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Abstract
Recent foundation models for natural images,
such as DINOv2, emphasize data curation as
a critical component of the pretraining pipeline.
These approaches typically aim to remove near-
duplicate images and address semantic imbalance
by applying clustering techniques to image rep-
resentations extracted from pretrained models.
While prior work on data curation primarily fo-
cuses on reducing computational cost while main-
taining model quality, in this study we investigate
data specialization—that is, whether reducing
dataset size can improve model quality under a
compute-controlled setting. We experiment with
two remote sensing datasets, Million-AID and
Maxar, apply two data pruning techniques to ob-
tain smaller subsets, and pretrain self-supervision
iBOT models while keeping the compute budget
constant. We evaluate our models by k-NN on
three remote sensing tasks. We show that filtering
by hierarchical clustering improves the transfer of
Maxar pretraining by 3 percentage points while
removing 98.5% of the dataset. On the contrary,
neither of the filtering methods improve the trans-
fer of Million-AID pretraining. This motivates
future work on identifying and removing “dis-
tracting” inputs from the pretraining datasets to
improve downstream performance.

1. Introduction
The emergence of foundation models in computer vision
has been influenced by task-agnostic representation learn-
ing in Natural Language Processing (NLP) (Radford et al.,
2019; Raffel et al., 2020; Chowdhery et al., 2022; Hoff-
mann et al., 2022), where large-scale pretraining on raw
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Internet text data has enabled models to achieve remarkable
performance across a variety of tasks in both zero-shot and
few-shot settings (Brown et al., 2020).This success has mo-
tivated the development of vision-based foundation models
(Bommasani et al., 2021), which aim to learn transferable
representations applicable to both image-level tasks, such
as image classification, and pixel-level tasks, such as seg-
mentation.

Recent works, like DINOv2 (Oquab et al., 2024; Vo et al.,
2024), highlight the importance of data curation in natu-
ral imagery, addressing challenges of data duplication and
class imbalance, etc. These approaches leverage feature
embeddings extracted by self-supervised networks and em-
ploy clustering-based filtering techniques (e.g., k-NN or
k-Means) to refine training datasets.

However, most work on data curation uses data filtering
to enhance the computational efficiency of the pretraining
process. The motivation behind the current work is to use
filtering methods to improve model quality, while using
the same amount of compute. We use the term data special-
ization to contrast our goal with that of data curation.

We focus on remote sensing, as there are several publicly
available datasets of varying diversity and quality. The
goal is to identify “distracting” images in the dataset, that
when removed, the downstream performance of the self-
supervised models can be improved. Note that the definition
of the “distractiveness” of the image is not independent
from the dataset; in fact its role might strongly depend on
the availability of similar images in the dataset.

We investigate SemDeDup (Abbas et al., 2023) and Hierar-
chical Clustering (Vo et al., 2024) for the purpose of dataset
specialization. Specifically, we pretrain a self-supervised
model using the iBOT algorithm (Zhou et al., 2021) on
various subsets of the Million-AID and Maxar datasets,
deduplicated, and balanced datasets, where we use DINOv2
features for clustering. The impact of these different data
versions is evaluated through k-NN classification on three re-
mote sensing classification benchmarks: UC Merced (Yang
& Newsam, 2010), RESISC-45 (Cheng et al., 2017), and
EuroSAT (Helber et al., 2019).

Furthermore, we synthetically duplicate the filtered datasets
for controlled experiments on pretraining. We define data
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Figure 1. Average k-NN classification performance of iBOT models pretrained on filtered subsets of the Million-AID and Maxar datasets.
The model trained on a hierarchically sampled subset of Maxar achieves significantly better performance than the one trained on the full
dataset, despite using only 1.5% of the images. All experiments within each plot use the same compute budget.

deduplication as the process of identifying and removing
semantically similar or identical data points, duplication as
the introduction of additional copies of existing data points
and balancing as the process of adjusting the dataset to
promote uniform class distributions (even if the classes are
unknown).

Our main finding is that the impact of data specialization
techniques varies significantly across datasets. On Million-
AID, we observed no substantial improvement compared to
using the full dataset. In contrast, on Maxar, subsampling
via hierarchical clustering consistently enhanced model qual-
ity—even when 98.5% of the images are removed. We hy-
pothesize that the largest clusters in the pretraining dataset,
as identified by the hierarchical clustering algorithm, contain
many redundant or low-value images that act as distractors,
ultimately having a net negative effect on the downstream
performance of self-supervised models.

2. Related Work
2.1. Self-Supervised Pretraining

After the promising achievements of self-supervised pre-
training on large-scale web-collected data in natural lan-
guage processing, similar approaches (He et al., 2022; Zhou
et al., 2021; Oquab et al., 2024) have gained popularity for
natural images. One such method, DINOv2 (Oquab et al.,
2024), demonstrates strong performance on downstream
tasks, even with a frozen encoder or k-NN classification.
For aerial imagery, especially remote sensing images, lever-
aging self-supervised pretraining is crucial since annotating
such data is complex and labor-intensive. As mentioned
in some works (Oquab et al., 2024; Abbas et al., 2023; Vo
et al., 2024; Dubey et al., 2024), the quality of pretraining
data plays a significant role in model performance. These
methods apply data curation steps to large-scale raw datasets
to balance class distributions and remove duplicates. In con-
trast, Goyal et al. (2024) argues that when sufficient training

compute is available, data typically removed by filtering
can actually be beneficial in later training iterations. In this
work, we analyze the effect of data curation for pretraining
self-supervised models on remote sensing images.

2.2. Data Curation

According to the methods mentioned above, data quality
is important for the final model performance. To achieve
this, some remote sensing methods, such as SatlasPretrain
(Bastani et al., 2023) and GFM (Mendieta et al., 2023), col-
lect data in a curated manner. However, they do not address
issues related to duplicates and class imbalance. Identifying
duplicates or organizing an unlabeled dataset into mean-
ingful categories is challenging. In DINOv2, this problem
is addressed by using another network, SSCD (Pizzi et al.,
2022), as a feature extractor and filtering the data based on
the relationships between feature vectors. SemDeDup (Ab-
bas et al., 2023), on the other hand, utilizes features provided
by the CLIP (Radford et al., 2021) encoder. Hierarchical
clustering method (Vo et al., 2024) applies a hierarchical
k-means algorithm to sample a desired amount of data from
a large-scale dataset while maintaining a balance between
clusters. As an alternative to clustering-based sampling,
Van Assel & Balestriero reformulated the initial problem as
a graph matching task, where the goal is to identify a data
subset that is most distinct in terms of pairwise similarities.

3. Data Specialization Experiments
We start from the original versions of Million-AID (Long
et al., 2021) and Maxar datasets (MaxarTechnologies, 2022).

Every image in the original dataset was divided into smaller
tiles, which gives 2 106 700 images for Million-AID and
51 197 237 for Maxar. To create the Maxar dataset, we used
Open Data Program, where images of crisis events can be
found in different dates.
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3.1. Filtering methods

SemDeDup. SemDeDup is a universal data filtering algo-
rithm designed to remove semantically similar datapoints
from large-scale datasets. It can be applied to both images
and text. The filtering algorithm follows these steps: (1)
Extract feature vectors for all datapoints using a feature
extractor. We use pretrained DINOv2 (Oquab et al., 2024)
of size ViT-B. (2) Cluster these feature vectors using the
k-means algorithm. (3) Compute pairwise cosine similarity
within each cluster, considering pairs with a similarity above
a defined threshold as duplicates. (4) For each group of se-
mantic duplicates, retain the image with the lowest cosine
similarity to the cluster centroid.

Note that the clustering step is necessary to reduce com-
putational complexity; however, if sufficient memory is
available, it is possible to skip this step and compute pair-
wise cosine similarity across all datapoints directly. We set
k = 50K and use a similarity threshold of 0.8.

To obtain further deduplication, we apply this algorithm
N times, iteratively filtering the remaining dataset. For
Million-AID we have 414K images after N = 50 iterations.
For Maxar, we have 12M images with N = 1 iteration, and
8M images after N = 190 iterations.

Clustering Based Sampling. This algorithm enables sam-
pling a balanced dataset from a large-scale data collection. It
applies hierarchical k-means clustering to the given dataset
and then samples the requested amount of data in a balanced
manner, ensuring that no large semantic categories remain.
For our clustering levels, we set n = 4 and assign these
numbers of clusters at each level: k = 50K, 10K, 5K, 1K.
The algorithm supports filtering down to a specified number
of images. We use different thresholds to obtain multiple
subsets of the datasets.

3.2. Model Pretraining and Evaluation

We pretrain our model for a constant number of iterations.
All models process exactly 50 million images during the pre-
training. This implies that the larger subsets are trained for
fewer epochs. We follow the original iBOT framework, ex-
cept for the schedulers. Specifically, we adopt the Warmup-
Stable-Decay (WSD) scheduler (Hu et al., 2024) for learn-
ing rate, weight decay, and momentum scheduling. Each
iteration requires approximately 241 GFLOPs.

We evaluate the pretrained models using k-NN algorithm
(k = 1) on three classification datasets. We believe k-NN
offers a more precise assessment of model quality as it
minimizes the confounding factors typically introduced by
linear probing or heavier fine-tuning of the models.

We perform test set bootstrapping to obtain mean mi and
standard deviation σi of accuracies on all datasets (i =

Figure 2. Average k-NN classification performance of iBOT mod-
els pretrained on full and the best performed subset of the Million-
AID and Maxar datasets.

1, 2, 3). For each pretrained model, we report the average
of the three means as our main metric, and the normalized
square root of the sum of variances on individual datasets
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Figure 3. Analysis of the artificially duplicated versions of the
filtered Million-AID dataset.

3.3. Results

Figure 1 shows that we were not able to improve down-
stream performance using SemDeDup filtering for both
datasets. Instead, the filtering based on hierarchical cluster-
ing produced surprising results. On Million-AID, keeping
1.5M+ images gave a slight improvement in performance,
while on Maxar we saw downstream performance improv-
ing until up to the removal of 98.5% of the original dataset.
The peak performance was observed at 750K images.

This implies that the vast majority of the images in Maxar
dataset are “distracting”, i.e. have net negative effect on
the pretraining. In Million-AID, the percentage of such im-
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(a) Cluster sizes of Million-AID and its fil-
tered versions using SemDeDup’s clustering
method.
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(b) The number of images in each hierarchi-
cal cluster obtained from the full Million-
AID, for the original dataset and its subsets.
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cal cluster obtained from the full Maxar, for
the original dataset and its subsets.

Figure 4. Comparison of the filtering methods.

ages is less than 25%, and the performance gain is minimal.

Note that the downstream performance of the models pre-
trained on any subset of Maxar is significantly lower com-
pared to Million-AID-pretrained models. We believe it is
because Million-AID contains significantly wider coverage
of possible remote sensing images, but rigorous quantifica-
tion of such coverage is left for future work.

4. Analysis
These results raise a critical question: is it possible to iden-
tify distracting images in large datasets without extensive
pretraining experiments? We leave this as an open ques-
tion, and provide the following visualization that might shed
some light on it. We independetly perform hierarchical clus-
tering on the original Million-AID and Maxar datasets, and
a few hieararchically filtered versions of the latter. Inner
illustration in Fig. 4c shows the cluster sizes for each of
the subsets. It is clear that the filtered versions of Maxar
have relatively more uniform distribution of cluster sizes.
On the other hand, it is hard to see what is the fundamental
difference in cluster size distributions of Maxar-2M and
Maxar-750K, when the former has many distracting images,
while the latter has none we could identify.

We hypothesize that most of the images in the large clusters
(as discovered by the hierarchical clustering algorithm) are
distractors. To test this hypothesis, we artificially enlarged
some of the clusters by controlled duplication of images.

4.1. Controlled Duplication of the Filtered Datasets

We took the well filtered subsets of Million-AID of size
414K, and synthetically enlarged them in uniform and non-
uniform manners. First, we generate the 5̃ augmentations for
each of the images, and call it “uniform”. Then, we produce
two more datasets of the same size by applying augmenta-

tions in a non uniform way: the number of augmentations
per image grows exponentially. The two versions, named
“exponential” and “heavy exponential” differ by the coeffi-
cents of the exponential function that determines the number
of augmentations of each image.The augmentation functions
are chosen from a set of ten weak augmentations, such as
flipping and rotation. Then we pretrain iBOT on each of
these datasets and evaluate as in the previous sections.

Figure 3 shows that uniformly duplicated versions of the
filtering datasets perform better than the pure filtered ones.
This can be explained by the additional information intro-
duced by image augmentations. Once the duplication is
performed non-uniformly, the positive effects from the aug-
mentations are outweighted by the negative effects of the
distrating images. The heavier is the non-uniformity, the
lower is the downstream performance of the models. These
experiments provide some support for our hypothesis on
the negative impact of too large clusters in the pretraining
datasets.

4.2. Comparison of the Filtering Methods

Finally, we explore whether the two filtering methods per-
form similarly. First, we take the original Million-AID
dataset, cluster it as in the first step of SemDeDup, and plot
the sizes of each of the 50K clusters (Fig. 4a). Then we
obtain filtered subsets with 414K images from Million-AID
using both algorithms, independently apply the same clus-
tering algorithm on the new smaller datasets and plot the
cluster sizes. We can see that even after N = 50 iterations
of SemDeDup, there are still a few relatively large clusters.
We see that there are few but much larger clusters in the
subset obtained using hierarchical clustering.

Fig. 4b and 4c show the number of remaining images in the
original clusters after both methods of filtering. Hierarchical
method enforces all clusters to have fewer images than a
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fixed threshold. The subset filtered by SemDeDup does not
follow the threshold for most of the (original) large clusters
in both datasets.

Conclusion
In this work, we show that self-supervised pruning can im-
prove representation learning in remote sensing under a
fixed compute by removing “distracting” samples. Hierar-
chical clustering boosts the downstream performance on
both datasets, though the magnitude of the improvement
depends on the diversity of the initial dataset. These find-
ings highlight the potential of dataset-specific filtering, and
motivate future work on automatic identification of harmful
pretraining samples.
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