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Abstract

Many scientific and technological problems are related to optimization. Among1

them, black-box optimization in high-dimensional space is particularly challenging.2

Recent neural network-based black-box optimization studies have shown notewor-3

thy achievements. However, their capability in high-dimensional search space is4

still limited. This study proposes a black-box optimization method based on evolu-5

tion strategy and generative neural network model. We designed the algorithm so6

that the evolutionary strategy and the generative neural network model work coop-7

eratively with each other. This hybrid model enables reliable training of surrogate8

networks; it optimizes multi-objective, high-dimensional, and stochastic black-9

box functions. In this experiment, our method outperforms baseline optimization10

methods, including evolution strategies, and a Bayesian optimization.11

1 Introduction12

Optimization is one of the most crucial issues in science and technology. Various simulations and13

experiments work as black-box functions, and there have also been innumerable optimization studies.14

Gradient-based optimization methods are easy choices for differentiable functions or simple convex15

functions. However, black-box functions are often non-differentiable and non-convex. Furthermore,16

they can be multi-objective and stochastic. A simple description of multi-objective black-box17

optimization is as follows18

Optimize(f1(X), . . . , fm(X))
19

X ∈ RN

The search space is defined in real space R, where N is the dimension. f i is a single-objective20

function, which can be stochastic.21

The evaluation of electronic device designs is a practical problem of the black-box optimization.22

Since many device simulators have time-sequential input-output structures, it seems like they can23

be solved in reinforcement learning. However, if the observation cost is too high, it will be almost24

impossible to observe time-sequential data. Instead, the only information which we can observe is25

the final score. Therefore, the evaluation problem is defined as a black-box optimization, in this case.26

For practical purposes, researchers have studied optimization methods in various ways. [4] [5]27

[6]. Typically, Bayesian optimization [1][2][3] and evolutionary strategies [7]-[20] are widely used.28

Notably, the Bayesian optimization is advantageous when the cost of the target function is high and29

the number of function calls is limited.30

The estimating process of Bayesian optimization is very efficient when the number of search points is31

small. On the contrary, it becomes inefficient when the number of search points increases. Therefore,32
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Figure 1: Schematic figures of GEO. a) GEO full algorithm. 1: Random sampling of generators. 2:
Mutation (backpropagation). 3: Variables (x) generation. 4: Black-box run. 5: Data save and repeat
1-4. 6: Generator sorting with Pareto efficiency. 7: Storing search history in the buffer memory. 8:
Critic network training. b) A simple description of the cooperative workflow

Bayesian optimization may not be appropriate in high-dimensional problems that require a large33

number of function calls.34

Meanwhile, evolution strategies (ES) can be better choices for aforementioned cases. In most evo-35

lution strategies, the computational cost does not drastically increase according to the number of36

search points. Nevertheless, it does not mean that they can avoid the curse of dimensionality. The37

optimization performance of the evolutionary strategies also decreases rapidly as the dimension of the38

black-box increases. Although SEP-CMA[55], VD-CMA[56], and LM-CMA[57] have shown opti-39

mization capability in high-dimensional space of convex functions, optimization of high-dimensional40

non-convex problems still seems difficult.41

Generative neural network-based models are recent approaches. They show noteworthy performance42

in test function optimizations, but their capability seems to be limited to single-objective functions43

and to 100-dimension [21][28]. We present GEO: Generative Evolutionary Optimization, a method44

for general black-box optimizations. It is designed to optimize stochastic, multi-objective, and high-45

dimensional black-box problems. We show that GEO outperforms baseline methods in finding Pareto46

fronts of Styblinski-Tang [42], Ackley [39], Rastrigin [36][37][38], Rosenbrock [40][41], ZDT1,47

ZDT2, and ZDT3 [43] test functions. Also, by converting Cartpole-V1 [44] to high-dimensional48

black-box problems, we show that GEO can be used in sequential problems. We also tested LeNet-549

[45] to see how it generates sub-manifold structures.50

2 Related works51

GEO is related to Evolutionary Generative Adversarial Networks (EGAN) [22], and Local Generative52

Surrogates Optimization (L-GSO) [21]. This section briefly introduces them.53

2.1 L-GSO54

L-GSO is a surrogate network model based black-box optimizer. It has a surrogate network and a55

generator network. The main idea of L-GSO is that the surrogate network only estimates a local56

shape of the objective function. Since the stabilization of the surrogate network is difficult, they57

suggest only to surrogate a local region. Also, the optimizer can be used in stochastic environments58

since it works in the neural network.59

It is shown that L-GSO outperforms baseline optimizers in dimension = 10 and sub-manifold60

dimension = 100 problems. However, due to the limitation of the local sampling method, L-GSO61

applies only to a single-objective function.62
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Algorithm 1 GEO
Require: Initial generator pool {(G1, s1), (G2, s2), ..., (Gp, sp)}, initial critic networks
{C1, C2, . . . , CN}, a buffer memory {(x1, s1), (x2, s2), . . . , (xB , sB)}, an input seed z
(constant or random variable). The multi-objective function is defined as (f1, . . . , fN ) = F .
while iteration do

while n < N do ▷ Critic network training
Sample Cn in {C1, C2, ..., CN}
gc = ∇θ

1
M1

∑M1

j=0 ||Cn
θ (xj)− fn(xj)||, x ∈ buffer

Cn
θ ← Optimize(Cn

θ , gc)
end while
while n < N do ▷ Generator network mutation (multi-objective)

Sample Cn in {C1, C2, ..., CN}
while m < M2 do ▷ M2: the number of mutations

RandomSample Gi in {(G1, s1), (G2, s2), ..., (Gp, sp)}
gg = ∇ϕ[±Cn(Gi,ϕ(z))] ▷ +: minimize, -:maximize
Gi ← Optimize (Gi, gg)
xi = Gi(z)
si = F (xi)
buffer.append((xi, si))
pool.append((Gi, si))

end while
end while
pool← ParetoEfficiency(pool) ▷ Non-dominated sorting
pool← AgeEvolution(pool) ▷ (optional)

end while

2.2 EGAN63

Evolutionary Generative Adversarial Networks (EGAN) combines Generative Adversarial Network64

(GAN) [30]-[33] and evolution strategies. The core idea of EGAN is that the evolution strategy can65

assume a backpropagation as a mutation. It has one discriminator and multi generators. Generators66

of the evolution pool are mutated for each iteration, and they are sorted by fitness scores.67

By comparing the mode collapsing results, the study shows that the evolution strategy efficiently68

complements the GAN algorithm. EGAN is not an optimizer. Nevertheless, we expected that a69

combination of an evolution strategy and a GAN could be adopted in our black-box optimization70

algorithm.71

2.3 Other approaches72

Global Topology Optimization network (GLOnet) [23] is a method for electromagnetic device designs.73

It is an advanced study of the previous research, adjoint-based topology-optimizer (ABTO) [24]-[27].74

GLOnet increases optimization performance by adding generator networks on ABTO. GLOnet is not75

a black-box optimizer because the gradient is given directly from the target simulator. However, we76

can discover an essential role of the generator network for better optimization.77

GNN-ES (Evolutionary Strategies with Generative Neural Networks) [28] is a combined method of78

bijective neural networks and evolutions. GNN-ES assumes latent space z and bijective Generative79

Network (GNN) x = g(z), z = h(x). It optimizes latent space and a bijective network. The update80

of latent space is carried out by evolution strategies. The study shows that GNN-ES can optimize test81

functions in dimension = 10. However, GNN-ES is not a surrogate model-based optimizer and it is82

restricted to bijective networks.83

Conservative Objective Models (COMs) [29] is a surrogate model-based black-box optimizer. The84

key idea of COMs is regularizing the loss function of a surrogate model in training. Along with a85

standard supervised regression, it adds COMs-regularizers to prevent erroneously large predictions of86

the trained model.87
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Figure 2: A trunk-branch network structure. The two-level structure is an ad hoc method to reduce
memory overuse of attention networks.

Surrogate assisted evolution models are also related [58]. However, they do not guarantee O(n)88

computational complexity. This can be a weakness in high-dimensional problems.89

3 Methods90

GEO consists of two stages: the evolution and network training. The evolution pool maintains a91

certain number of generators on the basis of fitness scores. The evaluation and sorting of multi-92

objective scores is determined by Pareto-efficiency.93

A generator training is also a mutation in the evolution. 1. A generator is randomly sampled from94

the pool. 2. The critic network trains the selected generator (using backpropagation, to increase or95

decrease a prediction of a critic). 3. The trained generator suggests a new variable x=G(z). 4. Check96

score=F (x). 5. Sort a new (G, score) pair in the pool.97

(x, score) pairs are stored in a buffer memory and they are used to train critic networks. Each critic98

network is trained to surrogate a corresponding black-box object.99

3.1 Generative model100

GEO consists of a pool of generator networks and critic networks that create backpropagations.101

For each iteration step, generators are randomly sampled to make mutated generators. N -critic102

networks are prepared to make an N -objective surrogate model, each critic network corresponds to103

a single objective function. The mutated generators create variables x = Gϕ(z), and N -objective104

scores si = f i(x) are measured. The set of scores (x, s), s = (s1, s2, ..., sN ) is stored in the buffer105

memory. Training of the critic network is carried out using the buffer memory. After training, critic106

networks mutate the generator networks in the next iteration step. The backpropagation serves107

optimal mutations by increasing predictions of critic networks.108

MG = E[Ci(Gϕ(z))], C
i ∈ C1, . . . , CN

Usually, traditional GAN generators feed random latent variables z through the input layer, while109

some GAN algorithms separate latent variables from the input feeds [33]. Because GEO does not110

need inferences, we do not see z as a latent vector. We experimented with both random variables111

(Figure 5) and constants (Figure 4) as input feeds z.112

Since each critic network has a corresponding objective, it must be trained separately using its113

corresponding objective function. We used L1 loss with a single objective function f j and a critic114

network Cj . The loss function is defined as follows115

LCj = Ex∼pg ||C
j
θ(x)− f j(x)||

116

(f1, . . . , fN ) = F

The critic network learns variable x in a global region. Global training is essential for multi-117

dimensional Pareto front searches. (See 3.4)118
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Figure 3: Performance comparisons of GEO and baseline optimizers in single-objective test functions.
a) Optimization performances from 2 dimension to 8,192 dimension (Styblinski-Tang test function).
b) Computational time in 8,192 dimension (real time). c) Optimization performances of GEO and
LSM in single-objective functions. LSM is a modification of L-GSO.

3.2 Evolution strategy119

Each generator is stored in the pool with a corresponding fitness score sj = (s1j , ...s
N
j ) = F (xj).120

Score data {(xj , sj). . . } are sorted by Pareto efficiency. The Pareto efficiency is defined as follows121

(for minimization cases)122

∀i ∈ 1, ..., N : fi(x
∗) ≤ fi(x),∃j ∈ 1, ..., N : fj(x

∗) < fj(x)

then, x∗ ∈ P , where x ∈ X and P is the Pareto efficiency. Pareto efficiency can be ranked in order123

P1=Pareto(X), P2=Pareto(X − P1), · · ·, they are calculated by non-dominated sorting methods. A124

more detailed explanation is provided in the supplement.125

Optionally, age evolution can be added in the sorting part. The age evolution removes the oldest126

elements from the pool. Thereby, it prevents "the high score due to stochasticity" from surviving in127

the pool. A pool-refresh method is another option, but it makes the calculation time almost doubled.128

In GEO, evolution strategy is not just an auxiliary tool. Without an evolution strategy, the training of129

networks can be unstable, which leads to the divergence. We discuss details in section 3.4.130

3.3 Neural networks131

Any kinds of neural networks, including Recurrent Neural Network (RNN) [47][48][49], Convo-132

lutional Neural Network (CNN) [46], and Full Connected (FC) network can be used as generator133

networks and critic networks. We chose a multi-head-self-attention network [50] for operational134

convenience. Figure 2 shows the self-attention network we used. The overall structure is modified135

from the original transformer model.136

Because the attention network consumes gigantic memory size, it may cause GPU out-of-memory. It137

was a significant problem when we optimized high-dimensional functions. When using an NVIDIA138

Tesla V100 32G GPU in variable space of dimension d > 211, the total required memory exceeds the139

available memory size. We devised an ad hoc trunk-branch network structure to solve this problem.140
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Figure 4: Optimization results of GEO, MOEA/D, NSGA-III, and NSGA-II in non-stochastic-multi-
objective functions. Plots show optimization results in the 8, 192 dimension, after 100, 000 function
calls (1,000 iterations). LHC indicates the latin hyper cube initial variable points, and I indicates
the initial points which are obtained from GEO’s initial points.

This structure has one trunk network and several branch networks, and each branch network extends141

from the trunk network. Branches have an identical structure with each other, and the length of the142

output tensor is defined by nsubvar = nvar/nbranches.143

The split branch trick serves a memory-efficient structure, but it could be detrimental to optimization144

performance. Therefore, we implement the trunk-branch structure only for the sake of memory145

efficiency of GPU.146

The baseline attention network structure includes dropout layers [51], and the dropout layers’ random-147

ness makes the generator stochastic. A random input feed z is also a source of stochastic behavior.148

We experimented with both stochastic generators (Figure 5) and non-stochastic generators (Figure 4).149

However, for critic networks, we maintained the dropout layers as non-zero.150

3.4 A complementary strategy of generative network and evolution151

Figure 1 shows the full algorithm of GEO. Training a surrogate model (critic network) is the essential152

part of a surrogate model-based optimizer, but it is also the trickiest part. The point is that the training153

data (the true data in GAN concept) is not prepared, and the data can be only acquired through154

on-the-fly searches. Without prepared data, training can be unstable since outbreaks of new data155

make the training region fluctuate. In this case, the algorithm diverges for the following reasons:156

1. The generator suggests an input variable x in a wrong direction. 2. The critic network is trained157

with input variable x, but x has no information of a Pareto front. 3. The critic network trains the158

generator, but it does not give meaningful information.159

In short, the divergence is a result of evil cycles of two networks.160

The local sampling of L-GSO seems to be a simple stabilization method. In a case of N=1, L-GSO161

samples data in a local region, where the center is a current point. The current point is the Pareto-front,162

in this case.163

However, it can be challenging in N -objective functions (in cases of N>1). Since the Pareto-front164

is RN−1 surface (not a single point), there will be a lot of centers of sampling. Then, it is not local165

anymore. The local sampling method cannot be used in multi-objective problems.166

Therefore, we need to devise a stabilizing method for multi-objective functions. We suggest that167

the evolution strategy can be a good solution. The role of an evolution pool is to trap G and168

corresponding x near the Pareto-front (rank 1). At the same time, the data that is far from the169
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Figure 5: Optimization results of GEO, MOEA/D, NSGA-III, and NSGA-II in stochastic-multi-
objective functions. Plots show optimization results in the 8, 192 dimension, after 100,000 function
calls (1,000 iterations).

Pareto-front is discarded. Also, it slows down the fluctuation of the training data. As a result, the170

training data region is stabilized around the Pareto-front.171

We expect the stabilization method to serve as an anchor, which prevents the training data from172

floating. At the same time, a properly trained critic network provides better mutation strategies. The173

interdependent cooperation of an evolution strategy and surrogate models is our main idea.174

4 Experimental results175

In this section, we compare the black-box optimization results of GEO with baseline optimizers. We176

tested single and multi-objective functions, stochastic and non-stochastic functions. The baseline177

optimizers are Bayesian optimization (Gaussian process), NSGA-II [7] (GA in 1-object), NSGA-III178

[15], MOEA/D [18], and CMA-ES [9] evolution algorithms.179

4.1 Single objective functions180

Figure 3a) shows performances of optimizers according to dimensions. For the single-objective test181

function, we used Styblinski-Tang function. At dimension = 2, Bayesian optimization shows the182

best performance. However, as the dimension increases, GEO outperforms baseline optimizers. At183

dimension = 8, 192, baseline optimizers rarely finds the global minimum, while the GEO shows184

better performances.185

To see how the depth of the generator network affects the performance, we also tested GEO with a186

single-layer generator. The single-layer generator appears to have little optimization capability. Even187

in the dimension = 2 problem, it shows a considerably slow optimization.188

Bayesian optimization is a powerful method for high-cost black-box problems, but its performance189

can be weakened when the problem requires numerous function calls. The computational complexity190

of Bayesian optimization is known to be O(n3) [3]. Figure 3b) shows the computational time of191

GEO, NSGA-II, and Bayesian optimization. Like most evolution strategies, GEO is designed to have192

a computational complexity of O(n).193

Figure 3c) shows performance comparisons to a Local Surrogate Model (LSM), a modification of the194

L-GSO algorithm. LSM follows the general outline of L-GSO GAN implementation but adopts the195

self-attention network used in GEO. In the Styblinski-Tang function, LSM shows worse performance196

than in other functions. Also, the performance of LSM rapidly decreases as the dimension increases.197

On the other hand, GEO shows better optimization performance under various conditions.198

4.2 Multi objective functions199

In this section, we show optimization performance comparisons in multi-objective problems. We200

only compare GEO and evolution strategies because the high-dimensional problems require a lot of201

function calls.202

Figure 4 shows optimization results in the non-stochastic-multi-objective functions. Each figure203

is a result after 100,000 function calls. For the multi-objective test functions, ZDT functions and204
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Figure 6: Optimization results of GEO, NSGA-II, NSGA-III and MOEA/D according to dimensions.
(After 100,000 function calls with a ZDT3 test function.)

Table 1: Black-box optimization of Cartpole-V1. Scores are measured in relative scale (max score =
1.0, max steps = 500) after 50, 000 function calls.

Sequence length 256 512 1024 2048

GEO 0.598± 0.05 0.305± 0.03 0.310± 0.02 0.323± 0.03
CMAES 0.583± 0.09 0.292± 0.05 0.263± 0.02 0.280± 0.02
NSGA2 0.243± 0.01 0.120± 0.01 0.124± 0.01 0.121± 0.01

combined functions F = [f1, f2] (f i: Styblinski-Tang, Ackley and Rastrigin function) were used.205

A Latin Hyper Cube (LHC) [53] method is a good guess for initial states. However, GEO cannot206

implement LHC because it generates initial points x through the neural network. We gave two initial207

states in the baseline optimizer to control performance according to the initial state. NSGA2-I208

uses GEO’s initial distribution x ∈ G(z) as its initial points, while NSGA2-LHC uses LHC-initial209

points.210

In the high-dimension, GEO outperforms baseline optimizers. The choice of initial points for NSGA-211

II rarely affects final results. A slightly different result appears in ZDT2. In ZDT2, GEO finds an212

optimal point, but it fails to find a global shape of the Pareto-front. Figure 6 shows the result of ZDT3213

optimization according to dimensions. Classical ES algorithms significantly reduce performance in214

high-dimensional space, while GEO shows more robust performance in high-dimensional space.215

Figure 5 shows optimization results in the stochastic-multi-objective functions. The optimization of216

stochastic functions is defined as follows217

x∗ = argminxE[F (x)]
218

F (x) = (f1, f2)
219

fi ← fi +Ni(µ, σ)

N is a random normal distribution, and we set µ = 0.0 and σ = 1.0. GEO outperforms baseline220

optimizers even in a stochastic environment, but it still has a single-point collapsing problem in the221

ZDT2 function.222

4.3 Cartpole-v1223

For the variety of test functions, we optimized the OpenAI [54] Cartpole-V1 by converting it into a224

black-box problem. It is also a simple toy model of time-sequential input-output (I/O) problems.225

Cartpole-V1 is a test package that is mainly used in reinforcement learning [34][35]. Reinforcement226

learning requires a series of I/O structure. However, in the black-box problem, the entire input227

sequence is assumed as one large input, and only the final score is measured without observing the228

intermediate rewards and states. Since this experiment is a toy model of real-world problems which229

have stochastic environments, we kept the Cartpole-V1 stochastic.230

The final score is measured in a relative score to the sequence length. (If the Cartpole is alive for231

m-length in n-sequences, the score is m/n.) Therefore, the maximum and minimum score set to 1.0232

and 0.0. GEO outperforms others from 256 to 2048 dimensions in the experiment (Table 1).233
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0 : [s = 0.999] 1 : [s = 0.959] 2 : [s = 0.999] 3 : [s = 0.999] 4 : [s = 0.999] 

Figure 7: Black-box optimization of LeNet-5 (MNIST-trained). Each score corresponds to a
prediction of LeNet-5 for a target number. After optimizations, scores get close to the maximum
score (1.0). 0: 0.999, 1: 0.959, 2: 0.999, 3: 0.999, 4: 0.999.

Cartpole-V1 is difficult to solve with a black-box optimization approach due to the stochastic change234

of the initial state, but it shows a clear performance difference between the black-box optimizers.235

4.4 LeNet-5236

We also optimized LeNet-5, which is trained with the MNIST dataset. The optimization goal is to237

generate an image that makes the LeNet-5 predict a target number with a maximum score (maximum238

prediction score = 1.0). The LeNet-5 is regarded as a non-differentiable black-box. After 50, 000239

function calls, the final scores of generated images reach very close to the maximum score (Figure 7).240

In the related experiment, L-GSO, generative models appear to be better at finding the local optimum241

in sub-manifolds. For the same reason, we expected to see the sub-manifold structure in the generated242

image, but the generated image does not seem intuitive.243

5 Discussion244

Often, a neural network’s learning mechanism is likened to learning manifolds in a high-dimensional245

space. Similarly, we guess that the critic network in GEO learns low-dimensional manifolds in the246

high-dimensional space. Therefore, we expect that finding global or local optima would be easy if247

the optima are in low-dimensional manifolds. Also, we consider that it is the reason why the depth of248

generators is important.249

Meanwhile, we guess that the collapse problem of ZDT2 is caused by a concave shape of its Pareto-250

front. This is because, when the data is formed as a concave shape, a non-dominated sorting selects251

the edge state first. We have yet to find a clear solution to solve the collapse problem without252

compromising performance.253

6 Conclusion254

We have described a method for stochastic-multi-objective black-box optimization. GEO is an255

interdependent cooperation method of generative neural networks and the evolution strategy. The256

evolution strategy provides a stable training region for critic networks, and the critic networks provide257

efficient mutations to the evolution strategy. As our design intent, GEO seems to work appropriately258

in stochastic and high-dimensional multi-objective test functions.259

Meanwhile, the Pareto-front collapsing problem, shown in ZDT2, is an important issue to be dealt260

with. Another limitation of GEO is the GPU memory consumption problem. The excessive memory261

consumption of attention networks limits its search space to around 10, 000 dimensions. In future262

researches, we can study other memory-efficient networks to solve this problem.263

GEO is designed for optimization in extremely high-dimensions. However, the performance at lower264

dimensions is not guaranteed (see supplement). We think that [1,000 < d < 10,000] is the practical265

range of use of GEO, unless we improve the efficiency of network structures. In addition, the mutation266

of generators concentrates on an exploit, the explore strategy could be weak. In the next study, a267

strong exploit & explore strategy should be added to improve optimization performance.268
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