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Abstract
Neural causal discovery methods have recently
improved in terms of scalability and compu-
tational efficiency. However, our systematic
evaluation highlights significant room for
improvement in their accuracy when uncovering
causal structures. We identify a fundamental lim-
itation: unavoidable likelihood score estimation
errors disallow distinguishing the true structure,
even for small graphs and relatively large sample
sizes. Furthermore, we identify the faithfulness
property as a critical bottleneck: (i) it is likely
to be violated across any reasonable dataset size
range, and (ii) its violation directly undermines
the performance of neural penalized-likelihood
discovery methods. These findings lead us to con-
clude that progress within the current paradigm
is fundamentally constrained, necessitating a
paradigm shift in this domain.

1. Introduction
Causal discovery is essential for scientific research, driving
a growing demand for machine learning methods to support
this process. Despite the development of several neural
causal discovery methods in recent years (Brouillard et al.,
2020; Lorch et al., 2021; Annadani et al., 2023; Nazaret
et al., 2024), their performance remains insufficient for real-
world applications, particularly in fields such as medicine
and biology (de Castro et al., 2019; Peters et al., 2016).
Furthermore, these methods are usually evaluated using
datasets, which vary between studies, obscuring the overall
picture and making the assessment of advances difficult.
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In response to this challenge, we introduce a unified bench-
marking protocol for neural causal discovery methods.
Specifically, we use identical datasets, tune hyperparameters
consistently, and use a standardized functional approxima-
tion across all methods. Through this systematic evaluation,
we uncover a concerningly low level of performance. This
raises a fundamental question: Why do these methods strug-
gle to recover the ground-though causal structure even when
the data is generated synthetically with all theoretical as-
sumptions fulfilled and the dataset is large?

We identify a fundamental limitation: unavoidable likeli-
hood estimation errors disallow distinguishing the true struc-
ture. This happens primarily due to finite size of the datasets.
However, we observe minimal improvements when scaling
either the data or the network size. At a technical level, we
pinpoint the faithfulness property as a critical bottleneck.
We formalize faithfulness violations in finite datasets using
the strong-faithfulness measure. Then, we show that any
strength of the faithfulness is easily violated when graph
size or density are increased. Even for moderate size graphs
it is likely to be violated across any reasonable dataset size
range. We believe these limitations highlight the need for
a paradigm shift rather than incremental improvements in
architecture or optimization techniques.

In more details, our contributions are as follows:

1. In a carefully controlled experiment, we demonstrate
that the likelihood loss, as used by causal discovery
approaches, faces estimation errors which disallow the
recovery of ground-truth causal graphs, even for small
graphs and relatively large sample sizes.

2. We propose practical method of approximation of
λ-strong faithfulness property for nonlinear datasets.
We experimentally demonstrate how proportion of λ-
unfaithfull distributions scales with the size and density
of graphs from Erdos-Renyi class.

3. We provide results of unified benchmark for neural
causal discovery methods and show that their perfor-
mance correlates with λ-strong faithfulness property
of the datasets.
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2. Background and Related Work
Structural causal models (SCMs). Causal relationships
are commonly formalized (Pearl, 2009) using SCMs, which
represent causal dependencies through a set of structural
equations. For a directed acyclic graph (DAG) G = (V,E),
an SCM is defined by a set of equations of the form:

Xi = fi(PaG(i), Ui), (1)

where Xi is a random variable at vertex i ∈ V ,
fi : R|Pai|+1 → R is a function, PaG(i) denotes the set
of parents of i in G, and Ui is an independent noise. In this
work, we assume additive noise SCMs, also referred to as
additive noise models (ANM), viz.,

fi(PaG(i), Ui) = gi(PaG(i)) + Ui (2)

for some gi : R|PaG(i)| → R. An SCM M =
(G, {fi}i∈V , {Ui}i∈V ) defines a joint distibution P over
the set of random variables {Xi}i∈V .

Causal discovery. Causal discovery aims to uncover
causal structure G of a SCM based on data sampled from
the joint distribution P . However, in general the solution
can only be identified up to a Markov Equivalence Class
(MEC), the set of DAGs encoding the same conditional
independencies (Verma & Pearl, 1990).

While there is a line of classical methods like PC (Spirtes
et al., 2000) or GES (Chickering, 2020), those algorithms
work well for linear relationships and moderate-sized prob-
lems, they struggle in more challenging scenarios. Neural
causal discovery methods have emerged as a promising
direction, offering class of methods that could potentially
handle nonlinear relationships and provide computational
efficiency, and scalability in both data size and number of
variables.

Evaluating causal discovery methods presents unique chal-
lenges. In real-world applications, ground truth causal struc-
tures are typically unknown or can only be partially elicited
from domain experts with inherent noise and bias. This
fundamental limitation necessitates the use of synthetic data
for evaluations, as they provide controlled environments
essential for understanding the methods’ capabilities and
limitations.

Recent developments in neural causal discovery. We
would like to highlight four recent approaches to neu-
ral causal discovery: DCDI (Brouillard et al., 2020),
SDCD (Nazaret et al., 2024), DiBS (Lorch et al., 2021), and
BayesDAG (Annadani et al., 2023), which in our view ef-
fectively represent the major developments in neural causal
discovery from past years. DCDI represents the evolution
of NO-TEARS-based methods like GRAN-DAG (Zheng

et al., 2018; Lachapelle et al., 2019), improving upon the
original by separating structural and functional parameters
and incorporating interventional data. SDCD unifies and
advances various acyclicity constraints proposed in methods
like NO-BEARS (Lee et al., 2019) and DAGMA (Bello
et al., 2022), demonstrating superior performance compared
to SCORE (Rolland et al., 2022) and DCDFG (Lopez et al.,
2022). For Bayesian approaches, we chose DiBS, which
incorporates NO-TEARS regularization in its prior, and
BayesDAG, which builds on NO-CURL’s DAG parametriza-
tion (Yu et al., 2021) using MCMC optimization.

All these approaches use a continuous representation of the
graph structure, enforcing a differentiable acyclicity con-
straint to ensure the result is a DAG. The primary objective
is to maximize log pθ(X|G), that is the log-likelihood of
the data given the graph while incorporating regularization
terms to control graph complexity. Such methods are in
general described as penalized likelihood causal discovery
methods. The discovery procedure comprises two parts:
fitting functional approximators and structure search, which
are usually done in parallel.

The penalized likelihood methods, are among most general
class of methods. In principle they do not need any paramet-
ric assumptions on functions and noises. DCDI (Brouillard
et al., 2020) and SDCD (Nazaret et al., 2024) can work
in non-linear setting with non-additive noise, while Bayes-
Dag (Annadani et al., 2023) and DiBS (Lorch et al., 2021)
make only additive noise assumption.

Hardness of causal discovery. The so-called faithfulness
property is a fundamental assumption commonly used by
causal discovery methods (Pearl, 2009; Brouillard et al.,
2020). It is formulated as follows:

∀a,b∈V ∀S⊆V \{a,b}Xa ⊥⊥ Xb|XS ⇐⇒ a ⊥G b|S. (3)

where ⊥⊥ denotes conditional independence and ⊥G de-
notes d-separation. For more information on d-separation
please refer to Appendix A.1. The faithfulness property can
be violated when multiple causal paths cancel each other
(see example in Appendix A.2). While the set of unfaith-
ful distributions associated with a given DAG has measure
zero (Boeken et al., 2025), distributions may exhibit arbitrar-
ily weak conditional dependencies. When dealing with final
datasets, such weak dependencies become indistinguishable
from independence.

This observation motivated Zhang & Spirtes, 2003 to intro-
duce the λ-strong faithfulness assumption. A distribution P
is said to be λ-strong faithful to a DAG G if:

∀a,b∈V ∀S⊆V \{a,b}|ρP (Xa, Xb|XS)| > λ ⇐⇒ a ̸⊥G b|S,
(4)
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where ρP (Xa, Xb|XS) denotes a partial correlation coef-
ficient and λ ∈ (0, 1)1. For linear systems, this assump-
tion ensures uniform consistency of the PC algorithm with
λ ∝ 1/

√
n where the sample size n → ∞. Therefore, λ

can serve as a notion of the difficulty of the causal discovery
task.

Notably Uhler et al. (2013) proved that, in case of linear
SCMs, for any fixed λ > 0, the fraction of λ-strong faithful
distributions decreases exponentially with graph size and
density, suggesting fundamental limitations in causal discov-
ery on large graphs. The work provides theoretical results
for linear SCMs and the PC algorithm.

However so far little has been shown regarding nonlinear
functions and contemporary neural network approaches. We
aim to breach the gap with our experimental contributions,
thus the remainder of the paper is structured as follows. First,
we build a framework that allows us to measure the difficulty
of the problem, expressed by λ-strong faithfulness property,
and show it grows quickly with the size and density of the
underlying graph (Section 3.1). Than, we demonstrate that
the difficulty is connected to the number of samples required
to recover the true graph (Section 3.2). Our framework
mimics the linear case described above. Finally, in Section 4,
we evaluate contemporary neural causal discovery methods
and analyze their performance in relation to the problem
difficulty measure.

3. Estimation of Strong Faithfulness Property
and Likelihood Score

For a fixed distribution P and associated with it graph G
there can be multiple λ that satisfy the Equation 4. There-
fore, in the remainder of the paper we will denote λ as the
maximal threshold satisfying the equation. Additionally, as
we are working with nonlinear data, we use Spearman cor-
relation coefficient, which we will denote ρP with a slight
abuse of notation. Specifically, for a given distribution P
associated with graphs G we define:

λ = max{t : ∀a,b∈V ∀S⊆V \{a,b}

|ρP (Xa, Xb|XS)| > t ⇐⇒ a ̸⊥G b|S}. (5)

3.1. λ decreases quickly with growing graph size and
density.

We aim to measure the difficulty of causal discovery given
non-linear dataset D and associated with it structure G ex-
pressed by the λ parameter. Theoretically, λ could be de-
termined by computing partial correlations for all variable
pairs across all conditioning sets and identifying a threshold

1When λ = 0, λ this reduces to the standard faithfulness
assumption.

that separates conditionally d-separated from d-connected
nodes (see equation 5). In practice, due to irreducible errors
in correlation estimation from finite data and the presence
of small true correlation values, it is infeasible to establish
the separating threshold. Instead we choose the threshold
that maximizes the F1-score of classification to d-separated
and d-connected nodes.

Effective approximation of λ. Specifically, we use partial
Spearman correlation, classifying node pairs as d-separated
if their conditional correlation coefficient, computed from
the finite dataset, falls below a given threshold. We then
define λ̂ as the threshold that optimizes the F1-score of this
classification. Formally, for dataset D and associated with
it DAG G:

λ̂ = argmaxtF1(t,D,G), (6)

F1(t,D,G) = 2 · TP(t,D,G)
P(t,D,G) + P̂(t,D,G)

P(t,D,G) = #{a, b, S : a ⊥⊥G b|S}
P̂(t,D,G) = #{a, b, S : |ρD(a, b|S)| < t}

TP(t,D,G) = #{a, b, S : |ρD(a, b|S)| < t and a ⊥⊥G b|S}

where ρD(a, b|S) denotes the partial Spearman correlation
coefficient computed from dataset D, and a ⊥⊥G b|S de-
notes d-separation in graph G. Note, that when data size
increases estimation errors in the partial Spearman corre-
lation ρD(a, b|S) decrease. Thus, in the limit of the data
λ̂ converges to λ. For an experimental evaluation of the
estimation accuracy and precision on finite datasets, please
refer to Appendix D.

Fraction of λ-strong distributions. In case of linear
datasets, the relation between the fraction of sampled λ-
strong distribution and the graph density and number of
nodes has been extensively studied by Uhler et al. (2013). It
was proved, for several types of connected graphs, that the
fraction of λ-strong faithful distributions decreases exponen-
tially. Here we provide analogous experimental results for
nonlinear SCMs based on connected Erdos-Renyi graphs.
The details of the experimental setup and results for more
graph types are provided in the Appendix B.

In Figures 1a and 1b we plot how fraction of λ-unfaithful
distributions changes with the number of nodes and the
density of the graph respectively. Our experimental results
align with theoretical study on linear datasets. We observe
that for a fixed λ and number of nodes, the proportion of
distributions that are not λ-strong decreases with the ex-
pected neighborhood size, similar observation can be made
when we increase the number of nodes in a graph. Even for
relatively small and sparse graphs (6 nodes and expected
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Figure 1: (a) Estimated fraction of λ-unfaithful distributions for Erdos-Renyi graphs with various number of nodes. (b)
Estimated fraction of λ-unfaithful distributions for Erdos-Renyi graphs with 6 nodes and varying density. Colored lines
correspond to specific values of λ.

neighborhood size 1) more than 60% of distributions are not
faithful for λ = 0.03 and more than 80% for λ = 0.1. We
get similar results for bipartite, small-world, and scale-free
graphs. They are presented in Figure 7 in Appendix B.

3.2. Lower λ̂ requires larger sample size

We investigate how λ affects convergence rate of causal
discovery algorithms with neural-network approximators.
To be able to draw conclusions about impact of data sample
on the accuracy of causal discovery we design a conceptu-
ally simple neural network based causal discovery method
that minimizes approximation errors. We evaluate it in a
controlled setting that enables a comprehensive analysis to
identify bottlenecks in the neural causal discovery process.

Exhaustive estimation approach. Our goal is to estimate
the regularized log-likelihood score, a common objective
function in neural causal discovery. For a graph G with
nodes set V the log-likelihood of the dataset D = {Xi}i∈V

can be expressed as the sum of log-likelihoods of individual
vectors Xi:

L(G) =
∑
i∈V

− log p(Xi|PaG(i)). (7)

Since, we need to be able to compute the score for
each graph G in class of DAGs over the node set
V , we train a neural-network-based density function
f(Xi;XPaG(i); θi,PaG(i)) for each variable Xi and each par-
ent set PaG(i) ⊆ V \ {i}. Note, that unlike scalable NN
approaches, we have a different set of parameters θi,Pa(G)(i)

for each parent set PaG(i). This reduces approximation
errors. The penalized score can now be written as:

S(G) =
∑
i∈V

− log f(Xi;XPaG(i); θi,PaG(i)) + γ|G| (8)

where |G| denotes number of edges in G and γ > 0 is a
sparsity coefficient.

Further, to reduce approximation errors due to initialization,
we also employ random seed bootstrapping. The training
procedure is repeated N times starting from different ran-
dom initializations. The final formula for the score uses the
average of N estimates:

Ŝ(G) =
∑
i∈V

− 1

N

N∑
n=1

log f(Xi;XPaG(i); θ
n
i,PaG(i)) + γ|G|.

(9)

This procedure drives the approximation error down to a
negligible level, at the cost of significant computational
effort, and, through bootstrap confidence intervals, lets us
isolate estimation error from approximation error.

We summarize our efforts to minimize approximation error:

1. The neural network approximator and the data-
generating model belong to the same class – no model
misspecification.

2. Additionally, we evaluate multiple network architec-
tures and confirm our architectural choice experimen-
tally (see Table 3 in Appendix C).

3. We use an ensemble approach over multiple random
initialization, which not only improves accuracy but
also provides bootstrap confidence interval for the ap-
proximation error.
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Figure 2: (a) Relation of sample needed to for a distribution to converge and the λ̂. (a) Linear regression fit between the
minimal sample size required for true structure recovery and log10(λ̂) measure. The spearman rank correlation of those
measures is −0.93 and p-value for correlation is 9e-4. (b) Comparison of the performance of NN-opt method depending on
data size. Averaged over 90 samples. For definition of ESHDCPDAG please refer to Section 4.

Assuming γ is small enough and the faithfulness assumption
holds, the DAG that minimizes the score in Equation 8 will
belong to the MEC of data generating graph (Brouillard
et al., 2020).
Remark 3.1. Notice that, given score estimation described
above, we can discover the MEC by exhaustive evaluation
of all DAGs in the given class. The method is not practically
useful, but can illustrate the influence of estimation and
approximation errors on causal discovery process. Since,
graph search component is removed the method can also be
viewed as upper-bound on existing differentiable approaches
to causal discovery relying on similar neural-network ap-
proximators. The pseudocode of the method can be found
in Appendix G.

Synthetics causal data. We generate synthetic data with
a known ground-truth causal structure. We consider causal
DAGs with only five nodes V = {1, . . . , 5}. We generate
these DAGs using the Erdos-Renyi model with the expected
number of 5 edges. The functional relations between nodes
are modeled by randomly initialized MLPs with two hidden
layers of size 8. Additionally, we use additive Gaussian
noise: Ui ∼ N (0, σi), where σi may depend on i ∈ V . For
more details refer to Appendix E.1.

The maximum likelihood estimator is biased. The MLE
objective yields biased estimates of the score. This bias
is not systematic; instead, it varies randomly depending
on the training sample. We illustrate examplary score es-

timates in Figure 3. For this experiment, we generated a
dataset as described above and applied our exhaustive es-
timation method using 800 samples. We used a bootstrap
sample size of N = 29. If the score estimates were accurate,
the structures within the Markov Equivalence Class (MEC)
would consistently receive the lowest scores (highlighted in
red in the figure). However, we observe that a substantial
number of alternative structures are assigned comparable
or better scores – depicted in blue and green, respectively.
Importantly, when the dataset size is increased to 8,000, the
number of green and blue structures decreases significantly,
indicating that the exact faithfulness assumption holds.

The convergence rate of our causal discovery method
correlates with λ̂. We generate 90 synthetic datasets and
evaluate causal discovery approach described in Remark 3.1.
We experiment with various neural-network sizes and select
the best performing one which happens to be identical as
used to generate the data (see Appendix C). The ensemble
size used in this experiment is N = 3. For each dataset
we evaluate causal discovery on subsets of varying sizes.
The size of the smallest subset required for convergence is
recorded and compared to value of λ̂ of the dataset. The
results are presented in Figure 2a. The experiment demon-
strates that datasets with higher λ̂ require usually fewer
samples for successful recovery. The λ̂ and minimal num-
ber of samples is highly correlated, the spearman correlation
coefficient is −0.93.
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Figure 3: Exemplary results of score evaluation using our robust neural network based approximation approach. In red —
score of the target structure, in green — scores of structures with statistically significantly better scores, in blue — scores
of structures with comparable scores. The error bars signify 95% confidence intervals. Note that considerable number of
structures has significantly better (lower) score that the target structure. (a) Plot for 800 samples. (b) Plot for 8000 samples.

Accuracy of causal discovery improves with data size.
Apart from convergence, we want to quantify structural er-
rors when recovery is incomplete, to assess model reliability
and compare methods. Understanding how these errors de-
crease with more data provides insight into the efficiency
of the learning process. The results are presented in Fig-
ure 2b. For very small datasets we observe a relatively big
ESHDCPDAG of 4, which rapidly improves with sample size.
As the sample size grows, the structure discovery accuracy
stabilizes. For sample sizes of 2,500 and 8,000, the average
value of ESHDCPDAG is just below 2. In the dataset used for
this experiment, the average number of edges in CPDAG
is around 8.4, meaning that on average almost 25% of the
edges are predicted incorrectly.

As previously observed, datasets vary in difficulty, and
the number of correctly identified structures increases
with sample size. While the average ESHDCPDAG remains
significantly above zero, structural recovery improves
notably from 6 converged graphs at 80 samples to 26 at
250. This trend continues, though at a diminishing rate:
34 and 35 graphs converge at 2,500 and 8,000 samples,
respectively, and 37 and 53 at 25,000 and 80,000. These
results indicate that larger sample sizes enable more
accurate structure discovery. However, the marginal gains
decrease, and even with 80,000 samples, correct recovery
of all structures is not achieved.

3.3. Conclusions

In this section, we provided a detailed experimental analysis
of the relationship between the λ-strong faithfulness prop-
erty of non-linear datasets and the performance of causal
discovery with neural function approximators. Our results
indicate that the λ-strong faithfulness property constrains
causal discovery from finite data, limiting both convergence
rate and accuracy. Furthermore, we demonstrate in a con-
trolled setting that data scarcity introduces significant errors
in score assignment. Additionally, we show that the pro-
portion of λ-strong faithful distributions in ER graphs with
nonlinear functions rapidly decreases as graph density and
size increase. Those findings, along with the theoretical
results of Uhler et al. (2013), suggests that current neural
causal discovery methods may face fundamental limitations.

4. Evaluation of Neural Causal Discovery
Methods

After linking the challenges in neural causal discovery to
λ - strong faithfulness in Sections 3.2 and 3.1, in this sec-
tion, we investigate how this violation affects neural causal
discovery methods performance in terms of structural met-
rics. Additionally since these methods were constructed
with scalability in mind, the experiments can be performed
on graph bigger that in Section 3.
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ER(5, 1) ER(10, 2) ER(30, 2)

Method ESHDCPDAG F1-ScoreCPDAG ESHDCPDAG F1-ScoreCPDAG ESHDCPDAG F1-ScoreCPDAG

DCDI 5.7 (3.7, 8.1) 0.60 (0.46, 0.74) 16.9 (15.7, 18.1) 0.52 (0.50, 0.56) 45.9 (42.0, 49.9) 0.73 (0.69, 0.77)

BayesDAG 3.9 (3.6, 4.3) 0.78 (0.77, 0.81) 18.3 (16.9, 19.8) 0.56 (0.54, 0.59) 51.7 (48.2, 55.9) 0.59 (0.57, 0.61)

DiBS 2.6 (1.7, 3.7) 0.85 (0.80, 0.90) 16.9 (14.2, 201) 0.61 (0.57, 0.68) 68.0 (65.3, 70.9) 0.23 (0.22, 0.24)

SDCD 5.4 (3.8, 6.7) 0.60 (0.35, 0.69 20.9 (19.5, 22.2) 0.54 (0.46, .62) 62.8 (58.8, 67.7) 0.55 (0.53, 0.58)

Table 1: Comparison of ESHDCPDAG and F1-ScoreCPDAG for different methods on ER(10, 2) (left) and ER(30, 2) (right)
dataset. The numbers in the subscripts correspond to 95% confidence intervals. The statistics were computed based on 30
graphs.

4.1. The systematic benchmarking protocol

We evaluate methods DiBS, DCDI, BayesDAG, and
SDCD introduced in Section 2 on identical datasets, tune
hyperparameters consistently, and use a common functional
approximation.

Dataset generation We sample three types of graphs from
the Erdős-Rényi (ER) distribution (Erdös & Rényi, 1959) as
described in 3.1: one with 5 nodes and the expected degree
of 1, another with 10 nodes and the expected degree of 2,
and the third with 30 nodes and the expected degree of 2.
These datasets are referred to as ER(5, 1), ER(10, 2), and
ER(30, 2), respectively. These parameter choices align with
commonly studied medium-sized graphs in causal discovery
research (Brouillard et al., 2020; Nazaret et al., 2024).

Hyperparameter tuning To ensure a fair comparison
across all methods, we perform systematic hyperparameter
tuning, selecting the best-performing parameters for each
method We employ a grid search approach based on the
parameter ranges suggested by the original authors. This
process optimizes key variables such as regularization coef-
ficients, sparsity controls, and kernel configurations. Details
can be found in Appendix E.2.

Functional approximators We standardize the choice of
functional approximators across all experiments, using a
two-layer MLP with a hidden dimension of 4 to model each
functional dependence f (see Section 2). This model size
is consistent with previous work (Brouillard et al., 2020;
Nazaret et al., 2024) and has proven to perform well across
all the benchmarked methods, as discussed in Appendix E.3.
Additionally, we use trainable variance to allow the model
to adapt to varying noise levels, in line with our dataset
generation setup.

Structure evaluation We evaluate graph discovery
within the MEC using ESHDCPDAG and F1-ScoreCPDAG,
where ESHDCPDAG = 0 and F1-ScoreCPDAG = 1 when the
predicted graph is in the same MEC as the ground truth.
For Bayesian methods, we computed the expected value by
sampling from the posterior distribution; for non-Bayesian
methods, we use a single graph.

The Structural Hamming Distance (SHD) (Tsamardinos
et al., 2006) counts edge insertions, deletions, and reversals
needed to match the predicted graph to the true graph. We
define Expected SHD between CPDAGs as:

ESHDCPDAG(G,G) =

= EG∗∼G[SHD(CPDAG(G),CPDAG(G∗))], (10)

where G is the resulting distribution of graphs, G∗ is a graph
sampled from G and G is the ground true graph. The F1-
Score measures the harmonic mean of precision and recall
for edge predictions. We compute the Expected F1-Score
between the CPDAGs as follows:

F1-ScoreCPDAG(G,G) =

= EG∗∼G[F1-Score(CPDAG(G),CPDAG(G∗))]. (11)

For more details and justification on the selection of metrics
please refer to Appendix F.

Methods comparison Table 1, summarizes the bench-
mark results of neural-based causal discovery methods on
graphs from ER(5, 1), ER(10, 2), and ER(30, 2) classes. We
tune hyperparameters to optimize the ESHDCPDAG metric.
For all classes of graphs, metrics were computed based on
30 graphs.

The results show that DiBS is particularly effective for
smaller graphs (ER(5, 1) and ER(10, 2)), while DCDI is
able to achieve the best results for moderate-size graphs
(ER(10, 2) and ER(30, 2)). The ranking of the methods
changes with the size of the graphs but SDCD consistently
exhibits the worst performance in terms of ESHDCPDAG.

Nevertheless, the structural metrics of all the methods re-
mains unsatisfactory with all methods predicting more than
half of the edges incorrectly.
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Figure 4: (a) Linear regression fit between the average performance of neural causal discovery methods and log10(λ̂)

measure. The p-value for spearman rank correlation between λ̂ and ESHDCPDAG and is 4e-6, signifying anti-monotonic
correlation. b) Performance of benchmarked methods in terms of ESHDCPDAG with resect to dataset size for ER(10, 2)
graphs, averaged over 30 samples.

4.2. λ̂ and NCD method performance

To investigate the tie between λ̂ metric and the difficulty
of neural causal discovery, we generate 30 graphs from
the ER(10, 2) class, introduced in Section 4.1. Based on
each graph, we define three different SCMs, resulting in
90 distinct distributions. From each one we generate 8,000
observational samples. We then evaluate the λ̂ of each
dataset and compute the performance of the selected neural-
based causal discovery methods.

In Figure 4a we present the relationship between average
performance of all methods and the logarithm of λ̂ (for
readibility) for all 90 distributions in the dataset. The perfor-
mance is better (lower SHD) for distributions with higher λ̂.
The Spearman’s rank correlation coefficient is ρ = −0.46
and p-value for sperman correlation test is 4e − 6. This
result proves the strong anti-monotonicity between λ̂ and
average methods’ performance.

4.3. Lack of scalability

We want to investigate the impact that the sample size has
on a causal discovery methods. We expect it to behave simi-
lar to our findings from Section 3.2 as we hypothesize that
the lack of performance is due to relation between data and
approximators. We would like to note that the NCD meth-
ods use one neural network to approximate the distribution
under changing set of parents, which is harder task than the
one in Section 3.2. We evaluate the benchmarked methods
on datasets with varying number of observational samples,
ranging from 20 to 8,000 observations.

The results, presented in Figure 4b, reveal no consistent
pattern of improvement in the ESHDCPDAG metric as obser-
vational sample size increases, despite extensive hyperpa-

rameter tuning (as described in Section 4.1). For example,
DiBS shows the best performance on larger datasets, but
its improvements plateau after around 800 samples. Simi-
larly, BayesDAG shows only marginal improvements with
larger sample sizes and is unable to outperform DiBS. DCDI
improves up to 250 samples and then maintains consistent
performance regardless of the sample size, similar to DiBS.
Interestingly, SDCD’s performance is poor on datasets with
small number of observations but begins to improve once
sample sizes exceed 250, though is unable to reach DCDI’s
performance, for larger sample sizes the rate of improve-
ment decreases.

Further analysis of the effect of sample size on smaller
graphs ER(5, 1)is presented in Figure 14 in Appendix F.
Overall, the results on smaller graphs align with the trends
observed on larger graphs. Specifically, while some methods
improve with increasing sample size, others show inconsis-
tent or even degraded performance.

Even for the bigger sample sizes the results remains un-
satisfactory. This confirms our observations, made in the
previous sections about datasets difficulty and the amount
of samples required for convergence. We conclude, that the
amount of data needed to recover a graph from a true MEC
with those methods is out of scope for most applications.

5. Limitations and Future Work
• Work of Lippe et al. (2022) suggests that interventional

data can replace the need for faithfulness assumption.
A valuable extension of our research would be to eval-
uate the performance of the benchmarked methods on
interventional datasets to understand their limitations
and potential improvements in this context.
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• Our work provides experimental evidence for the chal-
lenging nature of causal discovery from non-linear data,
especially when using neural networks. It would be
beneficial for the community to establish theoretical
bounds on the best possible performance in such cases.

• Neural networks are well known approximators, with
well established position in Machine Learning commu-
nity. It will be however interesting to investigate other
classes of aproximators, that could possibly have a bet-
ter suited characteristic for the task of causal discovery.

• Our conclusions are based on characteristic of distri-
butions associated with Bayesian Networks provided
by Uhler et al. (2013). The result says that for any
fixed λ, λ-strong faithful distributions vanish exponen-
tially with the size of the graph. It may hold, though is
highly unprobable, that real-world distributions adhere
to λ-strong faithfulness despite large sizes of the graph.
Further investigation is required.

6. Discussion
In this work, we conducted a detailed experimental anal-
ysis of the relationship between the λ-strong faithfulness
property in nonlinear datasets and the performance of causal
discovery methods based on neural function approximators.
Our findings indicate that the λ-strong faithfulness assump-
tion imposes a significant constraint on causal discovery
from finite data, adversely affecting both convergence rates
and accuracy.

We further demonstrate that the proportion of λ-strongly
faithful distributions in various connected graph types with
nonlinear mechanisms decreases rapidly as graph density
and size increase. This phenomenon implies that, in practi-
cal scenarios involving large or dense graphs, the probability
of encountering λ-faithful data becomes vanishingly small.
We also show a clear correlation between the degree of λ-
strong faithfulness and the performance of differentiable,
score-based causal discovery methods, indicating that the
assumption plays a central role in the tractability of these
approaches.

To the best of our knowledge, this is the first study to empir-
ically connect λ-strong faithfulness to the performance of
score-based causal discovery methods, extending prior theo-
retical insights which focused primarily on independence-
test-based approaches (Zhang & Spirtes, 2003). Our results
suggest that gains in efficiency and accuracy for neural-
based causal discovery methods may be approaching funda-
mental limits, driven by the intrinsic properties of the data
distributions rather than algorithmic shortcomings.

These findings highlight the importance of evaluating causal
discovery algorithms on real-world datasets, which may

deviate significantly from synthetic benchmarks based on
uniformly initialized neural networks. A promising direc-
tion in this regard is the recent work by Gamella et al. (2025),
which uses physical simulations to generate causal datasets.
This approach preserves the complexity and realism of phys-
ical systems while offering ground-truth causal structures,
making it a valuable resource for future benchmarking.

While many causal discovery methods rely on the strong
faithfulness assumption, alternative frameworks have been
proposed. For linear structural causal models (SCMs),
Van de Geer & Bühlmann (2013) demonstrated that sparsity-
based assumptions—specifically the sparsest Markov repre-
sentation—can recover causal structure without relying on
strong faithfulness. Similarly, Ng et al. (2021) proposed a
method that operates under a relaxed faithfulness condition,
requiring fewer conditional independencies to hold. Another
underexplored direction involves relaxing the discovery task
itself by focusing on uncovering partial causal structures or
specific conditional independencies, as explored by Amini
et al. (2022).

In conclusion, we believe that recognizing and addressing
the limitations imposed by λ-strong faithfulness is crucial
for the development of more robust and generalizable causal
discovery methods. Future research should explore both
alternative assumptions and reformulations of the causal
discovery task to better align with the complexities of real-
world data.
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A. Additional background information
A.1. d-separation

Two nodes A and B in a DAG are said to be d-separated by a set of nodes Z if all paths between A and B are blocked
when conditioning on Z. A path is considered blocked under the following conditions:

• If a path includes a non-collider node (a node where arrows do not converge, i.e., a chain or fork), conditioning on that
node blocks the path. For example, if A→ C → B, or A← C → B, conditioning on C makes A and B independent.

• If the path includes a collider (a node where arrows converge, i.e., A→ C ← B), the path is blocked unless either the
collider itself or one of its descendants is conditioned on. For instance, in the path A→ C ← B, conditioning on C or
its descendants would unblock the path, making A and B dependent.

• If there are multiple paths connecting A and B, all paths must be blocked for A and B to be considered d-separated.
Even if one path remains unblocked, A and B are d-connected, meaning they are dependent.

In causal discovery, we are interested in making statements about the relationship between the causal graph and the data
distribution. Given a causal graph G and the data distribution P , the Markov assumption states that if variables A and B
are d-separated in the graph G by some conditioning set C, then A and B are conditionally independent in the distribution
P when conditioned on the same conditioning set C. Formally, this can be written as:

A ⊥⊥G B|C ⇒ A ⊥⊥P B|C (12)

A.2. Example of faithfulness violation

In this subsection we will illustrate a faithfulness violation for a simple 3 nodes structural causal model with linear functions
and additive Gaussian noise. Such a setup is aimed at showing example of faithfulness violation while maintaining simplicity.
The example and graphics is from Uhler et al. (2013).

Figure 5: Simple 3 nodes graph G.

First lets define a structural causal model on a graph G shown in graph 5.

X1 = ε1,

X2 = a12X1 + ε2,

X3 = a13X1 + a23X2 + ε3,

(ε1, ε2, ε3) ∼ N (0, I),

Since data is linear we can use covariance to measure dependency of variables. Using defined structural causal model, we
can write:
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cov(X1, X2) = a12, (13)
cov(X1, X3) = a13 + a12a23, (14)
cov(X2, X3) = a212a23 + a12a13 + a23, (15)

cov(X1, X2 | X3) = a13a23 − a12, (16)
cov(X1, X3 | X2) = −a13, (17)
cov(X2, X3 | X1) = −a23. (18)

If we define a13, a23, a12 in such a way that:
a13 ∗ a23 − a1,2 = 0

then we get a situation where: nodes 1 and 2 are not d-separated given node 3 in a graph G and X1 ⊥⊥ X2|X3 which is a
violation of faithfulness.

B. Additional strong faithfulness statistics
Experimental setup In all experiments regarding strong faithfulness statistics, including those in the main paper, we used
the following approach. We sampled a 100 graph structures according to each of the graph sampling methods: Erdos-Renyi,
small world (Watts-Strogats), scale-free(Barabasi-Albert) and bipartite. Then we used randomly initialized neural networks
with 2 layers, hidden dimension 8, and ReLU activation, to generate 1.5M samples from each SCM. Using those datasets we
have been able to obtain λ̂ according to Equation 6.

Most of the graph generation methods return graphs that are guaranteed to be connected. However, Erdos-Renyi graphs can
be disjoined if the density parameter is chosen incorrectly. The ER graphs have the property that when the probability of
an edge exceeds log(n)/n, where n is the number of nodes, then they are almost surely connected (Erdös & Rényi, 1959).
Thus, in case of ER graphs we adjust the density of the graph with its size. We use the following formula for the probability
of an edge:

p = ϵ · log(n)
n

, (19)

where ϵ is the density parameter. We consider two scenarios (i) the density is kept the lowest possible to guarantee the graph
is connected ϵ = 1.1 (ii) the density is tuned so that we obtain graphs with 10 nodes and expected number of edges 20,
which are comprable in terms of density with graphs generated with other methods, ϵ = 1.9302. Table 2 summarizes the
densities of the ER graphs. All other types of graphs have expected numbers of edges equal to twice the number of nodes.

Number of nodes 4 5 6 7 8 9 10

Expected number of edges ϵ = 1.1 2.29 3.54 4.93 6.42 8.01 9.67 11.40
Expected number of edges ϵ = 1.9302 4.01 6.21 8.65 11.27 14.05 16.96 20.00

Table 2: The densities of ER graphs.

The results are presented in Figures 6 & 7. In all cases we observe rapid vanishing of faithful distributions as graph size or
density increases.

C. NN-opt method details
Details of experiments with NN-opt method In order to test which architecture perform best, we conducted an experiment,
training NN-opt method with different sizes of neural networks. The trained models were judged in terms of negative log
likelihood and their performance on the task of causal discovery measured as ESHDCPDAG. For each tested architecture, we
performed the search for the best regularization coefficient, the tested coefficients were: [0.1, 0.3, 1.0]. Among all models,
the best results were consistently obtained for regularization coefficient = 0.3. The learning rate was set to 0.0003. The
results of the experiments are shown in Table 3. As we can see, the best , both in case of NLL and ESHDCPDAG was model
with two layers and hidden dimension of size 8. Notably this is the same architecture, as was used to generate data.
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Figure 6: Summary of results of λ statistics for Erdős–Rényi graphs.
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Figure 7: Additional results of λ statistics for (a) bipartite graphs, (b) scale-free graphs (genrated using Barabasi-Albert
model), and (c) small-world graphs (generated using Watts-Strogatz model). The results are consistent with observations on
ER graphs. We observe rapid vanishing of λ-faithful distibutions.
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Selected hyperparameters: Number of layers = 2, hidden dimension = 8, regularization coefficient = 0.3.

Model architecture NLL ESHDCPDAG

[4] 0.33(0.22, 0.43) 3.63(2.83, 4.67)

[4, 4] 0.2(0.1, 0.3) 3.15(2.0, 4.65)

[4, 4, 4] 0.23(0.14, 0.34) 3.03(2.33, 4.07)

[8] 0.18(0.06, 0.29) 2.13(1.43, 3.07)

[8, 8] 0.13(0.02, 0.24) 1.23(0.77, 1.87)

[8, 8, 8] 0.22(0.12, 0.32) 2.77(1.97, 3.67)

[16] 0.14(0.03, 0.26) 1.77(1.1, 2.73)

[16, 16] 0.33(0.24, 0.42) 2.4(1.0, 4.32)

[16, 16, 16] 0.88(0.8, 1.0) 4.0(3.07, 4.97)

Table 3: The performance of NN-opt method models with different architectures. The numbers in the subscripts, correspond
to 0.95 confidence intervals. The experiments were performed on 30 graphs.

D. Errors in λ̂ computation

We evaluate the quality of λ̂ estimation. In Table 4 we report the bootstrap standard error and bootstrap bias for estimates λ̂.
We use a standard data generation protocol based on ER graphs and randomly initialized NNs, as described in the main
text. We generate datasets for 10 random SCMs and report aggregate statistics for two sample sizes: 1.5M as was used
to generate plots in Section 3.1 and Appendix B and 100K as was used in Section 4. The bootstrap size was 100 due to
computational constraints.

Min Max Mean Median

100K samples Bootstrap Standard Error 2.00e-3 9.38e-3 3.93e-3 3.19e-3
Bootstrap Bias 4.73e-5 5.92e-3 2.84e-3 3.92e-3

1.5M samples Bootstrap Standard Error 6.17e-4 1.15e-2 2.2e-3 7.98e-4
Bootstrap Bias 5.25e-6 1.19e-2 1.71e-3 1.81e-4

Table 4: Aggregated statistics of bootstrap standard error and bias of λ̂ estimation.

E. Details About Benchmark and Extensions
E.1. Dataset generation details

The data is generated using a fully connected MLP with two hidden layers of 8 units each, initialized with random weights
drawn from a standard normal distribution and use the ReLU (Nair & Hinton, 2010) activation function to introduce
non-linearity. The neural network models the relationships between variables in the underlying DAG, where each node
represents a variable and the edges capture dependencies between these variables. The input variables, which serve as the
initial causes in the graph, are sampled from normal distributions. The noise added to the system is sampled from a Gaussian
distribution N (0, 0.12), simulating uncertainty in the model. The dataset consists of 100,000 data points, and the data is
rescaled to maintain consistency across samples.

E.2. Model hyperparameters

We performed extensive hyperparameter tuning for all methods. In addition to the MLP architecture grids described in
Appendix E.4, the following hyperparameter grids were explored:

DCDI Grid search: Regularization coefficients tested: [0.1, 0.3, 1, 2]. Values below 0.001 or above 5 led to poor
performance. Selected: Regularization coefficient = 1, learning rate = 0.001, Augmented Lagrangian tolerance = 10−8.
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Figure 8: Comparison of ESHDCPDAG using different MLP architectures as functional approximator for ER(10, 2) dataset
and 800 observational samples, averaged over 30 samples.

DiBS Grid search: Alpha linear: [0.01, 0.02, 0.05], kernel parameters: h latent: [0.5, 1.0, 2.0], h theta: [20.0, 50.0, 200.0],
step size:[0.05, 0.03, 0.01, 0.005, 0.003]. Selected: Alpha linear = 0.02, h latent = 1.0, h theta = 50.0, step size = 0.03.

E.3. Testing models architecture

Finally, we investigate the impact of the neural model architecture, used as the functional approximator, on the performance
of the benchmarked methods. Specifically, we assess how the capacity of different architectures influences the ability to
uncover causal relationships from synthetic data. To provide a comprehensive evaluation, we explored architectures with 1,
2, and 3 layers, configured with 4, 8, and 16 hidden units.

Results, presented in Figure 8 show the comparison of ESHDCPDAG metric for the benchmarked architectures across
all methods on dataset with 800 samples. We find that the choice of neural architecture has no significant impact on
performance across methods. We conclude that any of the tested MLP architectures provides sufficient capacity to model the
underlying distribution effectively. Additionally for BayesDAG and SDCD we implemented layer normalization and residual
connections. We investigated the impact of this changes in architectures and did not found any significant differences, see
Figure 13. The details and additional experimental results are in Appendix E.4.

BayesDAG Grid search: Scale noise: [0.1, 0.01], scale noise p: [0.1, 0.01, 1.0], lambda sparse: [50.0, 100.0, 300.0,
500.0]. Selected: Scale noise = 0.1, scale noise p = 0.01, lambda sparse = 500.0.

SDCD Grid search: Constraint modes: [”exp”, ”spectral radius”, ”matrix power”]. The ESHDCPDAG metric showed
similar results across modes. Selected: Spectral radius was chosen for faster computation, with a learning rate of 0.0003.

For each of these method, all other parameters were retained from the original paper or code.

E.4. Model architecture comparision within method
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Figure 9: Comparison of the ESHDCPDAG of DCDI for datasets with different observational sample size. The result is based
on 10 graphs.

DCDI In Figure 9, we present the performance analysis of the DCDI across various neural network configurations. Our
results reveal that the optimal performance is generally achieved by a two-layer model with a hidden dimension of 4.
Interestingly, we observe that more expressive models exhibit diminished performance relative to the smaller models.

DiBS Figure 10 presents the performance analysis of the DiBS method across various neural network configurations. As
with the DCDI method, we evaluate models with different numbers of layers and hidden dimension sizes. Consistent with
DCDI, we find that the optimal performance for DiBS is achieved by a two-layer model with a hidden dimension of 4.
However, the performance landscape for DiBS exhibits less variability across different model configurations. Single-layer
models perform nearly as well as the optimal two-layer model.

Furthermore, we observe that more expressive models do not show a significant degradation in performance as was seen
with DCDI. The overall differences in metric across all tested configurations are relatively small for DiBS, indicating a more
consistent performance across varying levels of model complexity.

BayesDAG Figure 11 compares the performance of BayesDAG across different model architectures and sample sizes. For
smaller sample sizes, BayesDAG’s performance remains consistent, with noticeable differences emerging only at a sample
size of 800. This suggests that BayesDAG requires more data to fully leverage its model capacity, unlike what we observed
for DCDI and DiBS, where performance varied more significantly across sample sizes. Notably, the best-performing
architecture for DiBS is a two-layer MLP with a hidden dimension of 4.

SDCD Figure 12 presents a similar comparison of SDCD performance across different MLP architectures and sample
sizes. Interestingly, the three-layer architectures show stagnant performance regardless of sample size, while the one-layer
models exhibit significant improvement as the sample size increases. Overall, the best performance is achieved with a
one-layer MLP with 8 hidden units, although it remains comparable to the one-layer MLP with 4 hidden units and the
two-layer MLP with 4 hidden units.

Model architecture Inspired by BayesDAG, we also implemented layer normalization and residual connections to assess
their impact. We conducted additional experiments on both the best-performing model ([4, 4]) and the largest model ([8,
8, 8]). The size of networks was similar to the one proposed in articles introducing tested methods: in DCDI it was [16,
16], for SDCD it was [10, 10], for DiBS [5, 5] and for BayesDAG it was a two layer network with a hidden size varying
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Figure 10: Comparison of the performance of DiBS depending on the model architecture and number of samples.

with dimensionality. The results of these tests are presented Figure 13. We show, there is no significant and consistent
improvement across all networks, supporting our initial conclusion that variations in MLP architecture have minimal impact
on performance.

F. Justification of evaluation metrics
We design metrics based on popular SHD, F1-score metrics, which we explain shortly below.

The Structural Hamming Distance. SHD (Tsamardinos et al., 2006) quantifies the difference between the predicted
graph and the ground truth graph by counting the number of edge insertions, deletions, and reversals required to transform
one into the other. SHD values indicate the degree of error in recovering the true causal structure: lower SHD values signify
better predictions, while higher values indicate more significant discrepancies.

The F1-score. The F1-Score measures the harmonic mean of precision and recall for edge predictions, where precision
reflects the fraction of correctly predicted edges among all predicted edges, and recall reflects the fraction of correctly
predicted edges among the true edges.

We evaluate causal discovery methods based on observational data. In general, in this setup, it is only possible to recover
true DAG up to a Markov Equivalence Class, a class of graphs with the same conditional independence relationships, due to
identifiability issues TODO cite pearl?. If we were to compare the predicted and ground true graphs using standard metrics
like SHD or F1-score we would obtain distorted results — graphs from the MEC class do not generally receive these metrics’
optimal values.

Therefore, we modify the formulation of the metrics to account for the limitations of causal discovery from observational
data. We define ESHDCPDAG and F1-ScoreCPDAG. These metrics attain their optimal values, 0 and 1 correspondingly, for
all DAG from ground truth MEC. Additionally, some of the benchmarked methods are Bayesian thus return the posterior
over possible solutions. For those methods, we design metrics that compute the expected value over the posterior and
approximate it with the Montecarlo estimator based on a sample of size 100.

We define Expected SHD between CPDAGs as:
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Figure 11: Comparison of the performance of DiBS depending on the model architecture and number of samples.

ESHDCPDAG(G,G) = EG∗∼G[SHD(CPDAG(G),CPDAG(G∗))], (20)

where G is the resulting distribution of graphs, G∗ is a graph sampled from G and G is the ground true graph. Similarly, we
compute the Expected F1-Score between the CPDAGs:

F1-ScoreCPDAG(G,G) = EG∗∼G[F1-Score(CPDAG(G),CPDAG(G∗))]. (21)

subsectionInfluence of sample samples on performance on the graph with ER(5, 1)

Figure 14 shows the ESHDCPDAG of benchmachmarked methods for different sample sizes. For all observational sample
sizes, SDCD and DCDI have a large confidence interval. For datasets with 2,500 and 8,000 samples, BayesDAG performs
better than other benchmarked methods, getting small confidence interval for 8,000 samples.

G. Algoritm pseudocode
Pseudocode of the method described in Sec. 3 is provided in Algorithm 1.
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Figure 12: Comparison of the performance of SDCD depending on the model architecture and number of samples.

Algorithm 1 Overview of NN-Opt

1: Input: Set of nodes V , training data {Di}i∈V , regularization coefficient λ, G the space of DAGs with nodes V
2: # Part 1: Network fitting
3: for i ∈ V and π ⊆ V \ {i} do ▷ For each variable and each possible parent set
4: θi,π ← TRAINNETWORK(i,D, π) ▷ Train ensembles of 3 networks
5: end for
6: # Part 2: Exhaustive graph search
7: for G ∈ G do ▷ Evaluate all possible DAGs
8: scoreG ←

∑
i∈V COMPUTENLL(Di, DPaG

i
, θi,PaG

i
) ▷ Compute NLL using ensemble

9: scoreG ← scoreG + λ · |G| ▷ Add regularizing term
10: end for
11: Output: argmax{scoreG : G ∈ G}
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Figure 13: Comparison of the performance of SDCD depending on the model architecture and number of samples.
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Figure 14: Comparision of ESHDCPDAG for benchmarked methods on ER(5, 1) dataset, averaged over 10 graphs.
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