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Figure 1: The proposed CamEdit enables photorealistic image editing through manual textual input
of continuous camera parameters, including aperture, focal plane, and shutter speed, resulting in
visually realistic outcomes.

Abstract

Recent advances in diffusion models have substantially improved text-driven image
editing. However, existing frameworks based on discrete textual tokens struggle
to support continuous control over camera parameters and smooth transitions in
visual effects. These limitations hinder their applications to realistic, camera-aware,
and fine-grained editing tasks. In this paper, we present CamEdit, a diffusion-
based framework for photorealistic image editing that enables continuous and
semantically meaningful manipulation of common camera parameters such as aper-
ture and shutter speed. CamEdit incorporates a continuous parameter prompting
mechanism and a parameter-aware modulation module that guides the model in
smoothly adjusting focal plane, aperture, and shutter speed, reflecting the effects
of varying camera settings within the diffusion process. To support supervised
learning in this setting, we introduce CamEdit50K, a dataset specifically designed
for photorealistic image editing with continuous camera parameter settings. It
contains over 50k image pairs combining real and synthetic data with dense camera
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parameter variations across diverse scenes. Extensive experiments demonstrate that
CamEdit enables flexible, consistent, and high-fidelity image editing, achieving
state-of-the-art performance in camera-aware visual manipulation and fine-grained
photographic control.

1 Introduction

Recently, diffusion models [1, 2, 20, 49, 50, 52, 54, 51, 32] have become powerful tools for both
image generation and editing. They usually apply a pre-trained text encoder such as CLIP [48]
and T5 [66] to inject manual textual prompts information into the generation process, enabling
better generation quality and more precise control. Meanwhile, as social media platforms grow and
smartphone cameras continue to advance, editing images to reflect photorealistic optical effects has
become practically valuable. This highlights the need for editing methods that can directly manipulate
camera parameters. However, most existing image editing methods [4, 5, 19, 23, 24, 29, 35, 58, 62]
focus mainly on three main tasks: semantic editing, stylistic editing and structural editing.

Few prior works target photorealistic image editing, which edits indistinguishable from real pho-
tographs through precise control of camera parameters. In this work, we focus on the precise
adjustments of focal plane1 , aperture and shutter speed in camera parameters, which play a funda-
mental role respectively in determining focal range, background defocus degree, and exposure time
[46, 57] during the photo-taking process.

Diffusion models capture strong spatial priors and scene geometry [55], making them suited for
photorealistic editing. Recent works encode camera settings as discrete tokens within text-to-
image (T2I) or text-to-video (T2V) generation frameworks [11, 70]. However, such discrete textual
token-based approaches are difficult to directly apply to editing tasks involving continuous camera
parameter control through textual prompt input (e.g. “Adjust the image with aperture f/2.8”, etc.).
This mismatch hampers smooth parameter adjustment and limits applicability to photographic editing.

To overcome these challenges, we introduce CamEdit, a diffusion-based framework for photorealistic
image editing that allows continuous control of camera settings using text prompts. Instead of turning
parameter values into separate tokens, we propose a continuous parameter prompting method, which
interpolates between predefined anchor embeddings in the text space. This preserves alignment with
representation distribution of the pre-trained model while enabling fine-grained control over a wide
range of settings (such as “aperture f/[2, 10]”, “shutter speed [0, 1]”). As diffusion backbones lack
explicit camera priors and fail to capture parameter-specific effects, we further propose a parameter-
aware modulation module that conditions spatial and channel features throughout the diffusion
transformer, making explicit both local and global effects that text embeddings alone miss.

Given the lack of high-quality datasets for photorealistic camera-aware editing, we construct a hybrid
dataset named CamEdit50K, which includes real-world photographs with extracted or estimated
EXIF metadata2, along with synthetic image pairs rendered under controlled variations in focal plane,
aperture, and shutter speed. This dataset provides a strong foundation for learning models that are
physically consistent and aware of the effect of varying camera parameters.

In summary, our main contributions can be summarized as follows:

• We propose CamEdit, a diffusion-based framework for photorealistic image editing that en-
ables continuous and fine-grained control over intrinsic camera parameters such as aperture,
focal plane, and shutter speed, entirely through manual textual prompts.

• We design a continuous parameter prompting mechanism and a parameter-aware modulation
module to enable smooth and physically consistent control across varying camera settings.

• We construct a dataset, CamEdit50K, which contains aligned image pairs and corresponding
camera parameter instructions, addressing the lack of supervised data for photorealistic
image editing with continuous camera parameter.

1Focal plane is corresponding to the focal point in camera settings.
2EXIF is metadata embedded in image files that records camera settings such as aperture and shutter speed.
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2 Related Work

Image Editing with Diffusion Models. Recent diffusion-based generative methods such as Im-
agen [54] and DALLE [49] leverage diffusion models conditioned on manual textual prompts to
control the generation process. Consequently, Textual Inversion [14] and DreamBooth [53] allow
for personalized image generation base on diffusion models. ControlNet [71] adds more control
by using conditions like depth, edges, or pose. LoRA-based techniques [22, 34, 35] update only a
small part of the model for quick adaptation. Unlike image generation, image editing modifies the
style, structure, or content of an existing image to achieve specific goals. Prompt-to-Prompt [19]
manipulates cross-attention between source and target prompts to guide the editing process, while
InstructPix2Pix (IP2P) [5] extends this paradigm by fine-tuning diffusion models on synthetic triplets
of (image, instruction, target). More recent approaches, such as InstructDiffusion [17] and MGIE [13],
unify instruction-driven editing across a broad range of tasks and datasets, advancing general-purpose
visual manipulation. To improve spatial fidelity, follow-up works incorporate localization priors
such as masks and bounding boxes [58, 24, 4] to better preserve background consistency. Other
efforts explore multi-task instruction tuning on large-scale synthetic datasets [37, 69, 64], enabling
finer-grained semantic control. Approaches with sliders [16, 15] enable continuous control over the
attributes of image edits. Despite these advances, existing frameworks remain centered on semantic
and stylistic edits, which are rarely considering the growing needs for photorealistic editing.

Camera-Aware Models. Traditional camera-aware editing methods have shown strong performance
in tasks such as focal plane adjustment [57, 45, 46, 63] and aperture simulation [7, 56]. These methods
are typically based on physically inspired image formation models and often require additional inputs
such as depth maps or aperture geometry [57, 45, 46, 18, 61, 63]. However, their applicability is
generally limited to single-purpose editing scenarios due to their dependence on auxiliary data and
restrictive modeling assumptions.

Recent diffusion-based approaches introduce camera control into generative pipelines, mainly focus-
ing on extrinsic parameters like pose, viewing angle [8, 21, 33], or motion trajectory in text-to-video
generation [40, 65, 68]. Conditioning is commonly achieved via camera tokens or scene descriptions
to enable view synthesis and motion control. Some methods embed camera parameters as discrete
tokens into T2I [11, 12] and T2V [70] diffusion models to generate images with varying physical
properties. However, these approaches face two main limitations: they do not support editing real
images in a physically consistent manner, and they represent continuous camera parameters in a
discretized form, which restricts control precision and limits generalization.

3 CamEdit50K Dataset

Existing camera-aware datasets [11, 56, 70, 7] mainly focus on generation tasks, often lacking aligned
image pairs or sufficient variation in camera parameters and content diversity. To address these
limitations, we introduce CamEdit50K, a dataset specifically designed for photorealistic image editing
under continuous, physically grounded camera control.

As shown in Table 1 and Figure 2, CamEdit50K unifies paired real and synthetic imagery, multi-
parameter coverage, and explicit camera settings to support camera-aware editing and evaluation.
Real photos supply rich content but often lack complete metadata. We recover missing parameters
through a real-data parameter estimation pipeline. Synthetic images are produced with a synth-
data rendering pipeline and come with ground-truth camera values, which enables accurate and
dense supervision. By integrating these complementary sources, CamEdit50K delivers diversity and
controllability, enabling continuous camera-parameter editing.

Real-Data Param Estimation. For the majority without metadata, we estimate these parameters
using physically grounded methods: (i) Focal Plane: To ensure consistency across images, we define
the focal plane within a normalized depth range [0, 1], representing focus from far to near. Depth
maps are predicted by Depth Anything V2 [67] and normalized accordingly. The in-focus region
is identified by comparing the target image with an all-in-focus input [60], and its mean depth is used
as the estimated focal plane. (ii) Aperture: Since aperture primarily governs background defocus, we
measure blur using an edge-based estimation [27]. The estimated defocus level is then converted to
an effective aperture diameter via a simplified thin-lens model [44]. (iii) Shutter Speed: We estimate
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Figure 2: Overview of the CamEdit50K construction pipeline across focal plane, aperture, and shutter
speed. Real image pairs without EXIF metadata are parameterized using physical cues such as focus
depth, PSF radius, and exposure value. Synthetic pairs are generated by sampling camera settings
and rendering photorealistic images under controlled conditions. The chart on the right shows the
number of images for each parameter in CamEdit50K.

Table 1: Comparison with existing camera-aware datasets.
Dataset Venue #Samples Task Real-Data Synth-Data Synth-Realism Parameter-Dense Scene Diversity

RealBokeh [56] Arxiv 2025 23k Render ✓ ✗ - ✗ ✓
Camera20k [11] SA 2025 20k Generate ✓ ✗ - ✗ ✗

PhotoGen [70] CVPR 2025 3kn3 Generate ✗ ✓ ✗ ✓ ✗

CamEdit50K – 54k Edit ✓ ✓ ✓ ✓ ✓

exposure time from global brightness statistics and invert the camera response using a differentiable
ISP pipeline [9, 31, 36], yielding a shutter speed consistent with the observed luminance.

Synth-Data Rendering. We generate synthetic image pairs by sampling camera parameters and
rendering the corresponding effects. (i) Focal Plane: We sample the focal plane from the interval
[0, 1], selecting depths ranging from background to foreground. To simulate realistic depth-of-field
effects, we employ a differentiable bokeh renderer [57]. (ii) Aperture: Using the depth map from [67],
we fix the focal plane on the foreground and apply BRIA.AI [3] matting to preserve sharpness in the
focused region. A thin-lens renderer [45] is then used to simulate varying aperture from f/2 to f/10,
producing different degrees of defocus blur. (iii) Shutter Speed: We simulate exposure durations
within the range [0, 1] seconds by adjusting radiance in the HDR domain and converting it to RGB
through a differentiable ISP pipeline [9, 31, 36].

4 Method

Our CamEdit framework adopts the instruction-driven editing paradigm of IP2P [5], while building
upon the diffusion backbone as illustrated in Figure 3. Given a camera-parameter instruction, we
first apply continuous parameter prompting as described in Section 4.1, which enables fine-grained
prompt conditioning. The resulting embeddings, combined with the input image, are then fed into the
transformer equipped with parameter-aware modulation modules described in Section 4.2, which
inject parameter-specific feature modulation into the generation process.

4.1 Continuous Parameter Prompting

Directly learning parameter embeddings and appending them to other text features, while bypassing
the text encoder, introduces a distributional mismatch with the frozen text embedding space. This
misalignment degrades generation quality and hampers convergence, as shown in Section 5.3. To
address this, our continuous parameter prompting synthesizes parameter representations by interpo-
lating between anchor embeddings of adjacent discrete tokens within the text embedding space. The

3PhotoGen synthesizes samples by continuously sampling camera parameters over 3K fixed images, reducing
scene diversity and affecting realism.
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Figure 3: Framework Overview. The continuous parameter prompting module obtains a continuous
parameter embedding via learnable interpolation over discrete camera token embeddings. This
embedding replaces the placeholder token in the text embedding space, while preserving the original
prompt structure. The parameter is also injected into the diffusion transformer via the parameter-
aware modulation module, which adjusts features to reflect the corresponding visual effects.

resulting embedding replaces the parameter placeholder in the encoded prompt, ensuring perceptual
continuity across parameter variations. This mechanism requires no modification to the text encoder
and integrates seamlessly into diffusion-based frameworks.

Let p ∈ R denote a continuous camera parameter, and {p1, . . . , pK} be a set of predefined discrete
anchor values with associated learnable embeddings {e1, . . . , eK} ⊂ Rd, where each ek is obtained
by encoding the anchor token via the frozen CLIP tokenizer and text encoder. For any p ∈ [pi, pi+1],
the parameter embedding is computed as:

ep = Linear([ei, ei+1]) + MLP(ϕ(p)), (1)

where ϕ(p) ∈ [0, 1] represents the normalized relative position of p between anchors pi and pi+1.
The linear projection aggregates the semantic content of the two neighboring embeddings, while
the MLP, implemented as a two-layer feed-forward network with ReLU activation, introduces a
position-dependent residual to capture fine-grained variation. The final embedding ep replaces the
parameter placeholder in the encoded text prompt representation.

4.2 Parameter-Aware Modulation
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Figure 4: Illustration of parameter-aware
modulation.

Camera parameter variations primarily influence the spa-
tial appearance of an image while preserving its underlying
semantic content. Such changes include spatial transfor-
mations, for example, depth-dependent focus shifts across
foreground and background regions [59]. Additionally,
parameters such as shutter speed induce global exposure
changes [30], motivating channel-wise feature modulation.

To effectively model visual effects, we modulate inter-
mediate features conditioned on the parameter p through
two complementary operations as shown in Figure 4. To
improve parameter sensitivity and information flow, the
modulation is applied after the self-attention layers in each
transformer block, where features contain rich contextual dependencies. The first component,
geometry-aware spatial modulation, models lens-induced geometric distortion and depth-dependent
focus transitions. It predicts a spatial displacement field that perturbs feature coordinates based on
visual features and the input parameter. Specifically, we apply 2 × 2 average pooling to the input
feature map F and feed the pooled representation, together with p, into a parameter-adaptive MLP:

∆G = MLPg(AvgPool(F), p) ∈ R2×H×W , (2)
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where AvgPool(·) denotes average pooling over non-overlapping 2× 2 patches. The warped feature
is then computed via:

Fg = grid_sample(F,Gbase +∆G), (3)
where Gbase represents the canonical coordinate grid of F as defined in [25] and grid_sample
performs differentiable sampling of F at continuous coordinates.

The second component, channel-wise modulation, adjusts feature amplitudes to capture global
appearance variations. We compute channel-wise scaling and bias terms as follows:

Fp = γ(p) · Fg + β(p), where γ(p), β(p) = MLPp(AvgPool(F), p) ∈ RC . (4)

Both MLPg and MLPp are implemented as single-layer feed-forward networks with intermediate
ReLU activation. Then Fp is forwarded to the subsequent transformer block.

5 Experiments

5.1 Implementation Details

Training and Inference. We adopt Stable Diffusion 3 (SD3) [10] as our backbone due to its strong
generation quality and color fidelity. The majority of SD3 weights are kept frozen to preserve its
pre-trained capacity. We update only the text embedding layer to learn anchor tokens and enable our
learnable parameter interpolation. For each task, we predefine 10 anchor tokens via the tokenizer
to guide training. The transformer is initialized from [72], and we fine-tune lightweight adapters
using LoRA [22], combined with our physics-driven adaptation module. We train the model using
AdamW [38], with learning rates of 1e-5. Training is conducted on 512× 512 resolution images with
a batch size of 32 for 50 epochs. During inference, the model requires only an input image and an
instruction specifying any continuous camera parameter value within the valid range.

Metrics. We evaluate performance from three perspectives: perceptual quality, content preservation,
and parameter control accuracy. Perceptual quality is measured using NIQE [42] and MUSIQ [28],
which assess naturalness and visual fidelity without references. Content preservation is quantified
via DINO similarity [6], capturing semantic alignment between the source and edited images. To
assess parameter control, we compute the L1 error between the instruction-specified target and the
estimated parameter extracted from the generated image. Estimation follows the physically grounded
procedure described in Section 3. We evaluate 200 images across varying parameter settings.

5.2 Comparison to State-of-the-Art Methods

Comparison Methods. We firstly compare our method against state-of-the-art diffusion-based
baselines, including editing models such as SuperEdit [41], UltraEdit [72], and In-Context Edit [47],
as well as the camera-aware I2V model PhotoGen [70]. To evaluate PhotoGen [70], we generate
images using prompts sampled from GPT-4o to simulate realistic text-based generation requests. We
retrain UltraEdit on our CamEdit50K to enable camera-aware editing, denoted as UltraEdit*.

Beyond diffusion-based baselines, we further compare our method with other approaches across all
editing tasks. For aperture editing, we compare with BokehMe [45], BRVIT [43], and DrBokeh [57].
For focal plane editing, we evaluate against BokehMe [45], MPIB [46], and DrBokeh [57]. For
shutter speed editing, we include advanced low-light and exposure-aware methods such as SCI [39],
CycleR2R [36], and CLODE [26]. All methods are tested under a consistent exposure configuration
and evaluated for their ability to adapt image brightness while preserving both structural integrity and
perceptual quality.

Quantitative Comparison. As shown in Table 2 (a), our method consistently outperforms other
editing across all tasks in NIQE, DINO, and control error. Compared to the retrained UltraEdit*
model, our method achieves an over 40% relative reduction in average control error, demonstrating
substantially improved parameter alignment. Existing editing models do not explicitly incorporate
camera parameters, limiting their ability to generate parameter-consistent results. Although UltraEdit*
benefits from CamEdit50K supervision, it remains less precise than our approach.

We further evaluate performance via GPT-4o across photographic realism, content preservation, and
parameter accuracy. We further assess performance using GPT-4o evaluation and a user study with 15
photography experts. Each participant evaluated 20 image sets per task across the three tasks, scoring
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Figure 5: GPT-4o evaluation and user study across three dimensions: photographic realism, content
preservation, and camera parameter accuracy, using a 0–10 scale (higher is better).
Table 2: Quantitative comparison across camera-aware editing methods under aperture, focal-plane,
and shutter-speed control. Best results are in bold.

(a) Diffusion-Based Methods

Method Aperture Focal Plane Shutter Speed

NIQE↓ DINO↑ Error↓ NIQE↓ DINO↑ Error↓ NIQE↓ DINO↑ Error↓

SuperEdit [41] 4.43 0.73 ∼5 5.28 0.73 ∼0.5 4.86 0.75 ∼0.5
UltraEdit [72] 4.58 0.70 ∼5 5.57 0.74 ∼0.5 5.02 0.72 ∼0.5
In-Context Edit [47] 4.30 0.78 ∼5 4.91 0.80 ∼0.5 4.29 0.81 ∼0.5

PhotoGen [70] 6.65 – 1.31 6.21 – 0.28 6.11 – 0.19
UltraEdit* [72] 4.21 0.78 1.87 5.14 0.79 0.25 4.69 0.88 0.23
Ours 3.34 0.83 0.60 4.46 0.82 0.15 4.28 0.93 0.11

(b) Other Methods

Method Aperture Method Focal Plane

NIQE↓ MUSIQ↑ DINO↑ Error↓ NIQE↓ MUSIQ↑ DINO↑ Error↓

BokehMe [45] 4.62 59.70 0.82 0.62 BokehMe [45] 5.19 48.97 0.79 0.22
BRVIT [43] 6.53 50.72 0.71 – MPIB [46] 5.14 49.05 0.78 0.18
DrBokeh [57] 3.81 62.26 0.81 0.58 DrBokeh [57] 5.07 47.59 0.80 0.17
Ours 3.34 62.91 0.83 0.60 Ours 4.46 52.64 0.82 0.15

photographic realism, content preservation, and parameter accuracy. As shown in Figure 5, our
method achieves the highest average scores on all dimensions.Relative to UltraEdit*, our CamEdit
improves realism by 8% and parameter-control accuracy by 10%, demonstrating consistently higher
realism, stronger content preservation, and more precise control.

As shown in Table 2 (b), our method consistently outperforms rendering-based baselines on most
metrics, such as DrBokeh [57], BokehMe [45] on both aperture and focal plane editing tasks. For
aperture editing, our approach yields 23% lower control error compared to baselines. Relative to
the strongest competitor, DrBokeh, our method improves NIQE by 12% and reduces error by 24%.
These results highlight the benefit of continuous parameter control in diffusion models, enabling
physically grounded and perceptually faithful image editing.

Qualitative Comparison. As shown in Figure 6, our method achieves fine-grained and continuous
control across all camera parameters, demonstrating clear parameter awareness. Existing diffusion-
based editing models lack such a capability due to the absence of camera supervision during training.
UltraEdit*, retrained on our dataset, shows improvement, but its discrete prompting leads to occasional
mismatches when interpolating unseen values. In contrast, our method ensures smooth transitions and
better fidelity, particularly around depth-sensitive regions such as foreground boundaries, owing to our
parameter-aware modulation. We also compare with the generative model PhotoGen [70], where our
results exhibit higher photographic realism and more coherent spatial structure. This improvement
stems from our editing-based formulation and the use of real image pairs during training. Our method
handles diverse scenarios with realistic parameter effects, such as light flares from aperture adjustment
in nighttime scenes or exposure refinement that enhances visual aesthetics.

Figure 7 further supports our findings. Under aperture variation, our method preserves fine details
like hair strands and object contours. For focal plane editing, we maintain sharpness in in-focus areas,
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Figure 6: Visual comparison with diffusion-based methods. Our results illustrate smooth and
perceptually consistent edits under various instructions.
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Figure 7: Visual comparison with other methods. Our method achieves finer detail and more realistic
photographic effects compared to traditional rendering pipelines.

especially on architectural edges. In shutter speed control, our outputs adjust motion-related brightness
while preserving photographic style. These results confirm that CamEdit delivers physically consistent
edits with precise control and high visual fidelity.

5.3 Ablation Study

In this section, we analyze the components of CamEdit and the composition of CamEdit50K. All
ablations are conducted on the focal-plane task.
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Figure 8: (a) Training loss comparison between direct parameter embedding and ConPrompt. (b)
T-SNE visualization showing more semantically aligned embeddings with ConPrompt. (c) Visual
comparison with and without PAM.

Table 3: Ablation study on key components of
our CamEdit.
Method NIQE↓MUSIQ↑DINO↑Error↓
w/o ConPrompt 4.31 54.26 0.80 0.25
w/ Direct Embed. 5.25 52.41 0.81 0.27
w/o PAM 4.79 54.10 0.82 0.18
Ours (Full) 4.46 52.64 0.83 0.15

Table 4: Performance with different synthetic-to-real
ratios of training dataset.

Syn:Real NIQE↓ MUSIQ↑ DINO↑ Error↓
0 : 1 4.81 53.73 0.75 0.23
1 : 1 4.76 53.92 0.80 0.21
1 : 0 4.93 53.14 0.76 0.15
CamEdit50K 4.46 52.64 0.83 0.15

Continuous Parameter Prompting. As shown in Table 3, removing continuous parameter prompt-
ing (w/o ConPrompt), leads to degraded control accuracy and lower perceptual quality. Similar
inconsistencies are observed in the retrained UltraEdit*, where editing results lack smooth transitions
and do not align well with the target parameters, as illustrated in Figure 6.

We further evaluate a direct parameter embedding learning variant (w/ Direct Embed.), which bypasses
the text encoder and learns parameter embeddings independently. It results in lower visual quality,
and unstable training, as shown by higher loss and slower convergence in Figure 8 (a) and (b). In
contrast, ConPrompt interpolates between pre-defined anchor tokens within the frozen text space,
yielding smooth, semantically meaningful embeddings that improve control, fidelity, and stability.

Parameter-Aware Modulation. Parameter-aware modulation improves both parameter accuracy and
image quality, as evidenced by the performance drop in the “w/o PAM” variant in Table 3. This is
because different camera parameters induce global shifts in scene appearance, and PAM enables the
model to adapt feature representations accordingly. As shown in Figure 8 (c), removing PAM results
in unnatural transitions in defocus regions, particularly around human silhouettes, where the blur at
object boundaries becomes abrupt. We also evaluate the injection of continuous camera-parameter
features into the diffusion timestep embeddings in place of PAM. Compared with CamEdit, NIQE
is higher by 0.30, DINO is lower by 0.03, and Error is higher by 0.09, indicating weaker parameter
control due to the absence of localized spatial modeling.

Composition of CamEdit50K. We analyze CamEdit50K by varying the ratio of synthetic to real
data, as shown in Table 4. Training on real data alone lacks scene diversity and parameter coverage,
leading to weaker perceptual quality and control. Adding synthetic data at a 1:1 ratio improves over
real-only training, though gains are limited by the smaller total size. Synthetic-only training scales
well and enhances control, but visual fidelity lags without real-image guidance. Our CamEdit50K,
combining available synthetic and real data, delivers the best parameter control and visual quality,
driven by the scale of synthetic data and the fidelity of real data.

6 Conclusion

We present CamEdit, a framework for photorealistic image editing with continuous control over
camera parameters such as aperture, focal plane, and shutter speed. It features a parameter-aware
design and is supported by CamEdit50K, a hybrid dataset with paired images and varying camera
settings. CamEdit enables visually consistent, photorealistic edits and lowers the barrier for users to
manipulate camera parameters through images, with potential applications in education, simulation,
and creative industries. While effective on key controls, it does not yet support all camera parameters
and cannot recover focus from blurred regions, which remains fundamentally challenging and presents
a valuable direction for future research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction in Section 1 clearly state the main claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly describe the implementation details of our method in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

15



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data will be made publicly available upon acceptance of the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly describe the training and test details of our method in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars because our method demonstrates consistently
significant improvements, as shown in Table 1 and Table 2. Additionally, the scale of
experiments and associated computational cost make repeated trials impractical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The detailed description is presented in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully checked the Ethics Guidelines to make sure our research is
with it

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
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Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset, CamEdit50K, for camera-aware image editing
with continuous parameter annotations. The dataset includes both real and synthetic image
pairs with aligned camera parameter instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: GPT-4o was only used for evaluating editing results. It is not a component of
our core methodology and does not affect the scientific rigor or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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