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Abstract

Conceptual spaces represent entities in terms001
of their primitive semantic features. Such rep-002
resentations are highly valuable but they are003
notoriously difficult to learn, especially when004
it comes to modelling perceptual and subjec-005
tive features. Distilling conceptual spaces from006
Large Language Models (LLMs) has recently007
emerged as a promising strategy. However, ex-008
isting work has been limited to probing pre-009
trained LLMs using relatively simple zero-shot010
strategies. We focus in particular on the task011
of ranking entities according to a given con-012
ceptual space dimension. Unfortunately, we013
cannot directly fine-tune LLMs on this task,014
because ground truth rankings for conceptual015
space dimensions are rare. We therefore use016
more readily available features as training data017
and analyse whether the ranking capabilities018
of the resulting models transfer to perceptual019
and subjective features. We find that this is020
indeed the case, to some extent, but having per-021
ceptual and subjective features in the training022
data seems essential for achieving the best re-023
sults. We furthermore find that pointwise rank-024
ing strategies are competitive against pairwise025
approaches, in defiance of common wisdom.026

1 Introduction027

Knowledge graphs (KGs) have emerged as the de028

facto standard for representing knowledge in areas029

such as Natural Language Processing (Schneider030

et al., 2022), Recommendation (Guo et al., 2022)031

and Search (Reinanda et al., 2020). However, much032

of the knowledge that is needed in applications is033

about graded properties, e.g. recipes being healthy,034

movies being original or cities being kids-friendly.035

Such knowledge is easiest to model in terms of036

rankings: we can rank recipes according to how037

healthy they are even if we cannot make a hard038

decision about which ones are healthy and which039

ones are not. For this reason, we argue that con-040

ceptual spaces (Gärdenfors, 2000) should be used,041

alongside knowledge graphs, in many settings. 042

A conceptual space specifies a set of quality di- 043

mensions, which correspond to primitive semantic 044

features. For instance, in a conceptual space of 045

movies, we might have a quality dimensions re- 046

flecting how original a movie is. Entities are rep- 047

resented as vectors, specifying a suitable feature 048

value for each quality dimension. While the frame- 049

work of conceptual spaces is more general, we will 050

essentially view quality dimensions as rankings. 051

Conceptual spaces have the potential to play a 052

central role in various knowledge-intensive appli- 053

cations. In the context of recommendation, for 054

instance, they could clearly complement the factual 055

knowledge that is captured by typical KGs (e.g. 056

modelling the style of a movie, rather than who di- 057

rected it), making it easier to infer user preferences 058

from previous ratings. They could also be used to 059

make recommendations more controllable, as in the 060

case of critiquing-based systems, allowing users to 061

specify feedback of the form “like this movie, but 062

more kids-friendly” (Chen and Pu, 2012; Vig et al., 063

2012). Conceptual spaces furthermore serve as a 064

natural interface between neural and symbolic rep- 065

resentations (Aisbett and Gibbon, 2001), and may 066

thus enable principled explainable AI methods. 067

However, the task of learning conceptual spaces 068

has proven remarkably challenging. The issue of 069

reporting bias (Gordon and Durme, 2013), in partic- 070

ular, has been regarded as a fundamental obstacle: 071

the knowledge captured by conceptual spaces is 072

often so obvious to humans that it is rarely stated 073

in text. For instance, the phrase “green banana” is 074

more frequent in text than “yellow banana” (Paik 075

et al., 2021), as the colour is typically not speci- 076

fied when yellow bananas are discussed. Paik et al. 077

(2021) found that predictions of Language Models 078

(LMs) about the colour of objects were correlated 079

with the distribution of colour terms in text corpora, 080

rather than with human judgements, suggesting that 081

LMs cannot overcome the challenges posed by re- 082
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porting bias. However, Liu et al. (2022a) found that083

larger LMs can perform much better on this task.084

Going beyond colour, Chatterjee et al. (2023) eval-085

uated the ability of LLMs to predict taste-related086

features, such as sweetness and saltiness, obtaining087

mixed results: the rankings predicted by LLMs, in088

a zero-shot setting, had a reasonable correlation089

with human judgments but they were not consis-090

tently better than those produced by a fine-tuned091

BERT (Devlin et al., 2019) model.092

In this paper, we analyse whether LLMs can be093

fine-tuned to extract better conceptual space rep-094

resentations. The difficulty is that ground truth095

rankings are typically not available when it comes096

to perceptual and subjective features, outside a few097

notable exceptions such as the aforementioned taste098

dataset. We therefore explore whether more readily099

available features can be used for fine-tuning the100

model. For instance, we can obtain ground truth101

rankings from Wikidata entities with numerical at-102

tributes (e.g. the length of rivers, the birth date of103

people, or the population of cities) and then use104

these rankings to fine-tune an LLM. We further-105

more compare two different strategies for ranking106

entities with an LLM: the pointwise approach uses107

an LLM to assign a score to each entity, given some108

feature, while the pairwise approach uses an LLM109

to decide which among two given entities has the110

feature to the greatest extent. Our contributions111

and findings can be summarised as follows:112

• We evaluate on three datasets which have not113

previously been used for studying language114

models: a dataset of rocks, a dataset of movies115

and books, and a dataset about Wikidata enti-116

ties. We use these datasets alongside datasets117

about taste (Chatterjee et al., 2023) and physi-118

cal properties Li et al. (2023).119

• We analyse whether fine-tuning LLMs on fea-120

tures from one domain (e.g. taste) can improve121

their ability to rank entities in different do-122

mains (e.g. rocks). We find this indeed largely123

to be the case, as long as the training data also124

contains perceptual or subjective features.125

• We compare pointwise and pairwise ap-126

proaches for ranking entities with LLMs. De-127

spite the fact that pairwise approaches have128

consistently been found superior for LLM-129

based document ranking (Nogueira et al.,130

2019; Gienapp et al., 2022; Qin et al., 2023),131

when it comes to ranking entities, we find the 132

pointwise approach to be highly effective. 133

• To obtain rankings from pairwise judgments, 134

we need a suitable strategy for aggregating 135

these judgments. We show the effectiveness 136

of an SVM based strategy for this purpose. 137

While this strategy is known to have desirable 138

theoretical properties, it has not previously 139

been considered in the context of language 140

models, to the best of our knowledge 141

2 Related Work 142

LMs as Knowledge Bases Our focus in this pa- 143

per is on extracting knowledge from language mod- 144

els. This idea of language models as knowledge 145

bases was popularised by Petroni et al. (2019), 146

who showed that the pre-trained BERT model cap- 147

tures various forms of factual knowledge, which 148

can moreover be extracted using a simple prompt. 149

Work in this area has focused on two rather distinct 150

goals. On the one hand, probing tasks, such as the 151

one proposed by Petroni et al. (2019), have been 152

used as a mechanism for analysing and comparing 153

different language models. On the other hand, ex- 154

tracting knowledge from LMs has also been studied 155

as a practical tool for building or extending sym- 156

bolic knowledge bases. This has been particularly 157

popular for capturing types of knowledge which 158

are not commonly found in traditional knowledge 159

bases, such as commonsense knowledge Bosselut 160

et al. (2019); West et al. (2022); Yu et al. (2023). 161

Several works have focused on distilling KGs from 162

language models (Cohen et al., 2023). Hao et al. 163

(2023) studies this problem for non-traditional rela- 164

tions such as “is capable of but not good at”. Along 165

the same lines, Ushio et al. (2023) have focused on 166

modelling relations that are a matter of degree, such 167

as “is a competitor of” or “is similar to”. We can 168

similarly think of the conceptual space dimensions 169

that we consider in this paper as gradual properties. 170

Where the aforementioned approaches explicitly 171

extract knowledge from an LM, the knowledge cap- 172

tured by LMs has also been used implicitly, by ap- 173

plying such models in a wide range of knowledge- 174

intensive applications, including closed-book ques- 175

tion answering (Roberts et al., 2020), knowledge 176

graph completion (Yao et al., 2019), recommenda- 177

tion (Sun et al., 2019; Geng et al., 2022), entity 178

typing (Huang et al., 2022) and ontology alignment 179

(He et al., 2022), to name just a few. 180
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Conceptual Space of LMs There is an ongoing181

debate about the extent to which LMs can truly182

capture meaning (Bender and Koller, 2020; Ab-183

dou et al., 2021; Patel and Pavlick, 2022; Søgaard,184

2023). Within this context, several authors have185

analysed the ability of LMs to predict perceptual186

features. As already mentioned, Paik et al. (2021)187

and Liu et al. (2022a) analysed the ability of LMs188

to predict colour terms. Abdou et al. (2021) anal-189

yses whether the representation of colour terms in190

LMs can be aligned with their representation in the191

CIELAB colour space. Patel and Pavlick (2022)192

similarly showed that LLMs can generate colour193

terms from RGB codes in a few-shot setting, even if194

the codes represent a rotation of the standard RGB195

space. They also show a similar result for terms196

describing spatial relations. Zhu et al. (2024) have197

similarly shown that LLMs can understand colour198

codes, by using them to generate HSL codes for199

everyday objects, or by asking models to choose200

the most suitable code among two alternatives.201

Beyond the colour domain, Li et al. (2023) con-202

sidered physical properties such as height or mass.203

While they found LLMs to struggle with such prop-204

erties, Chatterjee et al. (2023) reported better re-205

sults on the same datasets, especially for GPT-4.206

Focusing on visual features, Merullo et al. (2023)207

showed that the representations of concepts in208

vision-only and text-only models can be aligned209

using a linear mapping. Chatterjee et al. (2023)210

focused on the taste domain, modelling properties211

such as sweet. They found that GPT-3 can model212

such properties to a reasonable extent, but not better213

than a fine-tuned BERT model.214

Gupta et al. (2015) already considered the prob-215

lem of modelling gradual properties in the context216

of static word embeddings, although their analysis217

was limited to objective numerical features. Derrac218

and Schockaert (2015) similarly learned conceptual219

space dimensions for properties such as “violent”220

in a semantic space of movies. These approaches221

essentially learn a linear classifier or regression222

model for each property indepdently, and can thus223

not generalise to new properties.224

3 Extracting Rankings225

We consider the following problem: given a set of226

entities E and a feature f , rank the entities in E227

according to the their value for the feature f . In228

some cases, f will refer to a numerical attribute.229

For instance, E may be a set of countries and f the230

population of a country, where the task is then to 231

rank the countries according to their population. In 232

other cases, f will rather refer to a gradual property. 233

For instance, E may be a set of food items and f 234

may be the level of sweetness. Let us write f(e) 235

for the value of feature f for entity e. 236

We consider two broad strategies for solving 237

the considered ranking task with LLMs. First, we 238

can use LLMs to map each entity e to some score 239

w(e), with the assumption that w(e1) < w(e2) 240

iff f(e1) < f(e2). This pointwise approach to 241

learning to rank is considered in Section 3.2. Sec- 242

ond, we can use LLMs to solve a binary classifica- 243

tion problem: given two entities e1 and e2, decide 244

whether f(e1) < f(e2) holds. This pairwise ap- 245

proach needs to be combined with a strategy for 246

aggregating the LLM predictions into a single rank- 247

ing. The main disadvantage is that a large number 248

of judgements need to be collected for this to be 249

effective, which means that such approaches are 250

less efficient than pointwise strategies. However, 251

in the context of document retrieval, pairwise ap- 252

proaches have been found to outperform pointwise 253

approaches (Nogueira et al., 2019; Gienapp et al., 254

2022; Qin et al., 2023). We discuss pairwise and 255

pointwise strategies in Sections 3.1 and 3.2 respec- 256

tively. Finally, Section 3.3 describes how we estab- 257

lish baseline results using ChatGPT and GPT4. 258

3.1 Pairwise Model 259

The problem of predicting whether f(e1) < f(e2) 260

holds can be straightforwardly cast as a sequence 261

classification problem. To this end, we use a 262

prompt of the following form: 263

This question is about two [ENTITY TYPE]: 264

[Is/Does/Was] [ENTITY 1] [COMPARATIVE 265

FEATURE] than [ENTITY 2]? 266

Note that the exact formulation depends on the type 267

of feature which is used for ranking. For instance, 268

some instantiations of the prompt are as follows: 269

• This question is about two rivers: Is River 270

Thames longer than Seine? 271

• This question is about two companies: Was 272

Meta founded after Alphabet? 273

• This question is about two food items: Does 274

banana taste sweeter than chicken? 275

In initial experiments, we used prompts with a more 276

uniform style (e.g. “should [ENTITY 1] be ranked 277
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higher than [ENTITY 2] in terms of [FEATURE]”).278

However, this inevitably leads to less natural sound-279

ing prompts for certain features, which may affect280

performance. Moreover, such prompts were some-281

times found to be ambiguous (e.g. does “ranked282

higher in terms of date of birth” mean younger peo-283

ple should be ranked highest?). To obtain judg-284

ments about entity pairs, we use a standard se-285

quence classification approach, where a linear layer286

with sigmoid activation is applied to the final hid-287

den state. The model is trained using binary cross288

entropy using a set of training examples.289

Aggregating judgments We typically want to290

rank a given set of entities, rather than judging291

the relative position of two particular elements.292

This means that we need a strategy for aggregat-293

ing (noisy) pairwise judgments into a single rank-294

ing. This problem has received extensive attention295

in the literature, with standard techniques includ-296

ing spectral ranking (Vigna, 2016) and maximum297

likelihood estimation w.r.t. an underlying statisti-298

cal model. However, existing approaches often299

consider a stochastic setting, where we may have300

access to several judgments for the same entity301

pair (e.g. when ranking sports teams based on the302

outcomes of head-to-head matches).303

Our setting is slightly different, as we can realis-304

tically only obtain judgments for a small sample of305

entity pairs. In particular, we ideally need methods306

with Ω(n) sample complexity, i.e. methods that307

can perform well with a number of judgements that308

is linear in the number of queries. Wauthier et al.309

(2013) discuss two such methods. Let us write310

e1, ..., en for the entities to be ranked. The first311

method uses a linear SVM to learn a weight vec-312

tor w = (w1, ..., wn). Let xi be an n-dimensional313

one-hot vector, which is 1 in the ith coordinate314

and 0 elsewhere. If we have a pairwise judgement315

f(ei) < f(ej) then this is translated into the con-316

straint that w(xj − xi) > 0. A standard SVM can317

then be used to find the vector w that maximises318

the margin between positive and negative exam-319

ples. Entity ei is ranked based on its corresponding320

weight wi. The second method simply scores each321

entity ei based on the number of pairwise compar-322

isons where ei was ranked higher/lower. Specif-323

ically, let us define sij = 1 if entities ei and ej324

have been compared, and sij = 0 otherwise. Fur-325

thermore, we define cij = 1 if f(ei) > f(ej),326

according to a pairwise comparison that was made,327

and cij = −1 otherwise. Then we can choose the328

weights as: 329

wi =

∑
j ̸=i sijcij∑
j ̸=i sij

330

We will refer to this strategy as Count. 331

3.2 Pointwise Model 332

For the pointwise model, we need to learn a scoring 333

function w : E → R. To this end, we use a prompt 334

of the following form: 335

Is [ENTITY 1] among [SUPERLATIVE FEA- 336

TURE] [ENTITY TYPE]? 337

For instance, Is River Thames among the longest
rivers? For each entity ei, we obtain a score
w(ei) ∈ R by applying a linear layer to the final
hidden state. Intuitively, w(ei) captures the (latent)
quality of ei w.r.t. the considered feature. Since we
cannot obtain ground truth labels for this score, we
again rely on pairwise comparisons for training the
model. Specifically, we estimate the probability pij
that f(ei) > f(ej) holds as:

pij = σ
(
w(ei)− w(ej)

)
Then we use binary cross entropy as follows:

L = −
(∑

i ̸=j

tij log pij + (1− tij) log(1− pij)
)

where tij = 1 if f(ei) > f(ej) and tij = 0 oth- 338

erwise, and the summation ranges over all distinct 339

entity pairs ei, ej within the given mini-batch. Note 340

that while we use pairwise comparisons for train- 341

ing the model, it is still a pointwise approach as it 342

produces scores for individual entities. 343

3.3 Baselines 344

To put the performance of the fine-tuning strategies 345

from Sections 3.1 and 3.2 into context, we compare 346

them with two conversational models: ChatGPT 347

(gpt-3.5-turbo) and GPT-4 (gpt-4). We use both 348

models in a zero-shot setting. For this purpose, we 349

use the same prompt as in Section 3.1 but append 350

the sentence Only answer with yes or no. Despite 351

this instruction, the models occasionally still gener- 352

ates a different response, typically expressing that 353

the question cannot be answered. For such entity 354

pairs, we replace the generated response with a 355

randomly generated label (yes or no).1 356

1Statistics about how often this was needed can be found
in the appendix.
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4 Datasets357

In our experiments, we will rely on the following358

datasets, either for training or for testing the mod-359

els. Each dataset consists of a number of rankings,360

where each ranking is defined by a set of entities361

and a feature along which the entities are ranked.362

Wikidata We have obtained 20 rankings from363

numerical features that are available on Wikidata2.364

For instance, we obtained a ranking of rivers by365

comparing their length.3. If there were more than366

1000 entities with a given feature value, we se-367

lected the most 1000 popular entities. To estimate368

the popularity of an entity, we use their QRank4,369

which counts the number page views of the corre-370

sponding entry in sources such as Wikipedia. For371

the entity type person, we limited the analysis to372

people born in London (which made it possible373

to retrieve the required information from Wikidata374

more efficiently). We similarly only considered375

museums located in Italy. For some experiments,376

we split the collected data in two datasets, called377

WD1 and WD2. This will allow us to test whether378

models trained on one set of features (i.e. WD1)379

generalise to a different set of feature (i.e. WD2).380

WD1 contains rankings which were cut off at 1000381

elements, whereas WD2 contains rankings with382

fewer elements. We will write WD to refer to the383

full dataset, i.e. WD1 and WD2 combined.384

Taste Following Chatterjee et al. (2023), we use385

a dataset with ratings about the taste of 590 food386

items along six dimensions: sweetness, sourness,387

saltiness, bitterness, fattiness and umaminess. The388

dataset was created by Martin et al. (2014), who389

used a panel of twelve experienced food assessors390

to rate the items. We use the version of the dataset391

that was cleaned by Chatterjee et al. (2023), who392

altered some of the descriptions of the items to393

make them sound more natural in prompts.5394

Rocks Nosofsky et al. (2018) created a dataset395

of rocks, with the aim of studying how cognitively396

meaningful representation spaces for complex do-397

mains can be learned. A total of 30 rock types398

were studied (10 igneous rocks, 10 metamorphic399

2https://www.wikidata.org/wiki/Wikidata:
Main_Page

3The entity types and corresponding features are listed in
the appendix

4https://qrank.wmcloud.org
5Available from https://github.com/

ExperimentsLLM/EMNLP2023_PotentialOfLLM_
LearningConceptualSpace.

rocks and 10 sedimentary rocks). For each type 400

of rock, 12 pictures were obtained, and each pic- 401

ture was annotated along 18 dimensions. However, 402

only 7 of the considered dimensions allow for rank- 403

ing all types: lightness of colour, average grain 404

size, roughness, shininess, organisation, variabil- 405

ity of colour and density. For our experiments, 406

we only considered these dimensions. The dataset 407

from Nosofsky et al. (2018) contains ratings for 408

each of the 12 pictures of a given rock type, where 409

each picture was assessed by 20 annotators. To 410

construct rankings of rock types, we average the 411

ratings across the 12 pictures. As such, we end up 412

with 7 rankings of 30 rock types. 413

Tag Genome Vig et al. (2012) collected a 414

dataset6 of movies, called the Tag Genome, by ask- 415

ing annotators to what extent different tags apply to 416

different movies, on a scale from 1 to 5. From these 417

tags, we first selected those that correspond to ad- 418

jectives and for which ratings for at least 15 movies 419

were available. We then manually identified 38 of 420

these adjectives which correspond to ordinal fea- 421

tures. More recently, Kotkov et al. (2022) created a 422

similar dataset for books. We again selected adjec- 423

tives for which at least 15 items were ranked, and 424

manually identified 32 adjectives that correspond 425

to ordinal features. A list of the adjectives that we 426

considered, together with the corresponding num- 427

ber of items in the rankings, is provided in the ap- 428

pendix. It should be noted that most items are only 429

judged by a single annotator, and the judgements 430

were moreover obtained using crowdsourcing. The 431

movies and books datasets are thus clearly noisier 432

than the taste and rocks datasets. By averaging 433

across a large number of rankings, we believe that 434

these datasets can nonetheless be valuable. For this 435

reason, we will only consider aggregated results 436

across all tags when evaluating on these datasets. 437

We will write TG to refer to the combined dataset, 438

containing both the books and movies rankings. 439

Physical Properties Following Li et al. (2023), 440

we consider three physical properties: mass, size 441

and height. The ground truth for mass dataset was 442

obtained from a dataset about household objects 443

from Standley et al. (2017). Following Chatterjee 444

et al. (2023), we removed 7 items, because their 445

mass cannot be assessed without the associated 446

image: big elephant, small elephant, Ivan’s phone, 447

6Available from https://grouplens.org/datasets/
movielens/tag-genome-2021/.
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POINTWISE

Llama2-7B 80.5 61.0 62.8 53.2 47.2 52.6 58.2 65.0 62.0 60.2 56.4 42.0 53.6 61.2 72.2 59.3 52.8 68.0 70.0 50.0 59.4
Llama2-13B 79.8 58.7 52.8 70.4 51.2 52.8 65.2 67.2 66.4 49.6 43.2 52.6 57.0 57.2 65.2 60.9 55.0 69.6 76.4 58.4 60.5
Mistral-7B 78.3 61.4 70.2 69.4 64.8 59.2 67.8 68.8 61.0 57.4 42.4 47.8 61.0 52.4 56.0 62.4 59.3 85.6 70.0 61.0 62.8

PAIRWISE

Llama2-7B 81.8 61.6 59.0 59.8 52.0 53.8 60.8 61.8 50.8 62.6 52.2 46.6 56.0 55.8 64.4 57.0 60.1 86.2 81.2 68.0 61.6
Llama2-13B 82.8 68.0 58.6 67.4 50.8 53.6 67.6 67.6 50.2 66.8 58.4 52.0 55.8 58.8 68.8 58.3 55.6 93.8 91.2 66.2 64.6
Mistral-7B 82.2 64.2 59.4 69.0 52.4 52.4 66.8 63.0 58.6 55.0 52.6 47.8 54.8 52.0 58.8 53.3 52.3 92.6 88.0 68.2 62.2

BASELINES

ChatGPT 55.3 60.9 60.4 58.4 52.4 51.0 53.2 54.2 60.4 60.2 57.0 51.4 53.2 55.2 62.8 63.8 67.2 77.8 70.8 58.6 59.2
GPT-4 77.2 78.3 76.6 80.6 62.6 56.2 69.2 73.8 72.8 70.2 56.6 62.4 59.4 63.6 74.0 67.4 66.9 99.2 95.2 64.0 71.3

Table 1: Comparison of different models in terms of accuracy (%), when classifying pairwise judgments. The
pointwise and pairwise models are trained on the training split of WD1.
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WD1-train 82.8 68.0 58.6 67.4 50.8 53.6 67.6 67.6 50.2 66.8 58.4 52.0 55.8 58.8 68.8 58.3 55.6 93.8 91.2 66.2
WD - - 55.2 64.8 51.2 53.8 62.4 63.0 46.8 68.8 60.8 60.0 50.4 64.8 70.6 65.3 62.3 78.0 79.4 60.4
TG 63.3 56.9 71.2 71.6 60.0 58.8 69.0 65.6 71.2 69.6 48.8 60.6 57.6 55.8 66.0 - - 50.6 54.6 55.2
Taste 62.1 51.1 - - - - - - 66.4 72.2 56.8 60.8 58.6 53.2 74.0 66.2 55.7 53.0 61.4 58.2
WD+TG+Taste - - - - - - - - 61.2 70.6 57.0 59.2 62.8 57.6 78.4 - - 77.8 85.4 62.2
WD+TG+Rocks - - 74.0 72.4 60.0 60.2 70.6 72.2 - - - - - - - - - 85.6 88.2 62.0
WD+Taste+Rocks - - - - - - - - - - - - - - - 69.1 65.2 89.4 91.2 63.8

Table 2: Comparison of different models in terms of accuracy (%), when classifying pairwise judgments. All results
are for the pairwise model with Llama2-13B.

Ollie the monkey, Marshy the elephant, boy doll448

and Dali Clock. The resulting dataset has 49 items.449

For size and height, we use the datasets from Liu450

et al. (2022b) as ground truth. These datasets each451

consist of 500 pairwise judgements.452

5 Experiments453

We now evaluate the performance of the fine-tuning454

strategies on the considered datasets.7455

Comparing Models Table 1 compares a number456

of different models. We test three different LLMs:457

the 7B and 13B parameter Llama 2 models8 and458

the 7B parameter Mistral model9. We evaluate the459

7Our datasets, code and pre-trained models will be shared
upon acceptance.

8We use the llama-2-7b-hf and llama-2-13b-hf mod-
els available from https://huggingface.co/meta-llama.

9We use the mistral-7b-v0.1 model available from
https://huggingface.co/mistralai/Mistral-7B-v0.

different models in terms of their accuracy on pair- 460

wise judgements. To this end, for a given dataset, 461

we randomly sample pairs of entities ei, ej and con- 462

struct queries asking whether f(ei) > f(ej). For 463

WD, Taste and Rocks, we sample 500 such pairs 464

for each of the features. Since the TG dataset has 465

a total of 70 features, we limit the test set to 100 466

pairs per feature. For this analysis, we have split 467

the WD1 dataset into two parts: 80% of the en- 468

tities, for each feature, are used for training the 469

models. The remaining 20% are used as a test set. 470

All models are fine-tuned on the training split of 471

WD1 (apart from the baselines, which are evalu- 472

ated zero-shot). This allows us to see how well the 473

models perform on the features they were trained 474

on (by evaluating on the WD1 test split), as well as 475

how they generalise to unseen properties. 476

The aim of the analysis in Table 1 is to assess 477

1.
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Pointwise 51.0 64.8 35.2 35.2 52.0 61.7
SVM (5 samples) 62.1 62.2 42.6 44.6 56.4 63.0
SVM (30 samples) 66.0 64.7 47.6 47.0 60.6 65.8
Count (5 samples) 59.0 57.4 46.7 41.7 53.5 60.1
Count (30 samples) 64.8 64.7 49.1 47.2 59.9 64.7

Ada∗ 17.5 8.5 12.2 16.4 22.5 10.7
Babbage∗ 19.5 51.1 20.2 22.0 22.6 16.0
Curie∗ 36.0 46.3 32.8 23.2 22.6 31.7
Davinci∗ 55.0 63.2 33.3 27.2 57.0 52.0

Table 3: Comparison of ranking strategies, in terms of
Spearman ρ%. Baseline results marked with ∗ were
taken from Chatterjee et al. (2023). All other results are
obtained with Llama-13B trained on WD+TG+Rocks.

whether models can be successfully fine-tuned us-478

ing a relatively small training set (i.e. WD1-train),479

involving only well-defined numerical features. In480

particular, we want to test whether models which481

are fine-tuned on such features would also gen-482

eralise to more subjective and less readily avail-483

able ones, similar to the easy-to-hard generalisa-484

tion that has been observed for LLMs in other tasks485

(Hase et al., 2024). The results show that this is486

only the case to some extent. Overall, we can see487

that Mistral-7B achieves the best results among488

the pointwise models, while Llama2-13B achieves489

the best results among the pairwise models. The490

performance of the pointwise Mistral-7B model is491

particularly surprising, given that pairwise models492

generally perform better in ranking tasks. The per-493

formance of the models across different features is494

not always consistent. Each model achieves close495

to random chance on some of the features, but496

the features where one model performs poorly are497

not always the same features where other models498

perform poorly. However, for bitterness and rough-499

ness, all models perform below 60% F1. Further-500

more, sourness and organisation also stand out as501

being more challenging. Regarding the baselines,502

GPT-4 generally performs better than the fine-tuned503

models. ChatGPT performs worse on most features,504

but achieves the best results for books.505

Comparing Training Sets The relatively disap-506

pointing results from Table 1 can be partially ex-507

plained by the fact that a small training set was508

used, which moreover only covered numerical fea-509

tures and particular entity types. In Table 2, we510

evaluate the impact of using different training sets.511

For this analysis, we use the pairwise Llama2-13B 512

model. Our focus is on seeing whether models 513

trained on one domain can generalise to other do- 514

mains. The results are again evaluated in terms of 515

accuracy, using the same pairwise judgements as 516

for Table 1. WD refers to the full dataset (including 517

both the training and test splits of WD-1). 518

We can see that training on larger datasets indeed 519

leads to considerably better results. While this is 520

not unexpected, we can also make more striking 521

observations in Table 2. For instance, the model 522

that was trained on Taste alone achieves strong re- 523

sults on Rocks, despite the two datasets involving 524

very different features. Similarly, the model that 525

was only trained on TG achieves strong results for 526

both Taste and Rocks. This suggests that the fine- 527

tuned models are indeed capable of generalising 528

to unseen domains. However, to achieve strong 529

results, it appears to be important that the train- 530

ing data contains subjective or perceptual features. 531

Indeed, training on TG alone overall performed 532

poorly, compared to the other training sets. The 533

best results in Table 2 are competitive with the 534

GPT-4 results from Table 1. Given that the train- 535

ing and test sets cover disjoint domains, the results 536

in Table 2 reflect the knowledge that is captured 537

by the LLMs themselves, rather than knowledge 538

that was injected during the fine-tuning process. 539

This suggests that pre-trained LLMs capture more 540

perceptual knowledge than it may initially appear. 541

Comparing Ranking Strategies Table 3 com- 542

pares different strategies for generating rankings. 543

The pointwise model can be used directly for this 544

purpose. For the pairwise model, we show results 545

with the SVM strategy and the Count strategy. For 546

Count, we furthermore vary the number of pairwise 547

judgments per entity (5 or 30). For this experiment, 548

we use the (pointwise and pairwise) Llama2-13B 549

models that were trained on WD+TG+Rocks. We 550

evaluate the different models by comparing the 551

predicted rankings with the ground truth in terms 552

of Spearman ρ. We can see that the pairwise ap- 553

proaches outperform the pointwise model in this 554

case. This is somewhat surprising, given the strong 555

performance of the pointwise models in Table 1. 556

Essentially, because the ranking strategies aggre- 557

gate many pairwise samples, the noisy nature of 558

the pairwise judgments can to some extent be miti- 559

gated. The SVM method generally performs better 560

than the Count method, especially in the case where 561

only 5 judgments per entity are obtained. We also 562
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Feature Top ranked entities Bottom ranked entities

Sweetness mango, dried date, white chocolate, peach , pineapple in
syrup, fruit candy, syrup with water, ice cream, strawberry,
sweet pancake with maple syrup

minced beef patty, grilled calf livers, squid, sandwich with
cold cuts, gizzards, croque-monsieur, roast rabbit, stir-fried
bacon, roast beef , calf head with vinaigrette

Saltiness green olives, extruded salty crackers, soy sprouts with soy
sauce, canned anchovies, canned sardines, pasta with soy
sauce, salted pies, marinated mussels, potato chips, salted
cake

clafoutis, raspberry cake, stewed apple, raspberry with
whipped cream, white chocolate, strawberry with cream and
sugar, mix fruits juice, apple, raspberry, strawberry

Scary Descent, The (2005), Grudge, The (2004), Exorcist, The
(1973), Silence of the Lambs, The (1991), Ring, The (2002),
Texas Chainsaw Massacre, The (1974), Shining, The (1980),
Seven (a.k.a. Se7en) (1995), Amityville Horror, The (2005),
American Werewolf in London, An (1981)

Super Size Me (2004), Station Agent, The (2003), Ray (2004),
Dances with Wolves (1990), Jerry Maguire (1996), Driving
Miss Daisy (1989), School of Rock (2003), Kung Fu Panda
(2008), Miss Congeniality (2000), Ninotchka (1939)

Funny Ace Ventura: When Nature Calls (1995), Ace Ventura: Pet
Detective (1994), Hot Shots! Part Deux (1993), Army of
Darkness (1993), South Park: Bigger, Longer and Uncut
(1999), Auntie Mame (1958), Blazing Saddles (1974), Clerks
(1994), Grand Day Out with Wallace and Gromit, A (1989),
Hitchhiker’s Guide to the Galaxy, The (2005)

Spanish Prisoner, The (1997), Son of Dracula (1943), Ghost
Dog: The Way of the Samurai (1999), Ferngully: The Last
Rainforest (1992), High Crimes (2002), Cadillac Man (1990),
Bad Boys II (2003), House of Wax (1953), Fire in the Sky
(1993), Step Up 2 the Streets (2008)

Population India, Nigeria, People’s Republic of China, Iran, Pak-
istan, United States of America, Russia, Indonesia, Egypt,
Bangladesh

Dominica, Nauru, Andorra, Cook Islands, Saint Vincent and
the Grenadines, Seychelles, Palau, Northern Mariana Islands,
Liechtenstein, Niue

Table 4: We show the top and bottom ranked entities for five features: sweetness and saltiness, from the food dataset,
scary and funny, from movies, and countries population, from WD2.

compare with the GPT-3 results reported by Chat-563

terjee et al. (2023), finding that the pairwise Llama564

model consistently performs best.565

Qualitative Analysis Table 4 shows the 10 high-566

est and lowest ranked entities, according to the567

rankings from the SVM method with the pairwise568

Llama2-13B model. The results for sweetness and569

saltiness were obtained with the model that was570

trained on WD+TG+Rocks. The rankings for scary571

and funny movies were obtained with the model572

that was trained on WD+Taste+Rocks. The rank-573

ing for population was obtained with the model574

that was trained on WD1. The table shows that575

the model was successful in selecting these top and576

bottom ranked entities. The top-ranked entities for577

sweetness, for instance, are all clearly sweet food578

items, while none of the bottom ranked entities are.579

Similar observations can be made for the other fea-580

tures. The model is sometimes less successful in581

distinguishing middle-ranked entities from bottom-582

ranked entities. For instance, most cheeses appear583

at the bottom of the ground truth ranking, whereas584

the model predicted these to be somewhere closer585

to the middle.10 In the population example in Table586

4, we can see that while the top-ranked entities are587

all countries with a high population, their relative588

ranking is not accurate. For instance, Nigeria is589

10A more detailed analysis of such errors can be found in
the appendix.

only the 6th most populous country in the dataset, 590

but it is ranked in second place. 591

6 Conclusions 592

We have studied the problem of ranking entities 593

along conceptual space dimensions, such as sweet- 594

ness (for food), roughness (for rocks) or scary (for 595

movies). We found that fine-tuning LLMs on data 596

from one domain (e.g. taste) is a viable strategy for 597

learning to extract rankings in unrelated domains 598

(e.g. rocks), as long as both domains are percep- 599

tual. In contrast, LLMs that were fine-tuned on 600

objective numerical features from Wikidata were 601

less successful when applied to perceptual domains. 602

When comparing pairwise and pointwise strategies, 603

surprisingly, we found that pointwise methods were 604

as successful as pairwise methods for making pair- 605

wise judgements (i.e. should entity e1 be ranked be- 606

fore entity e2), although pairwise methods still had 607

the advantage when such judgments were aggre- 608

gated. Overall, our results suggest that the current 609

generation of open-source LLMs, such as Llama 610

and Mistral, can be effectively used for construct- 611

ing high-quality conceptual space representations. 612

However, further work is needed to construct more 613

comprehensive training sets. Encouragingly, we 614

found that subjective (and relatively noisy) rank- 615

ings, such as those from the movies and books 616

datasets, can also be effective, while being much 617

easier to obtain than perceptual features. 618
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Limitations619

The performance of LLMs is highly sensitive to the620

prompting strategy. While we have made efforts to621

choose a reasonable prompt, it is likely that better622

results are possible with different choices. Further-623

more, while we have tested a number of different624

LLMs, it is possible that other (existing or future)625

models of similar sizes may behave qualitatively626

different. Care should therefore be taken when627

drawing any conclusions about the limitations of628

LLMs in general. Moreover, the limitations we629

have identified might be particular to the specific630

fine-tuning techniques that we have used, rather631

than reflecting limitations of the underlying LLMs.632

When it comes to modelling subjective features,633

such as those in the movies and books datasets,634

it is important to acknowledge that people may635

have different points of view. When using concep-636

tual space representations extracted from LLMs in637

downstream applications, we thus need to be aware638

that these representations are biased and, at best,639

can only represent a majority opinion.640
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particular, for all three models, we used 4-bit quan- 918

tization for efficient training. In the QLoRa con- 919

figuration, r (the rank of the low-rank matrix used 920

in the adapters) was set to 32, α (the scaling factor 921

for the learned weights) was set to 64, and dropout 922

was set to 0.05. We applied QLoRa to all the lin- 923

ear layers of the models, including q_proj, k_proj, 924

v_proj, o_proj, gate_proj, up_proj, down_proj, and 925

lm_head. The models were trained with a batch 926
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we fixed the number of training steps to 25,000 929

for the pairwise models and 1,500 for the point- 930
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steps for the pointwise model, because each mini- 932
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pairwise combinations of these entities. In contrast, 934

for the pairwise model, each mini-batch consists 935

of 8 pairwise combinations. We also observed that 936

the pointwise model converges more quickly than 937

the pairwise model. 938

OpenAI Models Table 5 show for how many 939

cases ChatGPT and GPT-4 failed to answer with 940

yes or no, when asked about pairwise comparisons. 941

Overall, such cases were rare. The highest number 942

of failures were seen for TG dataset, which appears 943
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ChatGPT 0.10 0.10 0.00 0.00 0.40 0.00 0.00 0.20 0.00 0.00 0.40 0.20 0.20 0.20 0.20 0.47 1.00 0.20 0.00 0.40
GPT-4 2.04 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 4.16 0.00 0.00 0.00

Table 5: Percentage of cases where ChatGPT and GPT-4 refused to answer a question about a pairwise comparison
between two entities.

Entity type Feature Size

W
D

1

mountain elevation 1000
building height 1000
river length 1000
person # social media followers 1000
city population 1000
species mass 1000
organisation inception date 1000
person date of birth 1000
museum latitude 1000
landform area 1000

W
D

2

country population 196
musical object inception date 561
chemical element atomic number 166
chemical element discovery date 113
building # elevators 151
director # academy awards 65
actor # academy awards 74
food water footprint 56
composer # grammy awards 71
food Scoville grade 43

Table 6: Overview of the datasets based on Wikidata.

to be related to the subjective nature of the features944

involved.945

Datasets Table 6 gives an overview of the prop-946

erties that were selected for the WD1 and WD2947

datasets, along with the corresponding number of948

entities. Table 7 and 8 similarly show the tags that949

have been considered for the Movies and Books950

datasets, along with the number of corresponding951

entities.952

B Additional Analysis953

Error Analysis Table 9 presents an error analy-954

sis for the same five rankings that were considered955

in Table 4. Specifically, in Table 9 we focus on the956

entities where the difference between the predicted957

ranking position and the position of the entity in958

the ground truth ranking is highest. On the left,959

we show entities which are ranked too high (i.e.960

where the model predicts the entity has the feature961

to a greater extent than is the case according to962

Tag #Movies Tag #Movies

scary 82 grim 20
funny 217 gritty 34
gory 33 inspirational 90
dark 139 intelligent 18
beautiful 117 intense 53
intellectual 32 melancholic 17
artistic 91 predictable 121
absurd 20 pretentious 29
bleak 23 quirky 151
bloody 27 realistic 74
boring 186 romantic 46
claustrophobic 19 sad 130
clever 68 satirical 106
complex 23 sentimental 28
controversial 44 surreal 241
dramatic 24 suspenseful 19
emotional 34 tense 40
enigmatic 36 violent 132
frightening 18 witty 47

Table 7: Considered set of tags for the Movies dataset.

the ground truth). On the right, we show entities 963

which are ranked too low. In the case of sweet- 964

ness, we can see that the model consistently ranks 965

cheeses to high. They are predicted to be in rank- 966

ing positions 150-250, whereas the ground truth 967

puts them at 500-590. In the case of saltiness, we 968

can see that sweet drinks and pastries are ranked 969

too high. For instance, cola soda is ranked in po- 970

sition 108 whereas the ground truth puts it at 517 971

(out of 590). Overall, these results suggest that the 972

model struggles with certain food groups. For the 973

features scary, funny and population, clear patterns 974

are harder to detect. 975

Impact of Entity Popularity The reliability of 976

LLMs when it comes to modelling entity knowl- 977

edge has been found to correlate with the popular- 978

ity of the entities involved (Mallen et al., 2023). 979

To analyse this aspect, Figure 1 compares entity 980

popularity with prediction error, for the countries 981

population feature from the WD2 dataset. For this 982

analysis, we have used the pairwise Llama2-13B 983

model that was trained on the WD1-training split. 984
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Tag #Books Tag #Books

absurd 106 literary 525
beautiful 28 philosophical 80
bizarre 37 political 138
controversial 40 predictable 27
cool 31 quirky 20
crazy 23 realistic 36
dark 659 romantic 125
educational 121 sad 154
funny 331 satirical 23
futuristic 157 short 30
gritty 18 silly 25
hilarious 66 strange 22
inspirational 195 surreal 28
intellectual 17 unique 31
intense 27 weird 46
interesting 33 witty 17

Table 8: Considered set of tags for the Books dataset.

Figure 1: Scatter plot comparing the popularity of Wiki-
data entities (X-axis) with the prediction error (Y-axis)
for the countries population feature.

We obtained a ranking of all countries using the985

SVM method with 20 samples. On the X-axis, the986

entities are ranked from the most popular to the987

least popular. On the Y-axis, we show the predic-988

tion error for the corresponding entity, measured as989

the difference between the position of the entity in990

the predicted ranking and its position in the ground991

truth ranking. Based on this analysis, no clear cor-992

relation between entity popularity and prediction993

error can be observed.994

13



Feature Entities ranked too high Entities ranked too low

Sweetness coulommiers cheese, chaource cheese, mimolette cheese,
pasta with soy sauce, latte without sugar, reblochon cheese,
plain yogurt, mont d’or cheese, saint-agur cheese, faisselle

martini with lemon juice, martini, cod fritters, champignons
crus with vinaigrette, hamburger, salty crackers, light lager,
andouillette sausage, soft boiled eggs, omelette with vinegar

Saltiness marinated mussels, liquorice candy, fortified wines, kir, ori-
ental pastries, cola soda, petit suisse with sugar, petit suisse
with sugar and cream, aperitif with anise, petit suisse

carrot puree with cream, mix vegetables salad, moussaka,
guacamole, pies, zucchini, stuffed zucchini, quiches, bulgur,
broccoli with cream

Scary Pirates of the Caribbean: The Curse of the Black Pearl (2003),
Interview with the Vampire: The Vampire Chronicles (1994),
Scream (1996), Terminator, The (1984), Quills (2000), Bat-
man Begins (2005), Evil Dead II (Dead by Dawn) (1987),
Dawn of the Dead (1978), Spirited Away (Sen to Chihiro no
kamikakushi) (2001), Requiem for a Dream (2000)

Final Fantasy: The Spirits Within (2001), Eye of the Needle
(1981), Sunless (Sans Soleil) (1983), Outland (1981), Super
Size Me (2004), Slumdog Millionaire (2008), Underworld
(2003), Roger & Me (1989), One Hour Photo (2002), Close
Encounters of the Third Kind (1977)

Funny Fargo (1996), Original Kings of Comedy, The (2000), Meet
the Spartans (2008), Simpsons Movie, The (2007), Happy
Gilmore (1996), Jackass Number Two (2006), Who Framed
Roger Rabbit? (1988), Tenacious D in The Pick of Destiny
(2006), Men in Black (a.k.a. MIB) (1997), Elf (2003)

Ref, The (1994), American Psycho (2000), Run Lola Run
(Lola rennt) (1998), Charter Trip, The (a.k.a. Package Tour,
The) (1980), Bend It Like Beckham (2002), License to Drive
(1988), Battleship Potemkin (1925), Jesus Camp (2006), Slap
Shot (1977), Night of the Living Dead (1968)

Population Djibouti, Qatar, Eritrea, Botswana, Papua New Guinea,
Gabon, Libya, Mongolia, Mauritania, Namibia

Burundi, Rwanda, Switzerland, Wales, Kingdom of the
Netherlands, Belgium, England, Italy, Netherlands, Czech
Republic

Table 9: Error analysis, showing the entities with the maximum difference in rank position between the ground truth
ranking and the predicted ranking.
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