs and Game Theory. In recent years, the use of LLMs
as single-agent planners/decision makers has evolved into
LLM-based multi-agent systems (Guo et al., 2024) where
agents are required to solve strategic and logical reasoning
problems. These capabilities are often evaluated through

game-theoretic tasks (Zhang et al., 2022; Lorè & Heydari,
2023; Gandhi et al., 2023). This shift has prompted many
new benchmarks testing LLMs in game theoretic tasks to
progress the work within the field (Xu et al., 2023; Huang
et al., 2024; Chen et al., 2023; Duan et al., 2024; Li et al.,
2023b; Aher et al., 2023). Furthermore, there several exist-
ing works focusing on game theoretic matrix games, such as
Prisoners Dilemma, Stag Hunt, and Dictator Game, to name
a few (Fan et al., 2024; Xu et al., 2023; Lorè & Heydari,
2023; Brookins & DeBacker, 2023; Gandhi et al., 2023;
Phelps & Russell, 2023; Guo, 2023), which are discussed
below. In Fan et al. (2024)’s work they show that LLMs,
even when explicitly given the correct belief, from which
they should reason to take correct action, tend to ignore or
modify this belief. They also note that the LLMs tend to se-
lect specific action labels more frequently than others (they
note that GPT-3 prefers U to V), but do not investigate this
any further. Xu et al. (2023); Brookins & DeBacker (2023)
show that LLMs tend to select the cooperative action more
frequently than humans, despite it not being the optimal
choice in most cases. Lastly, several works test how the
LLMs’ behaviour changes as they modify the LLMs’ pref-
erences or contextual frameworks, such as being selfish or
cooperative (Fan et al., 2024; Phelps & Russell, 2023; Guo,
2023; Lorè & Heydari, 2023). They all note that LLMs are
seemingly capable of following simple preferences, such
as selecting the selfish action when prompted to be selfish.
However, they do not investigate the effect of the chosen
prompt configuration on the LLMs’ performance.

Bias in LLMs. The presence of systemic biases (Zheng
et al., 2023) (such as favouring a specific action label U
over label V (Fan et al., 2024)) has recently become a topic
of interest. Specifically, these biases are found and tested
in multiple choice question evaluation (Zheng et al., 2023),
multi-turn question answer evaluation (Zheng et al., 2024),
response quality evaluation (Wang et al., 2023), and tasks
such as text classification, fact retrieval, and information
extraction (Zhao et al., 2021; Chen et al., 2024; Berglund
et al., 2023; Golovneva et al., 2024). It was found that LLMs
suffer from what is referred to as selection bias (Zheng
et al., 2023; 2024; Wang et al., 2023; Zhao et al., 2021),
which is a combination of both token bias1 and position
bias2. Prior works have also studied other types of biases
when using LLMs to judge the quality of LLM generations.
For example, Zheng et al. (2024) discovers LLMs have a
verbosity bias, favouring longer responses over shorter ones.
Similarly, Zheng et al. (2024) found that LLMs have a self-
enhancement bias, favouring responses generated by the

1Where an LLM tends to pay more attention to or favours a spe-
cific token when generating responses, such as GPT-3 preferring
U to V.

2Where an LLM tends to pay more attention to or favours a
token based on its position in the prompt.
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judge LLM relative to other LLMs. However, these are less
relevant to our setting since we don’t focus on LLMs that
judge other LLMs’ outputs.

Our Work. While it is clear that there has been consider-
able focus on exploring LLMs’ abilities in playing game
theoretic games as well as identifying systemic biases within
LLMs, less attention has been directed towards investigat-
ing how these biases influence the LLMs’ performance in
such games. Therefore, in this work, we aim to bridge this
gap and provide a thorough empirical analysis of the effects
of the biases on the LLMs’ outputs while playing game
theoretic games.

3. Methodology
This paper aims to investigate how the identified biases
affect the capability of LLMs to solve non-zero-sum two-
player games. The biases identified, are as follows:

(1) Positional Bias, where the order in which the action
labels are stated in the prompt affects the frequency of
the selected action label. For example, Llama-3-8B, when
prompted with action label A first and B second, tends to
select the first action label A more frequently.

(2) Payoff Bias, where the payoffs associated with the dif-
ferent action labels, PayOff(label 1, label 2), affects the
frequency of the selected action label. In particular, a model
may be biased towards, (1) selecting the action that leads to
the maximum possible self-gain or (2) selecting the action
that leads to the maximum possible common-gain, rather
than the action that maximizes the expected gain (which
takes into account all possible actions the other agent can
take). For example, GPT-4-Turbo in Prisoners Dilemma,
when PayOff(A, A)=2, PayOff(A, B)=0, PayOff(B, A)=3,
and PayOff(B, B)=1, tends to select action label A (the ac-
tion associated with the maximum possible common-gain).

(3) Behavioural Bias, where the preferred behaviour of
the Acting Player (AP) and Fellow Player (FP) affects the
frequency of the selected action. For example, when GPT-
3.5 (the AP) is prompted to prioritise Common-Gain (CG)
it tends to select action label B, irrespective of the FP’s
preferred behaviour, and when prompted to prioritise Self-
Gain (SG), tends to select action label A.

To perform this investigation, we methodically adjust the
base prompt, seen in Appendix A.3, over all combinations of
positions, payoffs, and behaviours, making up 16 different
experimental setups. Additionally, each of these experimen-
tal setups is run with and without prompting the LLM to
first reason over the problem. To do this, we use the fol-
lowing prompting schemes; (1) Answer-Only (AO) prompt,
which requires the LLM to respond only with their answer
without any reasoning, and (2) Zero-shot Chain-of-Though

(CoT) prompt (Kojima et al., 2022) (the full prompts can
be found in Appendix A.3). All experiments discussed are
applied to both Prisoners Dilemma and Stag Hunt, however,
it is important to note that the names of each game are not
explicitly mentioned in the prompt and are only identifiable
by their payoff matrices. The reason for this is to promote
reasoning over the payoff matrix and not rely on its existing
knowledge of the games. We run all experiments on 4 SOTA
LLMs: GPT-3.5, GPT-4-Turbo, and Llama-3-8B.

Experiment Analysis

We are interested in the models’ underlying behaviour, in-
dependent of the randomness caused by the models’ tem-
perature (T)3. Therefore, for AO prompting, we perform
all analyses on the models’ top answer token (the answer
token with the highest probability associated with it). Since
zero-shot CoT prompts the LLM to reason, it would be
amiss to not take into consideration the effect of the random
sampling while generating the reasoning on which the LLM
conditions their final choice. Therefore, for zero-shot CoT
prompting, we analyse the results over low (T=0.0), medium
(T=0.5), and high (T=1.0) temperatures.

Statistical Analysis. We tested the statistical significance
of the 3 identified biases; (1) Positional Bias, (2) Payoff
Bias, and (3) Behavioural Bias. We run each experimental
setup 100 times, from which we build the contingency ta-
bles required to perform the Fisher Exact Test (Kim, 2017)
(further details on the Fisher Exact Test can be found in
Appendix A.2). Specifically, the contingency tables for
the positional bias are generated by taking the average fre-
quency of the selected action labels, over all temperatures,
for the different action label positions such that the effect
of position bias is isolated. This can be seen in Table 3 in
Appendix A.4. The same steps are taken for the payoff and
behavioural bias, also seen in Appendix A.4 in tables 4 and
5 respectively. Interpretation and discussion of the tables
are left for Section 4.

Alignment Analysis. Using the generated tables, we per-
form what we refer to as an alignment analysis. We compare
the performance of the LLMs when the experimental setup
is aligned and misaligned with the LLMs’ bias. Performance
is assessed based on the selection of the correct action, one
which agrees with the prompted preferred behaviours of
both players and alignment refers to whether the LLM’s
bias aligns with choosing the safer action or not. For exam-
ple, if the correct action is label A and the model is biased
towards selecting label A or B, the performance achieved
by the LLM will differ accordingly.

3Parameter that controls the randomness of the generated text.
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Figure 2. Figure comparing the performance (measured based on the selection of the Nash Equilibrium) for each model under the two
tested prompting methods: (1) Answer-Only (AO) and (2) Chain-of-Thought (CoT). We see that, in most experiments, CoT enables
the models to achieve a higher performance in both aligned and misaligned settings. We can also consider the difference in accuracy
between misalignment and alignment, namely; (LEFT) Stag Hunt - AO: 34.5, 23.3, 33.4 and CoT: 29.5, 26.9, 22.4 and (RIGHT) Prisoners
Dilemma - AO: 36.9, 4.8, 33.3 and CoT: 19.4, 27.8, 14.0. We note that all models, except for GPT-4-Turbo, have a smaller difference in
performance when using CoT prompting.

4. Results
Alignment. Before diving into the details of the biases,
first, let us consider the high-level effects these biases have
on the performance of LLMs playing these games. We
found that in almost every experimental setup when the bias
of the LLM and the experimental setup are misaligned, the
performance is worse. Specifically, looking at Figure 2, we
see that GPT-3.5, GPT-4-Turbo, and Llama-3-8B show an
average performance drop of 32%, 25%, and 29%, respec-
tively in stag hunt, and 28%, 16%, and 24% respectively
in prisoners dilemma. A more detailed alignment analysis
can be seen in Appendix A.4 in Figure 4.

Position Bias. In Figure 3, we can see that the positional
bias is particularly strong in GPT-3.5 when using the AO
prompt. It becomes significantly weaker when asked to rea-
son over the task first when using the CoT prompt. GPT-4-
Turbo, on the other hand, shows an overall much weaker bias
towards the position of the action labels, for both prompting
methods. Lastly, Llama-3-8B, much like GPT-3.5, shows
a strong positional bias under AO prompting and a much
weaker bias under CoT prompting. More specifically, it
was noted that GPT-3.5 tends to select the action in the first
position more frequently. Conversely, GPT-4-Turbo tends
to select the action in the second position more frequently.
Llama-3-8B, under AO prompting, selects the first posi-
tion more frequently and the second position under CoT
prompting.

Payoff Bias. In Figure 3, we can see that both GPT-3.5 and
Llama-3-8B show either a very weak or insignificant payoff
bias for both prompting methods. Interestingly, both models
tend to select the common gain action more frequently in
stag hunt, and the self-gain action more frequently in prison-
ers’ dilemma. The payoff bias is the strongest bias present
in GPT-4-Turbo for both prompting methods. We noted that
GPT-4-Turbo tends to select the common gain. While in
previous works, this behaviour has led to conclusions such
as “LLMs have a propensity to be cooperative” (Xu et al.,
2023; Brookins & DeBacker, 2023), our results suggest that
this phenomenon is not indicative of “cooperative behaviour”
and instead is a result of a skewed attention towards the ac-
tion that leads to maximum possible payoff, despite it not
always being the optimal choice.

Behaviour Bias. In Figure 3, we can see that GPT-4-
Turbo is weakly affected by the behaviour bias, whereas,
both GPT-3.5 and Llama-3-8B are strongly affected. Specif-
ically, GPT-3.5 is weakly biased when using the AO prompt
and strongly biased when using the CoT prompt. Llama-
3-8B shows a different pattern where it is strongly biased
when using the AO prompt and weakly biased when using
the CoT prompt. However, in prisoners’ dilemma, it is still
the strongest bias under the CoT prompt. We found that
GPT-3.5 tends to select action label A when prompted to
prioritise common gain and action label B when prompted
to prioritise self-gain. Again, Llama-3-8B shows a differ-
ent pattern, where it tends to select action label A when
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Figure 3. Figure showing the statistical analysis of the identified biases for all models tested, GPT-3.5, GPT-4-Turbo, and Llama-3-8B.
The larger the −Log(p) (where p is calculated using the Fisher Exact Test), the more statistically significant the bias. The dashed black
line signifies the threshold at which the bias becomes statistically significant (found close to the horizontal axis for both plots).

prompted to prioritise self-gain and action label B when
prompted to prioritise common gain. For more detailed
information on the above biases, see Tables, 3, 4, and 5
respectively, in Appendix A.4.

5. Conclusion
In this work, we have shown that SOTA LLMs are signifi-
cantly affected by at least one of the 3 identified biases: (1)
positional, (2) payoff, and (3) behavioural. These biases
cause notable changes in the LLMs’ performances under
different configurations, even though the underlying task
remains unchanged. We show that models GPT-3.5, GPT-
4-Turbo, and Llama-3-8B show an average performance
drop of 31%, 21%, and 27%, respectively across the tested
games. This means that the observed performance of an
LLM in game theoretic tasks cannot be used to make con-
clusive remarks on their ability since their biases may be
better aligned with the task prompt compared to other mod-
els. Highlighting the importance of accounting for all con-
figurations such that we may fully understand the LLMs’
capabilities. We also note that using CoT prompting reduces
the strength of the biases on most models and subsequently
lessens (but does not nullify) the above performance drops.
This might suggest that additional work into prompt engi-
neering might reduce the effects of biases on models satis-
factorily, however, we found that this trend is not true for
all models as they are all affected differently, for example,
GPT-4-Turbo’s biases strengthen with CoT prompting and
this increases the above performance drop. This means that
prompt engineering solutions that work for certain models
may not work for all other models available, suggesting that

it may not be a sufficiently general solution. To solve the
issues associated with these systematic biases, we believe
that a deeper understanding of why they arise needs to be
achieved. For instance, we might speculate that much like a
poorly trained classification model often fails to learn the
underlying data distribution and may end up predicting the
same class label for all inputs, LLMs are likely to exhibit
these same weaknesses, which become more pronounced
with increasing task complexity. An in-depth investigation
of the causes of these biases and potential solutions is be-
yond the scope of this work and is left for future research.
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Impact Statement
This paper presents works whose goal is to help answer
questions such as: (1) Where do LLMs stand in terms of
performance on cognitive tasks, such as reasoning, navi-
gation, planning, and theory of mind? and (2) What are
the fundamental limits of language models concerning cog-
nitive abilities? We believe highlighting biases in LLMs
has relevant academic and societal consequences, which
could be used for benign purposes but also for adversarial
purposes if users are unaware of existing biases.
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A. Extended Details
A.1. Game Theory

Game Theory is the study of how the choices of interacting agents with specific preferences produce outcomes, intentional
and not (Ross, 2024). Game theory is currently applied to many existing real-world tasks in domains such as economics,
politics, and psychology (Martin, 2017).

Game theory models assume that the interacting agents make rational choices, which can be modelled as follows (Osborne
& Rubinstein, 1994):

1. A set of actions A from which the agents select their choice.

2. A set of possible consequences C to action set A.

3. A function g : A → C that maps actions to consequences.

4. A preference relation4 ⪰ on set C. Note that ⪰ can be defined by a utility/payoff function U : C → R where
x ⪰ y ⇐⇒ U(x) ≥ U(y).

Therefore, a rational agent chooses a∗ ∈ A if g(a∗) ⪰ g(a) for all a ∈ A.

These situations, in which rational agents interact with each other by taking action simultaneously, are referred to as strategic
games (Osborne & Rubinstein, 1994). The following defines a strategic game:

1. A finite set of players N .

2. A nonempty set of actions available to agenti Ai

3. A preference relation for each agenti ⪰i on set A = Aj ×Aj for j ∈ N .

The preference relation, which is over the set of actions of all other agents, is what distinguishes a strategic game over a
decision problem (Osborne & Rubinstein, 1994).

While many different qualifications exist for these games, this article focuses on non-zero-sum games. The reason for this
is as follows; In zero-sum games, an optimal solution can always be found due to its strictly competitive nature, which is
not a fair representation of rational agent interactions for many important real-world scenarios. This is not the case for
non-zero-sum games, which can have both competitive and cooperative elements. Popular examples of such games are Stag
Hunt and Prisoners Dilemma, which will be the focus of this research. The contingency tables of which can be seen in Table
1.

Table 1. Payoff matrices for (LEFT) Stag Hunt and (RIGHT) Prisoners Dilemma. The Nash Equilibrium(s) for each is shown in red for
each game.

STAG HARE QUIET CONFESS

STAG 5, 5 0, 4 QUIET 2, 2 0, 3
HARE 4, 0 2, 2 CONFESS 3, 0 1, 1

A key concept which is used to find an equilibrium in non-zero-sum games is the Nash Equilibrium (Chatterjee, 2004). A
Nash Equilibrium is a solution to the game if no player can improve their outcome by unilaterally changing their decision.
More formally (Osborne & Rubinstein, 1994):

A Nash Equilibrium of a strategic game (N,A,⪰) is action a∗ ∈ A where (a∗i , a
∗
−i) ⪰ (ai, a

∗
−i) for all ai ∈ Ai and i ∈ N .

4Consider sources (Osborne & Rubinstein, 1994) and (Albouy, 2004) for clarification on the concept of preference relations.
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Stag Hunt: The Stag Hunt, a prototype of the social contract (Skyrms, 2001), is a story of two hunters who can each hunt
a hare on their own but have to work together to hunt a stag. The hunters have to decide on what action to take, without
communicating with one another, based on whether they believe that their fellow hunter will choose to cooperate and hunt
the stag or if they will choose to defect and hunt the hare. In formal game theory terms, it is a strategic game (N,A,⪰),
where N = 2, A ∈ (Stag,Hare), and ⪰ is defined by the payoff function represented as a payoff matrix in Table 1.

This game has two Nash Equilibrium (seen in red in Table 1);

• If the hunter believes that their fellow hunter will hunt the stag, there is no better option for them than to hunt the stag
as well. Specifically, a∗ = Stag since (Stag,Stag) ⪰ (Hare,Stag).

• If the hunter believes that their fellow player will hunt the hare, there is no better option for them than to hunt the hare
as well. Specifically, a∗ = Hare since (Hare,Hare) ⪰ (Stag,Hare).

Prisoners Dilemma: The Prisoners Dilemma, an illustration of a conflict between selfish and cooperative behaviour, is a
story which tells of two prisoners both faced with the same choices; (1) To confess or (2) to remain silent. If both confess,
they both spend 2 years in prison, if they both remain silent, they bother to spend 1 year in prison, and if one confesses and
the other remains silent, the first spends no years in prison while the other spends 3. In formal game theory terms, it is a
strategic game (N,A,⪰), where N = 2, A ∈ (Quiet,Confess), and ⪰ is defined by the payoff function represented as a
payoff matrix in Table 1.

Unlike the Stag Hunt, there is only one Nash Equilibrium (seen in red in Table 1) which is to always Confess. Specifically,
a∗ = Confess since (Confess,Quiet) ⪰ (Quiet,Quiet) and (Confess,Confess) ⪰ (Quiet,Confess).

A.2. Fisher Exact Test

The Fisher Exact Test is used to analyse the statistical significance of the relationship between the rows and the columns of
contingency tables (Kim, 2017). Specifically, the null hypothesis is that the columns and rows are independent (McDonald,
2009). Following this, the Fisher Exact test is used to calculate the p-value and for p < 0.05 (the null hypothesis has less
than a 5% chance of being true) we reject the null hypothesis. Typically, the Fisher Exact Test is used for smaller sample
sizes but is valid for all sizes (Kim, 2017). It is one of the Exact Tests since the calculation of the p-value does not rely on
approximations (McDonald, 2009). The specifics of the Fisher Exact Test can be found in the Appendix section A.2.

The Fisher Exact Test uses the hypergeometric distribution to calculate the p-values, which takes on the general form
(Hoffman, 2015);

P (A = r,A′ = (n− r)) =

(
X
r

)(
N−X
n−r

)(
N
n

) =
( X!
r!(X−r)! )(

(N−X)!
(n−r)!(N−X−n+r)! )

N !
n!(N−n!)

where N is the total population of objects, X ∈ N have a specific characteristic A and (N −X) ∈ X do not, and n is the
sample size drawn from N . Essentially, the above is calculating the probability that r samples have a specific characteristic
from the n samples drawn.

Now, given the example contingency Table 2, where N in the sample population, where c1 ∈ N has characteristic A and
c2 ∈ N has characteristic A′. Then, from N , r1 ∈ N samples are drawn and a ∈ r samples have characteristic A. Then to
calculate the 2-sided p-value, the Hypergeometric Distribution function is used to calculate the probabilities that x ∈ r1
where 0 < x < a have characteristic A. These probabilities are finally summed together. Specifically;

FET2−sided =

a∑
x=0

P (A = x,A′ = (r1 − x))
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Table 2. Example of 2x2 contingency table.

A A’ TOTAL

IN SAMPLE A B r1
NOT IN SAMPLE C D r2

c1 c2 N

A.3. Prompts

The base prompt below is methodically adjusted over (1) action labels, A or B where label 1 ̸= label 2 (to test positional
bias), (2) the gain associated with those actions being taken (to test payoff bias), and (3) the player preferences, either to
prioritise Common-Gain (CG) or Self-Gain (SG) (to test the behavioural bias).

BASE PROMPT

Game Context:

You are one player in a 2-player game. In this 2-player game, you and your fellow player balance risk
and reward. Both of you make simultaneous choices between actions label 1 and label 2. The outcomes are based
on the combination of your choices. If both choose label 1, you both gain PO(label 1, label 1) point(s). Opting for
label 1 while your opponent picks label 2 earns you PO(label 1, label 2), and they get PO(label 2, label 1). If both
go for label 2, you both receive PO(label 2, label 2) point(s). Choosing label 2 while your opponent selects label 1
results in PO(label 2, label 1) points for you and PO(label 1, label 2) for them.

Player Preferences:

You: acting agent’s preferred behaviour (CG ∨ SG)
Fellow Player: fellow agent’s preferred behaviour (CG ∨ SG)

where action labels {label 1, label 2} = {A,B} and label 1 ̸= label 2. The notation PO() refers to the payoff matrix and
the corresponding gain associated with those actions being taken.

Below are the two prompting methods used: (1) Answer-Only and (2) Zero-shot Chain-of-Thought prompting.

Answer-Only PROMPT

What action should you take given the game context and player preferences?

You should only respond in JSON format as described below:

{
“action”: “selected action, either label 1 or label 2”
}

Zero-shot Chain-of-Thought PROMPT

What action should you take given the game context and player preferences?

You should only respond in JSON format as described below:

{
“reasoning”: “step-by-step reasoning”,
“action”: “selected action, either label 1 or label 2”

10
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}

Let’s work this out in a step by step way to be sure that we have the right answer.

A.4. Additional Results

PERFORMANCE COMPARISON

Figure 4 provides further insight into the alignment analysis, where we compare the average performance between (1)
Misaligned: the LLM biases and the experimental setup are misaligned and (2) Aligned: the LLM biases and the experimental
setup are aligned.

Figure 4. Figure showing the alignment analysis for each bias. We can now see at a more granular level, how each bias affects the
performance of the LLM when misaligned.

CONTINGENCY TABLES

Table 3. Table showing frequency at which labels A and B are selected based on the prompted order (A-¿B or B-¿A) of the LLM. Results
are shown for both games, Stag Hunt (SH) and Prisoners Dilemma (PD). Each game is tested using Answer-Only (AO) and Zero-shot
Chain-of-Thought (CoT) prompting.

SH PD
AO COT AO COT

A->B B->A A->B B->A A->B B->A A->B B->A

GPT3.5 A 67.1 0.0 53.4 36.1 66.3 0.0 56.8 50.6
B 32.9 100.0 45.8 62.3 33.8 100.0 42.4 48.7

GPT4 A 25.5 45.6 36.1 53.3 25.0 15.3 36.8 58.8
B 74.5 54.4 63.9 46.8 75.0 84.8 63.3 41.3

LLAMA3-8B
A 99.9 50.0 42.0 62.7 100.0 50.0 48.7 51.6
B 0.1 50.0 57.7 36.8 0.0 50.0 51.2 48.1
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Table 4. Table showing the frequency at which labels A and B are selected based on the prompted order (A=C or B=C) of the LLM.
Results are shown for both games, Stag Hunt (SH) and Prisoners Dilemma (PD). Each game is tested using Answer-Only (AO) and
Zero-shot Chain-of-Thought (CoT) prompting.

SH PD
AO COT AO COT

A=C B=C A=C B=C A=C B=C A=C B=C

GPT3.5 A 35.4 31.8 52.4 37.1 25.0 41.3 46.1 61.2
B 64.6 68.3 46.2 62.0 75.0 58.8 52.9 38.2

GPT4 A 58.3 20.2 74.4 14.9 13.4 26.9 67.0 28.5
B 41.8 79.8 25.6 85.1 86.6 73.1 33.0 71.5

LLAMA3-8B
A 75.0 74.9 63.3 41.4 75.0 75.0 43.5 56.9
B 25.0 25.1 36.4 58.1 25.0 25.0 56.3 43.0

Table 5. Table showing frequency at which labels A and B are selected based on the prompted behaviour of the LLM. Results are shown for
both games, Stag Hunt (SH) and Prisoners Dilemma (PD). Each game is tested using Answer-Only (AO) and Zero-shot Chain-of-Thought
(CoT) prompting.

SH PD
AO COT AO COT

GPT3.5 SG A 17.1 17.0 16.3 29.6
B 82.9 82.6 83.8 69.9

CG A 50.0 72.5 50.0 77.8
B 50.0 25.5 50.0 21.2

GPT4
SG A 33.4 42.7 26.9 46.5

B 66.6 57.3 73.1 53.5

CG A 37.8 46.7 13.4 49.0
B 62.3 53.3 86.6 51.0

LLAM
A3-8B SG A 100.0 64.8 100.0 68.5

B 0.0 34.8 0.0 31.3

CG A 49.9 39.9 50.0 31.9
B 50.1 59.7 50.0 68.0

Table 6. Table showing frequency at which the considerate (Con) and the Selfish (Self) actions are selected. Results are shown for both
games, Stag Hunt (SH) and Prisoners Dilemma (PD). Each game is tested using Answer-Only (AO) and Zero-shot Chain-of-Thought
(CoT) prompting.

SH PD
AO COT AO COT

GPT3.5 CON 51.8 57.2 41.9 42.1
SELF 48.2 41.6 58.1 57.1

GPT4 CON 72.7 79.8 43.3 69.2
SELF 27.3 20.3 56.8 30.8

LLAMA3-8B
CON 50.1 60.7 50.0 43.2
SELF 49.9 38.9 50.0 56.6

LLM REASONING

The following blocks of text show common patterns of reasoning for GPT4-Turbo under the 4 different experimental
configurations when both agents are prompted with a preference to prioritise their self-gain (similar patterns are observed
for other combinations of preferred behaviours).
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Table 7. Payoff matrices for stag hunt (LEFT) and prisoners dilemma (RIGHT) for the different configurations. The configurations differ
by changing the order in which the payoff matrix is prompted to the LLM and how the payoffs are associated with the labels.

STAG HUNT PRISONERS DILEMMA

CONFIG 1 CONFIG 2 CONFIG 1 CONFIG 2

A B A B A B A B

A 5, 5 0, 4 A 2, 2 4, 0 A 2, 2 0, 3 A 1, 1 3, 0
B 4, 0 2, 2 B 0, 4 5, 5 B 3, 0 1, 1 B 0, 3 2, 2

CONFIG 3 CONFIG 4 CONFIG 3 CONFIG 4
B A B A B A B A

B 5, 5 0, 4 B 2, 2 4, 0 B 2, 2 0, 3 B 1, 1 3, 0
A 4, 0 2, 2 A 0, 4 5, 5 A 3, 0 1, 1 A 0, 3 2, 2

Note how reasoning is used by the LLM over the action it will select changes as the configurations change. This is because it
is biased towards selecting a certain action and will therefore reason in such a way that the biased answer might make sense.

STAG HUNT

Configuration 1

Given the game’s rules and the principles of both players, we need to consider the outcomes based on mutual
self-interest. If both players choose A, each gains 5 points, which is the maximum possible for mutual
choice. If one chooses A and the other B, the player choosing B gains 4 points while the other gains 0. If
both choose B, each gains 2 points. Since both players prioritize their points, choosing A could risk gaining
0 points if the other player chooses B, aiming for 4 points. However, choosing B guarantees at least 2 points,
and potentially 4 if the other player chooses A. Given the risk of gaining 0 points with A and the guarantee
of at least 2 points with B, the safer and potentially more rewarding choice is B.

Configuration 2

Given the game’s rules and the principles of both players, we need to consider the outcomes based on mutual
decisions. If both choose A, each gains 2 points. If one chooses A and the other B, the one who chooses A
gets 4 points, and the one who chooses B gets 0. If both choose B, each gains 5 points. If one chooses B and
the other A, the one who chooses B gets 0 points, and the one who chooses A gets 4. Since both players
prioritize their points, choosing B is the safer and potentially more rewarding option because the worst-case
scenario (choosing B while the opponent chooses A) results in 0 points, but the best-case scenario (both
choosing B) results in 5 points each, which is the maximum possible gain for both players simultaneously.

Configuration 3

Given the game’s rules and the principles of both players, we can analyze the outcomes. If both players
choose B, each gains 5 points, which is a good outcome. If one chooses B and the other A, the one choosing
A gains 4 points while the other gets 0. If both choose A, each gains 2 points. Since both players prioritize
their points, choosing B could risk getting 0 points if the other player chooses A, aiming for 4 points.
However, choosing A guarantees at least 2 points regardless of the other player’s choice, and potentially
4 points if the other chooses B. Therefore, choosing A maximizes the guaranteed points and also offers a
chance for a higher reward if the opponent chooses B.
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Configuration 4

Given the game’s rules and the principles of both players, we need to consider the outcomes based on each
combination of choices. If both players choose B, each earns 2 points. If one chooses B and the other A,
the B chooser gets 4 points and the A chooser gets 0. If both choose A, each earns 5 points. Since both
players prioritize their points, choosing A could be risky if the other player chooses B, resulting in 0 points.
However, choosing B is safer as the worst outcome is 2 points (if both choose B) and the best is 4 points
(if the opponent chooses A). Given that both players aim to maximize their points, it’s likely the opponent
might also consider choosing B to avoid the risk of earning 0 points. Therefore, choosing B seems to be the
safer and potentially more rewarding strategy based on the game setup and player principles.

PRISONERS DILEMMA

Configuration 1

Given the game’s rules and the principles of both players, we need to consider the outcomes of each
combination of choices. If both choose A, each gains 2 points. If one chooses A and the other B, the one who
chooses B gains 3 points while the other gains 0. If both choose B, each gains 1 point. Since both players
prioritize their points, choosing B is a safer option because it guarantees at least 1 point and potentially 3
points if the opponent chooses A. Choosing A risks gaining 0 points if the opponent chooses B.

Configuration 2

Given the gameś rules and the principles of both players, we need to consider the outcomes of each
combination of choices. If both players choose A, each gains 1 point. If one chooses A and the other B,
the one who chooses A gains 3 points while the other gets 0. If both choose B, each gains 2 points. If one
chooses B and the other A, the one who chooses B gets 0 points and the other gets 3. Since both players
prioritize their own points, choosing B is safer as it guarantees at least 2 points if both choose B, whereas
choosing A risks getting 0 points if the opponent chooses B. Therefore, choosing B maximizes the minimum
gain (minimax strategy).

Configuration 3

Given that both players prioritize their points, choosing action B is risky unless both players choose B, which
results in 2 points each. However, if one chooses B and the other chooses A, the player who chose A gets 3
points while the one who chose B gets 0. If both choose A, each player gets 1 point. Since both players aim
to maximize their points, itś likely that the opponent will choose A to avoid the risk of getting 0 points by
choosing B. Therefore, to maximize your points in anticipation of the opponentś likely choice of A, you
should also choose A to ensure you get at least 1 point rather than risking getting 0 points.

Configuration 4

Given the gameś rules and the principles of both players, we need to consider the outcomes based on each
possible combination of choices. If both players choose B, each earns 1 point. If one chooses B and the
other A, the player choosing B earns 3 points while the other earns 0. If both choose A, each earns 2 points.
If one chooses A and the other B, the player choosing A earns 0 points while the other earns 3. Since both
players prioritize their points, choosing A could risk earning 0 points if the other player chooses B. However,
choosing B guarantees at least 1 point and can earn up to 3 points if the other player chooses A. Therefore,
choosing B maximizes the potential gain while minimizing the risk of earning no points.
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