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Abstract

Causal inference has been a pivotal challenge001
across diverse domains such as medicine and002
economics, demanding a complicated integra-003
tion of human knowledge, numerical reason-004
ing, and data processing capabilities. Recent005
advancements in natural language processing006
(NLP), particularly with the advent of large lan-007
guage models (LLMs), have introduced trans-008
formative opportunities for traditional causal009
inference tasks. This paper reviews recent010
progress in applying LLMs to causal inference,011
encompassing various tasks spanning different012
levels of causation. We summarize their causal013
problems, methodologies, and present compari-014
son of their evaluation results in different sce-015
narios. Furthermore, we discuss key findings,016
emerging trends, and outline directions for fu-017
ture research, underscoring the potential im-018
plications of integrating LLMs in advancing019
causal inference methodologies.020

1 Introduction021

1.1 NLP, LLM, and Causality022

Causal inference is an important area in mathe-023

matical reasoning to automate knowledge discov-024

ery. Different from most classical statistical and025

AI studies, causal inference focuses on the causal026

relationships between variables instead of merely027

statistical dependencies. Due to the inherent prox-028

imity to the human cognitive process, causal in-029

ference has become pivotal in scientific investiga-030

tions, and also advocated its crucial application031

across various AI-related domains. For example,032

investigating the causal relations between a spe-033

cific treatment (e.g., medication) and an outcome034

(e.g., the recovery from a disease) can provide more035

valuable insights for medical practices than sim-036

ple correlation analysis. Traditional causal infer-037

ence frameworks, such as Pearl’s structural causal038

model (SCM) [39] and Rubin’s potential outcome039

framework [20] have systematically defined causal040

concepts, quantities, and measures, followed up 041

with multiple data-driven methods to discover the 042

underlying causal relationships [45, 37, 52] and 043

estimate the significance of causal effects [55, 56]. 044

Despite their success, there is still a gap between 045

existing causal frameworks and human’s causal 046

judgment [25, 58, 22], covering different aspects 047

including lack of human domain knowledge, logic 048

inference, and cultural background. The burgeon- 049

ing field of NLP has recently shed light on its po- 050

tential to improve traditional causal inference prob- 051

lems. Recently, researchers have delved into causal 052

inference within NLP, offering fresh perspectives 053

to bridge the gap between human cognition and 054

methodologies for causal inference. 055

In fact, the motivation for causal inference in 056

NLP has persisted over an extended period, of- 057

fering a multitude of potential applications. For 058

example, clinical text data in electronic health 059

records (EHR) contains a large amount of under- 060

lying causal knowledge that can be utilized for 061

healthcare-related research. However, most tradi- 062

tional causal inference approaches only focus on 063

tabular data, lacking ability to discover and utilize 064

the causality inside natural language. In general, 065

causal inference in NLP is a promising research 066

path with strong motivation, which offers a spec- 067

trum of challenges and benefits concurrently. 068

1.2 Challenges of Causal Inference in NLP 069

Although LLMs have shown eye-catching success 070

in various tasks, causal inference still presents 071

many distinctive challenges for LLM capabilities. 072

Different from regular data types, the nature of nat- 073

ural language brings difficulties in causal process- 074

ing and analysis. Text data is often unstructured, 075

high-dimensional, and large-scale, in which con- 076

text traditional causal inference methods are not 077

applicable. Besides, causal relations inside text 078

are often obscure and sparse. The complicated se- 079

mantic meaning and ambiguity hidden in text data 080
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Figure 1: Representative causal tasks, their positions in the causal ladder, and examples of prompts. PCD =
pairwise causal discovery; CA=causal attribution; ATE=average treatment effect; CDE=controlled direct effect;
BAJ=backdoor adjustment; CE=causal explanation; CR=counterfactual reasoning; NDE=natural direct effect.

require sophisticated language modeling technolo-081

gies to discover clear causal relationships, and also082

entail hurdles for other causal tasks such as causal083

intervention and counterfactual reasoning. These084

challenges demand new perspectives, assumptions,085

and technologies to address them effectively, offer-086

ing revolutionary opportunities for current causal087

inference studies.088

1.3 Opportunites that LLM Brings to Causal089

Inference090

Despite the challenges, natural language has sig-091

nificant potential to yield advantages in causal in-092

ference. As NLP technologies and LLMs become093

increasingly sophisticated with diverse applications094

in recent years, the feasibility of understanding and095

unraveling causal relationships within linguistic096

data has been substantially improved. In general,097

LLM can bring benefits to causal inference in the098

following aspects:099

Domain knowledge. Typical statistical methods100

for causal inference often only focus on the val-101

ues of variables, while in many scenarios, domain102

knowledge plays an important role in causality-103

related tasks. More specifically, domain knowledge104

provides us with additional information to discover105

the true causal relationships and make meaningful106

interventions. For example, in many scientific do-107

mains such as medicine, incorporating the domain108

knowledge can draw conclusions that cannot be ob-109

tained solely through pure statistical methods, and110

expedite the development of relevant fields. How-111

ever, collecting domain knowledge from human112

experts often demands considerable effort. Fortu-113

nately, the recent developments in NLP and LLM114

can extract domain knowledge from large-scale text 115

information and thereby facilitate causal inference. 116

Common sense. Similar to domain knowledge, lan- 117

guage models can serve as an effective tool to learn 118

and utilize humans’ general common sense to pro- 119

mote causal inference. As discussed in [25], a vari- 120

ety of common sense in different scenarios affects 121

humans’ recognition of causal relationships. For 122

example, logical reasoning is essential for causal 123

inference in law cases. Besides, abnormal events 124

are often more likely to be recognized as causes for 125

an outcome of interest in common sense. 126

Sematical concept. Compared with regular data 127

types, natural language contains nuances, varia- 128

tions, and the richness of human expression, re- 129

quiring advanced techniques for semantic analysis. 130

Therefore, grasping clear causal concepts and rela- 131

tionships from text data is more challenging than 132

other data types. Recent progress in NLP and LLM 133

technologies, especially their ability in semantic 134

modeling pave the way for in-depth causal studies 135

in the next step. 136

Interactive and explainable causal inference. 137

There have been long-lasting concerns about the 138

difficult-to-understand terms and complicated rea- 139

soning processes in causal inference methods. 140

LLMs such as ChatGPT have the potential to offer 141

natural language-based interactive tools to promote 142

human understanding for causal inference. 143

2 Preliminaries 144

2.1 Causality 145

Structural causal model. Structural causal model 146

(SCM) [39] is a widely used model to describe 147
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the causal relationships inside a system. A SCM148

is defined with a triple (U, V, F ): U is a set149

of exogenous variables, whose causes are out of150

the system; V is a set of endogenous variables,151

which are determined by variables in U ∪ V ;152

F = {f1(·), f2(·), ..., f|V |(·)} is a set of functions153

(a.k.a. structural equations). For each Vi ∈ V ,154

Vi = fi(pai, Ui), where “pai ⊆ V \ Vi” and155

“Ui ⊆ U" are variables that directly cause Vi. Each156

SCM is associated with a causal graph, which is a157

directed acyclic graph (DAG). In the causal graph,158

each node stands for a variable, and each arrow159

represents a causal relationship.160

Ladder of Causation. The ladder of causation161

[40, 3] defines three rungs (Rung 1: Association;162

Rung 2: Intervention; Rung 3: Counterfactuals) to163

describe different levels of causation. Each higher164

rung indicates a more advanced level of causality.165

The first rung "Association" involves statistical de-166

pendencies, related to questions such as "What is167

the correlation between taking a medicine and a dis-168

ease?". The second rung "Intervention" moves fur-169

ther to allow interventions on variables. Exemplar170

questions related to this rung are "What if I take a171

certain medicine, will my disease be cured?". The172

top rung "Counterfactuals" relates to imagination173

or retrospection queries like "What if I had acted174

differently?", "Why?". Answering such questions175

requires knowledge related to the corresponding176

SCM. Counterfactual ranks the highest because it177

subsumes the first two rungs. A model that can178

handle counterfactual queries can also handle asso-179

ciational and interventional queries.180

2.2 Causal Tasks and Related Rungs in181

Ladder of Causation182

Causal inference involves various tasks. Figure 1183

shows an overview of LLMs for causal inference184

tasks and their positions in the ladder of causation.185

We also show several examples of prompts corre-186

sponding to each rung. We list several main causal187

tasks which are most widely studied as follows:188

Causal discovery. Causal discovery aims to infer189

causal relationships from data. It includes discover-190

ing a causal graph that describes the existence and191

direction of causal relationships inside a data sys-192

tem, as well as deriving the structural equations as-193

sociated with these causal relationships. Although194

it is not officially covered in the ladder of causation,195

many works consider causal discovery as "Rung 0"196

as it serves as a fundamental component in causal197

inference.198

Causal effect estimation. Causal effect estima- 199

tion (a.k.a. treatment effect estimation) targets on 200

quantifying the strength of the causal influence of a 201

particular intervention or treatment on an outcome 202

of interest. Causal effect estimation includes ex- 203

perimental study (where manipulation of variables 204

is allowed) and observational study (without any 205

manipulation). In different scenarios, researchers 206

may focus on the causal effect of different gran- 207

ularities, ranging from individual treatment effect 208

(ITE, i.e., treatment effect on a specific individual), 209

conditional average treatment effect (CATE, i.e., 210

average treatment effect on a certain subgroup of 211

population), and average treatment effect (ATE, i.e., 212

average treatment effect on the entire population). 213

Causal effect estimation tasks often span over Rung 214

2 and Rung 3 in the ladder of causation. 215

Other tasks. There are many other tasks in causal 216

inference. Among them, causal attribution (CA) 217

refers to the process of attributing a certain out- 218

come to certain events. Counterfactual reason- 219

ing (CR) investigates what might have happened 220

if certain events or conditions had been different 221

from what actually occurred. It explores hypo- 222

thetical scenarios by considering alternative out- 223

comes based on changes in “what if" circumstances. 224

Causal explanation (CE) aims to generate human- 225

understandable explanations for an event or a pre- 226

diction, that is, answering the "why" questions in 227

certain form or plain language. It is often in Rung 228

2 or Rung 3, depending on the specific context. In 229

many cases, different causal tasks may exhibit nat- 230

ural overlap in their scope; for instance, attribution 231

and explanation commonly intersect with causal 232

discovery and causal effect estimation. However, 233

each task maintains a distinct focus and emphasis. 234

3 Methodologies 235

Recently, there have emerged many efforts [25, 9, 236

15] to leverage LLMs for causal reasoning tasks. 237

Different from traditional causal inference method- 238

ologies which are either data-driven or based on 239

expert knowledge, the nature of LLM training and 240

adoption introduces novel methodologies in causal 241

inference, offering new perspectives and insights 242

for discovering and utilizing causal knowledge in 243

future research and applications. We summarize 244

the current methodologies of LLM for causal tasks 245

into the following categories: 246

Prompting. Most existing works [9, 25, 32, 22] 247

of causal reasoning with LLMs focus on prompt- 248

ing, as it is the most straightforward method. 249

3



L
L

M
s

fo
rC

au
sa

lI
nf

er
en

ce

Causal Discovery
(§4.2)

Pairwise Causal
Discovery

GPT-4 turbo [8], GPT-4 [23, 8, 31, 15, 58, 25],
GPT-3.5 [31, 23, 8, 15, 25], GPT-3 [32, 15, 58, 25],
LLaMa2-13B [8], Claude 2 [8], Alpaca-7B [23], FLAN-T5 [31],
BERT-Base [15], RoBERTa-Base [15], Luminous [58], OPT [58, 31]

Full Graph Discovery
GPT-4 [23, 2, 25], GPT-3.5[23, 2, 25], GPT-3 Instruct [23],
LLaMa-7B [23], Claude+ [2], GPT-4+MINOBSx [2], GPT-4+CaMML [2]

Causal Effect
Estimation (§4.3)

Causal Effect in Data
Alpaca [22], LLaMa [22], GPT-4 [22], GPT-4+CausalCoT [22],
GPT-3.5 [22], GPT-3 [22], GPT-3 Instruct [22]

Causal Effect in Model
GPT-2 [47], GPT-Neo [47], GPT-3 Instruct [47], LLaMA [47],
Alpaca [47]

Other Causal
Tasks (§4.4)

Causal Attribution
GPT-4 turbo [8], GPT-4 [8], GPT-3.5[31, 8], OPT-1.3B [31],
FLAN-T5 [31], LLaMa2-13B [8], Claude 2 [8]

Counterfactual Reasoning
GPT-4 [25, 22], GPT-4+CausalCoT [22], GPT-3.5 [25, 22],
GPT-3 [25, 22], GPT-3 Instruct [22], T0pp [25], Alpaca [22],
LLaMa [22]

Causal Explanation
GPT-4 [15], GPT-3.5 [15], GPT-3 [15, 17], GPT-2 [15, 17],
LLaMA 7B [15], FLAN-T5 11B [15]

Figure 2: The major causal tasks and LLM models evaluated for these tasks. Noticeably, the citations in the figure
correspond to the work with evaluations of different LLM models on specific tasks, rather than the original work of
these models themselves.

Dataset Year Task Size (Unit) Domain Real Citations

CauseEffectPairs 2016 CD 108 (P) Mixed R [35, 8, 58, 25]
(37 datasets)[35]
Sachs [62] 2023 CD 20 (R) Biology R [8, 62]
Corr2Cause [23] 2023 CD 200K (S) Mixed S [23]
CLADDER [22] 2023 Effect, CR, 10K (S) Mixed S [22, 23]

CE
BN Repo 1 2022 CD 4∼84 (R) Mixed R [2]
COPA [42] 2011 CD 1,000 (Q) Dailylife R [15, 42]
E-CARE [11] 2022 CD 21K (Q) Mixed R [15, 11]

CE
CausalQA [6] 2022 CD 1M (Q) Mixed R&S [6]
CausalNet [33] 2016 CD 62M (R) Mixed S [33, 11]
CausalBank [28] 2020 CD 314 M (P) Mixed S [28, 11]
WIKIWHY [17] 2022 CD 9K (Q) Mixed R [17]

CE
Neuro Pain [50] 2019 CD 770 (R) Health S [50, 25, 49]
Arctic Ice [19] 2021 CD 48 (R) Climate R [19, 25]
CRASS [14] 2022 CR 275 (Q) Mixed R [14]
CaLM [9] 2024 92 tasks in Rung 1∼3 126K (S) Mixed S [9]

Table 1: Datasets for LLM-related causal inference, including publication year, applicable tasks (CD=causal
discovery; Effect=causal effect estimation; CR=counterfactual reasoning; CE=causal explanation), dataset size (as
different datasets are not in a consistent form, we show the size w.r.t. different units, where P=causal pairs; R=causal
relations; S=samples; Q=questions), domain, generation process (R: real-world; S: synthetic), and citations.

This line of work includes both regular prompting250

strategies (such as In-Context Learning (ICL) [7]251

and Chain-of-Thought (CoT) [54]) and causality-252

specific strategies. For regular prompting, most253

studies directly use a basic prompt (i.e., directly254

describe the question without any example or in-255

struction). There are also other efforts to devise 256

more advanced prompting strategies. Among them, 257

CaLM [9] has tested 9 prompting strategies includ- 258

ing basic prompt, adversarial prompt [53, 41], ICL, 259

0-shot CoT (e.g., “let’s think step by step” without 260

any examples) [26], manual CoT (i.e., guide mod- 261
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els with manually designed examples), and explicit262

function (EF) (i.e., using encouraging language in263

prompts) [9]. Other works [25, 32, 15, 2] also de-264

sign different prompt templates. These works show265

substantial improvement potential of prompt en-266

gineering in causal reasoning tasks. For example,267

results in [25, 9, 32] show adding simple sentences268

like "you are a helpful causal assistant" or "you are269

an expert in [DOMAIN NAME]" can impressively270

improve the causal inference performance for many271

models. Apart from these regular methods, other272

studies propose causality-specific prompting strate-273

gies. For example, CausalCoT [22] is a multi-step274

prompting strategy that combines CoT prompting275

and the causal inference engine [40].276

Fine-tuning. Fine-tuning, as a widely recognized277

technique in general LLMs, is now also starting to278

gain attention for its application in causal tasks. Cai279

et al. [8] propose a fine-tuned LLM for the pairwise280

causal discovery task (PCD) (introduced in Section281

4.2. This method generates a fine-tuning dataset282

with a Linear, Non-Gaussian, Acyclic Model [43],283

uses Mistral-7B-v0.2 [21] as LLM backbone, and284

runs instruction finetuning with LoRA [18]. The285

results achieve significant improvement compared286

with the backbone without fine-tuning.287

Combining LLMs with data-driven causal meth-288

ods. Considering causal inference tasks often heav-289

ily rely on numerical reasoning from data, another290

line of works combine LLMs with traditional data-291

driven causal methods. An exploration in [2] lever-292

ages LLMs and data-driven causal algorithms such293

as MINOBSx [27] and CaMML [38]. This method294

outperforms both original LLMs and data-driven295

methods, indicating a promising future for combin-296

ing the language understanding capability of LLMs297

and the numerical reasoning skills of data-driven298

methods in complicated causal tasks.299

4 Evaluations of Causal Inference in300

LLM301

4.1 Overview302

In this section, we summarize recent progress in303

LLMs in causal tasks. We mainly focus on causal304

discovery and causal effect estimation, and also in-305

troduce several representative tasks spaning Rung306

1 to Rung 3 in the ladder of causation. A collec-307

tion of datasets used in LLM-related causal tasks308

is shown in Table 1. We also list the LLMs evalu-309

ated in the mentioned tasks and their corresponding310

evaluation papers in Figure 2.311

4.2 LLM for Causal Discovery 312

Causal discovery aims to identify the causal rela- 313

tionships between different variables, which often 314

serves as a fundamental step in real-world data 315

analysis. Most traditional causal discovery ap- 316

proaches rely on the data values and use statistical 317

approaches to infer the underlying causal struc- 318

ture over the corresponding variables. These ap- 319

proaches include constraint-based methods (e.g., 320

PC algorithm [44] and FCI algorithm [46, 60]) 321

which infer causal relationships by leveraging con- 322

ditional independence tests, and score-based meth- 323

ods which assign scores to candidate causal graphs 324

w.r.t. certain scoring criterion and seek the can- 325

didate causal graph with the highest score (e.g., 326

GES algorithm [10]). Various classical statistical 327

approaches and recent machine learning or deep 328

learning technologies [45, 37, 52] have been used 329

in causal discovery. 330

Recent developments in LLMs provide new per- 331

spectives for causal discovery [48, 30, 25]. Dif- 332

ferent from most existing causal discovery meth- 333

ods which can only utilize the data values of 334

variables, LLMs can also leverage the metadata 335

(e.g., the names of variables, the problem con- 336

text) related to these variables to discover the im- 337

plicit causal relationships. This reasoning pro- 338

cess makes LLM-based causal discovery closer 339

to human recognition. Recent literature [25] refer 340

to this ability as knowledge-based causal discov- 341

ery, and their experiments show that LLM-based 342

knowledge-based causal discovery outperforms ex- 343

isting causal discovery methods on benchmarks 344

[35]. Currently, a variety of investigations have 345

been conducted on LLMs in causal discovery tasks 346

[25, 8, 15, 23, 32]. These investigations are often 347

conducted in the form of multi-choice or free-text 348

question-answering, and they can mainly be di- 349

vided into two types: pairwise causal discovery 350

and full causal graph discovery. 351

Pairwise causal discovery ((PCD)) focuses on 352

a pair of variables, either aiming to infer the causal 353

direction (A → B or A ← B) between a given 354

pair of variables (A,B), or aiming to judge the 355

existence of a causal relation between two vari- 356

ables. Among them, the experiments in [25] use 357

the names of variables when constructing prompts, 358

and their results show that LLMs (including GPT- 359

3.5 and GPT-4) outperform state-of-the-art meth- 360

ods both on datasets with common variables (e.g., 361

CauseEffectPairs [35]) and datasets that require 362
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Model CEPairs E-CARE COPA CALM-CA Neuro Pain

Binary Choice Binary Choice Binary Binary Choice

ada 0.50 0.48 0.49 0.49 0.49 0.57 0.40
text-ada-001 0.49 0.49 0.33 0.50 0.35 0.48 0.50
Llama2 (7B) - 0.53 0.50 0.41 0.35 0.32 -
Llama2 (13B) - 0.52 0.50 0.44 0.36 0.42 -
Llama2 (70B) - 0.52 0.44 0.50 0.45 0.49 -
babbage 0.51 0.49 0.36 0.49 0.40 0.58 0.50
text-babbage-001 0.50 0.50 0.50 0.49 0.50 0.56 0.51
curie 0.51 0.50 0.50 0.50 0.50 0.58 0.50
text-curie-001 0.50 0.50 0.50 0.51 0.50 0.58 0.50
davinci 0.48 0.50 0.49 0.50 0.51 0.58 0.38
text-davinci-001 0.50 0.50 0.50 0.50 0.50 0.52 0.50
text-davinci-002 0.79 0.66 0.64 0.80 0.67 0.69 0.52
text-davinci-003 0.82 0.77 0.66 0.90 0.77 0.80 0.55
GPT-3.5-Turbo 0.81 0.80 0.66 0.92 0.66 0.72 0.71
GPT-4 - 0.74 0.68 0.90 0.80 0.93 0.78

GPT-4 (0-shot ICL) - 0.83 0.71 0.97 0.78 0.90 -
GPT-4 (1-shot ICL) - 0.81 0.70 0.93 0.76 0.90 -
GPT-4 (3-shot ICL) - 0.71 0.70 0.80 0.81 0.91 -
GPT-4 (0-shot CoT) - 0.77 0.68 0.91 0.79 0.92 -
GPT-4 (Manual CoT) - 0.79 0.73 0.97 0.82 0.95 -
GPT-4 (EF) - 0.83 0.71 0.98 0.80 0.92 0.84

Table 2: Performance (accuracy) of different models in causal discovery tasks on different datasets, including
CausalEffectPairs (CEpairs for short), E-CARE, COPA, CALM-CA, and Neuro Pain. In the columns in white
(CausalEffectPairs, E-CARE, COPA), the models are evaluated for the pairwise causal discovery task; In the column
in gray , the models are evaluated for the causal attribution task; in the column in cyan , the models are evaluated
for the full graph discovery task. In the upper part, we show results with basic prompt; while in the lower part, we
show results of GPT-4 with different prompting strategies. We also present results under prompts in the form of
binary "yes/no" questions and multi-choice questions. The results are collected from Kıcıman et al. [25] and Chen
et al. [9]. Note that the experimental settings such as prompt templates may be different.

particular domain knowledge (e.g., neuropathic363

pain [50]). Despite the encouraging results, the364

empirical analysis from [58] implies that in many365

cases, LLMs are just “causal parrots" that repeat366

the embedded causal knowledge. A comparison367

between ChatGPT and fine-tuned small pre-trained368

language models [15] shows LLMs’ advantage in369

some causal discovery tasks, but this work also370

discusses that the ability of LLMs in determining371

the existence of a causal relationship is worse than372

simply selecting the cause or effect of an input373

event from given options. Jin et al. [23] proposes374

a correlation-to-causation inference (Corr2Cause)375

task to evaluate the causal inference performance of376

LLMs. Their experimental results reveal that LLM377

models perform almost close to random on the task,378

even though this issue could be mitigated through379

fine-tuning, these models still have limitations in 380

generalization on out-of-distribution settings. 381

Full causal graph discovery aims to identify the 382

full causal graph that describes the causal relation- 383

ships among a given set of variables. Compared 384

with pairwise causal discovery, discovering the full 385

causal graph is a more complicated problem as it in- 386

volves more variables. In a preliminary exploration 387

[32], GPT-3 shows good performance in discover- 388

ing the causal graph with 3-4 nodes for well-known 389

causal relationships in the medical domain. In more 390

complicated scenarios, the ability of different ver- 391

sions of GPT to discover causal edges [25] has 392

been validated on the neuropathic pain dataset [50] 393

with 100 pairs of true/false causal relations. LLM- 394

based discovery (GPT-3.5 and GPT-4) on Arctic 395

sea ice dataset [19] has comparable or even bet- 396
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Model CLADDER CaLM CLADDER CaLM CRASS E-CARE

Corr ATE CDE BAJ CR NDE CR CE

ada 0.26 0.02 0.03 0.13 0.30 0.05 0.26 0.22
text-ada-001 0.25 0.01 0.01 0.29 0.28 0.01 0.24 0.33
Llama2 (7B) 0.50 0.03 0.02 0.18 0.51 0.03 0.11 0.42
Llama2 (13B) 0.50 0.01 0.01 0.19 0.52 0.02 0.20 0.39
Llama2 (70B) 0.51 0.09 0.09 0.13 0.52 0.13 0.17 0.42
babbage 0.39 0.03 0.04 0.15 0.31 0.06 0.26 0.24
text-babbage-001 0.35 0.04 0.04 0.34 0.32 0.07 0.28 0.37
curie 0.50 0.01 0.04 0.23 0.49 0.01 0.22 0.30
text-curie-001 0.50 0.00 0.09 0.40 0.49 0.00 0.28 0.39
davinci 0.50 0.07 0.08 0.25 0.50 0.12 0.27 0.32
text-davinci-001 0.51 0.07 0.08 0.38 0.51 0.14 0.19 0.39
text-davinci-002 0.51 0.17 0.13 0.39 0.53 0.19 0.57 0.40
text-davinci-003 0.53 0.52 0.33 0.54 0.57 0.30 0.80 0.43
GPT-3.5-Turbo 0.51 0.38 0.40 0.44 0.58 0.30 0.73 0.51
GPT-4 0.55 0.60 0.31 0.74 0.67 0.42 0.91 0.46

GPT-4 (0-shot ICL) 0.60 0.19 0.25 0.72 0.65 0.27 0.85 0.48
GPT-4 (1-shot ICL) 0.66 0.24 0.30 0.70 0.71 0.38 0.78 0.41
GPT-4 (3-shot ICL) 0.61 0.70 0.70 0.75 0.69 0.29 0.70 0.40
GPT-4 (0-shot CoT) 0.57 0.57 0.28 0.73 0.66 0.43 0.90 0.53
GPT-4 (Manual CoT) 0.66 0.93 0.91 0.69 0.77 0.80 0.89 0.48
GPT-4 (EF) 0.60 - - 0.72 0.70 - 0.87 0.53

Table 3: Performance (accuracy) of different models in causal tasks in the ladder of causation (Rung 1 ∼ Rung 3)
on different datasets, including CLADDER, CaLM, CRASS, and E-CARE. The column in gray correspond to
tasks in Rung 1 (corr=correlation), the columns in white involve tasks in Rung 2 (ATE=average treatment effect;
CDE = controlled direct effect; BAJ= backdoor adjustment); the columns in cyan correspond to tasks in Rung
3 (CR=counterfactual reasoning; NDE=natural direct effect; CE=causal explanation). In the upper part, we show
results with the basic prompt; while in the lower part, we show results of GPT-4 with different prompting strategies.
The results are collected from Chen et al. [9] and Jin et al. [22]. Note that the experimental settings such as prompt
templates may be different.

ter performance than representative baselines in-397

cluding NOTEARS [61] and DAG-GNN [57]. In398

[2], the combination of the causal knowledge gen-399

erated by LLMs and data-driven methods brings400

improvement in causal discovery in data from eight401

different domains with small causal graphs (5∼48402

variables and 4∼84 causal relations). But similarly403

to pairwise causal discovery, LLMs also face many404

doubts and debates about their true ability in full405

causal graph discovery.406

4.3 LLM for Causal Effect Estimation407

Causal effect estimation is a task to quantify how408

much manipulating a treatment can causally in-409

fluence an outcome. In most cases, the causal410

effect of interest is estimated from observational411

data. Researchers in the NLP community have412

also made lots of efforts in causal effect estimation413

from text data [13, 24]. Causal effect estimation 414

on text data faces unique challenges due to the 415

high-dimensional and complicated nature, for ex- 416

ample, some important assumptions (e.g., positivity 417

assumption [12]) in traditional causal effect estima- 418

tion are easily violated when high-dimensional text 419

information is a confounder [24]. Fortunately, the 420

NLP progress in recent decades, such as word em- 421

beddings [1], topic modeling [5] and dependency 422

parsing [36] have significantly contributed to esti- 423

mating causal effects on text. 424

LLM has recently offered opportunities in causal 425

effect estimation as well. Recently, the connec- 426

tion between causal effect estimation and LLMs 427

includes two different branches: (1) Causal Effect 428

in Data: In this task, LLMs aim to estimate the 429

causal effect inside data [29, 25] by leveraging their 430
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reasoning capability and properties (e.g., ability in431

handling large-scale training corpora). A bench-432

mark for the capability of LLMs in causal inference,433

CLADDER [22], includes query types regarding434

causal effect estimation at different levels, e.g., av-435

erage treatment effect (ATE), average treatment436

effect on the treated (ATT), natural direct effect437

(NDE), and natural indirect effect (NIE). These438

queries cover the Rung 2 (e.g., ATE) and Rung 3439

(e.g., ATT, NDE, NIE) of the Ladder of Causation440

[40, 3]. Existing evaluations show that the causal441

effect estimation task is still quite challenging for442

most LLMs. But an encouraging finding is that443

proper techniques such as chain-of-thought (CoT)444

prompting strategy [22] can improve the perfor-445

mance significantly. (2) Causal Effect in Model:446

This task aims to analyze the causal effect that447

involves the LLM model itself. Most commonly,448

we focus on the causal effect of input data, model449

neurons, or learning strategies on LLMs’ predic-450

tions [51, 34, 47]. These studies can reveal the451

underlying LLM model behavior and promote fur-452

ther investigations such as bias elimination [51],453

model editing [34], and robustness quantification454

[47]. For example, [47] explores the causal ef-455

fect of input (e.g., problem description and math456

operators) on output solutions in LLM-based math-457

ematical reasoning. In [51], gender bias effects458

propagated from model input to output are detected459

and analyzed in language models.460

4.4 LLM for Other Causal Tasks461

There are various other causal inference tasks that462

LLMs can bring benefits to. (1) Causal Attribu-463

tion: LLMs show their capability in attribution464

tasks [25, 8], which are often in the forms of "why"465

or "what is the cause" questions. Related tasks also466

include identifying necessary or sufficient causes467

[31, 25]. By embedding human knowledge and468

cultural common sense, LLMs have the potential469

to flexibly address attribution problems in specific470

domains (such as law, economics, and medicine)471

where conventional methods may fall short [25].472

(2) Counterfactual Reasoning: Recent studies473

[25, 22] conduct experiments on LLMs in different474

counterfactual reasoning scenarios, which are often475

in "what if" questions. While this task is one of476

the most challenging tasks in causal inference, the477

demonstrated improvement in LLMs compared to478

other methods is noteworthy. (3) Causal Explana-479

tion: Many recent works investigate causal expla-480

nations based on queries on LLMs [4, 16, 8, 15].481

Despite ongoing debates regarding LLM’s actual 482

ability for causal reasoning, most empirical stud- 483

ies positively indicate that LLMs serve as effective 484

causal explainers [15]. Such achievement is pow- 485

ered by LLMs’ capability of analyzing language 486

logic and responding to questions using natural 487

language. 488

In Table 2 and Table 3, we compare the per- 489

formance of different LLMs in different tasks (in- 490

cluding causal discovery and other tasks spaning 491

Rung 1 to Rung 3) on multiple datasets. From the 492

results, we notice that: many LLMs can achieve 493

human-comparable performance in causal discov- 494

ery even with basic prompts. Furthermore, with 495

proper prompting strategies, the performance can 496

be remarkably improved. 497

5 Discussion and Future Prospects 498

In general, as aforementioned, LLMs bring promis- 499

ing perspectives to causal inference, but there are 500

also many limitations of current research and thus 501

leave research directions in the future. First, a lot 502

of literature [25, 22] have shown that the causal in- 503

ference capability of LLMs is quite sensitive to the 504

specific choice of prompts. Modifications in a few 505

words and sentences can lead to significant changes 506

in performance. Besides, LLMs often fail to gener- 507

ate self-consistent answers for causal queries, i.e., 508

the answers from LLMs often present causal rela- 509

tionships that conflict with each other. Ongoing 510

debates and criticisms about whether LLM truly 511

performs causal inference also compel more in- 512

depth and precise analysis and evaluation. Overall, 513

there are many promising possibilities for the fu- 514

ture of this research area [59, 25], including: (1) 515

Incorporating domain knowledge into LLMs more 516

comprehensively and intelligently, which holds the 517

potential for interdisciplinary knowledge integra- 518

tion, discovery, and validation in specialized fields; 519

(2) Natural language-based causal data generation, 520

which augments the natural language in a causality- 521

consistent manner to provide LLMs with more di- 522

verse and realistic data sources (3) Hallucination 523

elimination in causal reasoning, ensuring more ac- 524

curate and reliable causal inference; and (4) Inter- 525

pretable and instructable causal reasoning, design- 526

ing strategies for LLMs to interact with humans, 527

providing the reasoning chains of LLMs and ac- 528

cept human instructions or feedback during the 529

causal reasoning process, and fostering collabora- 530

tive causal inference between humans and AI. 531
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6 Limitations532

In this survey paper, it is important to acknowl-533

edge certain limitations that shape the scope and534

focus of our review. Firstly, our analysis is primar-535

ily centered on the application of large language536

models (LLMs) for causal inference tasks, thereby537

excluding exploration into how causality is utilized538

within LLM frameworks themselves. This deci-539

sion provides a targeted perspective on leveraging540

LLMs to enhance causal inference methodologies541

but does not delve into the internal mechanisms or542

implementations of causal reasoning within these543

models.544

Secondly, while we comprehensively examine545

the technical aspects and methodological advance-546

ments in using LLMs for causal inference, we do547

not extensively discuss ethical considerations or548

potential societal impacts associated with these ap-549

plications. Ethical dimensions, such as fairness,550

bias mitigation, and privacy concerns, are critical551

in the deployment of AI technologies, including552

LLMs, and warrant dedicated attention and scrutiny553

in future research and applications. Addressing554

these limitations ensures a nuanced understanding555

of the opportunities and challenges in harnessing556

LLMs for causal inference while also advocating557

for responsible and ethical AI development and558

deployment practices.559
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