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Abstract

Causal inference has been a pivotal challenge
across diverse domains such as medicine and
economics, demanding a complicated integra-
tion of human knowledge, numerical reason-
ing, and data processing capabilities. Recent
advancements in natural language processing
(NLP), particularly with the advent of large lan-
guage models (LLMs), have introduced trans-
formative opportunities for traditional causal
inference tasks. This paper reviews recent
progress in applying LLMs to causal inference,
encompassing various tasks spanning different
levels of causation. We summarize their causal
problems, methodologies, and present compari-
son of their evaluation results in different sce-
narios. Furthermore, we discuss key findings,
emerging trends, and outline directions for fu-
ture research, underscoring the potential im-
plications of integrating LLMs in advancing
causal inference methodologies.

1 Introduction

1.1 NLP, LLM, and Causality

Causal inference is an important area in mathe-
matical reasoning to automate knowledge discov-
ery. Different from most classical statistical and
Al studies, causal inference focuses on the causal
relationships between variables instead of merely
statistical dependencies. Due to the inherent prox-
imity to the human cognitive process, causal in-
ference has become pivotal in scientific investiga-
tions, and also advocated its crucial application
across various Al-related domains. For example,
investigating the causal relations between a spe-
cific treatment (e.g., medication) and an outcome
(e.g., the recovery from a disease) can provide more
valuable insights for medical practices than sim-
ple correlation analysis. Traditional causal infer-
ence frameworks, such as Pearl’s structural causal
model (SCM) [39] and Rubin’s potential outcome
framework [20] have systematically defined causal

concepts, quantities, and measures, followed up
with multiple data-driven methods to discover the
underlying causal relationships [45, 37, 52] and
estimate the significance of causal effects [55, 56].
Despite their success, there is still a gap between
existing causal frameworks and human’s causal
judgment [25, 58, 22], covering different aspects
including lack of human domain knowledge, logic
inference, and cultural background. The burgeon-
ing field of NLP has recently shed light on its po-
tential to improve traditional causal inference prob-
lems. Recently, researchers have delved into causal
inference within NLP, offering fresh perspectives
to bridge the gap between human cognition and
methodologies for causal inference.

In fact, the motivation for causal inference in
NLP has persisted over an extended period, of-
fering a multitude of potential applications. For
example, clinical text data in electronic health
records (EHR) contains a large amount of under-
lying causal knowledge that can be utilized for
healthcare-related research. However, most tradi-
tional causal inference approaches only focus on
tabular data, lacking ability to discover and utilize
the causality inside natural language. In general,
causal inference in NLP is a promising research
path with strong motivation, which offers a spec-
trum of challenges and benefits concurrently.

1.2 Challenges of Causal Inference in NLP

Although LLMs have shown eye-catching success
in various tasks, causal inference still presents
many distinctive challenges for LLM capabilities.
Different from regular data types, the nature of nat-
ural language brings difficulties in causal process-
ing and analysis. Text data is often unstructured,
high-dimensional, and large-scale, in which con-
text traditional causal inference methods are not
applicable. Besides, causal relations inside text
are often obscure and sparse. The complicated se-
mantic meaning and ambiguity hidden in text data
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Figure 1: Representative causal tasks, their positions in the causal ladder, and examples of prompts. PCD =
pairwise causal discovery; CA=causal attribution; ATE=average treatment effect; CDE=controlled direct effect;
BAJ=backdoor adjustment; CE=causal explanation; CR=counterfactual reasoning; NDE=natural direct effect.

require sophisticated language modeling technolo-
gies to discover clear causal relationships, and also
entail hurdles for other causal tasks such as causal
intervention and counterfactual reasoning. These
challenges demand new perspectives, assumptions,
and technologies to address them effectively, offer-
ing revolutionary opportunities for current causal
inference studies.

1.3 Opportunites that LLLM Brings to Causal
Inference

Despite the challenges, natural language has sig-
nificant potential to yield advantages in causal in-
ference. As NLP technologies and LLMs become
increasingly sophisticated with diverse applications
in recent years, the feasibility of understanding and
unraveling causal relationships within linguistic
data has been substantially improved. In general,
LLM can bring benefits to causal inference in the
following aspects:

Domain knowledge. Typical statistical methods
for causal inference often only focus on the val-
ues of variables, while in many scenarios, domain
knowledge plays an important role in causality-
related tasks. More specifically, domain knowledge
provides us with additional information to discover
the true causal relationships and make meaningful
interventions. For example, in many scientific do-
mains such as medicine, incorporating the domain
knowledge can draw conclusions that cannot be ob-
tained solely through pure statistical methods, and
expedite the development of relevant fields. How-
ever, collecting domain knowledge from human
experts often demands considerable effort. Fortu-
nately, the recent developments in NLP and LLM

can extract domain knowledge from large-scale text
information and thereby facilitate causal inference.
Common sense. Similar to domain knowledge, lan-
guage models can serve as an effective tool to learn
and utilize humans’ general common sense to pro-
mote causal inference. As discussed in [25], a vari-
ety of common sense in different scenarios affects
humans’ recognition of causal relationships. For
example, logical reasoning is essential for causal
inference in law cases. Besides, abnormal events
are often more likely to be recognized as causes for
an outcome of interest in common sense.
Sematical concept. Compared with regular data
types, natural language contains nuances, varia-
tions, and the richness of human expression, re-
quiring advanced techniques for semantic analysis.
Therefore, grasping clear causal concepts and rela-
tionships from text data is more challenging than
other data types. Recent progress in NLP and LLM
technologies, especially their ability in semantic
modeling pave the way for in-depth causal studies
in the next step.

Interactive and explainable causal inference.
There have been long-lasting concerns about the
difficult-to-understand terms and complicated rea-
soning processes in causal inference methods.
LLMs such as ChatGPT have the potential to offer
natural language-based interactive tools to promote
human understanding for causal inference.

2 Preliminaries
2.1 Causality

Structural causal model. Structural causal model
(SCM) [39] is a widely used model to describe



the causal relationships inside a system. A SCM
is defined with a triple (U,V,F): U is a set
of exogenous variables, whose causes are out of
the system; V' is a set of endogenous variables,
which are determined by variables in U U V;
F={f1(), f2(), -, fly)(-)} is a set of functions
(a.k.a. structural equations). For each V; € V,
Vi = fi(pa;,U;), where “pa; € V \ V;” and
“U; C U" are variables that directly cause V;. Each
SCM is associated with a causal graph, which is a
directed acyclic graph (DAG). In the causal graph,
each node stands for a variable, and each arrow
represents a causal relationship.

Ladder of Causation. The ladder of causation
[40, 3] defines three rungs (Rung 1: Association;
Rung 2: Intervention; Rung 3: Counterfactuals) to
describe different levels of causation. Each higher
rung indicates a more advanced level of causality.
The first rung "Association" involves statistical de-
pendencies, related to questions such as "What is
the correlation between taking a medicine and a dis-
ease?". The second rung "Intervention" moves fur-
ther to allow interventions on variables. Exemplar
questions related to this rung are "What if I take a
certain medicine, will my disease be cured?". The
top rung "Counterfactuals" relates to imagination
or retrospection queries like "What if I had acted
differently?", "Why?". Answering such questions
requires knowledge related to the corresponding
SCM. Counterfactual ranks the highest because it
subsumes the first two rungs. A model that can
handle counterfactual queries can also handle asso-
ciational and interventional queries.

2.2 Causal Tasks and Related Rungs in
Ladder of Causation

Causal inference involves various tasks. Figure 1
shows an overview of LLMs for causal inference
tasks and their positions in the ladder of causation.
We also show several examples of prompts corre-
sponding to each rung. We list several main causal
tasks which are most widely studied as follows:
Causal discovery. Causal discovery aims to infer
causal relationships from data. It includes discover-
ing a causal graph that describes the existence and
direction of causal relationships inside a data sys-
tem, as well as deriving the structural equations as-
sociated with these causal relationships. Although
it is not officially covered in the ladder of causation,
many works consider causal discovery as "Rung 0"
as it serves as a fundamental component in causal
inference.

Causal effect estimation. Causal effect estima-
tion (a.k.a. treatment effect estimation) targets on
quantifying the strength of the causal influence of a
particular intervention or treatment on an outcome
of interest. Causal effect estimation includes ex-
perimental study (where manipulation of variables
is allowed) and observational study (without any
manipulation). In different scenarios, researchers
may focus on the causal effect of different gran-
ularities, ranging from individual treatment effect
(ITE, i.e., treatment effect on a specific individual),
conditional average treatment effect (CATE, i.e.,
average treatment effect on a certain subgroup of
population), and average treatment effect (ATE, i.e.,
average treatment effect on the entire population).
Causal effect estimation tasks often span over Rung
2 and Rung 3 in the ladder of causation.

Other tasks. There are many other tasks in causal
inference. Among them, causal attribution (CA)
refers to the process of attributing a certain out-
come to certain events. Counterfactual reason-
ing (CR) investigates what might have happened
if certain events or conditions had been different
from what actually occurred. It explores hypo-
thetical scenarios by considering alternative out-
comes based on changes in “what if" circumstances.
Causal explanation (CE) aims to generate human-
understandable explanations for an event or a pre-
diction, that is, answering the "why" questions in
certain form or plain language. It is often in Rung
2 or Rung 3, depending on the specific context. In
many cases, different causal tasks may exhibit nat-
ural overlap in their scope; for instance, attribution
and explanation commonly intersect with causal
discovery and causal effect estimation. However,
each task maintains a distinct focus and emphasis.

3 Methodologies

Recently, there have emerged many efforts [25, 9,
15] to leverage LLMs for causal reasoning tasks.
Different from traditional causal inference method-
ologies which are either data-driven or based on
expert knowledge, the nature of LLM training and
adoption introduces novel methodologies in causal
inference, offering new perspectives and insights
for discovering and utilizing causal knowledge in
future research and applications. We summarize
the current methodologies of LLM for causal tasks
into the following categories:

Prompting. Most existing works [9, 25, 32, 22]
of causal reasoning with LLMs focus on prompt-
ing, as it is the most straightforward method.
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Figure 2: The major causal tasks and LLM models evaluated for these tasks. Noticeably, the citations in the figure
correspond to the work with evaluations of different LLM models on specific tasks, rather than the original work of

these models themselves.

Dataset Year Task Size (Unit) Domain Real Citations
CauseEffectPairs 2016 CD 108 (P) Mixed R [35, 8, 58, 25]
(37 datasets)[35]
Sachs [62] 2023 CD 20 (R) Biology R [8, 62]
Corr2Cause [23] 2023 CD 200K (S) Mixed S [23]
CLADDER [22] 2023 Effect, CR, 10K (S) Mixed S [22, 23]
CE
BN Repo ' 2022 CD 4~84 (R) Mixed R [2]
COPA [42] 2011 CD 1,000 (Q)  Dailylife R [15, 42]
E-CARE [11] 2022 CD 21K (Q) Mixed R [15,11]
CE
CausalQA [6] 2022 CD IM (Q) Mixed R&S [6]
CausalNet [33] 2016 CD 62M (R) Mixed S [33, 11]
CausalBank [28] 2020 CD 314 M (P) Mixed S [28, 11]
WIKIWHY [17] 2022 CD 9K (Q) Mixed R [17]

CE
Neuro Pain [50] 2019 CD
Arctic Ice [19] 2021 CD
CRASS [14] 2022 CR
CalM [9] 2024 92 tasks in Rung 1~3

770 (R) Health S [50, 25, 49]
48 (R) Climate R [19, 25]
275 (Q) Mixed R [14]
126K (S) Mixed S [9]

Table 1: Datasets for LLM-related causal inference, including publication year, applicable tasks (CD=causal
discovery; Effect=causal effect estimation; CR=counterfactual reasoning; CE=causal explanation), dataset size (as
different datasets are not in a consistent form, we show the size w.r.t. different units, where P=causal pairs; R=causal
relations; S=samples; Q=questions), domain, generation process (R: real-world; S: synthetic), and citations.

This line of work includes both regular prompting
strategies (such as In-Context Learning (ICL) [7]
and Chain-of-Thought (CoT) [54]) and causality-
specific strategies. For regular prompting, most
studies directly use a basic prompt (i.e., directly
describe the question without any example or in-

struction). There are also other efforts to devise
more advanced prompting strategies. Among them,
CalLM [9] has tested 9 prompting strategies includ-
ing basic prompt, adversarial prompt [53, 41], ICL,
0-shot CoT (e.g., “let’s think step by step” without
any examples) [26], manual CoT (i.e., guide mod-



els with manually designed examples), and explicit
function (EF) (i.e., using encouraging language in
prompts) [9]. Other works [25, 32, 15, 2] also de-
sign different prompt templates. These works show
substantial improvement potential of prompt en-
gineering in causal reasoning tasks. For example,
results in [25, 9, 32] show adding simple sentences
like "you are a helpful causal assistant" or "you are
an expert in [DOMAIN NAME]" can impressively
improve the causal inference performance for many
models. Apart from these regular methods, other
studies propose causality-specific prompting strate-
gies. For example, CausalCoT [22] is a multi-step
prompting strategy that combines CoT prompting
and the causal inference engine [40].
Fine-tuning. Fine-tuning, as a widely recognized
technique in general LLMs, is now also starting to
gain attention for its application in causal tasks. Cai
et al. [8] propose a fine-tuned LLM for the pairwise
causal discovery task (PCD) (introduced in Section
4.2. This method generates a fine-tuning dataset
with a Linear, Non-Gaussian, Acyclic Model [43],
uses Mistral-7B-v0.2 [21] as LLM backbone, and
runs instruction finetuning with LoRA [18]. The
results achieve significant improvement compared
with the backbone without fine-tuning.
Combining LLMs with data-driven causal meth-
ods. Considering causal inference tasks often heav-
ily rely on numerical reasoning from data, another
line of works combine LLMs with traditional data-
driven causal methods. An exploration in [2] lever-
ages LLLMs and data-driven causal algorithms such
as MINOBSx [27] and CaMML [38]. This method
outperforms both original LLMs and data-driven
methods, indicating a promising future for combin-
ing the language understanding capability of LLMs
and the numerical reasoning skills of data-driven
methods in complicated causal tasks.

4 Evaluations of Causal Inference in
LLM

4.1 Overview

In this section, we summarize recent progress in
LLM:s in causal tasks. We mainly focus on causal
discovery and causal effect estimation, and also in-
troduce several representative tasks spaning Rung
1 to Rung 3 in the ladder of causation. A collec-
tion of datasets used in LLM-related causal tasks
is shown in Table 1. We also list the LLMs evalu-
ated in the mentioned tasks and their corresponding
evaluation papers in Figure 2.

4.2 LLM for Causal Discovery

Causal discovery aims to identify the causal rela-
tionships between different variables, which often
serves as a fundamental step in real-world data
analysis. Most traditional causal discovery ap-
proaches rely on the data values and use statistical
approaches to infer the underlying causal struc-
ture over the corresponding variables. These ap-
proaches include constraint-based methods (e.g.,
PC algorithm [44] and FCI algorithm [46, 60])
which infer causal relationships by leveraging con-
ditional independence tests, and score-based meth-
ods which assign scores to candidate causal graphs
w.r.t. certain scoring criterion and seek the can-
didate causal graph with the highest score (e.g.,
GES algorithm [10]). Various classical statistical
approaches and recent machine learning or deep
learning technologies [45, 37, 52] have been used
in causal discovery.

Recent developments in LLMs provide new per-
spectives for causal discovery [48, 30, 25]. Dif-
ferent from most existing causal discovery meth-
ods which can only utilize the data values of
variables, LLMs can also leverage the metadata
(e.g., the names of variables, the problem con-
text) related to these variables to discover the im-
plicit causal relationships. This reasoning pro-
cess makes LL.M-based causal discovery closer
to human recognition. Recent literature [25] refer
to this ability as knowledge-based causal discov-
ery, and their experiments show that LLM-based
knowledge-based causal discovery outperforms ex-
isting causal discovery methods on benchmarks
[35]. Currently, a variety of investigations have
been conducted on LLMs in causal discovery tasks
[25, 8, 15, 23, 32]. These investigations are often
conducted in the form of multi-choice or free-text
question-answering, and they can mainly be di-
vided into two types: pairwise causal discovery
and full causal graph discovery.

Pairwise causal discovery ((PCD)) focuses on
a pair of variables, either aiming to infer the causal
direction (A — B or A <+ B) between a given
pair of variables (A, B), or aiming to judge the
existence of a causal relation between two vari-
ables. Among them, the experiments in [25] use
the names of variables when constructing prompts,
and their results show that LLMs (including GPT-
3.5 and GPT-4) outperform state-of-the-art meth-
ods both on datasets with common variables (e.g.,
CauseEffectPairs [35]) and datasets that require



Model CEPairs E-CARE COPA CALM-CA Neuro Pain
Binary = Choice Binary Choice Binary Binary Choice

ada 0.50 0.48 0.49 0.49 0.49 0.57 0.40
text-ada-001 0.49 0.49 0.33 0.50 0.35 0.48 0.50
Llama2 (7B) - 0.53 0.50 0.41 0.35 0.32 -
Llama?2 (13B) - 0.52 0.50 0.44 0.36 0.42 -
Llama2 (70B) - 0.52 0.44 0.50 0.45 0.49 -
babbage 0.51 0.49 0.36 0.49 0.40 0.58 0.50
text-babbage-001 0.50 0.50 0.50 0.49 0.50 0.56 0.51
curie 0.51 0.50 0.50 0.50 0.50 0.58 0.50
text-curie-001 0.50 0.50 0.50 0.51 0.50 0.58 0.50
davinci 0.48 0.50 0.49 0.50 0.51 0.58 0.38
text-davinci-001 0.50 0.50 0.50 0.50 0.50 0.52 0.50
text-davinci-002 0.79 0.66 0.64 0.80 0.67 0.69 0.52
text-davinci-003 0.82 0.77 0.66 0.90 0.77 0.80 0.55
GPT-3.5-Turbo 0.81 0.80 0.66 0.92 0.66 0.72 0.71
GPT-4 - 0.74 0.68 0.90 0.80 0.93 0.78
GPT-4 (0-shot ICL) - 0.83 0.71 0.97 0.78 0.90 -
GPT-4 (1-shot ICL) - 0.81 0.70 0.93 0.76 0.90 -
GPT-4 (3-shot ICL) - 0.71 0.70 0.80 0.81 0.91 -
GPT-4 (0-shot CoT) - 0.77 0.68 091 0.79 0.92 -
GPT-4 (Manual CoT) - 0.79 0.73 0.97 0.82 0.95 -
GPT-4 (EF) - 0.83 0.71 0.98 0.80 0.92 0.84

Table 2: Performance (accuracy) of different models in causal discovery tasks on different datasets, including
CausalEffectPairs (CEpairs for short), E-CARE, COPA, CALM-CA, and Neuro Pain. In the columns in white
(CausalEffectPairs, E-CARE, COPA), the models are evaluated for the pairwise causal discovery task; In the column
in | gray , the models are evaluated for the causal attribution task; in the column in cyan , the models are evaluated
for the full graph discovery task. In the upper part, we show results with basic prompt; while in the lower part, we
show results of GPT-4 with different prompting strategies. We also present results under prompts in the form of
binary "yes/no" questions and multi-choice questions. The results are collected from Kiciman et al. [25] and Chen
et al. [9]. Note that the experimental settings such as prompt templates may be different.

particular domain knowledge (e.g., neuropathic
pain [50]). Despite the encouraging results, the
empirical analysis from [58] implies that in many
cases, LLMs are just “causal parrots" that repeat
the embedded causal knowledge. A comparison
between ChatGPT and fine-tuned small pre-trained
language models [15] shows LLMs’ advantage in
some causal discovery tasks, but this work also
discusses that the ability of LLMs in determining
the existence of a causal relationship is worse than
simply selecting the cause or effect of an input
event from given options. Jin et al. [23] proposes
a correlation-to-causation inference (Corr2Cause)
task to evaluate the causal inference performance of
LLMs. Their experimental results reveal that LLM
models perform almost close to random on the task,
even though this issue could be mitigated through

fine-tuning, these models still have limitations in
generalization on out-of-distribution settings.

Full causal graph discovery aims to identify the
full causal graph that describes the causal relation-
ships among a given set of variables. Compared
with pairwise causal discovery, discovering the full
causal graph is a more complicated problem as it in-
volves more variables. In a preliminary exploration
[32], GPT-3 shows good performance in discover-
ing the causal graph with 3-4 nodes for well-known
causal relationships in the medical domain. In more
complicated scenarios, the ability of different ver-
sions of GPT to discover causal edges [25] has
been validated on the neuropathic pain dataset [50]
with 100 pairs of true/false causal relations. LLM-
based discovery (GPT-3.5 and GPT-4) on Arctic
sea ice dataset [19] has comparable or even bet-



Model CLADDER CaLM CLADDER CaLM CRASS E-CARE
Corr ATE CDE BAJ CR NDE CR CE
ada 0.26 0.02 0.03 0.13 0.30 0.05 0.26 0.22
text-ada-001 0.25 0.01 0.01 0.29 0.28 0.01 0.24 0.33
Llama?2 (7B) 0.50 0.03 0.02 0.18 0.51 0.03 0.11 0.42
Llama2 (13B) 0.50 0.01 0.01 0.19 0.52 0.02 0.20 0.39
Llama?2 (70B) 0.51 0.09 0.09 0.13 0.52 0.13 0.17 0.42
babbage 0.39 0.03 0.04 0.15 0.31 0.06 0.26 0.24
text-babbage-001 0.35 0.04 0.04 034 0.32 0.07 0.28 0.37
curie 0.50 0.01 0.04 0.23 0.49 0.01 0.22 0.30
text-curie-001 0.50 0.00 0.09 040 0.49 0.00 0.28 0.39
davinci 0.50 0.07 0.08 0.25 0.50 0.12 0.27 0.32
text-davinci-001 0.51 0.07 0.08 0.38 0.51 0.14 0.19 0.39
text-davinci-002 0.51 0.17 0.13 0.39 0.53 0.19 0.57 0.40
text-davinci-003 0.53 0.52 033 0.54 0.57 0.30 0.80 0.43
GPT-3.5-Turbo 0.51 038 040 044 0.58 0.30 0.73 0.51
GPT-4 0.55 0.60 0.31 0.74 0.67 0.42 0.91 0.46
GPT-4 (0-shot ICL) 0.60 0.19 025 0.72 0.65 0.27 0.85 0.48
GPT-4 (1-shot ICL) 0.66 024 0.30 0.70 0.71 0.38 0.78 0.41
GPT-4 (3-shot ICL) 0.61 0.70 0.70 0.75 0.69 0.29 0.70 0.40
GPT-4 (0-shot CoT) 0.57 0.57 028 0.73 0.66 0.43 0.90 0.53
GPT-4 (Manual CoT) 0.66 093 091 0.69 0.77 0.80 0.89 0.48
GPT-4 (EF) 0.60 - - 0.72 0.70 - 0.87 0.53

Table 3: Performance (accuracy) of different models in causal tasks in the ladder of causation (Rung 1 ~ Rung 3)
on different datasets, including CLADDER, CalLLM, CRASS, and E-CARE. The column in  gray correspond to
tasks in Rung 1 (corr=correlation), the columns in white involve tasks in Rung 2 (ATE=average treatment effect;
CDE = controlled direct effect; BAJ= backdoor adjustment); the columns in cyan correspond to tasks in Rung
3 (CR=counterfactual reasoning; NDE=natural direct effect; CE=causal explanation). In the upper part, we show
results with the basic prompt; while in the lower part, we show results of GPT-4 with different prompting strategies.
The results are collected from Chen et al. [9] and Jin et al. [22]. Note that the experimental settings such as prompt
templates may be different.

ter performance than representative baselines in-
cluding NOTEARS [61] and DAG-GNN [57]. In
[2], the combination of the causal knowledge gen-
erated by LLMs and data-driven methods brings
improvement in causal discovery in data from eight
different domains with small causal graphs (5~48
variables and 4~84 causal relations). But similarly
to pairwise causal discovery, LLMs also face many
doubts and debates about their true ability in full
causal graph discovery.

4.3 LLM for Causal Effect Estimation

Causal effect estimation is a task to quantify how
much manipulating a treatment can causally in-
fluence an outcome. In most cases, the causal
effect of interest is estimated from observational
data. Researchers in the NLP community have
also made lots of efforts in causal effect estimation

from text data [13, 24]. Causal effect estimation
on text data faces unique challenges due to the
high-dimensional and complicated nature, for ex-
ample, some important assumptions (e.g., positivity
assumption [12]) in traditional causal effect estima-
tion are easily violated when high-dimensional text
information is a confounder [24]. Fortunately, the
NLP progress in recent decades, such as word em-
beddings [1], topic modeling [5] and dependency
parsing [36] have significantly contributed to esti-
mating causal effects on text.

LLM has recently offered opportunities in causal
effect estimation as well. Recently, the connec-
tion between causal effect estimation and LLMs
includes two different branches: (1) Causal Effect
in Data: In this task, LLMs aim to estimate the
causal effect inside data [29, 25] by leveraging their



reasoning capability and properties (e.g., ability in
handling large-scale training corpora). A bench-
mark for the capability of LLMs in causal inference,
CLADDER [22], includes query types regarding
causal effect estimation at different levels, e.g., av-
erage treatment effect (ATE), average treatment
effect on the treated (ATT), natural direct effect
(NDE), and natural indirect effect (NIE). These
queries cover the Rung 2 (e.g., ATE) and Rung 3
(e.g., ATT, NDE, NIE) of the Ladder of Causation
[40, 3]. Existing evaluations show that the causal
effect estimation task is still quite challenging for
most LLMs. But an encouraging finding is that
proper techniques such as chain-of-thought (CoT)
prompting strategy [22] can improve the perfor-
mance significantly. (2) Causal Effect in Model:
This task aims to analyze the causal effect that
involves the LLM model itself. Most commonly,
we focus on the causal effect of input data, model
neurons, or learning strategies on LLMs’ predic-
tions [51, 34, 47]. These studies can reveal the
underlying LLM model behavior and promote fur-
ther investigations such as bias elimination [51],
model editing [34], and robustness quantification
[47]. For example, [47] explores the causal ef-
fect of input (e.g., problem description and math
operators) on output solutions in LLM-based math-
ematical reasoning. In [51], gender bias effects
propagated from model input to output are detected
and analyzed in language models.

4.4 LLM for Other Causal Tasks

There are various other causal inference tasks that
LLMs can bring benefits to. (1) Causal Attribu-
tion: LLMs show their capability in attribution
tasks [25, 8], which are often in the forms of "why"
or "what is the cause" questions. Related tasks also
include identifying necessary or sufficient causes
[31, 25]. By embedding human knowledge and
cultural common sense, LLMs have the potential
to flexibly address attribution problems in specific
domains (such as law, economics, and medicine)
where conventional methods may fall short [25].
(2) Counterfactual Reasoning: Recent studies
[25, 22] conduct experiments on LLMs in different
counterfactual reasoning scenarios, which are often
in "what if" questions. While this task is one of
the most challenging tasks in causal inference, the
demonstrated improvement in LLMs compared to
other methods is noteworthy. (3) Causal Explana-
tion: Many recent works investigate causal expla-
nations based on queries on LLMs [4, 16, 8, 15].

Despite ongoing debates regarding LLM’s actual
ability for causal reasoning, most empirical stud-
ies positively indicate that LLMs serve as effective
causal explainers [15]. Such achievement is pow-
ered by LLMs’ capability of analyzing language
logic and responding to questions using natural
language.

In Table 2 and Table 3, we compare the per-
formance of different LLLMs in different tasks (in-
cluding causal discovery and other tasks spaning
Rung 1 to Rung 3) on multiple datasets. From the
results, we notice that: many LL.Ms can achieve
human-comparable performance in causal discov-
ery even with basic prompts. Furthermore, with
proper prompting strategies, the performance can
be remarkably improved.

5 Discussion and Future Prospects

In general, as aforementioned, LLLMs bring promis-
ing perspectives to causal inference, but there are
also many limitations of current research and thus
leave research directions in the future. First, a lot
of literature [25, 22] have shown that the causal in-
ference capability of LLMs is quite sensitive to the
specific choice of prompts. Modifications in a few
words and sentences can lead to significant changes
in performance. Besides, LLMs often fail to gener-
ate self-consistent answers for causal queries, i.e.,
the answers from LLMs often present causal rela-
tionships that conflict with each other. Ongoing
debates and criticisms about whether LLM truly
performs causal inference also compel more in-
depth and precise analysis and evaluation. Overall,
there are many promising possibilities for the fu-
ture of this research area [59, 25], including: (1)
Incorporating domain knowledge into LLMs more
comprehensively and intelligently, which holds the
potential for interdisciplinary knowledge integra-
tion, discovery, and validation in specialized fields;
(2) Natural language-based causal data generation,
which augments the natural language in a causality-
consistent manner to provide LL.Ms with more di-
verse and realistic data sources (3) Hallucination
elimination in causal reasoning, ensuring more ac-
curate and reliable causal inference; and (4) Inter-
pretable and instructable causal reasoning, design-
ing strategies for LLMs to interact with humans,
providing the reasoning chains of LLMs and ac-
cept human instructions or feedback during the
causal reasoning process, and fostering collabora-
tive causal inference between humans and Al.



6 Limitations

In this survey paper, it is important to acknowl-
edge certain limitations that shape the scope and
focus of our review. Firstly, our analysis is primar-
ily centered on the application of large language
models (LLMs) for causal inference tasks, thereby
excluding exploration into how causality is utilized
within LLM frameworks themselves. This deci-
sion provides a targeted perspective on leveraging
LLMs to enhance causal inference methodologies
but does not delve into the internal mechanisms or
implementations of causal reasoning within these
models.

Secondly, while we comprehensively examine
the technical aspects and methodological advance-
ments in using LLMs for causal inference, we do
not extensively discuss ethical considerations or
potential societal impacts associated with these ap-
plications. Ethical dimensions, such as fairness,
bias mitigation, and privacy concerns, are critical
in the deployment of Al technologies, including
LLMs, and warrant dedicated attention and scrutiny
in future research and applications. Addressing
these limitations ensures a nuanced understanding
of the opportunities and challenges in harnessing
LLMs for causal inference while also advocating
for responsible and ethical Al development and
deployment practices.
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