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Abstract001

While document summarization with LLMs002
has enhanced access to textual information,003
concerns about the factual accuracy of these004
summaries persist (e.g., hallucination), espe-005
cially in the medical domain. Identifying ci-006
tations from which summaries are derived en-007
ables users to assess their accuracy, thereby alle-008
viating this concern. In this paper, we introduce009
TRACSUM, a novel benchmark for traceable,010
aspect-based summarization, in which gener-011
ated summaries are paired with sentence-level012
citations, enabling users to trace back to the013
original context. First, we annotate 500 medical014
abstracts1 for seven key medical aspects, yield-015
ing 3.5K summary-citations pairs. We then pro-016
pose a fine-grained evaluation framework for017
this new task, designed to assess the complete-018
ness and consistency of generated content using019
four metrics. Finally, we introduce a summa-020
rization pipeline, TRACK-THEN-SUM, which021
serves as a baseline method for comparison. In022
experiments, we evaluate both this baseline and023
a set of LLMs on TRACSUM, and conduct a hu-024
man evaluation to assess the evaluation results.025
The findings demonstrate that TRACSUM can026
serve as an effective benchmark for traceable,027
aspect-based summarization tasks. We also ob-028
serve that explicitly performing sentence-level029
tracking prior to summarization enhances gen-030
eration accuracy, while incorporating the full031
context further improves summary complete-032
ness. The visualized dataset is anonymously033
available at https://www.tracsum.info.034

1 Introduction035

New findings observed in clinical trials are pub-036

lished in journal articles, which describe their de-037

sign and outcomes (Hariton and Locascio, 2018),038

serving as a crucial foundation for evidence-based039

medicine (EBM) (Sackett, 1997; Joseph et al.,040

2024). Ideally, medical professionals would stay041

1We focus on abstracts because they are always publicly
accessible and typically include the key medical aspects.

Figure 1: Schematic diagram of the TRACSUM
task, where aspect-based summaries are enriched with
sentence-level citations linking back to their correspond-
ing source sentences in the medical article.

current on all medical evidence from these articles 042

to support their decision-making, but this is imprac- 043

tical due to the volume and growth of the evidence 044

base (Marshall et al., 2021; Frihat and Fuhr, 2024). 045

Document summarization condenses the input 046

document into a concise and coherent text that 047

retains salient information (Narayan et al., 2018; 048

Zheng et al., 2020; Wang et al., 2022; Zhang et al., 049

2023b). Recent advancements in document sum- 050

marization methods have shown promising results 051

in generating overall summaries (Rush et al., 2015; 052

Cheng and Lapata, 2016; See et al., 2017; Paulus 053

et al., 2018). However, when users refer to the 054

same article, their areas of focus can vary signif- 055

icantly (Zhong et al., 2021; Goyal et al., 2022; 056

Zhang et al., 2023b). Rather than an overall sum- 057

mary, they are often more interested in obtaining 058

summaries focused on specific aspects (Yang et al., 059

2023; Takeshita et al., 2024; Guo and Vosoughi, 060

2024). Therefore, generating aspect-based sum- 061

maries to meet diverse user preferences is a natural 062

and important capability for modern summariza- 063
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tion systems (Xu et al., 2023; Kolagar and Zarcone,064

2024; Takeshita et al., 2024).065

Moreover, most current studies in this field066

(Zhang et al., 2023a,b; Takeshita et al., 2024) focus067

on unidirectional summarization with LLMs (i.e.,068

article⇒ summary). Despite their potential, state-069

of-the-art LLMs still struggle with factual inaccura-070

cies (Mallen et al., 2023; Min et al., 2023), which071

pose significant risks when healthcare profession-072

als rely on these summaries for treatment decisions073

(Burns et al., 2011; Xie et al., 2024). By providing074

referenced source texts from which summaries are075

derived (i.e., article⇐ summary), users can more076

easily locate relevant context and verify the gen-077

erated content, thereby mitigating such concerns078

(Kambhamettu et al., 2024; Xie et al., 2024; Deng079

et al., 2024). Therefore, traceable summarization080

(i.e., article⇔ summary) becomes especially cru-081

cial given that summarization systems can generate082

hallucinated content (Dhuliawala et al., 2024).083

To address these two concerns, we introduce084

TRACSUM, a novel summarization task that gener-085

ates structured summaries of clinical articles across086

seven key medical aspects, as shown in Figure 1.087

These structured summaries not only provide flexi-088

bility to meet diverse informational needs but also089

enable cross-study comparisons, supporting a more090

comprehensive synthesis of evidence for clinical091

decision-making. In addition, TRACSUM extends092

the task by identifying the sentences cited by the093

summary. In real-world scenarios, this sentence-094

level traceable summarization enables users to lo-095

cate the relevant context and verify the generation.096

Overall, our key contributions are as follows:097

Contribution 1: We propose TRACSUM, a novel098

benchmark for generating structured summaries of099

clinical articles across seven key aspects, enriched100

with sentence-level citations for each summary. To101

support this task, we construct a new dataset by102

annotating 500 clinical abstracts, resulting in 3.5K103

summary–citations pairs (§3).104

Contribution 2: We introduce a fine-grained auto-105

matic evaluation framework tailored for this task,106

which assesses the completeness and consistency107

of the system output by measuring the recall and108

precision of both generated facts and their corre-109

sponding sentence-level citations (§4).110

Contribution 3: Inspired by Chain-of-thought111

(CoT) reasoning (Wei et al., 2022), we propose112

a summarization pipeline, TRACK-THEN-SUM,113

which consists of a tracker T and a summarizer114

S. The tracker T identifies source sentences rel- 115

evant to a specific aspect, and the summarizer S 116

condenses them into a short summary (§5). 117

Contribution 4: We evaluate a diverse set of 118

closed- and open-source LLMs on TRACSUM, and 119

conduct a human evaluation to assess the outputs 120

produced by our fine-grained evaluation method. 121

The findings demonstrate that TRACSUM can serve 122

as an effective benchmark for traceable, aspect- 123

based summarization in the medical domain (§6). 124

2 Related Work 125

2.1 Aspect-Based Summarization 126

Articles describing clinical trials often present in- 127

formation aligned with fixed core aspects, such as 128

PICO2 elements (Richardson et al., 1995; Schardt 129

et al., 2007; Schiavenato and Chu, 2021), which 130

represent essential components of medical evi- 131

dence (Jin and Szolovits, 2018; Joseph et al., 2024). 132

Generating structured summaries for these ele- 133

ments offers flexibility to address diverse infor- 134

mational needs and facilitates cross-study compar- 135

isons (Yang et al., 2023; Takeshita et al., 2024), 136

enabling a comprehensive synthesis of evidence for 137

clinical decision-making. To support fine-grained 138

summarization, this work focuses on generating 139

structured summaries that cover seven medical as- 140

pects commonly reported in clinical articles. 141

2.2 Traceable Summarization 142

Identifying the citations that summaries rely on can 143

help users verify their accuracy (Gao et al., 2023; 144

Xie et al., 2024), particularly in high-stakes do- 145

mains such as medicine. To support critical exami- 146

nation of summaries and their underlying sources, 147

Kambhamettu et al. (2024) introduced a simple in- 148

teraction primitive called “traceable text.” In the 149

domain of Question Answering (QA), Gao et al. 150

(2023) showed that enabling LLMs to generate text 151

with passage-level citations improves factual cor- 152

rectness and verifiability. Moreover, several stud- 153

ies on retrieval-augmented generation (RAG) ap- 154

proaches can support document- or paragraph-level 155

traceability (Wang et al., 2024b; Xu et al., 2024; 156

Wang et al., 2024a). Building on this prior work, 157

our research introduces sentence-level traceability 158

of summaries generated by summarization systems, 159

allowing users to directly inspect the source content 160

that supports each summarized aspect. 161

2PICO: Participants/Problem (P), Intervention (I), Com-
parison (C), and Outcome (O).
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3 TRACSUM Benchmark162

3.1 Task Description163

Given a clinical article and a specific medical as-164

pect, TRACSUM requires summarization systems165

to generate an aspect-based summary along with166

the corresponding sentence-level citations from167

which the summary is derived. Formally, let the168

input article d = [c1, c2, ..., cn] be a sequence of169

uniquely indexed sentences, and let a be a target170

aspect selected from predefined aspects A (§3.2.1).171

The systemM(C′, sum′ | d, a) is expected to gen-172

erate an aspect-specific summary sum′ and a set of173

cited sentences C′ = [c′1, c
′
2, ..., c

′
k], where c′i refers174

to the index of a sentence in d that supports the175

summary. If the article contains no information rel-176

evant to the given aspect, the system should output177

sum′ ← “Unknown” and C′ ← “Null”.178

3.2 Dataset Collection179

3.2.1 Medical Aspects180

Building on the PICO framework (§2.1), we define181

A as a set of seven medical aspects commonly182

reported in clinical articles (as listed in Table 1).183

Symbol Aspect Description
A Aims Objective
I Intervention Treatment Method
O Outcomes Results of Predefined Variables
P Participants E.g., Diseases, Number
M Medicine E.g., Name, Dosage
D Duration Treatment Duration
S Side Effects Observed Adverse Events

Table 1: Definition of seven medical aspects.

3.2.2 Source Articles184

We initially screened 741 medical abstracts from185

PubMed3, of which 500 were ultimately included.186

The screening criteria were as follows: (1) the study187

focuses on melanoma; (2) the publication date is188

within the past 10 years; (3) the article is written189

in English; (4) the study is classified as either a190

Clinical Trial or a Randomized Controlled Trial;191

and (5) the article is published in a journal ranked in192

Q1 or Q2 according to the Journal Citation Reports193

(JCR) (Clarivate Analytics, 2024).194

3.2.3 Initial Generation With Mistral Large195

Manual dataset annotation is often costly and sus-196

ceptible to stylistic inconsistencies. Consequently,197

leveraging LLMs to generate supervised datasets198

has gained popularity due to their strong zero-shot199

3https://pubmed.ncbi.nlm.nih.gov/

performance (Chen et al., 2024; Asai et al., 2024). 200

In this work, we automatically constructed a draft 201

dataset by prompting Mistral Large (Mistral AI, 202

2025) to summarize 500 included abstracts, result- 203

ing in 3.5K summary–citations pairs, which were 204

subsequently evaluated by human experts using 205

three qualitative metrics (§3.2.4). The prompt struc- 206

ture comprises an abstract, a target aspect, and a 207

type-specific instruction, followed by two demon- 208

stration examples. If the abstract lacks relevant 209

information for the specified aspect, the model is 210

instructed to return “Unknown” without generating 211

any alternative response. An example of prompt 212

templates is illustrated in Table 15 in §G. 213

3.2.4 Annotation Process 214

We recruited six annotators, including three medi- 215

cal students and three NLP researchers, who were 216

compensated in accordance with minimum wage 217

standards in Germany. The annotation process was 218

carried out in two phases. In the first phase, annota- 219

tors independently evaluated all data instances. In 220

the second phase, data instances that received lower 221

evaluation scores were manually revised. The full 222

annotation guideline is described in §A. 223

Phase I: Evaluation. To ensure consistency in 224

writing style, each data instance was independently 225

evaluated by two independent annotators, one from 226

the medical domain and one from the NLP domain. 227

The annotators assessed each data instance using 228

three qualitative evaluation metrics (as shown in 229

Table 2) on a 5-point Likert scale, as detailed in 230

§A.4. Evaluating a single article typically takes 231

10–15 minutes, depending on its complexity. 232

Metric Description

Completeness Does the generated summary include all
facts for the given aspect?

Conciseness Does the generated summary include any
irrelevant or erroneous information?

Traceability Do the citations accurately and sufficiently
ground the generated summary?

Table 2: Qualitative evaluation metrics.

Phase II: Revision. Out of the 3.5K evaluated 233

data instances, we filtered out 741 (21%) that re- 234

quired further revision. The filtering criteria were 235

as follows: (1) the mean score for any of the three 236

evaluation metrics was below 3.5, or (2) the score 237

difference between annotators exceeded 2.0. An- 238

notators were then instructed to revise both the 239

summaries and their corresponding citations, as 240

illustrated in Figure 8 in §A. 241
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Figure 2: Human evaluation results (5-point scale) across three qualitative metrics for the seven medical aspects.
Completeness and Conciseness for summary evaluation, and Traceability for citation evaluation.

3.3 Quality Analysis242

To analyze the dataset’s quality, we conducted a243

statistical analysis of the human evaluation results.244

Before filtering, the scores across all aspects and245

metrics are generally above 4.0 (as shown in Fig-246

ure 2), indicating high overall quality. Of the 741247

(21%) filtered instances, 197 concern the O (Out-248

comes), 174 the I (Intervention), and 171 the D249

(Duration), suggesting that Mistral Large’s sum-250

maries diverge most from human judgment on these251

three aspects, possibly due to the relatively com-252

plex information in the source texts. To assess inter-253

annotator agreement (IAA), we report exact match254

accuracy, within-one accuracy, and mean absolute255

error, following prior work (Attali and Burstein,256

2006; Zhang and Zhou, 2007). The statistical anal-257

ysis revealed high agreement under the within-one258

accuracy metric (84.9%), despite a lower exact259

match accuracy (66.6%) and a mean absolute er-260

ror of 0.56, indicating acceptable consistency with261

only minor scoring discrepancies.262

3.4 Characteristics of the Dataset263

Among the 500 abstracts, the average length is264

319.89 tokens, with abstract lengths ranging from265

25 to 1,104 tokens. Each abstract contains an aver-266

age of 10.42 sentences, spanning from 1 to 32. In267

the dataset of 3.5K data instances, 2,862 are posi-268

tive and 638 are negative4. The positive summaries269

average 28.06 tokens in length, with a range from270

3 to 77 tokens. On average, each positive summary271

cites 1.78 sentences, with a range from 1 to 7. Ex-272

ample data instances are presented in Table 14 (see273

§F), and more characteristics are described in §B.274

4 Automatic Evaluation Framework275

Clinical texts have two essential characteristics:276

(1) it must be entirely complete, with no omis-277

sions and (2) it must be fully accurate, without278

any errors (Gao et al., 2023; Xie et al., 2024). In279

line with these considerations, we propose a fine-280

grained evaluation framework for this new task by281

4Negative samples correspond to cases where both the
summary and citation content are null.

extending the methodology of Xie et al. (2024) 282

and Gao et al. (2023), which evaluate complete- 283

ness (§4.1) and conciseness (§4.2) of generated 284

content through a suite of metrics, as illustrated 285

in Figure 3. Unlike their original definitions, our 286

approach incorporates citation recall and precision 287

to evaluate completeness and conciseness. Before 288

computing these metrics, we first check whether 289

the cited sentences entail the generated summary. 290

4.1 Completeness Evaluation 291

Building on characteristic (1) of clinical texts, we 292

evaluate completeness — the extent to which clini- 293

cally significant information is preserved in the sys- 294

tem output. Unlike previous work (Van Veen et al., 295

2023), which assigns an overall score, our approach 296

emphasizes identifying which specific salient in- 297

formation is retained or omitted. As described in 298

§3.1, TRACSUM requires a summarization system 299

to produce both a summary and its associated ci- 300

tations. To evaluate completeness, we introduce 301

claim recall to assess summary content and citation 302

recall to assess citation coverage. 303

Claim Recall: Following DOCLENS (Xie et al., 304

2024), we decompose each reference into a list of 305

atomic subclaims using a decomposition model, 306

where each subclaim represents a single factual 307

statement from the reference. Let y denote the 308

reference, Ly the set of reference subclaims, and 309

y′ the system-generated summary. We employ a 310

natural language inference (NLI) model to evaluate 311

whether each subclaim l ∈ Ly is entailed by y′. 312

Claim recall is computed as 1
|Ly |

∑
l∈Ly

I[y′ ⇒ l], 313

where I[y′ ⇒ l] is an indicator function that returns 314

1 if y′ entails l, and 0 otherwise. 315

Citation Recall: In contrast to previous ap- 316

proaches (Gao et al., 2023; Liu et al., 2023; Xie 317

et al., 2024), which consider citations valid if the 318

cited sentences collectively support the summary, 319

our method assesses whether each cited sentence 320

independently supports the output. Let C be the set 321

of citations in the reference and C′ the set in the 322

system output. A citation is considered recalled if 323

it satisfies the following two conditions: (1) the 324
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Figure 3: Overview of the automatic evaluation framework. Completeness is assessed using Claim Recall and
Citation Recall, while conciseness is measured by Claim Precision and Citation Precision. Decom. denotes the
claim decomposition model, and Eval. refers to the entailment evaluator.

cited sentence supports the generated summary325

(c→ y′); and (2) the citation is present in the refer-326

ence (c ∈ C). Citation recall is formally defined as327
1
|C|

∑
c∈C′ I[c ∈ C ∧ c→ y′].328

4.2 Conciseness Evaluation329

In line with characteristic (2), an ideal system out-330

put should avoid redundant or incorrect informa-331

tion. We evaluate conciseness as the proportion332

of generated content that is both factually accurate333

and salient. To this end, we use two metrics: claim334

precision, which assesses the informativeness and335

factual accuracy of the summary, and citation pre-336

cision, which captures citation redundancy.337

Claim Precision: Analogous to claim recall, we338

first decompose the generated summary into a list339

of subclaims, then use an evaluator to compute340

the proportion of these subclaims that are entailed341

by the reference. Claim precision is defined as342
1

|L′
y |
∑

l∈L′
y
I[y ⇒ l], whereL′

y denotes the set of343

subclaims extracted from the generated summary.344

Citation Precision: To assess whether the out-345

put includes unnecessary citations, we introduce346

citation precision. In line with citation recall, a347

citation is deemed valid if it satisfies both previ-348

ously defined conditions (c ∈ C∧c→ y′). Citation349

precision is then calculated as the proportion of350

system-generated citations that fulfill these criteria.351

5 Baseline Method352

In this section, we introduce our baseline method,353

TRACK-THEN-SUM (TTS), which consists of a354

Algorithm 1: TRACK-THEN-SUM Inference
Require: Tracker T , Summarizer S
Input: article d = {c1, c2, ..., cn} and aspect a ∈ A
Output: summary sum and its citations C′
1: C′ ← ∅;
2: foreach c ∈ {c1, c2, ..., cn}
3: T predict relevance given (a, c);
4: if relevance == Yes then append c to C′;
5: summary sum← S(a, C′) or S(a, (C′ ⊕ f.));

Algorithm 1: TRACK-THEN-SUM inference process.

tracker T and a summarizer S (available in two 355

variants), as illustrated in Figure 10 in §C. The 356

training procedure is detailed in §C.1. 357

5.1 Inference Overview 358

The TRACK-THEN-SUM generation pipeline con- 359

tains two phases: tracking and summarization. In 360

the first phase, T identifies the sentences most rel- 361

evant to the given aspect. In the second phase, S 362

generates a concise summary based on the selected 363

sentences. Finally, the summary and citations are 364

merged into the output, as shown in Algorithm 1. 365

5.2 Tracker T 366

Data Collection: We first applied sentence tok- 367

enization to each abstract in the training set. For 368

each sentence, we generated (c, a) pairs by com- 369

bining it with every predefined aspect a ∈ A. Each 370

pair was labeled with a binary variable y based on 371

the corresponding citations field: if the sentence 372

index appeared in the citations associated with as- 373

pect a, we assigned y = 1; otherwise, y = 0. The 374

resulting training dataset is denoted as DT . 375

Training: Given the constructed dataset DT , we 376

initialized tracker T using a pre-trained language 377
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model (LM) as the backbone. The model was sub-378

sequently fine-tuned onDT using a standard binary379

classification objective which maximizes the log-380

likelihood of the observed labels:381

max
T

E((c,a),y)∼DT log pT (y | (c, a))382

5.3 Summarizer S383

Data Collection: For each summary sum in the384

training set, we extracted related sentences from the385

abstract based on the citations field to form the set386

C. Each C was paired with its associated aspect a,387

and combined with the sum to form ((C, a), sum).388

The resulting training dataset is denoted as DS .389

Training: Similar to the training of T , we initial-390

ized summarizer S using a pre-trained LM as the391

backbone. We then fine-tuned summarizer S onDS392

using a standard next-token prediction objective,393

which maximizes the likelihood of generating the394

target summary sum given the input (C, a) pair:395

max
S

E((C,a),sum)∼DS log pS(sum|C,a)396

To investigate the impact of incorporating full con-397

text (denoted as f.), we trained a variant S that gen-398

erates a summary sum given the input (C ⊕ f., a).399

6 Experiment400

In this section, we aim to address the follow-401

ing research questions: RQ1: How effective is402

TRACSUM as a benchmark for evaluating LLMs403

in aspect-based summarization with sentence-level404

traceability? RQ2: To what extent does the pro-405

posed evaluation method align with human judg-406

ment, and what role does the evaluator play in407

this process? RQ3: Which factors most signifi-408

cantly impact the accuracy of traceable summariza-409

tion? To address these questions, we begin by con-410

ducting a preliminary evaluation of several LLMs,411

including both proprietary models (e.g., GPT-4o412

(Hurst et al., 2024)) and open-source models (e.g.,413

LLaMA-3.1 (Grattafiori et al., 2024), Mistral (Jiang414

et al., 2024), and Gemma-3 (Team et al., 2025)).415

6.1 Experimental Setting416

Data Preparation: The TRACSUM dataset was417

randomly split into training and test sets with an418

8:2 ratio. We examined the distribution of samples419

in the test set across the seven predefined aspects,420

along with the proportion of positive and negative421

instances for each, as shown in Figure 4. The re-422

sults show that while nearly all abstracts contain423

Figure 4: Distribution of test data across seven aspects.

information related to Aims (A), Intervention (I), 424

and Outcomes (O), only 31% explicitly mention 425

the Duration (D) aspect. The baseline model was 426

fine-tuned on the training set, and both the baseline 427

and LLMs were evaluated on the test set. 428

Backbone Model Selection: The TRACK-THEN- 429

SUM (TTS) pipeline comprises two components 430

(Tracker T and Summarizer S) that can be ini- 431

tialized with any pre-trained LM. For consistency 432

and ease of deployment, we adopt Llama-3.1-8B 433

(Dubey et al., 2024) as the backbone for both com- 434

ponents, with the training details provided in §C.1. 435

LLMs and Prompt Setting: We selected several 436

widely used instruction-following LLMs for eval- 437

uation, as listed in Table 3. All models were eval- 438

uated using a two-shot prompting strategy, with 439

each prompt containing one positive and one nega- 440

tive example. To ensure consistency, each model 441

was prompted using its official input format with 442

identical content (see Table 15 in §G), and a fixed 443

temperature of 1.0 was used across all generations. 444

Larger models were accessed via their official APIs, 445

incurring additional usage costs (see §D). 446

Algorithm 2: Computation Process of Evaluation Metrics
Require: decomposition model: E , NLI model: ϕ
Input: system output (sum′, C′), reference (sum, C)
Output: CLR, CIR, CLP, CIP
1: {s1, s2, ..., sn} ← E(sum); 0← n;
2: foreach si ∈ {s1, s2, ..., sn}
3: if ϕ(sum′, si) == 1 then n++;
4: CLR← n/|{s1, s2, ..., sn}|
5: 0← n;
6: foreach c′i ∈ C′
7: foreach s′i ∈ {s′1, s′2, ..., s′n}
8: if ϕ(c′i, s

′
i) == 1 then n++; break;

9: CIR← n/|C|;CIP← n/|C′|;
10: {s′1, s′2, ..., s′n} ← E(sum′);n← 0;
11: foreach s′i ∈ {s′1, s′2, ..., s′n}
12: if ϕ(sum, s′i) == 1 then n++;
13: CLP← n/|{s′1, s′2, ..., s′n}|;

Algorithm 2: Computation process of evaluation met-
rics. CLR: Claim Recall. CIR: Citation Recall. CLP:
Claim Precision. CIP: Citation Precision.

Evaluation Setting: In the preliminary experiment, 447

we adopt Mistral Large (Mistral AI, 2024) as the 448

decomposition model E , which is used to break 449

6



down both the system-generated and reference sum-450

maries into a set of atomic subclaims. For the en-451

tailment evaluation, we utilize TRUE (Honovich452

et al., 2022) as the evaluator ϕ. Let ϕ(p, h) denote453

the output of the NLI model, where the value is 1454

if the premise p entails the hypothesis h, and 0 oth-455

erwise. The computation process of the evaluation456

metrics is presented in Algorithm 2.457

6.2 Preliminary Results458

Comparison of LLMs: Table 3 shows the evalu-459

ation results of various LLMs along with our pro-460

posed method (in two variants). We observe the461

following: (1) Larger open-source models (e.g.,462

LLaMA-3.1-70B, Mistral-8x7B) consistently out-463

perform smaller ones across all metrics. (2) Propri-464

etary models like GPT-4o and GPT-4o-mini also465

perform well, with only small differences between466

them. (3) Our proposed method, fine-tuned from467

LLaMA-3.1-8B, shows clear improvements over468

both the base model and other LLMs, particularly469

on the two citation-based metrics CIR and CIP470

(≥ 74.0%), demonstrating their strength in identi-471

fying supporting source sentences.472

Performance on Completeness and Conciseness:473

As shown in Table 3, LLMs generally perform bet-474

ter on completeness than on conciseness, suggest-475

ing a tendency to generate content that exceeds the476

scope of the reference data. This may be due to477

full context visibility during generation, which can478

cause the models to include content only loosely479

related to the target aspects.480

Does Full Context Help? In the TTS pipeline, we481

extend the input to the summarizer S by including482

not only the tracked sentences but also the full con-483

text (i.e., the abstract). This modification allows the484

TTS ⊕ f. variant to improve the claim recall CLR485

(67.1% → 79.8%) of the generated summaries486

without substantially compromising performance487

on other metrics. With the tracker T output un-488

changed, the observed gains may stem from the489

full context offering useful explanations for abbre-490

viations or domain-specific terminology, thereby491

helping S better interpret the tracked sentences. A492

detailed case analysis is provided in §E.1.493

6.3 Agreement with Human Evaluation494

To address first sub-question of RQ2, we conducted495

a human evaluation and measured the agreement be-496

tween human judgments and the automatic evalua-497

tion scores produced by the NLI model (TRUE) us-498

Completeness Conciseness F1 Score
Method CLR CIR CLP CIP F cl.

1 F ci.
1

Llama-3.1-8B 59.2 62.5 63.6 54.8 61.3 58.4
Llama-3.1-70B 74.7 77.9 71.3 67.7 72.9

:::
72.4

Mistral-7B 59.1 59.5 55.5 48.4 57.4 53.4
Mistral-8x7B 61.1 62.1 58.9 58.4 60.0 60.2
Gemma3-12B 62.8 66.0 58.3 55.3 60.5 60.2
Gemma3-27B 64.6 66.4 57.7 59.6 61.0 63.0
GPT-4o

:::
74.0 78.2 66.2 63.8

:::
69.9 70.3

GPT-4o-mini 67.8 76.0
:::
67.6

:::
68.4 67.7 72.0

TTS 67.1
:::
76.2 68.4 77.0 67.8 76.6

TTS ⊕ f. 79.8 74.6 67.2 75.0 73.0 74.8

Table 3: Preliminary evaluation results (%). Bold values
indicate the best performance in each metric, underlined
values indicate the second-best, and

:::::
wave

:::::::::
underlined

values indicate the third-best. ⊕ f. denotes the config-
uration where the full context is concatenated to the
input of the summarizer S. F cl.

1 and F ci.
1 represent the

F1 scores for claim and citation prediction, respectively.

ing Spearman’s correlation coefficient (ρ) (Kendall 499

and Gibbons, 1990) and Pearson’s correlation coef- 500

ficient (r) (Sheskin, 2003). We randomly sampled 501

ten abstracts from the test set, and the annotator 502

followed the procedure in Algorithm 2 to evaluate 503

outputs from our TTS ⊕ f., as shown in Table 4. 504

The results show an average Spearman’s ρ = 0.612 505

and Pearson’s r = 0.577, indicating a moderate 506

positive correlation between automatic evaluation 507

and human judgments. This suggests that our pro- 508

posed evaluation framework aligns reasonably well 509

with human assessments, while still leaving room 510

for improvement. A detailed comparison of the 511

final evaluation results is provided in §E.2.

Reference: Subclaims Citations→ 1, 5
1. The study included 533 patients.
2. The patients were treatment-naive.
3. The patients had unresectable stage III-IV melanoma.
TTS ⊕ f. Output: Subclaims Citations→ 1, 3, 5
1′. The study involved treatment-naive patients.
2′. The patients had unresectable stage III-IV melanoma.
3′. 533 patients received nivolumab plus ipilimumab.

NLI : reference→ s1′, s2′ ✓ ↛ s3′ ✗ CLR: 66.7%
Human: reference→ s1′, s2′, s3′ ✓ CLR: 100%
Reason: "533 patients" is found in the reference.

Table 4: An example comparing automatic and human
evaluation of claim recall (PMID: 37307514, Aspect:
Patients). 512

6.4 Aspect-Wise Performance Analysis 513

To analyze the performance of the TTS ⊕ f. vari- 514

ant across the seven aspects, we grouped the data 515

by aspect and computed the four evaluation metrics 516

for each group, as shown in Table 5. We observed 517

substantial variation in the model’s performance 518

across different aspects. Notably, aspects O (Out- 519

comes) and I (Intervention) received lower scores 520

7



Figure 5: Spearman (ρ) and Pearson (r) correlations between evaluators and human scores across four metrics.

Completeness Conciseness F1 Score
Aspect CLR CIR CLP CIP F cl.

1 F ci.
1

A
:::

86.3
:::
83.2 71.8 89.8 78.4 86.4

I 69.8 61.4 51.0 47.6 58.9 53.4
O 61.4 50.2 48.7 50.1 54.2 50.1
P 87.7 78.4 80.2 84.2 83.7 81.3
M 85.4 71.9

::::
75.1 73.3

:::
79.9 72.6

D 92.2 93.6 81.4 93.2 86.4 93.3
S 75.8 83.5 62.2

:::
86.8 68.3

:::
85.0

Avg. 79.8 74.6 67.2 75.0 73.0 74.8

Table 5: Aspect-wise performance of method TTS ⊕ f.

across all four evaluation metrics, likely because521

the corresponding abstracts often contain a large522

number of relevant sentences, making precise ex-523

traction more challenging. In contrast, aspect D524

(Duration) achieved relatively higher scores, pos-525

sibly due to the fact that 69% of its test instances526

are negative cases (i.e., both the summary and cita-527

tion are null), which simplifies the task and makes528

correct predictions easier for the model.529

6.5 Ablation Studies530

Comparison of Entailment Evaluators: To ad-531

dress the second sub-question of RQ2, we exper-532

iment with two additional instruction-following533

LLMs as entailment evaluators: the proprietary534

GPT-4o (Hurst et al., 2024) and the open-source535

Mistral-Large (Mistral AI, 2025). Building on the536

experimental setup described in §6.3, we replace537

the TRUE model with each of these evaluators538

to assess the outputs generated by the TTS ⊕ f.539

variant. The experiment procedure and results540

are described in §E.3. We then compute Spear-541

man’s ρ and Pearson’s r to quantify their agree-542

ment with human judgments in four metrics, as543

presented in Figure 5. Our findings reveal that: (1)544

both GPT-4o (ρ = 0.80; r = 0.77) and Mistral-545

Large (ρ = 0.71; r = 0.70) show substantially546

stronger alignment with human judgments com-547

pared to TRUE (ρ = 0.61; r = 0.57); and (2)548

GPT-4o achieves a higher correlation with human549

judgments than Mistral-Large. We found that GPT-550

4o is better at understanding abbreviations. For551

instance, it correctly infers that the reference “50552

participants were randomized: 23 to observation553

and 27 to radiation therapy” entails the subclaim554

“27 participants were assigned to the RT group”,555

whereas Mistral and TRUE do not. 556

The Effect of Tracking Order: To address RQ3, 557

we design two variants by modifying the position 558

of the tracker T : (i) SUM-THEN-TRACK (STT) 559

places T after the summarizer S, where S first 560

generates an aspect-based summary, and T then re- 561

trieves source sentences relevant to that summary; 562

(ii) END-TO-END (ETE) removes the tracker en- 563

tirely and fine-tunes a single modelM to generate 564

both summary and citations. The experimental 565

procedures are detailed in §C. We evaluated STT 566

and ETE on the test set, with results shown in Ta- 567

ble 6. We observe that: (1) removing the tracker 568

results in a decline in citation-based performance, 569

highlighting the importance of explicit sentence 570

tracking; and (2) while STT improves claim recall, 571

it performs worse on other metrics, likely due to 572

its dependence on pre-generated summaries, which 573

may introduce noise or inaccuracies. These find- 574

ings emphasize the importance of incorporating 575

tracking early in the summarization process. 576

Completeness Conciseness F1 Score
Method CLR CIR CLP CIP F cl.

1 F ci.
1

TTS ⊕ f. 79.8 74.6 67.2 75.0 73.0 74.8
ETE 80.1 72.6 64.1 71.2 71.2 71.9
STT 81.2 62.2 58.1 66.4 67.7 64.1

Table 6: Comparison of the three tracking order variants.

7 Conclusion 577

Motivated by growing concerns over the factual 578

accuracy of system-generated summaries in the 579

medical domain, we present TRACSUM, a novel 580

benchmark for aspect-based summarization that in- 581

corporates sentence-level citations. This enables 582

users to trace source content and verify the factual 583

consistency of generated information. Experimen- 584

tal results, which show strong alignment with hu- 585

man judgments, demonstrate that TRACSUM can 586

serve as a reliable benchmark for assessing both 587

the completeness and conciseness of summaries 588

and their citations. Furthermore, we also observe 589

that explicitly performing sentence-level tracking 590

prior to summarization enhances generation accu- 591

racy, while incorporating the full context further 592

improves summary completeness. 593
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Limitations594

Our research marks a significant step toward eval-595

uating sentence-level traceability in aspect-based596

summarization. Nonetheless, it has certain limi-597

tations. 1). The dataset used in TRACSUM was598

initially generated by Mistral Large. While this599

approach helped reduce time and cost, it may also600

introduce model-specific biases. To address this601

concern, we implemented two mitigation strategies:602

(i) we conducted two rounds of human evaluation,603

followed by manual revision of samples with low604

scores or inconsistent annotations; and (ii) we ex-605

cluded Mistral Large from the list of evaluated606

models to avoid unfair advantages or confirmation607

bias. 2). The structure and content of prompts can608

significantly influence the outputs of LLMs and, in609

turn, their evaluation scores. Although our prompt610

template was designed to be general and broadly611

applicable, it may not elicit the best performance612

from every model. To reduce potential bias and613

ensure fair comparison, we used a standardized614

prompt format across all models.615
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A Annotation Guideline924

A.1 Annotation Tool925

We developed a custom interactive annotation tool926

to support efficient and user-friendly dataset anno-927

tation, which is accessible online. The backend was928

implemented in the Go programming language5,929

chosen for its performance and simplicity. The930

frontend was built using the Vue.js framework6,931

which enabled a responsive and intuitive user inter-932

face, and PostgreSQL7 served as the database.933

A.2 Consent Statement934

Users first register on the tool by providing their935

email address and selecting their role (medical do-936

main or NLP domain). Registration is subject to937

approval by an administrator. During the session,938

only non-personal cookies are collected, and users939

can choose whether to accept them, as shown in Ta-940

ble 7. Access to the annotation interface is granted941

only after the user has provided explicit consent.942

- I agree to the use of the collected data for research purposes.
- I agree to the use of functional cookies on this site.

Table 7: Consent Statement.

A.3 Task Assignment943

Both evaluation and annotation tasks are randomly944

assigned by administrators, as illustrated in Fig-945

ure 6. Each data sample is assigned to two annota-946

tors from different domains—one from the medical947

domain and one from the NLP domain. Annotators948

were instructed not to communicate with each other949

to maintain data quality and ensure the authenticity950

of their responses.951

Figure 6: List of tasks in the annotation tool.

A.4 Evaluation Phase952

n the evaluation phase, the evaluator is required to953

assess two components of the system output based954

5https://go.dev/
6https://vuejs.org/
7https://www.postgresql.org/

on three aspects: Completeness (Comprehensive- 955

ness), Conciseness (Faithfulness), and Traceability. 956

Each aspect is rated using a 5-point Likert scale, 957

with detailed scoring guidelines provided in Table 8. 958

On the evaluation page, the left panel displays the 959

content of the article (specifically, the abstract sec- 960

tion), while the right panel presents summary cards 961

corresponding to seven medical aspects. When the 962

user hovers over a summary card, the relevant sen- 963

tences in the abstract on the left are highlighted, 964

as illustrated in Figure 7. The highlight remains 965

visible until the user hovers over another summary 966

card, enabling easy traceability to the correspond- 967

ing source sentences in the article. 968

Figure 7: Evaluation page in the annotation tool.

A.5 Revision Phase 969

Out of the 3.5K evaluated data instances, 741 (21%) 970

were filtered for further revision. The filtering cri- 971

teria were as follows: (1) the mean score for any of 972

the three evaluation metrics was below 3.5, or (2) 973

the score difference between annotators exceeded 974

2.0. Annotators were then instructed to revise both 975

the summaries and their corresponding citations 976

based on the evaluation results. On the revision 977

page, as illustrated in Figure 8, the left panel dis- 978

played the document content, while the right panel 979

showed the summary along with evaluation results 980

from two annotators. Annotators revised the sum- 981

maries and updated the sentence indices according 982

to the evaluation feedback. 983

Figure 8: Revision page in the annotation tool.
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Aspect Likert Score Score Description

Completeness

★★★★★ All key relevant information from the article is accurately captured.
★★★★✩ Most key relevant information from the article is present, with minor omissions.
★★★✩✩ Some key relevant information from the article is present, but some is missing.
★★✩✩✩ Most key relevant information from the article is missing.
★✩✩✩✩ All key relevant information from the article is missing.

Completeness

★★★★★ In the generated summary, all content is relevant to this aspect.
★★★★✩ In the generated summary, most content is relevant to this aspect, with minor irrelevant parts.
★★★✩✩ In the generated summary, some content is relevant to this aspect, while some is irrelevant.
★★✩✩✩ In the generated summary, most content is irrelevant to this aspect.
★✩✩✩✩ In the generated summary, all content is irrelevant to this aspect or contains errors.

Traceability

★★★★★ All relevant sentences have been accurately traced (highlighted).
★★★★✩ Most relevant sentences have been accurately traced (highlighted).
★★★✩✩ Some relevant sentences have been accurately traced, but some are missing or irrelevant.
★★✩✩✩ Most relevant sentences have not been accurately traced.
★✩✩✩✩ None of the relevant sentences have been accurately traced.

Table 8: Evaluation Criteria and Scoring Guidelines.

(a) Distribution of token counts
across abstracts.

(b) Distribution of sentence
counts across abstracts.

(c) Aspect coverage across
abstracts.

(d) Proportion of positive and
negative data.

Figure 9: Characteristics of the TRACSUMdataset.

B Characteristics of the Dataset984

B.1 Source Article Length985

Among the 500 abstracts, the average length per986

abstract was 319.89 tokens, with the longest con-987

taining 1,104 tokens and the shortest containing988

only 25. The distribution of token counts across989

abstracts is illustrated in Figure 9a. Additionally,990

each abstract contained an average of 10.42 sen-991

tences, with sentence counts ranging from 1 to 32.992

The distribution of sentence counts is shown in993

Figure 9b.994

B.2 Aspect Coverage in Abstracts995

All 500 documents contained information on at996

least three aspects. Among them, 118 documents997

covered all seven aspects, and 211 documents cov-998

ered six aspects, as illustrated in Figure 9c.999

B.3 Proportion of Positive and Negative Data1000

We analyzed the distribution of positive and nega-1001

tive data samples across seven aspects, as shown1002

in Figure 9d. All 500 abstracts included aspect1003

A (Research Aims), while 499 covered aspect I1004

(Research Methods or Intervention) and aspect O1005

(Research Results or Outcomes). In contrast, as-1006

pect D (Treatment Duration) was less common,1007

appearing in only 174 abstracts. Overall, the ratio1008

of positive to negative samples was 2862:638. 1009

B.4 Length of Traceable Summaries 1010

As shown in Table 9, all 2,862 positive summaries 1011

had an average length of 28.06 tokens, with the 1012

longest containing 77 tokens and the shortest just 1013

3. On average, each summary cited 1.78 sentences, 1014

with the number ranging from 1 to 7. Among all 1015

aspects, summaries related to aspect S (Side Ef- 1016

fects) had the highest average token count, while 1017

those concerning aspect I (Research Methods or 1018

Intervention) cited the most sentences. 1019

C Generation Pipelines 1020

In this section, we provide a detailed description of 1021

the design and training of our three baseline meth- 1022

ods: TRACK-THEN-SUM, SUM-THEN-TRACK, 1023

and END-TO-END. 1024

C.1 TRACK-THEN-SUM 1025

As illustrated in Figure 10, the TRACK-THEN-SUM 1026

generation pipeline consists of two phases: tracking 1027

and summarization. In the first phase, the tracker 1028

module T retrieves the sentences most relevant to 1029

the given aspect using a default threshold of 0.5. In 1030

the second phase, the summarizer module S gen- 1031

erates a concise summary based on the selected 1032

sentences. Finally, the summary and the cited sen- 1033

13



Summary Citations
A I O P M D S A I O P M D S

Min 13 15 12 4 3 4 4 1 1 1 1 1 1 1
Max 56 73 77 69 77 75 75 5 7 6 5 6 5 4
Avg. 29.33 37.81 34.75 25.64 25.37 17.82 25.67 1.51 2.33 2.58 1.61 1.74 1.25 1.46

Table 9: Length of summaries (in tokens) and number of citations (in sentences) in positive samples.

Figure 10: TRACK-THEN-SUM summarization pipeline.

tences are merged to form the final system output.1034

1035

C.2 Tracker T1036

We implement the sentence tracing task as a binary1037

classification of sentences within the abstract.1038

Data Collection: We applied sentence tokeniza-1039

tion to each abstract in the training set. For every1040

sentence, we created (c, a) pairs by combining it1041

with each predefined aspect a ∈ A. Each pair was1042

labeled with a binary variable y based on the cor-1043

responding citations field: if the sentence index1044

appeared in the citations associated with aspect1045

a, we assigned y = 1; otherwise, y = 0. In to-1046

tal, we obtained 35.5K sentence-aspect-label pairs,1047

forming the training dataset DT .1048

Training: Given the constructed dataset DT , we1049

initialized tracker T using a pre-trained language1050

model (LM) as the backbone. The model was sub-1051

sequently fine-tuned onDT using a standard binary1052

classification objective which maximizes the log-1053

likelihood of the observed labels:1054

max
T

E((c,a),y)∼DT log pT (y | (c, a))1055

We fine-tuned the tracker T using the QLoRA1056

technique, initializing from the 4-bit quantized1057

version of the LLaMA-3.1-8B-Instruct backbone8,1058

on DT . To enable binary classification, we ap-1059

pended a lightweight classification head that maps1060

the model’s output to a single scalar representing1061

the predicted probability. Training was conducted1062

on six NVIDIA A6000 GPUs with a batch size of1063

32, gradient accumulation steps of 2, and a total of1064

5 epochs. We employed a learning rate of 1×10−5,1065

applied a weight decay of 0.01, set the random seed1066

to 3407 for reproducibility, and used 200 warmup1067

8Model: meta-llama/Llama-3.1-8B

steps. The full training process took 17 hours and 1068

2 minutes. 1069

C.3 Summarizer S 1070

Data Collection: For each summary sum in the 1071

training set, we extracted related sentences from 1072

the abstract based on the citations field to form 1073

the set C. Each C was paired with its associated 1074

aspect a, and combined with the sum to form 1075

((C, a), sum). In total, we obtained 2.8K citations- 1076

aspect-summary pairs, forming the training dataset 1077

DS . 1078

Training: Similar to the training of T , we initial- 1079

ized summarizer S using a pre-trained LM as the 1080

backbone. We then fine-tuned summarizer S onDS 1081

using a standard next-token prediction objective, 1082

which maximizes the likelihood of generating the 1083

target summary sum given the input (C, a) pair: 1084

max
S

E((C,a),sum)∼DS log pS(sum | C, a) 1085

The input instruction is shown in Table 16. We fine- 1086

tuned Summarizer S using the Unsloth framework, 1087

starting from the 4-bit version of the LLaMA-3.1- 1088

8B-Instruct base model9, on DS . Training was per- 1089

formed on two NVIDIA A6000 GPUs with a batch 1090

size of 16, a gradient accumulation step size of 2, 1091

and a total of 5 epochs. We used a learning rate of 1092

1e-5, a weight decay of 0.01, a fixed random seed 1093

of 3407, and 200 warmup steps. The entire training 1094

process took 1 hour and 55 minutes. Additionally, 1095

we adopted the train_on_responses_only strat- 1096

egy to focus learning on relevant output segments. 1097

1098

C.4 TTS ⊕ f. 1099

As mentioned in §5, our TRACK-THEN-SUM 1100

method includes two variants, differing only in 1101

9Model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
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Figure 11: SUM-THEN-TRACK method pipeline.

Algorithm 3: SUM-THEN-TRACK Inference
Require: Tracker T , Summarizer S
Input: article d = {c1, c2, ..., cn} and aspect a ∈ A
Output: summary sum and its citations C′
1: sum← S(a, d);
2: C′ ← ∅;
3: foreach ci ∈ {c1, c2, ..., cn}
4: T predict relevance given (sum, ci);
5: if relevance == Yes then append c to C′;

Algorithm 3: SUM-THEN-TRACK inference process.

their input. Specifically, the TTS ⊕ f. variant uses1102

both the set of cited sentences and the full context1103

(i.e., abstract) as input. The input instruction is1104

shown in Table 17. All other settings remain un-1105

changed, except for the batch size, which was set to1106

8. Under this configuration, training took 8 hours1107

and 36 minutes.1108

C.5 SUM-THEN-TRACK1109

C.5.1 Inference Overview1110

As illustrated in Figure 11, the SUM-THEN-TRACK1111

method consists of two phases: summarization and1112

tracking. In the first phase, the summarizer S gen-1113

erates an aspect-specific summary sum from an1114

abstract d based on a given aspect a. In the second1115

phase, the tracker T identifies the sentences most1116

relevant to this summary using a default similar-1117

ity threshold of 0.5. Finally, the summary and the1118

corresponding sentences are combined to form the1119

final output, as shown in Algorithm 3.1120

C.5.2 Summarizer S1121

Data Collection: We extracted abstract, aspect,1122

and summary fields from the training set, resulting1123

in 2.8K ((d, a), sum) pairs, denoted as DS .1124

Training: We then initialized summarizer S using1125

a pre-trained LM as the backbone. We then fine-1126

tuned summarizer S on DS using a standard next-1127

token prediction objective, which maximizes the1128

likelihood of generating the target summary sum1129

given the input (d, a) pair:1130

max
S

E((d,a),sum)∼DS log pS(sum | d, a)1131

The input instruction is shown in Table 18. We fine-1132

tuned Summarizer S using the Unsloth framework,1133

starting from the 4-bit version of the LLaMA-3.1- 1134

8B-Instruct base model, on DS . Training was per- 1135

formed on two NVIDIA A6000 GPUs with a batch 1136

size of 8, a gradient accumulation step size of 2, 1137

and a total of 5 epochs. We used a learning rate of 1138

1e-5, a weight decay of 0.01, a fixed random seed 1139

of 3407, and 200 warmup steps. The entire training 1140

process took 7 hour and 32 minutes. Additionally, 1141

we adopted the train_on_responses_only strat- 1142

egy to focus learning on relevant output segments. 1143

C.5.3 Tracker T 1144

Data Collection: We first applied sentence tok- 1145

enization to all abstracts in the training set. For 1146

each abstract, every sentence c was paired with 1147

each summary sum, forming (c, sum) pairs. Each 1148

pair was then labeled with y based on the citations 1149

field. This process resulted in 35.5k ((c, sum), y) 1150

pairs, denoted as DT . 1151

Training: Given the constructed dataset DT , we 1152

initialized tracker T using a pre-trained language 1153

model (LM) as the backbone. The model was sub- 1154

sequently fine-tuned onDT using a standard binary 1155

classification objective which maximizes the log- 1156

likelihood of the observed labels: 1157

max
T

E((c,sum),y)∼DT log pT (y | (c, sum)) 1158

We fine-tuned the tracker T using the QLoRA 1159

technique, initializing from the 4-bit quantized 1160

version of the LLaMA-3.1-8B-Instruct backbone, 1161

on DT . To enable binary classification, we ap- 1162

pended a lightweight classification head that maps 1163

the model’s output to a single scalar representing 1164

the predicted probability. Training was conducted 1165

on six NVIDIA A6000 GPUs with a batch size of 1166

32, gradient accumulation steps of 2, and a total of 1167

5 epochs. We employed a learning rate of 1×10−5, 1168

applied a weight decay of 0.01, set the random seed 1169

to 3407 for reproducibility, and used 200 warmup 1170

steps. The full training process took 22 hours and 1171

12 minutes. 1172

C.6 END-TO-END 1173

The END-TO-END approach employs a single 1174

modelM, to jointly perform summarization and 1175
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Model API Src. Input Prices Output Prices Input Length Output Length Costs
Llama-3.1-8B-Inst. DeepInfra $0.03 $0.05 131K 8K $0.030
Llama-3.3-70B-Inst. DeepInfra $0.23 $0.40 131K 8K $0.250
Mistral-7B-Inst (V0.3). DeepInfra $0.029 $0.055 32K 8K $0.040
Mistral-8x7B-Inst. DeepInfra $0.24 $0.24 131K 4K $0.600
Gemma-3-12B-Inst. DeepInfra $0.05 $0.100 128K 8K $0.070
Gemma-3-27B-Inst. DeepInfra $0.10 $0.20 128K 8K $0.110
GPT-4o OpenAI $2.50 $10.0 128K 16K $2.838
GPT-4o-mini OpenAI $0.15 $0.60 128K 16K $0.147

SUM : $4.085

Table 10: Details on the use of different model APIs.

Figure 12: END-TO-END generation pipeline.

Algorithm 4: END-TO-END Inference
Require: ModelM
Input: article d = {c1, c2, ..., cn} and aspect a ∈ A
Output: summary sum and its citations C′
1: C′ ← ∅;
2: (sum, C′)←M(a, d);

Algorithm 4: END-TO-END inference process.

sentence tracking, as shown in Figure 12.1176

C.6.1 Inference Phase1177

Given a abstract d and an aspect a ∈ A,M gener-1178

ates a summary focused on a and C′ on which the1179

summary relies, as illustrated in Algorithm 4.1180

C.6.2 Training Phase1181

Data Collection. We extracted abstract, aspect,1182

summary, and citations fields from the training1183

set and then combined them into ((d, a), (sum,1184

C)) pairs. As a result, we obtained 2.8K training1185

instances, denoted by DM.1186

Training. We then initializedM with a pre-trained1187

LM and trained it on DM using a standard condi-1188

tional language modeling objective, maximizing1189

the likelihood:1190

max
M

E((d,a),(sum,C))∼DM log pM(sum, C | d, a)1191

The input instruction is shown in Table 19. We1192

fine-tunedM using the Unsloth framework, start-1193

ing from the 4-bit version of the LLaMA-3.1-8B-1194

Instruct base model, on DM. Training was per-1195

formed on two NVIDIA A6000 GPUs with a batch1196

size of 8, a gradient accumulation step size of 2,1197

and a total of 5 epochs. We used a learning rate of1198

1e-5, a weight decay of 0.01, a fixed random seed1199

of 3407, and 200 warmup steps. The entire training1200

process took 8 hours and 16 minutes. Additionally, 1201

we adopted the train_on_responses_only strat- 1202

egy to focus learning on relevant output segments. 1203

D API Cost 1204

D.1 Dataset Collection Costs 1205

We initially generated our dataset with the free 1206

credits provided by the Mistral-Large API, so the 1207

cost for this part is $0. 1208

D.2 Evaluation Costs 1209

We incurred approximately $4.085 in API costs 1210

to obtain results from eight different models on 1211

the test set, as detailed in Table 10. The test set 1212

comprises 700 data samples, each formatted into 1213

prompts, resulting in approximately 100K input 1214

tokens in total. The number of output tokens varies 1215

across LLMs; standard text generation models typ- 1216

ically produce around 50K output tokens. 1217

E Experiment Analysis 1218

E.1 Full Context ⊕ C vs. C only 1219

In this section, we present an example to illustrate 1220

how incorporating full context impacts summary 1221

generation and, in turn, affects claim recall. When 1222

the cited sentences (i.e., the tracker T output) re- 1223

main fixed, providing the full document as addi- 1224

tional input enables the summarizer S to better 1225

resolve abbreviations and domain-specific termi- 1226

nology, thereby enhancing claim recall. As shown 1227

in Table 11, TTS⊕f resolves the abbreviation “RT” 1228

as “radiation therapy”, which leads the NLI model 1229

(TRUE) to determine that the subclaim is entailed 1230

by the reference text during entailment evaluation. 1231

This results in an increase in the overall claim recall 1232

score from 2/4 to 3/4. 1233

However, providing additional context beyond 1234

the cited sentences may cause the summarizer S to 1235

incorporate irrelevant or unsupported information 1236

(i.e., content not present in the cited sentences), 1237
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Reference: Summary Citations→ 0, 1, 7
1′. A total of 50 participants were involved in the study.
2′. Participants with cutaneous neurotropic melanoma of
the head and neck.
3′. 23 participants were assigned to the observation group.
4′. 27 participants were assigned to the radiation therapy
group.
Citation 0: BACKGROUND: Cutaneous neurotropic melanoma (NM)
of the head and neck (H&N) is prone to local relapse, possibly due to
difficulties widely excising the tumor. Citation 1: This trial assessed
radiation therapy (RT) to the primary site after local excision. Citation 7:
During 2009-2020, 50 participants were randomized: 23 to observation and
27 to RT.

TTS Output: Subclaims Citations→ 7
1′. A total of 50 participants were randomized in the study.
2′. 23 participants were assigned to the observation group.
3′. 27 participants were assigned to the RT group.
(TRUE) Claim Recall: 2/4. 1′: ✓, 2′: ✓, 3′: ✗

TTS ⊕ f. Output: Subclaims Citations→ 7
1′. A total of 50 participants were randomized in the study.
2′. 23 participants were assigned to the observation group.
3′. 27 participants were assigned to the radiation therapy
(RT) group.
(TRUE) Claim Recall: 3/4. 1′: ✓, 2′: ✓, 3′: ✓

Table 11: An example of summaries generated by TTS
and TTS ⊕f , along with their claim recall comparison
(PMID: 38851639, Aspect: Patients).

which could reduce claim precision or citation-1238

based metrics. Nonetheless, our evaluation results1239

do not show a noticeable drop in other metrics.1240

This may be attributed to the instruction explicitly1241

directing the summarizer S to generate summaries1242

strictly based on the cited sentences, with the addi-1243

tional context serving only as reference.1244

E.2 Agreement with Human Evaluation1245

To evaluate the relationship between the system1246

outputs and task-level evaluation scores, we em-1247

ploy both Spearman’s correlation coefficient (ρ)1248

(Kendall and Gibbons, 1990) and Pearson’s cor-1249

relation coefficient (r) (Sheskin, 2003). Pearson’s1250

r measures the strength of a linear relationship1251

between two continuous variables, which is appro-1252

priate when assuming interval-scaled outputs and1253

normally distributed scores (Benesty et al., 2009).1254

In contrast, Spearman’s ρ captures monotonic re-1255

lationships based on rank order, making it more1256

robust to non-linear patterns and outliers (Hauke1257

and Kossowski, 2011). Using both metrics provides1258

a comprehensive view of how well the automatic1259

system outputs align with human-centric evalua-1260

tion criteria, accounting for both linear trends and1261

ordinal consistency.1262

Specifically, we randomly sampled ten abstracts1263

from the test set, and asked the annotator to follow1264

the procedure in Algorithm 2 to assess outputs from1265

the best-performing method (TTS ⊕ f.) using four1266

Completeness Conciseness F1 Score

Evaluator CLR CIR CLP CIP F cl.
1 F ci.

1

Human 81.1↑ 74.3↑ 68.6↑ 78.1↓ 74.3↑ 76.2↓
TRUE 78.2 73.4 65.7 79.5 71.4 76.3

Table 12: Comparison of evaluation results between
human annotator and the TRUE model on 10 sampled
abstracts.

Figure 13: Spearman’s correlation coefficient (ρ) and
Pearson’s correlation coefficient (r) between TRUE and
human evaluation scores across four evaluation metrics.

evaluation metrics. As indicated in Table 12, hu- 1267

man evaluations score higher than the TRUE model 1268

on most metrics, achieving an F1 score of 74.3 for 1269

claims and 76.2 for citations quality. For each 1270

of the four evaluation metrics, we computed the 1271

Spearman correlation coefficient (ρ) and Pearson 1272

correlation coefficient (r) between the automatic 1273

evaluation results and human judgments. As shown 1274

in Figure 13, the Spearman correlation coefficient 1275

between human and automatic evaluation results is 1276

ρ = 0.612, and the Pearson correlation coefficient 1277

is r = 0.577. The agreement is relatively lower for 1278

claim-related metrics, whereas citation-related met- 1279

rics demonstrate stronger consistency with human 1280

judgments. 1281

E.3 Comparison of Entailment Evaluators 1282

We experiment with two additional instruction- 1283

following LLMs as entailment evaluators: the pro- 1284

prietary GPT-4o (Hurst et al., 2024) and the open- 1285

source Mistral-Large (Mistral AI, 2025). Build- 1286

ing on the experimental setup described in §6.3, 1287

we replace the TRUE model with each of these 1288

evaluators to assess the outputs generated by the 1289

TTS ⊕ f. variant. The evaluation results are pre- 1290

sented in Table 13. Among the models, GPT-4o 1291

produces scores that most closely align with human 1292

judgments, followed by Mistral.

Completeness Conciseness F1 Score
Evaluator CLR CIR CLP CIP F cl.

1 F ci.
1

Human 81.1 74.3 68.6 78.1 74.3 76.2
TRUE 78.2 73.4 65.7 79.5 71.4 76.3

GPT-4o 80.2 77.1 67.0 76.2 73.0 76.7
Mistral 75.6 76.8 70.1 74.5 72.8 75.6

Table 13: Comparison of evaluation results between
human annotator and three entailment evaluators on 10
sampled abstracts.

1293
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F Data Samples of TRACSUM Dataset1294

PMID abstract aspect summary citations ...

31638282

The multinational phase 3 CheckMate
238 trial compared adjuvant therapy
with nivolumab versus ipilimumab
among patients with resected stage III
or IV melanoma (N = 906)...

d Unknown. [] ...

33294860

In this study, we incorporate anal-
yses of genome-wide sequence and
structural alterations with pre- and on-
therapy transcriptomic and T cell reper-
toire features in immunotherapy-naive
melanoma patients treated with ...

a

The study aims to predict response
to immune checkpoint blockade by
integrating genomic, transcriptomic,
and immune repertoire data.

[ 4 ] ...

34650833

Combination immunotherapy with
sequential administration may en-
hance metastatic melanoma (MM) pa-
tients with long-term disease control.
High Dose Aldesleukin/Recombinant
Interleukin-2 (HD rIL-2) and ipili-
mumab (IPI) offer...

m

The study used High Dose
Aldesleukin/Recombinant
Interleukin-2 (HD rIL-2) at
600,000 IU/kg and ipilimumab (IPI)
at 3 mg/kg.

[ 1, 3 ] ...

37479483

BACKGROUND: Continuous combi-
nation of MAPK pathway inhibition
(MAPKi) and anti-programmed death-
(ligand) 1 (PD-(L)1) showed high re-
sponse rates, but only limited im-
provement in progression-free survival
(PFS) at the cost of a high frequency...

p

The study involved 33 patients with
treatment-naïve BRAFV600E/K-
mutant advanced melanoma, with
32 randomized into four cohorts.

[ 3, 8 ] ...

33593880

PURPOSE: Triple-negative breast can-
cer (TNBC) is an aggressive disease
with limited therapeutic options. An-
tibodies targeting programmed cell
death protein 1 (PD-1)/PD-1 ligand 1
(PD-L1) have entered the therapeutic
landscape in TNBC, but only a minor-
ity of patients benefit. A way to reli-
ably enhance immunogenicity, T-cell
infiltration, and predict responsiveness
is critically needed. PATIENTS AND
METHODS: Using mouse models of
TNBC...

i

This study used mouse models of
TNBC to evaluate immune activa-
tion and tumor targeting of intra-
tumoral IL12 plasmid followed by
electroporation (Tavo), conducted a
single-arm prospective clinical trial
of Tavo monotherapy in patients
with treatment-refractory advanced
TNBC, and expanded findings using
publicly available breast cancer and
melanoma datasets.

[ 3, 4, 5 ] ...

38870745

BACKGROUND: Treatment op-
tions for immunotherapy-refractory
melanoma are an unmet need. The
MASTERKEY-115 phase II, open-
label, multicenter trial evaluated
talimogene ...

s

Treatment-related adverse events
(TRAEs), including grade 3 TRAEs,
serious AEs, and fatal AEs, oc-
curred in 76.1%, 12.7%, 33.8%, and
14.1% of patients, respectively.

[ 11 ] ...

33127652

PURPOSE: Increased -adrenergic re-
ceptor (-AR) signaling has been shown
to promote the creation of an immuno-
suppressive tumor microenvironment
(TME) ...

o

The combination of propranolol
with pembrolizumab in treatment-
naïve metastatic melanoma is safe
and shows very promising activity
with an objective response rate of
78%.

[ 12,14 ] ...

1295

Table 14: Seven traceable aspect-based summary samples from TRACSUM dataset.
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G Instructions 1296

G.1 LLM Prompt Template 1297

1298
Instructions
Given a document consisting of a set of sentences with a marker attached to the head of each sentence. Based on the
demonstrations, please summarize the

::::::
research

:::::::
questions

::
or

::::
aims of this study in one sentence and output the sentence markers

involved. If there is no relevant information in the document, answer "Unknown".
Document
‘[ "0: The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue
sarcoma (STS).", "1: Both studies failed to demonstrate any benefit on overall survival (OS).", "2: The aim of the analysis of
these two trials was to identify subgroups of patients who may benefit from adjuvant CT." "3: Individual patient data from two
EORTC trials comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal
resection, R1) were pooled.", ... ]’
Summary: .
Citations: .
Demonstrations
Document
‘[ "0: Giant cell tumor of bone (GCTB) is an aggressive primary osteolytic tumor.", "1: GCTB often involves the epiphysis,
usually causing substantial pain and functional disability.", "2: Denosumab, a fully human monoclonal antibody against receptor
activator of nuclear factor ligand (RANKL), is an effective treatment option for patients with advanced GCTB.", "3: This
analysis of data from an ongoing, open-label study describes denosumab’s effects on pain and analgesic use in patients with
GCTB. " "4: Patients with unresectable disease (e.g. sacral or spinal GCTB, or multiple lesions including pulmonary metastases)
were enrolled into Cohort 1 (N = 170), and patients with resectable disease whose planned surgery was associated with severe
morbidity (e.g. joint resection, limb amputation, or hemipelvectomy) were enrolled into Cohort 2 (N = 101).", ... ]’
Summary: The study aims to evaluate the effects of denosumab on pain and analgesic use in patients with giant cell tumor of
bone (GCTB).
Citations: [3]

Document
‘[ "0: Common adverse events associated with nivolumab included fatigue, pruritus, and nausea.", "1: Drug-related adverse
events of grade 3 or 4 occurred in 11.7% of the patients treated with nivolumab and 17.6% of those treated with dacarbazine." "2:
Nivolumab was associated with significant improvements in overall survival and progression-free survival, as compared with
dacarbazine, among previously untreated patients who had metastatic melanoma without a BRAF mutation.", "3: (Funded by
Bristol-Myers Squibb; CheckMate 066 ClinicalTrials.gov number, NCT01721772.)." ]’
Summary: Unknown.
Citations: Null.

1299

Table 15: Instructions and demonstrations for generating summaries on aspect A (research aims). The
::
text denotes

placeholders to be replaced with aspect-specific descriptions.

G.2 Instruction for summarizer S in TRACK-THEN-SUM 1300

1301
Instructions
Summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence that includes all key details from the input sentences

without omitting important information.

Sentences
‘[ "The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue sarcoma
(STS).", "Both studies failed to demonstrate any benefit on overall survival (OS).", "The aim of the analysis of these two trials
was to identify subgroups of patients who may benefit from adjuvant CT." "Individual patient data from two EORTC trials
comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal resection, R1)
were pooled." ]’

Summary:

1302

Table 16: Instruction used to generate summaries for aspect A (research aims) in the summarization component of
TRACK-THEN-SUM. The

:::
text denotes placeholders to be replaced with aspect-specific descriptions.
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G.3 Instruction for summarizer S (⊕ full context) in TRACK-THEN-SUM1303

1304
Instructions
Summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence that includes all key details from the input sentences

without omitting important information. The summary must be based solely on the provided sentences. The full text is for
reference only and must not be used to introduce any new information not present in the sentences.

Sentences
‘[ "The aim of the analysis of these two trials was to identify subgroups of patients who may benefit from adjuvant CT."
"Individual patient data from two EORTC trials comparing doxorubicin-based CT to observation only in completely resected
STS (large resection, R0/marginal resection, R1) were pooled." ]’

Full Context
‘[ "The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue sarcoma
(STS).", "Both studies failed to demonstrate any benefit on overall survival (OS).", "The aim of the analysis of these two trials
was to identify subgroups of patients who may benefit from adjuvant CT." "Individual patient data from two EORTC trials
comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal resection, R1)
were pooled.", ... ]’

Summary:

1305

Table 17: Instruction used to generate summaries for aspect A (research aims) in the summarization component of
TRACK-THEN-SUM (⊕ f.). The

:::
text denotes placeholders to be replaced with aspect-specific descriptions.

G.4 Instruction for summarizer S in SUM-THEN-TRACK1306

1307
Instructions
Summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence based on the given article.

Article
‘[ "The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue sarcoma
(STS).", "Both studies failed to demonstrate any benefit on overall survival (OS).", "The aim of the analysis of these two trials
was to identify subgroups of patients who may benefit from adjuvant CT." "Individual patient data from two EORTC trials
comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal resection, R1)
were pooled.", ... ]’

Summary:

1308

Table 18: Instruction used to generate summaries for aspect A (research aims) in the summarization component of
SUM-THEN-TRACK. The

:::
text denotes placeholders to be replaced with aspect-specific descriptions.

G.5 Instruction for modelM in END-TO-END1309

1310
Instructions
Given an article, summarize the

::::::
research

::::
aims

::
or

::::::::
questions of the study in one clear sentence and output the index of the cited

sentences.

Sentences
‘[ "0: The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue
sarcoma (STS).", "1: Both studies failed to demonstrate any benefit on overall survival (OS).", "2: The aim of the analysis of
these two trials was to identify subgroups of patients who may benefit from adjuvant CT." "3: Individual patient data from two
EORTC trials comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal
resection, R1) were pooled.", ... ]’

Summary:
Citations:

1311

Table 19: Instruction used to generate summaries for aspect A (research aims) in the END-TO-END. The
:::
text

denotes placeholders to be replaced with aspect-specific descriptions.
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