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Abstract

Despite the essential need for comprehensive considerations in responsible AI, factors such
as robustness, fairness, and causality are often studied in isolation. Adversarial perturba-
tion, used to identify vulnerabilities in models, and individual fairness, aiming for equitable
treatment of similar individuals, despite initial differences, both depend on metrics to gen-
erate comparable input data instances. Previous attempts to define such joint metrics often
lack general assumptions about data and were unable to reflect counterfactual proximity.
To address this, our paper introduces a causal fair metric formulated based on causal struc-
tures encompassing sensitive attributes and protected causal perturbation. To enhance the
practicality of our metric, we propose metric learning as a method for metric estimation
and deployment in real-world problems in the absence of structural causal models. We also
demonstrate the applications of the causal fair metric in classifiers. Empirical evaluation
of real-world and synthetic datasets illustrates the effectiveness of our proposed metric in
achieving an accurate classifier with fairness, resilience to adversarial perturbations, and a
nuanced understanding of causal relationships.

1 Introduction

While fairness, robustness, and causality are central to responsible AI, they are often studied in isolation
despite the need for systems to address them all comprehensively. In this work, however, we demonstrate
that individual fairness and adversarial robustness, both of which rely on metrics to produce comparable
data instances, are interconnected and can be learned simultaneously. On one hand, the concept of individual
fairness, as defined by Dwork et al., 2012 focuses on the fair treatment of similar individuals to prevent
discrimination based on individual characteristics. The definition of individual fairness, whether through the
Lipschitz formulation (Dwork et al., 2012) or the ϵ− δ method (John et al., 2020), requires the creation and
assessment of a fair metric. These metrics are essential quantitative tools for evaluating whether algorithms
adhere to the principles of individual fairness.

On the other hand, Adversarial perturbation, as outlined by (Goodfellow et al., 2014) and (Madry et al.,
2017), involves the purposeful manipulation of input data to uncover machine learning model vulnerabilities
or assess robustness. This concept is closely related to metrics that measure the impact of changes in input
data on model performance. Often, it involves using distance metrics to quantify the differences between
original and perturbed inputs.

In this work, we show that metrics for both individual fairness and adversarial robustness can be simul-
taneously defined through the lens of causality to better reflects the true characteristics of the underlying
data. When dealing with a causal structure underlying data, traditional metrics like the Euclidean norm,
fail to account for causal relationships, as noted by Kilbertus et al. (Kilbertus et al., 2017). This limitation
becomes especially evident when aiming for fair treatment for sensitive attributes. In such scenarios, the
most suitable metric would be one that generates minimal values for counterfactual instances associated with
each data point.

Previous research frequently simplified counterfactual calculations by only modifying levels of sensitive fea-
tures. In the work by Dominguez et al. (Dominguez-Olmedo et al., 2022), adversarial perturbations were
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integrated into structural causal models (SCM), with a primary focus on continuous features, which may
have neglected aspects of fairness. On the other hand, Ehyaei et al. (Ehyaei et al., 2023b) developed a
fair metric based on functional causal structure, tailored to safeguard sensitive attributes. However, their
approach is limited to specific examples and lacks support from a well-established theoretical foundation.

In this study, we aim to bridge the gap between fair metrics in causal structures and sensitive attributes. We
begin by identifying suitable properties that align with our objectives and subsequently derive this metric
from observational data without knowing the causal structure assumption. In Section 4, we first introduce
a definition for a causal fair metric, effectively addressing both causality and the protection of sensitive
attributes. Next, in Section 5, we use the causal fair metric to create a protected causal perturbation, enhanc-
ing adversarial perturbation with causality and sensitivity considerations. We also examine its geometric
properties and attributes. Constructing a causal fair metric typically requires knowledge of SCM, which is
often unavailable in many real-world applications. To overcome this limitation, we propose to derive the
metric from data. In Section 6, we illustrate that relying solely on observational or interventional data is
insufficient for learning the causal fair metric. To address the absence of SCMs, an alternative approach
involves metric learning using tagged distance data. These tags indicate proximity values or labels indicating
data point closeness. By discussing the requirements of other methods, we focus on deep metric learning due
to its compatibility with the structure of causal fair metrics. To enhance practicality, we employ contrastive
and triplet deep metric learning scenarios. Finally, in Section 8, through experiments on both synthetic
and real-world datasets, we empirically verify our theoretical findings. Our results illustrate that knowing
the structure of the causal fair metric amplifies learning performance within deep metric learning scenarios.
Furthermore, our empirical analysis reveals that label-based metric approaches strike a practical balance
between applicability and accuracy and are more aligned with the concept of protected causal perturba-
tion. To demonstrate the effectiveness of our framework, we incorporate our empirical causal fair metric
into a fairness learning method for classifiers. Unlike existing approaches that require knowledge of the
causal structure, ours operates without SCMs, yet yields notable enhancements in fairness while preserving
accuracy. In summary, our main contributions are:

• Causal Fair Metric (§4): We present a causal fair metric that incorporates both causal consid-
erations and the protection of sensitive attributes. In addition, we demonstrate how our proposed
causal fair metric can be embedded in exogenous space.

• Protected Causal Perturbation (§5): We use our proposed causal fair metric to generate ad-
versarial perturbation within causal structures while addressing fairness concerns.

• Causal Fair Metric Learning (§6): Theoretically, we show that, without SCM assumptions,
learning a fair metric from observational or interventional distributions is not guaranteed. We
introduce a learning algorithm designed to extract a causal fair metric from empirical data, with a
focus on both causality and fairness considerations.

• Fairness, Robustness and Causality Classifier (§ 7): To demonstrate the effectiveness of our
approach, we apply it to a classification problem and introduce ECAPIFY, which combines metric
learning and fair learning without relying on a known SCM.

2 Related Work

In this section, we explore previous research defining metric learning, whether for adversarial perturbation or
individual fairness. The most relevant study to ours is conducted by Ehyaei et al. (Ehyaei et al., 2023b), which
worked on constructing a fair metric in the presence of causal structures and sensitive attributes. However,
unlike ours, their metric is limited to a specific family of dissimilarity functions and lacks a comprehensive
characterization of its properties. In Mukherjee (Mukherjee et al., 2020), the authors attempted fair metric
learning, but their method didn’t heavily rely on causal structure. They assumed an embedding into a space
where sensitive attributes form a linear subspace but didn’t clarify its connection to SCM. Moreover, they
assumed knowledge of the embedding map during metric learning. In Ilvento (Ilvento, 2020), submetrics
were developed for learning metrics for individual fairness using human judgments. Under specific assump-
tions about point distribution and representative point selection, these submetrics maintained accuracy
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relative to the true metric. However, this work didn’t address the impact of sensitive attributes, which often
compromise metric properties. Spectral-based metric estimation methods, akin to those in Zhang (Zhang
et al., 2016) and Olson (Olson, 2022), often require specific embedding kernel forms or observations of all
pairwise distances d(vi, vj) for guaranteed metric convergence. Fair representation learning (Zemel et al.,
2013; McNamara et al., 2017; Ruoss et al., 2020) aims to map indiviuals to prototypes. Their primary
aim frequently involves eliminating protected attributes while preserving performance-relevant information
during the training phase. Another non-linear metric estimator is the tree-based approach, proposed by
Demirovic (Demirović & Stuckey, 2021). They introduced a novel algorithm using bi-objective optimization
to compute decision trees that are provably optimal for non-linear metrics. Online learning algorithms, as
in (Bechavod et al., 2020; Gillen et al., 2018), ensure a finite number of fairness constraint violations and
bounded regret, relying on some metric-based assumptions. Various spectral, probabilistic, and deep metric
learning methods are discussed in (Ghojogh et al., 2022; 2023; Suárez et al., 2021; Francis & Raimond, 2021).
To the best of our knowledge, none of the existing algorithms address the integration of causal structure and
sensitive attributes in metric learning.

3 Background

Structural Causal Model. A SCM for a set of n random variables V = {Vi}ni=1 is represented by the
tuple M = ⟨G,V,U,F,PU ⟩ (Pearl, 2009), where:

• The set F = {Vi := fi(VPa(i),Ui)}ni=1 contains structural equations, with each equation fi denoting
the causal connection between the endogenous variable Vi, its direct causal parents VPa(i) from
G, and an exogenous variable U = {Ui}ni=1 signifying unobservable background influences. In this
work, we suppose G is a directed acyclic graph.

• The distribution PU of exogenous noise variables factorizes, PU =
∏n
i=1 PUi , due to the assumption

of causal sufficiency.

Under acyclicity, each instance u ∈ U of the exogenous space U uniquely determined by v ∈ V with the
reduced-form mapping g : U → V, where g is obtained by iteratively substituting the structural equations F
following the causal graph’s topological order G. The SCM entails a unique joint distribution PX over the
endogenous variables through the reduced-form mapping, PV(V = v) := PU(U = g−1(v)) where g−1 is the
preimage of g.

Causal Identifiability. Discovering true causal connections among variables solely from observational
data typically necessitates additional assumptions about the structural functions F. One identifiable family
of SCMs is the additive noise model (ANM) (Hoyer et al., 2009), represented by V = f(V) + U. In
ANMs, obtaining the relationship from u to v is straightforward when considering I as the identity function
(I(v) = v), then g is obtained by g = (I − f)−1. Post-nonlinear models (Zhang & Hyvarinen, 2012) and
location-scale noise models (Immer et al., 2023) are other identifiable SCM families.

Interventions. SCMs facilitate modeling and assessing the impact of external manipulation on the system
represented by the intervention (Peters et al., 2017). Two main intervention types are hard interventions
and soft interventions. In hard interventions (expressed as Mdo(VI :=θ)), a subset I ⊆ {1, . . . , n} of features
VI is forcibly fixed to a constant θ ∈ R|I| by excluding relevant parts of the structural equations:

Fdo(VI:=θ) =
{

Vi := θi if i ∈ I
Vi := fi(VPa(i),Ui) otherwise

Hard interventions disrupt the causal connections between affected variables and their ancestral com-
ponents in the causal graph, whereas soft interventions maintain all causal relationships while adjust-
ing the structural equation functions. For example, additive (shift) intervention (Eberhardt & Scheines,
2007), denoted as Mdo(VI+=δ), modify features V using a perturbation vector δ ∈ Rn with equations{
Vi := fi

(
VPa(i),Ui

)
+ δi

}n
i=1.
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Counterfactuals. Counterfactual is a hypothetical scenario that represents what would have happened
if certain interventions or changes were applied to the variables in the SCM. The counterfactual outcome
CF(v, θ) for a specific variable VI under the hard intervention do(VI := θ) can be computed using the mod-
ified structural equations as gθ(g−1(v)), where gθ represents the altered reduced-form mapping Mdo(VI :=θ)

after the intervention.

Sensitive Attribute. A sensitive attribute, like race, holds ethical or legal significance in decision-making,
such as in hiring, lending, or criminal justice, determining equitable treatment or outcomes for individuals
or groups. Let S ∈ {V1, . . . ,Vn} represent a sensitive attribute with domain S (discrete or continuous).
For each instance v ∈ V, the set of counterfactual twins regarding the sensitive feature S is obtained by
v̈ = {v̈s = CF(v, s) : s ∈ S}.

Individual Fairness. Individual fairness, as introduced by Dwork et al., 2012, ensures equitable treatment
for individuals with comparable predefined metric similarities. Two formulations, including the Lipschitz
mapping-based formulation (Dwork et al., 2012):

dY(h(v), h(v′)) ≤ L dV(v, v′) ∀v, v′ ∈ V

and the ϵ-δ formulation (John et al., 2020):

∀v, v′ ∈ V dV(v, v′) ≤ δ =⇒ dY(h(v), h(v′)) ≤ ϵ

have been proposed. Where, dX and dY are metrics for the input and output spaces, respectively, with h
as the classifier and L ∈ R+. The essence of the definition is centered around the fair metric dX , which
measures individual similarity based on relevant attributes.

Counterfactual fairness, as introduced by Kusner et al. (Kusner et al., 2017), defines fairness using causal
models. This approach compares an individual’s actual outcomes with hypothetical outcomes in a scenario
where sensitive features differ. A classifier h is deemed counterfactually fair if it satisfies the following
condition, h(v̈s) = h(v̈s′) ∀s, s′ ∈ S.

4 Fair Metric

The fair metric, often used in previous studies, becomes ambiguous when applied to problems involving
causal structures and sensitive attributes (Ghojogh et al., 2022). To clarify the necessary properties of a fair
metric in these contexts, consider the following example.

Example 4.1 Consider two SCMs, M and M′, describing gender (G), income (I), and education (E). M
models these variables as independent, while M′ specifies a linear causal relationship:

M =


G := UG,

E := UE ,

I := UI

, M′ =


G := UG,

E := G + UE ,

I := G + 2E + UI

, U =


UG ∼ B(0.5)
UE ∼ N (0, 1)
UI ∼ N (0, 1)

Here, UG represents the gender distribution, while UE and UI are intrinsic talents for education and in-
come, respectively. Consider the d(V,V′) = |E−E′|+|I−I′| L1-norm on non-sensitive attributes to compare
individuals. If two individuals have less than a 0.2 unit difference, they are deemed similar. For an indi-
vidual with data v = (M, 1, 2) (M = 1 for Male), a perturbation in education by 0.1 units (∆ = (0, .1, 0))
in M results in CF(v,∆) = (M, 1.1, 2), which is similar to v. In M′, CF(v,∆) = (M, 1.1, 2.2) gives a
distance of 0.3, indicating dissimilarity. To protect against gender bias, individuals with the same intrinsic
characteristics but different genders should behave similarly. This is modeled by a counterfactual change in
gender. In M, CF(v, F ) = (F, 1, 2), so v and its twin are similar because d(v, v̈F ) = 0. However, in M′,
CF(v, F ) = (F, 0,−1), resulting in d(v, v̈F ) = 4, which indicates dissimilarity.
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Figure 1: illustrates the progression from a basic perturbation to a protected causal perturbation ball. Consider a simple
linear SCM with Euclidean norm in both exogenous and endogenous spaces. (a) a perturbation ball that does not account
for causality or the protection of sensitive features, (b) a perturbation ball that includes causality but assumes the absence
of sensitive features, and (c) The counterfactual perturbation space, created using a counterfactual space based on a sensitive
attribute, can be visualized as the axis L of a cylinder. Surrounding ellipses represent a causal perturbation ball BCP

∆ ,
encompassing perturbations of non-sensitive with radii ∆.

The above example shows that combining a causal structure with sensitive attributes requires a dissimilarity
function that remains zero for counterfactual twins and is stable against small changes in non-sensitive
attributes. Creating counterfactual twins is straightforward, but defining small changes for non-sensitive
features needs further exploration. Following Dominguez-Olmedo et al., 2022 and Ehyaei et al., 2023a,
additive interventions are used as perturbations in additive noise models. Now we are ready for a proper
definition of a causal fair metric.

Definition 4.2 (Causal Fair Metric) Let d : V ×V → R≥0 represent a metric defined on the feature space
V, generated by a SCM M. Let S denote a sensitive attribute, and I represent the index set of sensitive
features within the SCM. The metric is called a causal fair metric if it adheres to the following properties:

(i) For all v ∈ V and s ∈ S, the metric is zero only for twin pairs, i.e., d(v, v̈s) = 0.

(ii) For every v ∈ V and any δ > 0, there exists ϵ such that for any sufficiently small intervention (∥∆∥ ≤ ϵ)
on the non-sensitive attributes, the distance d(v,CF(v,∆)) remains less than δ.

The first property highlights that a fair metric maintains counterfactual fairness, meaning the distance
between an instance and its counterfactual is zero. The second property ensures that the intuition of
similarity in the exogenous space is inherited by the feature space, allowing us to set thresholds to define
similarity effectively.

Constructing a metric on M is challenging because it must account for causal relationships in its dissimilarity
function. By applying the causal sufficiency principle, which ensures feature independence in the exogenous
space, we can define individual similarity functions for each feature’s noise. These individual metrics enable
us to construct a holistic metric in the noise space, which is then extended to the feature space through
a push-forward metric, i.e., dV(v, v′) = dU (g−1(v), g−1(v′)). We assume g is invertible, as required for
identifiability and counterfactual identifiability. Bijective generation mechanisms (BGMs), including additive
noise models, satisfy these conditions. However, this approach is inadequate because d must be defined for
every counterfactual of v. Generally, we have Range(M) ⊂

⋃
s∈S Range(Mdo(A:=s)). Therefore, we need to

consider a space that encompasses all counterfactual values.

Definition 4.3 (Semi-latent Space (Ehyaei et al., 2023b)) Consider M with sensitive attributes in-
dexed by I. The converted SCM denoted as MS , is derived from M by removing the causal effects of parents
of sensitive attributes and replacing their exogenous variables with endogenous ones. The structural equations
for MS are as follows:

VS
i :=

{
Vi i ∈ I
fi(Vpa(i)) + Ui i /∈ I
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The exogenous space corresponding to MS , denoted by Q, includes the sensitive attributes and the non-
sensitive parts of the exogenous variables of M. This space called the semi-latent space, is constructed as
Q = S ×UX , where UX is the non-sensitive part of the exogenous space. There map bijective map φ : V → Q
from feature space to the semi-latent space by the below formulation:

φi(v) :=
{
vi i ∈ I
(g−1)i(v) i /∈ I

, φ−1
i (u) :=

{
ui i ∈ I
fi(φ−1

pa(i)(u)) + ui i /∈ I
(1)

where g is the reduced-form mapping of M. The metric construction in the semi-latent space is simpler
compared to the feature space due to the independence of its components. This independence arises from
the sufficiency assumption for Ui and the intervention assumption for VI in the SCM. Let (Qi, di) represent
the metric space for the semi-latent space. We can define the dissimilarity function for all Qi using a product
metric, similar to the Euclidean example i.e., d(x, y) =

√∑n
i=1 di(xi, yi)2. We aim to ascertain the specific

formulations of the causal fair metric, as delineated in Definition 4.2.

Proposition 4.4 Let d : V × V → R be a causal fair metric, then d can be written as a form:

d(v, v′) = dX (φX (v), φX (v′)), (2)

where φX (v) = PX (φ(v)), φ is the mapping from feature space to semi-latent space, PX is a projection on
the non-sensitive subspace of exogenous space, and dX represents the metric defined on the non-sensitive
subspace UX , which exhibits continuity along its diagonal with each of its components.

By aiding the proposition, when the semi-latent space metric is defined by an inner product, the metric takes
the well-known form of a kernelized Mahalanobis distance:

d(v, v′) = ⟨(φ(v) − φ(v′)),Σ(φ(v) − φ(v′))⟩, (3)

where Σ is the projection matrix on non-sensitive exogenous space.

5 Protected Causal Perturbation

An adversarial perturbation ball, a fundamental concept in machine learning robustness, defines a region in
the input space within which data variations do not alter the model’s predicted category.

This concept evaluates the model’s sensitivity to input alterations, especially under adversarial attacks
designed to mislead it. Metrics are crucial in quantifying perturbations by gauging the distance between
original and altered data. In this section, we extend this concept by applying fair causal metrics to define
causal perturbations.

Definition 5.1 (Protected Causal Perturbation) Consider an SCM M that includes sensitive at-
tributes, and let d represent its causal fair metric. We define the protected causal perturbation (PCP) ball
with radius ∆ for an instance v as follows:

BPCP
∆ (v) = {v′ ∈ V : d(v, v′) ≤ ∆}, (4)

where ∆ is a non-negative real number.

We will examine how the shape of the perturbation ball changes when we add causal structures and protect
sensitive features. Fig. 1 shows how the counterfactual ball evolves with these aspects. We define a closed
ball BX

∆ in space X as BX
∆ (x) = {x′ ∈ X : dX (x, x′) ≤ ∆}. Equation 4 gives a simple formula: BPCP

∆ (v) =
φ−1

X (BX
∆ (φ(v))). But since φX is not bijective (because projection function PX is not bijective) when sensitive

features are present, BPCP
∆ and BX

∆ are not isomorphic. Define BCP
∆ as the part of BPCP

∆ that only includes
the causal structure, leaving out the sensitive protected attributes, i.e., BCP

∆ (v) = {v′ ∈ V : P⊥
X (φ(v)) =

P⊥
X (φ(v′)) ∧ φX (v′) ∈ BX

∆ (φX (v)}. We see that BCP
∆ is isomorphic to BX

∆ . Thus, BPCP
∆ is formed by

combining causal balls around each counterfactual instances of v.
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Proposition 5.2 Let BPCP
∆ (v) represent the PCP ball around the instance v with a radius of ∆. It can be

decomposed as:
BPCP

∆ (v) =
⋃
s∈S

BCP
∆ (v̈s), (5)

where S represents the level set of sensitive features (which may be continuous or discrete). BPCP
∆ exhibits

invariance under twins, meaning that for all s ∈ S, we have BPCP
∆ (v) = BPCP

∆ (v̈s).

The PCP definition, along with the causal fair metric property, captures the counterfactual proximity defi-
nition. The subsequent lemma demonstrates that a PCP with a diameter of 0 represents the set of twins.

Proposition 5.3 Let S denote the protected features, and let d be the causal fair metric. The set of coun-
terfactual twins corresponds to the PCP with a zero radius i.e., V̈ = lim∆→0 B

PCP
∆ (v).

6 Causal Fair Metric Learning

From Eq. 2, we can create a fair metric using structural equations and a metric for non-sensitive exogenous
variables. This involves deriving the metric from data and dealing with unknowns such as sensitive features,
the embedding function φ, and the metric for non-sensitive exogenous features. Assuming we know the
sensitive features and have dissimilarity functions for each exogenous component from domain experts. With
these assumptions, understanding the functional structures allows us to construct φ and, in turn, develop
a causal fair metric. This metric is fundamentally linked to counterfactuals, raising the critical question
of whether it’s possible to estimate counterfactuals from observational data. The below example that is
adapted from Peters et al., 2017, § 6.19 investigates the possibility of this idea.

Example 6.1 Let MA and MB be two SCM with below structural equations respectively:

MA =


V1 := U1,

V2 := V1(1 − U2),
V3 := IV1 ̸=V2(IU3>0V1+

IU3=0V2) + IV1=V2U3.

MB =


V1 := U1,

V2 := V1(1 − U2),
V3 := IV1 ̸=V2(IU3>0V1+

IU3=0V2) + IV1=V2(N − U3).

where, U1 and U2 have a Bernoulli distribution with a 0.5 probability, and U3 has a uniform distribution
spanning from 0 to a constant value N . Consider the instance v = (1, 0, 0), with V1 denoted as the sensitive
feature. The counterfactuals for v with respect to MA and MB are (0, 0, 0) and (0, 0, N), respectively.

Both SCMs have identical causal graphs, observational distributions, and intervention distributions for all
possible interventions. Thus, no randomized trials or observational data can distinguish between MA and
MB . Therefore, for counterfactual statements, additional assumptions are essential. Example 6.1 establishes
the following proposition.

Proposition 6.2 (Metric Estimation Not Guaranteed) If the set of descendants of intervened vari-
ables is non-empty, estimating a causal fair metric, from observational data or with a causal graph, necessi-
tates knowledge of the true structural equations, irrespective of data quantity or type.

Prop. 6.2 asserts that without prior SCM knowledge, data-driven metric learning is unfeasible. As SCM
knowledge is often elusive in practice, an alternative is estimating the causal-fair metric directly from data
labeled with distances. Metric learning methods vary, including spectral, probabilistic, and deep learning.
Spectral techniques use eigenvalue decomposition to represent data in a lower-dimensional space, while
probabilistic methods infer a low-dimensional latent variable underlying the high-dimensional data. Both
spectral and probabilistic metric learning techniques employ the generalized Mahalanobis distance, denoted
as Eq. 3, with a predetermined kernel such as the Gaussian kernel or a kernel that is learned, aiming to
optimize the dissimilarity matrix (Ghojogh et al., 2022).

Conversely, deep metric learning utilizes neural networks to determine the embedding function. The network
aims to reduce distances between similar points while increasing distances between dissimilar ones. This
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approach aligns with Proposition 4.4, which asserts the existence of an embedding φX : Rn → Rk. The
causal fair metric is defined as dφ(v, w) = dX (φX (v), φX (w)), with k indicating the dimension of the non-
sensitive exogenous space. This leads to three main insights: the dimensionality of the embedding space, the
guarantee of independence from coordinates in this space, and understandings about dX . These insights are
crucial for creating specific deep-learning techniques for causal fair metric learning.

In designing a neural network, we focus on feed-forward neural networks with a depth of L ≥ 1. These
networks are characterized by their layer widths, denoted as d1, . . . , dL, where d0 = n represents the input
size, and dL = k represents the output size. Each layer has an element-wise activation function σi, which
operates on Rdi−1 and maps to Rdi . The transformation process of the network is expressed as follows:

φW(v) = σL(WL × σL−1(WL−1 × · · ·σ1(W1 × v) · · · )) (6)

Consequently, the causal fair metric can be expressed as d(v, w) = dX (φW(v), φW(w)), where W =
(W1, . . . ,WL) denotes a tuple of matrices. Each matrix Wi ∈ Rdi×di−1 , and dX is a known metric. This
matrix tuple family is symbolized as W, thus allowing the representation of the family of non-linear functions
as Φ = {φW : W ∈ W}.

To assess how the causal fair metric affects deep learning, we need specific measures to track progress
in various scenarios. Kozdoba et al. (Kozdoba & Mannor, 2021) adopted the approach from Bartlett et
al. (Bartlett et al., 2017) by metric learning principles. Their results are based on the following norm
definitions: The spectral norm of a matrix W ∈ Rs×t is denoted as ∥W∥. Additionally, ∥W∥2,1 is introduced
as the sum of the ℓ2 norms of each column in matrix W , where W.,i represents the i-th column of the matrix.

Proposition 6.3 (Kozdoba (Kozdoba & Mannor, 2021)) Consider a feed-forward network with L lay-
ers described in Eq. 6. Assuming that activation functions ρi are λi-Lipschitz, and the feature space V is
bounded with ∥v∥2 ≤ B for all v ∈ V, the Rademacher complexity of Φ for a family of matrix tuples W is
bounded as follows:

R(Φ) ≤ Ō

 1√
n
B2

(
n∏
i=1

λi∥Wi∥

)2
 L∑
i=1

∥Wi∥
2
3
2,1

∥Wi∥
2
3

 3
2
 (7)

Here, ∥Wi∥ represents the supremum norm over W in W for Wi, and ∥Wi∥2,1 is the supremum over W in
W for Wi with respect to the ℓ2,1 norm.

The proposition asserts that deep metric learning can discern embeddings regardless of dimension or metric
(in the Eq. 7, dimensions are not included). However, numerical analysis (§ 8) shows how causal fair metric
assumptions improve estimations compared to general metric learning methods.

7 Causality-aware Fair Adversarial Learning

Fair adversarial learning seeks to predict the target variable accurately while maintaining fairness concerning
sensitive attributes. Using the set of observations D = {(vi, yi)}ni=1, it entails a min-max optimization
problem where the model minimizes classification error and maximizes adversarial loss around each instance
vi.

A key insight from Prop. 6.2 is that fair adversarial learning using just observational data D is unattainable
in causal structures, as inferring a suitable metric for assessing counterfactuals is not possible. Practically,
∆ is set by varying values within a perturbation ball to include samples deemed similar. Essentially, people
are learning the metric based on their experience. At best, this method estimates the upper bound of the
appropriate ∆, highlighting the significance of metric learning.

To initiate fair adversarial learning, the first step is to use metric estimation for constructing BPCP
∆ , as

demonstrated in the subsequent min-max adversarial learning framework:

min
ψ

E(v,y)∼PD [ max
w∈BPCP

∆ (v)
ℓ(hψ(w), y)],
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where PD is empirical distribution corresponding to observation set D and hψ is parametric model with
parameter ψ. In Ehyaei et al. (Ehyaei et al., 2023b), the limitations of gradient descent in adversarial
learning are discussed, and a superior, locally linear method named CAPIFY is proposed for contexts with
causal structures and sensitive attributes. This approach includes integrating regularizers into the loss
function, as detailed below:

R∆(v, y) =µ1 ∗ max
s∈S

ℓ(h(v̈s), y) + µ2 ∗ ∥∇vℓ(CF(v, δ), y)|δ=0∥∗ + µ3 ∗ γ∆(v, y)

where µi are regularize coefficients and the term γ∆(v, y) is obtained by:

max
δ∈BPCP(∆)

|ℓ(CF(v, δ), y) − ℓ(v, y) − δT∇vℓ(CF(v, δ), y)|δ=0 |.

The first part of the regularizer ensures counterfactual fairness by measuring the maximum loss of the
instance label and its twins. The second and third parts assess the adversarial robustness of classifier
h concerning continuous features around each twin w.r.t. causal structure. Calculating these two terms
requires knowledge of the causal functional structure. Without knowing the SCM, twins of an instance
can be estimated using the causal fair metric introduced in Section 6. As the causal structure is unknown,
by using twins, the second and third terms are estimated by maxs∈S{|∆T .∇vℓ(v, y)|v̈s

| + γ̂∆(v̈s, y)}, where
γ̂∆(v, y) = |ℓ(v + ∆, y) − ℓ(v, y) − ∆T .∇vℓ(v, y)|.

By using the last equations, we introduce the ECAPIFY method, which operates without SCM knowledge
and relies solely on metric learning. To train a classifier with ECAPIFY, the following regularizer is added
to the learning loss function.

R̂∆(v, y) = max
s∈S

{µ1 ∗ ℓ(h(v̈s), y) + µ2 ∗ |∆T .∇vℓ(v̈s, y)| + µ3 ∗ γ̂∆(v̈s, y)}

8 Numerical Experiments

In this section, we empirically validate the metric learning method presented in Section 6. We compare our
method, which incorporates causal structure and sensitive information, to standard deep metric learning.
We use deep learning to estimate the embedding function, and Siamese metric learning (Chicco, 2021) as
the baseline. Siamese networks use a neural network ϕ to map inputs v1 and v2 into an embedding space,
minimizing d(ϕ(v1), ϕ(v2)) for similar points and maximizing it for dissimilar ones. Contrastive loss is used:

L = y · d2 + (1 − y) · max(0,m− d)2,

where d = ∥ϕ(v1) − ϕ(v2)∥, y indicates similarity, and m is the margin. Simulations are divided into three
scenarios distance-based, label-based, and triplet-based (further details in § .3).

For designing the embedding network, we use a feed-forward network with 100-node layers and PReLU
activation. We consider two embedding layer dimensions: a known dimension and half the input size for
an unknown network. We test the network’s depth with either 5 or 14 hidden layers and evaluate the
impact of a known metric in the exogenous space by comparing scenarios with both known and unknown
metrics. We investigate the impact of assuming coordinate independence by including a decorrelation loss
function (Patil & Purcell, 2022), which uses the Frobenius norm of the difference between the identity matrix
and XIcor (Chatterjee, 2021), a non-parametric correlation measure, on training performance.

In our numerical experiments, a major challenge is finding well-known datasets in causal inference and
metric learning. Collecting tagged data aligned with specific metrics is becoming increasingly prevalent. For
example, in new Large Language Model (LLM) methodologies, tagged data plays a critical role in providing
explicit feedback on which responses better meet user needs.

To address the lack of appropriate data, for our real-world datasets, Adult (Kohavi & Becker, 1996) and
COMPAS (Washington, 2018), we first establish a causal structure as in Nabi et al. (Nabi & Shpitser, 2018).
We also use synthetic datasets for Linear (LIN) and Non-linear (NLM) SCMs. For each SCM, we create
three data scenarios using its structure. We employ the PCP ball with radii ∆ = 0.1, and 0.2 for contrastive

9



Under review as submission to TMLR

label creation, generating 10,000 samples. We then assess deep metric learning across 100 iterations with
varying random seeds. Note that in our study, we did not study the specifics of the embedding network
architecture. Instead, we employed a straightforward feed-forward network, which is better suited for our
tabular data. This choice aligns with Prop. 6.2, assisting in discerning the impacts of various assumptions.

To assess learning performance, we employ classifier metrics such as accuracy (Acc), Matthews correlation
coefficient (MCC ), false-negative (FN ), and false-positive (FP) rates for label outputs. For embedding kernel
learning, we use root mean square error (RMSE) and mean absolute error (MAE). Continuous metrics are
used in both label and triplet-based kernel learning. In distance-based scenarios, label predictions are made
by generating labels within the BPCP

∆ for uniform performance evaluation across different settings.

To evaluate the ECAPIFY approach, we compare it with traditional empirical risk minimization (ERM ),
Adversarial Learning (AL) as delineated by Madry et al. (Madry et al., 2017), and CAPIFY, which is
recognized for its superior effectiveness in mitigating unfairness, as detailed in Ehyaei et al. (Ehyaei et al.,
2023b). Our simulation settings and performance metrics mirror those in Ehyaei et al. (Ehyaei et al., 2023b).
To measure unfairness we use the unfair area quantity that is defined as the below

Unfair Area := P
(
v ∈ V : ∃v′ such that d(v, v′) ≤ ∆ and h(v) ̸= h(v′)

)
.

Similarly, we define counterfactually unfair area.

Cunterfactual Unfair Area := P
(
v ∈ V : ∃a ∈ A such that h(v) ̸= h(v̈a)

)
.

We set the perturbation radius at ∆ = 0.01 and report the percentages of non-robust, non-counterfactual
instances, and their combination, along with accuracy. Additional simulation details are in the appendix,
and our numerical analysis codes are available on GitHub.

Results of Metric Learning As demonstrated in Fig. 2 and in details in Tab. 1, our simulation confirms
that knowing the metric and dimensions of the embedding space improves accuracy in metric learning.
Although Prop. 6.2 asserts that deep learning can converge with various layer sizes without embedding space
knowledge, we show that additional information significantly enhances results, particularly in triplet-based
scenarios.

Real-World Data Synthetic Data
Adult COMPAS Lin NLM

∆ Loss Function Acc↑ FN↓ MAE ↓ RMSE ↓ Acc FN MAE RMSE Acc FN MAE RMSE Acc FN MAE RMSE

0.10
Distance-based 0.948 0.036 0.029 0.044 0.989 0.008 0.006 0.009 0.992 0.007 0.004 0.005 0.976 0.018 0.007 0.013
Label-based 0.822 0.003 0.098 0.134 0.842 0.000 0.098 0.130 0.829 0.000 0.096 0.129 0.843 0.000 0.095 0.126
Triplet-based 0.619 0.202 0.173 0.228 0.614 0.206 0.177 0.233 0.637 0.219 0.177 0.233 0.738 0.200 0.174 0.230

0.20
Distance-based 0.955 0.033 0.050 0.078 0.988 0.010 0.010 0.017 0.990 0.008 0.006 0.008 0.991 0.007 0.007 0.013
Label-based 0.825 0.002 0.192 0.266 0.850 0.000 0.193 0.257 0.838 0.000 0.195 0.259 0.852 0.000 0.189 0.252
Triplet-based 0.805 0.187 0.346 0.457 0.841 0.073 0.353 0.466 0.663 0.210 0.354 0.467 0.743 0.150 0.348 0.459

Table 1: The table shows results of a numerical experiment comparing different learning scenarios, evaluated
by accuracy (Acc - higher is better), false negative error (FN - lower is better), root mean square error
(RMSE - lower is better), and mean average error (MAE - lower is better). The best scenario for each
dataset and perturbation radius is in bold. XIcor correlation loss function and a 5-layer embedding network
are used. To show variation, we included error bars in Figures 2–4 and detailed measures in Tables 2–4
in the appendix. This table shows our framework effectively estimates causal fair metrics, achieving high
confidence across datasets, perturbation radii, and tagged data scenarios.

Fig. 2 shows that embedding learning works well in distance-based and label-based scenarios, where adding
the decorrelation loss function does not make a big difference. But in the triplet scenario, where only metric
relations are known, this loss function improves results.

To find the optimal configurations for embedding network layers, we ran experiments with various depths
of networks. We find that five layers network is ideal for label-based and distance-based scenarios, whereas
triplet-based scenarios perform better with deeper network structures. Further results are available in the
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Figure 2: This figure demonstrates the effect of causal metric assumptions on the accuracy of deep metric models: (up)
Accuracy performance comparison based on embedding layer sizes and embedding space metric knowledge shows improved
prediction accuracy. (down) In simpler models, the network efficiently learns embedding space properties. However, with less
precise metric data, as in Triplet-based scenarios, adding decorrelation methods boosts accuracy.
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Figure 3: Presents the results of our numerical experiment, evaluating ECAPIFY’s performance across various models and
datasets. (Top left) Bar plot comparing models using unfair area percentage (lower is better) at ∆ = .01. (Top right)
Counterfactual unfair area percentage (lower is better). (Bottom left) Matthews correlation coefficient illustrating classifier
performance (higher is better). (Bottom right) Bar plot contrasting methods by prediction performance (higher is better).
CAPIFY performs better because it assumes knowledge of the causal metric, whereas ECAPIFY first learns the metric before
fitting the model.

Appendix (see Tab. 4). To summarize simulation results, analysis of various learning methodologies shows
that distance-based metric learning is most effective when precise distance-based data is available. However,
in practical situations, this ideal may not be achievable. In such cases, the label-based method becomes
a viable alternative for metric approximation. This method’s accuracy improves when embedding space
dimensions and metric information is combined, as Tab. 1 supports. The label-based approach also has a
lower false negative rate compared to other methods, making it effective in approximating the true metric.
This is particularly useful in scenarios requiring fair metrics, like robust learning, as it helps maintain
robustness criteria and builds a stronger model. When label data is unavailable, the triplet method, enhanced
with a decorrelation loss function and deeper networks, effectively deduces the embedding function.
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Results of ECAPIFY. In Fig. 3, our simulation results, utilizing both real-world and synthetic datasets,
show that ECAPIFY, which is equipped with metric learning and not necessitating knowledge of SCM,
yields results akin to CAPIFY (regarded as an oracle), achieving similar effectiveness in diminishing unfair
areas with ∆ = 0.01. Additionally, there is a notable performance improvement compared to both ERM
and AL, which concentrate on adversarial training, while still preserving high prediction accuracy. A key
aspect of ECAPIFY is that, despite Prop. 6.2 highlighting the impracticality of adversarial training with
only observational data, ECAPIFY offers a feasible approach using empirical data. Essentially, without
knowledge of the SCM, estimating a causal fair metric is crucial for adversarial learning.

9 Discussion and Future Work

In this study, we introduce the concept of a causal fair metric and propose a protected causal perturbation
to integrate individual fairness, adversarial robustness, and causality. By leveraging causal structures and
protecting sensitive attributes, our approach enables the training of a causally aware, fair, and robust classifier
without relying on a structural causal model (SCM). Instead, we utilize metric learning to balance individual
fairness and adversarial robustness.

Our approach prioritizes fairness, robustness, and causality, aligning with responsible AI principles. However,
it inherits vulnerabilities from underlying models, such as issues with privacy, explainability, and safety,
requiring careful consideration in high-stakes applications. We emphasize that this work serves as a proof of
concept, encouraging further exploration and collaboration. Although our method demonstrates promising
results, it also highlights key limitations and avenues for future exploration.

Our methodology assumes an additive noise model, which may not fully encapsulate the complexity of
real-world causal relationships, complicating additive interventions in general SCMs. Additionally, despite
similarities to existing metric learning methods, our approach lacks theoretical guarantees for estimator
performance and faces challenges such as local minima. Future work aims to address these issues by impos-
ing constraints on the causal fair metric structure and developing explicit convergence theorems. Another
significant challenge is the scarcity of real-world datasets suited for metric learning with causal structures.
Furthermore, our proposed notion of protected causal perturbation extends to other domains within causal
machine learning, such as algorithmic recourse, causal bandits, and reinforcement learning, offering a broader
framework for analyzing fairness and robustness.

References

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. Advances in neural information processing systems, 30, 2017.

Yahav Bechavod, Christopher Jung, and Steven Z Wu. Metric-free individual fairness in online learning.
Advances in neural information processing systems, 33:11214–11225, 2020.

Sourav Chatterjee. A new coefficient of correlation. Journal of the American Statistical Association, 116
(536):2009–2022, 2021.

Davide Chicco. Siamese neural networks: An overview. Artificial neural networks, pp. 73–94, 2021.

Emir Demirović and Peter J Stuckey. Optimal decision trees for nonlinear metrics. In Proceedings of the
AAAI conference on artificial intelligence, 2021. Volume 35, Number 5, Pages 3733–3741.

Ricardo Dominguez-Olmedo, Amir H Karimi, and Bernhard Schölkopf. On the adversarial robustness of
causal algorithmic recourse. In International Conference on Machine Learning, pp. 5324–5342. PMLR,
2022.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226,
2012.

12



Under review as submission to TMLR

Frederick Eberhardt and Richard Scheines. Interventions and causal inference. Philosophy of Science, 74(5):
981–995, 2007.

Ahmad-Reza Ehyaei, Amir-Hossein Karimi, Bernhard Schölkopf, and Setareh Maghsudi. Robustness im-
plies fairness in causal algorithmic recourse. In Proceedings of the 2023 ACM Conference on Fairness,
Accountability, and Transparency, pp. 984–1001, 2023a.

Ahmad-Reza Ehyaei, Kiarash Mohammadi, Amir-Hossein Karimi, Samira Samadi, and Golnoosh Farnadi.
Causal adversarial perturbations for individual fairness and robustness in heterogeneous data spaces. arXiv
preprint arXiv:2308.08938, 2023b.

Deena P Francis and Kumudha Raimond. Major advancements in kernel function approximation. Artificial
Intelligence Review, 54:843–876, 2021.

Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Spectral, probabilistic, and deep metric
learning: Tutorial and survey. arXiv preprint arXiv:2201.09267, 2022.

Benyamin Ghojogh, Mark Crowley, Fakhri Karray, and Ali Ghodsi. Elements of dimensionality reduction
and manifold learning. Springer Nature, 2023.

Stephen Gillen, Christopher Jung, Michael Kearns, and Aaron Roth. Online learning with an unknown
fairness metric. Advances in neural information processing systems, 31, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. In Advances in neural information processing systems, pp. 689–696,
2009.

Christina Ilvento. Metric learning for individual fairness. In 1st Symposium on Foundations of Responsible
Computing, 2020.

Alexander Immer, Christoph Schultheiss, Julia E Vogt, Bernhard Schölkopf, Peter Bühlmann, and Alexan-
der Marx. On the identifiability and estimation of causal location-scale noise models. In International
Conference on Machine Learning, pp. 14316–14332. PMLR, 2023.

Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fairness in machine
learning models. In Conference on Uncertainty in Artificial Intelligence, pp. 749–758. PMLR, 2020.

Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, and
Bernhard Schölkopf. Avoiding discrimination through causal reasoning. Advances in neural information
processing systems, 30, 2017.

Ronny Kohavi and Barry Becker. Uci adult data set. UCI Meachine Learning Repository, 5, 1996.

Mark Kozdoba and Shie Mannor. Two regimes of generalization for non-linear metric learning. OpenReview,
ICLR 2022, https://openreview.net/forum?id=zPLQSnfd14w, 2021.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In Advances in
Neural Information Processing Systems, pp. 4069–4079, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Daniel McNamara, Cheng Soon Ong, and Robert C Williamson. Provably fair representations. arXiv preprint
arXiv:1710.04394, 2017.

Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun. Two simple ways to learn
individual fairness metrics from data. In International Conference on Machine Learning, pp. 7097–7107.
PMLR, 2020.

13



Under review as submission to TMLR

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2018. Volume 32, Number 1.

Conlan Olson. Algorithmic Fairness, Metric Embedding, and Metric Learning. PhD thesis, Harvard Univer-
sity, 2022.

Pranita Patil and Kevin Purcell. Decorrelation-based deep learning for bias mitigation. Future Internet, 14
(4):110, 2022.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi,
Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local linearization.
Advances in Neural Information Processing Systems, 32, 2019.

Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. Learning certified individually fair
representations. Advances in neural information processing systems, 33:7584–7596, 2020.

Juan Luis Suárez, Salvador García, and Francisco Herrera. A tutorial on distance metric learning: Math-
ematical foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing, 425:
300–322, 2021.

Anne L Washington. How to argue with an algorithm: Lessons from the compas-propublica debate. Colo.
Tech. LJ, 17:131, 2018.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In
International conference on machine learning, pp. 325–333. PMLR, 2013.

Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear causal model. arXiv preprint
arXiv:1205.2599, 2012.

Luwan Zhang, Grace Wahba, and Ming Yuan. Distance shrinkage and euclidean embedding via regularized
kernel estimation. Journal of the Royal Statistical Society Series B: Statistical Methodology, 78(4):849–867,
2016.

14



Under review as submission to TMLR

Symbol Notion
SCM Structural causal model
d(vi, vj) Fair distance metric between vi

and vj
M Structural causal model
V Feature or endogenous space

includes n random variables
{Vi}ni=1

U noise or exogenous space includes
n random variables {Ui}ni=1

G Causal graph
F Set of structural equations fi
PU Exogenous probability distribu-

tion
g : U → V reduced-form mapping from U to

V
PV Feature probability distribution
ANM Additive noise model
Mdo(VI :=θ)) Hard intervention respect to I

subset of feature
Mdo(VI+=δ) Additive intervention
CF(v, θ) counterfactual instance respect

to hard intervention
gθ Altered reduced-form mapping

w.r.t. Mdo(VI :=θ)

S Sensitive attribute
S The level sets of sensitive at-

tribute
v̈s = CF(v, s) Counterfactual twin for S = s
v̈ Set of all twins
dX Metric on feature space
dY Metric on label space
h : X → Y Classifier function
CF(v, δ) counterfactual for additive noise

interventions
d : V × V → R≥0 Causal fair metric
δ|I = 0 Causal perturbation over non-

sensitive part
B(p) Bernoulli distribution
Q Semi-latent space
φ : V → Q embedding map from v to the

semi-latent space
φ−1 Inverse of embedding map φ
(Qi, di) metric space for each semi-latent

space component
X Non-sensitive part of semi-latent

space
dX Metric that is define on X
PX Projects semi-latent spate to X
φX = PX (φ) Combination of embedding and

projection on X
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Symbol Notion
PCP Protected causal perturbation
BPCP

∆ (v) PCP ball for instance v with
radii ∆

BX
∆ simple closed ball with radii ∆ in

X
BCP

∆ Non-sensitive part of BPCP
∆ ball

σi activation function on layer i-th
φW Neural net embedding function
W Matrix parameters of neural net
W Parameter space for tuples W
Φ Space of all embedding functions
∥W∥ Spectral norm on Matrix
∥W∥2,1 Sum of the ℓ2 norms of each col-

umn in matrix W
R(Φ) Rademacher complexity of Φ
D {(vi, yi)}ni=1 set of observational

data
PD Observational probability
ℓ Learning loss function
R∆ CAPIFY regularizer
R̂∆ ECAPIFY regularizer
Lδ Huber loss function
[.]+ Standard Hinge loss function
Prop. Proposition
Fig. Figure
Eq. Equation
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.1 Additional Background

Definition .1 ((Pseudo-) Metric Space) A metric space (X, d) is defined as a set X accompanied by a
non-negative real-valued function d : X ×X −→ R≥0, which is referred to as a metric. This metric function
d adheres to the subsequent properties for any x, y, z ∈ X:

• Non-negativity: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

When the positivity condition, i.e., d(x, y) = 0 if and only if x = y is relaxed, the d is called pseudometric
(or semi-metric).

Definition .2 (The pull-back & push-forward metric) let f : U → V be a mapping between the met-
ric spaces (U , dU ) and (V, dV). The push-forward metric d induced by the function f is defined as:

d(u1, u2) = dV(f(u1), f(u2)); u1, u2 ∈ U

Similarly, the pull-back metric on the space U is defined as:

d(v1, v2) = dU (f−1(v1), f−1(v2)); v1, v2 ∈ V

These definitions allow us to relate distances in U and V via the mapping f and its inverse f−1.

Definition .3 (Huber Loss) For a given predicted value ŷ and true target value y, the Huber loss function
is defined as:

Lδ(ŷ, y) =
{

1
2 (ŷ − y)2, if |ŷ − y| ≤ δ

δ|ŷ − y| − 1
2δ

2, otherwise

where ŷ is the predicted value, y is the true target value, and δ is a positive constant that determines the
threshold for switching from quadratic loss (L2) to linear loss (L1).

.2 Proofs

Proposition 4.4.

Let’s consider a causal fair metric denoted as d : V × V → R, with an associated embedding φ : V → Q,
mapping from the feature space to a semi-latent space. We define d∗ as the pull-back metric of d onto Q:

d∗(q1, q2) = d(φ−1(q1), φ−1(q2))

d∗ possesses metric properties, and we aim to elucidate which properties it inherits from Definition 4.2. We
consider a decomposition of Q into S × X , and let q = φ−1(v), where v ∈ V. Utilizing this decomposition,
we express q as (s, x). Property (i) of the causal fair metric implies:

d(v, v̈s′) = d∗((s, x), (s′, x)) = 0 ∀s′ ∈ S

This property implies that d∗ is invariant to the sensitive part S. To demonstrate this, we assert that for
any two points q1 = (s1, x1) and q2 = (s2, x2), along with an arbitrary s0 ∈ S, the following equality holds:

d∗((s1, x1), (s2, x2)) = d∗((s0, x1), (s0, x2))
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By utilizing the triangle property of d∗, we can establish:

d∗((s1, x1),(s2, x2)) ≤ d∗((s0, x1), (s2, x2)) +
����������:0
d∗((s1, x1), (s0, x1)) =⇒

d∗((s1, x1), (s2, x2)) ≤ d∗((s0, x1), (s2, x2))

The distance d∗((s1, x1), (s0, x1)) is zero due to the first property. Similarly, it can be shown that:

d∗((s0, x1),(s2, x2)) ≤ d∗((s1, x1), (s2, x2)) +
����������:0
d∗((s1, x1), (s0, x1)) =⇒

d∗((s0, x1), (s2, x2)) ≤ d∗((s1, x1), (s2, x2))

it concludes that:
d∗((s0, x1), (s2, x2)) = d∗((s1, x1), (s2, x2))

similarly, we can show:
d∗((s0, x1), (s2, x2)) = d∗((s0, x1), (s0, x2))

This last equation implies that d∗ is invariant to the sensitive subspace. If we consider dX as the induced
metric of d∗ on the sensitive subspace X , then we can express:

d∗((s1, x1), (s2, x2)) = dX (x1, x2)

The second property of Def. 4.2 can be expressed in a simplified form based on dX . It implies that for every
x ∈ X , the distance dX (x, x+ δ), where δ ∈ Rdim(X ), is continuous with respect to δ. This continuity implies
that dX is continuous along each component on its diagonal, i.e., (x, x).

Finally, if we replace x with PX (φ(v)), where PX is the projection operator onto the subspace X within Q,
we obtain:

d(v, w) = dX (PX (φ(v)), PX (φ(w)))
This equation completes the proof.

Proposition 5.2.

The proof is straightforward when we write out the definitions. Let φ(v) = (s, x) represent the embedding
of the variable v in the semi-latent space. To begin, we can demonstrate how the semi-latent space enables
us to describe the counterfactual of instance v concerning the hard action do(S:=s′) as follows:

φ−1(φ(v) ⊙I s
′) = φ−1((s, x) ⊙I s

′) = φ−1((s′, x)) = CF(v, do(S:=s′)) = v̈s′

In the above Equation, we use the symbol v ⊙I θ to represent a masking operator that modifies the values
of the entries corresponding to set I in vector v by replacing them with θ. The validity of the last line in
Equation .2 is based on the definition of the semi-latent space embedding.

By the definition 5.1, the BPCP
∆ (v) is equal to:

BPCP
∆ (v) = {v′ ∈ V : d(v, v′) ≤ ∆} = {v′ ∈ V : dX (PX (φ(v)), PX (φ(v′))) ≤ ∆} =

{v′ ∈ V : dX (x, x′) ≤ ∆} =
⋃
s∈S

{v′ ∈ V : φ(v′) = (s, x′) ∧ dX (x, x′) ≤ ∆} =⋃
s∈S

{v′ ∈ V : P⊥
X (φ(v′)) = s ∧ dX (φX (v̈s), φX (v′)) ≤ ∆} =⋃

s∈S
{v′ ∈ V : P⊥

X (φ(v̈s)) = P⊥
X (φ(v′)) ∧ φX (v′) ∈ BX

∆ (φX (v̈s)} =⋃
s∈S

BCP
∆ (v̈s)

The last equation completes the proof.
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Proposition 5.3.

To present the result, we must first prove the following lemma:

Lemma .4 Let d be a causal metric, and let dX be the corresponding embedding metric on the non-sensitive
part of the exogenous space. For the closed ball BX

∆ , we have:

lim
∆→0

BX
∆ (x) = x

Proof .5 We establish the aforementioned lemma through a proof by contradiction. Let us assume that there
exists another point, denoted as x′ ̸= x, within the set lim∆→0 B

X
∆ (x). Consequently, we have dX (x, x′) = 0.

If we consider v′ = φ−1((s, x′)), then for v′, we have d(v, v′) = 0, since v′ /∈ {v̈s}. However, this contradicts
the property inherent to one of the causal fair metrics.

By utilizing the above lemma and Prop. 5.2, we can represent the result as follows:

BPCP
0 (v) = lim

∆→0
BPCP

∆ (v) = lim
∆→0

⋃
s∈S

BCP
∆ (v̈s) =

⋃
s∈S

lim
∆→0

BCP
∆ (v̈s) =⋃

s∈S
lim

∆→0
{v′ ∈ V : φ(v′) = (s′, x′) ∧ s′ = s ∧ x′ ∈ BX

∆ (x)} =⋃
s∈S

{v′ ∈ V : φ(v′) = (s′, x′) ∧ s′ = s ∧ x′ ∈ lim
∆→0

BX
∆ (x)} =⋃

s∈S
{v′ ∈ V : φ(v′) = (s, x)} =

⋃
s∈S

v̈s

.3 Simulation Scenarios

• Distance-based: Utilizing distance-tagged triplets (vi, v′
i, di), where di indicates the non-

negative real number d(vi, v′
i) as a distance. We also apply the Huber function ℓ(vi, v′

i, di) =
Lδ(di, d(φ(vi), φ(v′

i))) for learning loss.

• Label-based: Utilizing a Siamese network (Chicco, 2021) with a contrastive loss for triplets
(vi, v′

i, yi), where yi ∈ {0, 1} indicates proximity between points, and the loss function ℓ(vi, v′
i, yi)

equals to (1 − yi)d(φ(vi), φ(v′
i)) + yi[−d(φ(vi), φ(v′

i)) + m]+ , here m > 0 is the marginal and
[.]+ := max(., 0) is standard Hinge loss.

• Triplet-based: In this approach, tuples (v1
i , v

2
i , v

3
i , yi) are considered, where yi denotes the closeness

of v1
i to v2

i compared to v1
i and v3

i . Embedding is trained using a Siamese network with the triplet
loss function ℓ(v1

i , v
2
i , v

3
i , yi) = [d(φ(v1

i ), φ(v2
i )) − d(φ(v1

i ), φ(v3
i )) +m]+ .

.4 Synthetic Data Models

In the § 8, we detail the structural equations employed to formulate the SCMs for both LIN and NLM
models. The protected feature, denoted as S, and the non-sensitive variables represented by Xi are derived
based on the subsequent structural equations:

• linear SCM (LIN):

F =


S := US , US ∼ B(0.5)
X1 := 2S + U1, U1 ∼ N (0, 1)
X2 := S −X1 + U2, U2 ∼ N (0, 1)

• Non-linear Model (NLM)

F =


S := US , US ∼ B(0.5)
X1 := 2S2 + U1, U1 ∼ N (0, 1)
X2 := S −X2

1 + U2, U2 ∼ N (0, 1)
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Where B(p) represents Bernoulli random variables characterized by a probability p, and N (µ, σ2) denotes
normal random variables, which are defined by a mean of µ and a variance of σ2.

.5 Real-World Data

In our study, we employed the Adult (Kohavi & Becker, 1996) and COMPAS (Washington, 2018) datasets,
constructing an SCM from the causal graph by Nabi (Nabi & Shpitser, 2018). For the Adult dataset, we
considered features like sex, age, and education-num, with sex as a sensitive attribute. For COMPAS,
features included age, race, and priors count, with sex as the sensitive attribute.

.6 Hyperparameter Tuning

In our experimental setup, we generated 10,000 samples for each SCM model. The data was divided into
batches of 1,000, and the learning process spanned 100 epochs. The coefficient of the decorrelation regularizer
was set to 0.1. Furthermore, in the contrastive label-based scenario, the margin was set equal to the radius
of the experiment, while in the triplet-based scenario, the margin was set to zero to have more sensitivity
for metric learning.

.7 Training Methods

In our study, we train decision-making classifiers, denoted as h(x), using various training objectives:

• Empirical Risk Minimization (ERM): Minimizes expected risk for classifier parameters ψ,
defined as:

min
ψ

E(v,y)∼PD [ℓ(hψ(v), y)]

• Adversarial Learning (AL): Trains the model against adversarial perturbation:

min
ψ

E(v,y)∼PD [ max
δ∈B∆(v)

ℓ(hψ(v + δ), y)]

• CAPIFY: Combines locally linear (Qin et al., 2019) method principles with known CAP as a
perturbation attack:

min
ψ

E(v,y)∼PD [ℓ(hψ(x), y) + µ1 ∗ max
s∈S

ℓ(h(v̈s), y) + µ2 ∗ γ(∆, v) + µ3 ∗ ∥∇X
v f(v)∥∗]

• ECAPIFY: Combines LLR method principles with CAP as a perturbation attack:

min
ψ

E(v,y)∼PD [ℓ(hψ(x), y) + max
s∈S

{µ1 ∗ ℓ(h(v̈s), y) + µ2 ∗ |∆T .∇vℓ(v̈s, y)| + µ3 ∗ γ̂∆(v̈s, y)}]

We utilize binary cross-entropy loss as our loss function ℓ.

.8 Metrics

We use different metrics to evaluate trainers’ performance in terms of accuracy, CAPI fairness (Ehyaei et al.,
2023b), counterfactual fairness, and adversarial robustness:

• Acc: Classifier accuracy, expressed as a percentage.

• M: The Matthews Correlation Coefficient (MCC) for binary classification quality. It ranges from
−1 (perfect inverse prediction) to +1 (perfect prediction), with 0 indicating random prediction.
Formula:

(TP × TN − FP × FN)√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Where TP, TN, FP, and FN are True Positives, True Negatives, False Positives, and False Negatives,
respectively.
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Figure 4: The performance metric of the learning scenario with varying knowledge regarding the embedding
layer size.

• MAE: Mean Absolute Error is calculated as MAE = 1
n

∑n
i=1 |yi − ŷi|.

• RMSE: Root Mean Square Error with formulas: =
√

1
n

∑n
i=1(yi − ŷi)2.

• UnfairArea: Proportion of data points within the unfair area of radius ∆ as defined in
Ehyaei (Ehyaei et al., 2023b).

• Non − RobustArea: Fraction of non-robust data points to adversarial perturbation within radius
∆, equivalent to the unfair area in the absence of a sensitive attribute.

• CounterfactualUnfairArea: Percentage of data points showing counterfactual unfairness, analo-
gous to the unfair area when perturbation radius is zero.

.9 Additional Numerical Results

In the subsequent tables and figures, additional numerical analysis results are presented to support the
assertions of this study. Their explanations can be found in § 8.
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Embedding Layer Dimension

Loss Function Performance Metric Known Embedding Space Unknown Embedding Space

Distance-based

Accuracy ↑ 0.983 ± 0.014 0.882 ± 0.038
False Negative ↓ 0.013 ± 0.01 0.043 ± 0.005
False Positive ↓ 0.005 ± 0.004 0.075 ± 0.039
Matthews Correlation ↑ 0.965 ± 0.027 0.766 ± 0.073
Mean Absolute Error ↓ 0.016 ± 0.017 0.105 ± 0.023
Root Mean Square Error ↓ 0.025 ± 0.027 0.17 ± 0.041

Label-based

Accuracy ↑ 0.845 ± 0.012 0.812 ± 0.021
False Negative ↓ 0 ± 0.001 0.003 ± 0.003
False Positive ↓ 0.155 ± 0.012 0.186 ± 0.019
Matthews Correlation ↑ 0.725 ± 0.019 0.67 ± 0.036
Mean Absolute Error ↓ 0.192 ± 0.003 0.19 ± 0.003
Root Mean Square Error ↓ 0.257 ± 0.006 0.266 ± 0.009

Triplet-based

Accuracy ↑ 0.763 ± 0.08 0.708 ± 0.088
False Negative ↓ 0.226 ± 0.154 0.292 ± 0.133
False Positive ↓ 0.109 ± 0.076 0.107 ± 0.063
Matthews Correlation ↑ 0.529 ± 0.157 0.415 ± 0.176
Mean Absolute Error ↓ 0.351 ± 0.004 0.35 ± 0.004
Root Mean Square Error ↓ 0.463 ± 0.004 0.462 ± 0.004

Table 2: The table displays the average performance metrics for comparing scenarios with knowledge of
embedding dimensions and their corresponding metrics against scenarios with no knowledge of the embedding
space. Green cell highlights denote superior performance, while smaller values indicate the standard deviation
of the estimations.

Decorrelation Regularizer Function

Loss Function Performance Metric - XICOR

Distance-based

Accuracy ↑ 0.984 ± 0.012 0.983 ± 0.014
False Negative ↓ 0.012 ± 0.008 0.013 ± 0.01
False Positive ↓ 0.004 ± 0.004 0.005 ± 0.004
Matthews Correlation ↑ 0.969 ± 0.023 0.965 ± 0.027
Mean Absolute Error ↓ 0.016 ± 0.017 0.016 ± 0.017
Root Mean Square Error ↓ 0.024 ± 0.028 0.025 ± 0.027

Label-based

Accuracy ↑ 0.843 ± 0.017 0.845 ± 0.012
False Negative ↓ 0 ± 0.001 0 ± 0.001
False Positive ↓ 0.156 ± 0.017 0.155 ± 0.012
Matthews Correlation ↑ 0.721 ± 0.028 0.725 ± 0.019
Mean Absolute Error ↓ 0.19 ± 0.008 0.192 ± 0.003
Root Mean Square Error ↓ 0.256 ± 0.008 0.257 ± 0.006

Triplet-based

Accuracy ↑ 0.669 ± 0.032 0.763 ± 0.08
False Negative ↓ 0.318 ± 0.146 0.226 ± 0.154
False Positive ↓ 0.117 ± 0.09 0.109 ± 0.076
Matthews Correlation ↓↑ 0.339 ± 0.063 0.529 ± 0.157
Mean Absolute Error ↓ 0.351 ± 0.002 0.351 ± 0.004
Root Mean Square Error ↓ 0.464 ± 0.003 0.463 ± 0.004

Table 3: The table displays average performance metrics for various scenarios, considering the presence of
different decorrelation policies. Green cells highlight the best performance, while smaller values represent
standard deviations of the estimates.
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Network Layer

Loss Function Performance Metric CIFNet 14 Layers CIFNet 5 Layers

Distance-based

Accuracy ↑ 0.846 ± 0.066 0.924 ± 0.091
False Negative ↓ 0.078 ± 0.039 0.047 ± 0.053
False Positive ↓ 0.076 ± 0.035 0.029 ± 0.039
Matthews Correlation ↑ 0.693 ± 0.131 0.849 ± 0.182
Mean Absolute Error ↓ 0.07 ± 0.049 0.029 ± 0.038
Root Mean Square Error ↓ 0.104 ± 0.07 0.044 ± 0.056

Label-based

Accuracy ↑ 0.799 ± 0.028 0.819 ± 0.032
False Negative ↓ 0.008 ± 0.009 0.005 ± 0.012
False Positive ↓ 0.192 ± 0.027 0.176 ± 0.024
Matthews Correlation ↑ 0.644 ± 0.049 0.68 ± 0.06
Mean Absolute Error ↓ 0.108 ± 0.055 0.113 ± 0.06
Root Mean Square Error ↓ 0.154 ± 0.078 0.153 ± 0.081

Triplet-based

Accuracy ↑ 0.543 ± 0.032 0.642 ± 0.065
False Negative ↓ 0.306 ± 0.102 0.181 ± 0.038
False Positive ↓ 0.151 ± 0.081 0.177 ± 0.029
Matthews Correlation ↑ 0.091 ± 0.063 0.284 ± 0.13
Mean Absolute Error ↓ 0.204 ± 0.109 0.206 ± 0.104
Root Mean Square Error ↓ 0.269 ± 0.144 0.271 ± 0.138

Table 4: To determine the optimal number of layers required for the best estimation of the embedding
function, a comparison was conducted between two networks containing 5 and 14 layers, respectively.
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